
Chapter 4

Finite fields: further properties

8 Roots of unity in finite fields

In this section, we will generalize the concept of roots of unity (well-known for complex numbers)
to the finite field setting, by considering the splitting fieldof the polynomialxn − 1. This has links
with irreducible polynomials, and provides an effective way of obtaining primitive elements and
hence representing finite fields.

Definition 8.1
Let n ∈ N. The splitting field ofxn − 1 over a fieldK is called thenth cyclotomic fieldoverK and
denoted byK(n). The roots ofxn − 1 in K(n) are called thenth roots of unity overK and the set
of all these roots is denoted byE(n).

The following result, concerning the properties ofE(n), holds for an arbitrary (not just a finite!)
field K.

Theorem 8.2
Let n ∈ N andK a field of characteristicp (wherep may take the value0 in this theorem). Then

(i) If p ∤ n, thenE(n) is a cyclic group of ordern with respect to multiplication inK(n).

(ii) If p | n, write n = mpe with positive integersm ande andp ∤ m. ThenK(n) = K(m),
E(n) = E(m) and the roots ofxn − 1 are them elements ofE(m), each occurring with
multiplicity pe.

Proof.

(i) The n = 1 case is trivial. Forn ≥ 2, observe thatxn − 1 and its derivativenxn−1 have no
common roots; thusxn−1 cannot have multiple roots and henceE(n) hasn elements. To see
thatE(n) is a multiplicative group, takeα, β ∈ E(n): we have(αβ−1)n = αn(βn)−1 = 1
and soαβ−1 ∈ E(n). It remains to show that the groupE(n) is cyclic; this can be proved by
an analogous argument to the proof of Theorem 6.9 (exercise:fill in details).

(ii) Immediate fromxn − 1 = xmpe

− 1 = (xm − 1)p
e

and part (i).

�

Definition 8.3
Let K be a field of characteristicp andn a positive integer not divisible byp. Then a generator of
the cyclic groupE(n) is called aprimitive nth root of unity overK.
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By Theorem 1.13,E(n) hasφ(n) generators, i.e. there areφ(n) primitive nth roots of unity over
K. Given one such,ζ say, the set of all primitiventh roots of unity overK is given by

{ζs : 1 ≤ s ≤ n, gcd(s, n) = 1}.

We now consider the polynomial whose roots are precisely this set.

Definition 8.4
Let K be a field of characteristicp, n a positive integer not divisible byp andζ a primitiventh root
of unity overK. Then the polynomial

Qn(x) =
n∏

s=1
(s,n)=1

(x − ζs)

is called thenth cyclotomic polynomial overK. It is clear thatQn(x) has degreeφ(n).

Theorem 8.5
Let K be a field of characteristicp andn a positive integer not divisible byp. Then

(i) xn − 1 =
∏

d|n Qd(x);

(ii) the coefficients ofQn(x) belong to the prime subfield ofK (and in fact toZ if the prime
subfield isQ).

Proof. (i) Eachnth root of unity overK is a primitivedth root of unity overK for exactly one
positive divisord of n. Specifically, ifζ is a primitiventh root of unity overK andζs is an arbitrary
nth root of unity overK, thend = n/gcd(s, n), i.e. d is the order ofζs in E(n). Since

xn − 1 =
n∏

s=1

(x − ζs).

we obtain the result by collecting together those factors(x− ζs) for whichζs is a primitivedth root
of unity overK.
(ii) Proved by induction onn. It is clearly true forQ1(x) = x − 1. Let n > 1 and suppose it is true
for all Qd(x) where1 ≤ d < n. By (i),

Qn(x) =
xn − 1∏

d|n,d<n Qd(x)
.

By the induction hypothesis, the denominator is a polynomial with coefficients in the prime subfield
of K (or Z if charK = 0). Applying long division yields the result. �

Example 8.6
Let n = 3, let K be any field withcharK 6= 3, and letζ be a primitive cube root of unity overK.
Then

Q3(x) = (x − ζ)(x − ζ2) = x2 − (ζ + ζ2)x + ζ3 = x2 + x + 1.

Example 8.7
Let r be a prime and letk ∈ N. Then

Qrk(x) = 1 + xrk−1

+ x2rk−1

+ · · · + x(r−1)rk−1

since

Qrk(x) =
xrk

− 1

Q1(x)Qr(x) · · ·Qrk−1(x)
=

xrk

− 1

xrk−1 − 1

by Theorem 8.5 (i). Whenk = 1, we haveQr(x) = 1 + x + x2 + · · · + xr−1.
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In fact, using the Moebius Inversion Formula, we can establish an explicit formula for thenth
cyclotomic polynomialQn, for everyn ∈ N.

Theorem 8.8
For a fieldK of characteristicp andn ∈ N not divisible byp, thenth cyclotomic polynomialQn

overK satisfies
Qn(x) =

∏

d|n

(xd − 1)µ(n

d
) =

∏

d|n

(x
n

d − 1)µ(d).

Proof. Apply the multiplicative form of the Mobius Inversion Formula (Theorem 7.12) to the
multiplicative groupG of non-zero rational functions overK. Takeh(n) = Qn(x) andH(n) =
xn − 1 for all n ∈ N. By Theorem 8.5, the identity (3.3) is satisfied, and so applying Moebius
Inversion yields the desired formula. �

Example 8.9
Let n = 12, and letK be any field over whichQ12 is defined. Then

Q12(x) =
∏

d|12

(x
12

d − 1)µ(d)

= (x12 − 1)µ(1)(x6 − 1)µ(2)(x4 − 1)µ(3)(x3 − 1)µ(4)(x2 − 1)µ(6)(x − 1)µ(12)

=
(x12 − 1)(x2 − 1)

(x6 − 1)(x4 − 1)
= x4 − x2 + 1.

Before the next theorem, we make a definition.

Definition 8.10
Let n be a positive integer andb an integer relatively prime ton. Then the least positive integerk

such thatn|bk − 1 (equivalently,bk ≡ 1mod n) is called themultiplicative orderof b modulon,
and denotedordn(b).

Example 8.11
(i) ord8(5) = 2; (ii) ord31(2) = 5; (iii) ord9(4) = 3.

Theorem 8.12
The cyclotomic fieldK(n) is a simple algebraic extension ofK. Moreover, if K = Fq with
gcd(q, n) = 1, andd = ordn(q), then

• Qn factors intoφ(n)/d distinct polynomials inK[x] of the same degreed;

• K(n) is the splitting field of any such irreducible factor overK;

• [K(n) : K] = d.

Proof. If there exists a primitiventh root of unityζ overK, thenK(n) = K(ζ). Otherwise, we
have the situation of Theorem 8.2 (ii); hereK(n) = K(m) and the first result again holds.

Now let K be the finite fieldFq, assumegcd(q, n) = 1, such that primitiventh roots of unity
overFq exist. Letη be one of them. Then

η ∈ Fqk ⇔ ηqk

= η ⇔ qk ≡ 1mod n.

The smallest positive integer for which this holds isk = d, soη is in Fqd but not in any proper
subfield. Thus the minimal polynomial ofη overFq has degreed. Sinceη was an arbitrary root of
Qn(x), the result follows, because we can successively divide by the minimal polynomials of the
roots ofQn(x). �
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Example 8.13
Takeq = 11 andn = 12.

• From Example 8.9, we haveK = F11 andQ12(x) = x4−x2 +1 ∈ F11[x]. We are interested
in K(12).

• Since12 ∤ 11 − 1 but12|112 − 1, the multiplicative orderd of 11 modulo12 is 2.

• So,Q12(x) factors intoφ(12)/2 = 4/2 = 2 monic quadratics, both irreducible overF11[x],
and the cyclotomic fieldK(12) = F121.

• We can check that the factorization is in factQ12(x) = (x2 + 5x + 1)(x2 − 5x + 1).

The following result, which ties together cyclotomic and finite fields, is very useful.

Theorem 8.14
The finite fieldFq is the(q − 1)st cyclotomic field over any one of its subfields.

Proof. Since theq − 1 non-zero elements ofFq are all the roots of the polynomialxq−1 − 1,
this polynomial splits inFq. Clearly, it cannot split in any proper subfield ofFq, so thatFq is the
splitting field ofxq−1 − 1 over any one of its subfields. �

9 Using cyclotomic polynomials

Cyclotomic fields give us another way of expressing the elements of a finite fieldFq. SinceFq is
the(q − 1)st cyclotomic field overFp, we can construct it as follows:

• Find the decomposition of the(q−1)st cyclotomic polynomialQq−1 ∈ Fp[x] into irreducible
factors inFp[x], which are all of the same degree.

• A root α of any of these factors is a primitive(q − 1)st root of unity overFp, and hence a
primitive element ofFq.

• For such anα we haveFq = {0, α, α2, . . . , αq−2, αq−1 = 1}.

Example 9.1
Consider the fieldF9.

• F9 = F
(8)
3 , the eighth cyclotomic field overF3.

• As in Example 8.7,

Q8(x) =
x8 − 1

x4 − 1
= x4 + 1 ∈ F3[x].

Its decomposition into irreducible factors inF3[x] is

Q8(x) = (x2 + x + 2)(x2 + 2x + 2);

we haveφ(8)/ord8(3) = 4/2 = 2 factors of degree2.

• Let ζ be a root ofx2 + x + 2; then ζ is a primitive eighth root of unity overF3. Hence
F9 = {0, ζ, ζ2, . . . , ζ7, ζ8 = 1}.

We can now ask: how does this new representation forF9 correspond to our earlier viewpoint,
whereF9 was considered as a simple algebraic extension ofF3 of degree2, obtained by adjoining a
root of an irreducible quadratic?
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Example 9.2
Consider the polynomialf(x) = x2 + 1 ∈ F3[x]. This quadratic is irreducible overF3. So we can
build F9 by adjoining a rootα of f(x) to F3. Thenf(α) = α2 +1 = 0 in F9, and the nine elements
of F9 are given by{0, 1, 2, α, α + 1, α + 2, 2α, 2α + 1, 2α + 2}.

Now, note that the polynomialx2 + x + 2 ∈ F3[x], from Example 9.1, hasζ = 1 + α as a root.
So, the elements in the two representations ofF9 correspond as in the following table

i ζi

1 1 + α
2 2α
3 1 + 2α
4 2
5 2 + 2α
6 α
7 2 + α
8 1

Another use of cyclotomic polynomials is that they help us todetermine irreducible polynomi-
als.

Theorem 9.3
Let I(q, n;x) be (as in Theorem 7.16) the product of all monic irreducible polynomials inFq[x] of
degreen. Then forn > 1 we have

I(q, n;x) =
∏

m

Qm(x),

where the product is extended over all positive divisorsm of qn−1 for whichn is the multiplicative
order ofq modulom, and whereQm(x) is themth cyclotomic polynomial overFq.

Proof.

• For n > 1, let S be the set of elements ofFqn that are of degreen over Fq. Then every
α ∈ S has a minimal polynomial overFq of degreen and is therefore a root ofI(q, n;x).
Conversely, ifβ is a root ofI(q, n;x), thenβ is a root of some monic irreducible polynomial
in Fq[x] of degreen, implying β ∈ S. Thus

I(q, n;x) =
∏

α∈S

(x − α).

• If α ∈ S, thenα ∈ F∗
qn , so the order ofα in that multiplicative group is a divisor ofqn − 1.

In fact, the orderm of an element ofS must be such thatn is the least positive integer with
m|qn − 1, i.e. n = ordm(q). This is because an elementγ ∈ F∗

qn lies in a proper subfieldFqd

if and only if γqd

= γ, i.e. if and only if the order ofγ dividesqd − 1.

• For a positive divisorm of qn − 1 which satisfiesn = ordm(q), let Sm be the set of elements
of S of orderm. ThenS is the disjoint union of the subsetsSm, so we have

I(q, n;x) =
∏

m

∏

α∈Sm

(x − α).

Now,Sm contains precisely all elements ofF∗
qn of orderm. SoSm is the set of primitivemth

roots of unity overFq. From the definition of cyclotomic polynomials, we have
∏

α∈Sm

(x − α) = Qm(x),

and hence the result follows.
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�

Example 9.4
We determine all monic irreducible polynomials inF3[x] of degree2.

• Hereq = 3 andn = 2, soqn − 1 = 8 and2 = ordm(3) for divisorsm = 4 andm = 8 of
qn − 1. Thus from Theorem 9.3 we have

I(3, 2;x) = Q4(x)Q8(x).

• From Theorem 8.12, we know thatQ4(x) factors intoφ(4)/2 = 1 monic irreducible quadratic
overF3, while Q8(x) factors intoφ(8)/2 = 2 monic irreducible quadratics overF3.

• By Theorem 8.8,

Q4(x) =
∏

d|4

(x
4

d − 1)µ(d) =
x4 − 1

x2 − 1
= x2 + 1,

while
Q8(x) = x4 + 1 = (x2 + x + 2)(x2 + 2x + 2)

as in Example 9.1. Thus the irreducible polynomials inF3[x] of degree2 arex2+1, x2+x+2
andx2 + 2x + 2.

Example 9.5
We determine all monic irreducible polynomials inF2[x] of degree4.

• Hereq = 2 andn = 4, soqn − 1 = 15 and4 = ordm(2) for divisorsm = 5 andm = 15 of
qn − 1. Thus from Theorem 9.3 we have

I(2, 4;x) = Q5(x)Q15(x).

• From Theorem 8.12, we know thatQ5(x) factors intoφ(5)/4 = 1 monic irreducible quartic
overF2, while Q15(x) factors intoφ(15)/4 = 8/4 = 2 monic irreducible quartics overF2.

• By Theorem 8.8,

Q5(x) =
∏

d|5

(x
5

d − 1)µ(d) =
x5 − 1

x − 1
= x4 + x3 + x2 + x + 1

and

Q15(x) =
∏

d|15

(x
15

d − 1)µ(d)

=
(x15 − 1)(x − 1)

(x5 − 1)(x3 − 1)

=
x10 + x5 + 1

x2 + x + 1

= x8 + x7 + x5 + x4 + x3 + x + 1.

We note thatQ5(x + 1) = x4 + x3 + 1 is also irreducible inF2[x] and hence must divide
Q15(x), leading to the factorization

Q15(x) = (x4 + x3 + 1)(x4 + x + 1).

Thus the irreducible polynomials inF2[x] of degree4 arex4 + x3 + x2 + x + 1, x4 + x3 + 1
andx4 + x + 1.


