Chapter 4

Finite fields: further properties

8 Roots of unity in finite fields

In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial $x^{n}-1$. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields.

Definition 8.1

Let $n \in \mathbb{N}$. The splitting field of $x^{n}-1$ over a field K is called the nth cyclotomic field over K and denoted by $K^{(n)}$. The roots of $x^{n}-1$ in $K^{(n)}$ are called the nth roots of unity over K and the set of all these roots is denoted by $E^{(n)}$.

The following result, concerning the properties of $E^{(n)}$, holds for an arbitrary (not just a finite!) field K.

Theorem 8.2

Let $n \in \mathbb{N}$ and K a field of characteristic p (where p may take the value 0 in this theorem). Then
(i) If $p \nmid n$, then $E^{(n)}$ is a cyclic group of order n with respect to multiplication in $K^{(n)}$.
(ii) If $p \mid n$, write $n=m p^{e}$ with positive integers m and e and $p \nmid m$. Then $K^{(n)}=K^{(m)}$, $E^{(n)}=E^{(m)}$ and the roots of $x^{n}-1$ are the m elements of $E^{(m)}$, each occurring with multiplicity p^{e}.

Proof.

(i) The $n=1$ case is trivial. For $n \geq 2$, observe that $x^{n}-1$ and its derivative $n x^{n-1}$ have no common roots; thus $x^{n}-1$ cannot have multiple roots and hence $E^{(n)}$ has n elements. To see that $E^{(n)}$ is a multiplicative group, take $\alpha, \beta \in E^{(n)}$: we have $\left(\alpha \beta^{-1}\right)^{n}=\alpha^{n}\left(\beta^{n}\right)^{-1}=1$ and so $\alpha \beta^{-1} \in E^{(n)}$. It remains to show that the group $E^{(n)}$ is cyclic; this can be proved by an analogous argument to the proof of Theorem 6.9 (exercise: fill in details).
(ii) Immediate from $x^{n}-1=x^{m p^{e}}-1=\left(x^{m}-1\right)^{p^{e}}$ and part (i).

Definition 8.3

Let K be a field of characteristic p and n a positive integer not divisible by p. Then a generator of the cyclic group $E^{(n)}$ is called a primitive nth root of unity over K.

By Theorem 1.13, $E^{(n)}$ has $\phi(n)$ generators, i.e. there are $\phi(n)$ primitive nth roots of unity over K. Given one such, ζ say, the set of all primitive nth roots of unity over K is given by

$$
\left\{\zeta^{s}: 1 \leq s \leq n, \operatorname{gcd}(s, n)=1\right\}
$$

We now consider the polynomial whose roots are precisely this set.

Definition 8.4

Let K be a field of characteristic p, n a positive integer not divisible by p and ζ a primitive nth root of unity over K. Then the polynomial

$$
Q_{n}(x)=\prod_{\substack{s=1 \\(s, n)=1}}^{n}\left(x-\zeta^{s}\right)
$$

is called the nth cyclotomic polynomial over K. It is clear that $Q_{n}(x)$ has degree $\phi(n)$.

Theorem 8.5

Let K be a field of characteristic p and n a positive integer not divisible by p. Then
(i) $x^{n}-1=\prod_{d \mid n} Q_{d}(x)$;
(ii) the coefficients of $Q_{n}(x)$ belong to the prime subfield of K (and in fact to \mathbb{Z} if the prime subfield is \mathbb{Q}).

Proof. (i) Each nth root of unity over K is a primitive d th root of unity over K for exactly one positive divisor d of n. Specifically, if ζ is a primitive nth root of unity over K and ζ^{s} is an arbitrary nth root of unity over K, then $d=n / \operatorname{gcd}(s, n)$, i.e. d is the order of ζ^{s} in $E^{(n)}$. Since

$$
x^{n}-1=\prod_{s=1}^{n}\left(x-\zeta^{s}\right)
$$

we obtain the result by collecting together those factors $\left(x-\zeta^{s}\right)$ for which ζ^{s} is a primitive d th root of unity over K.
(ii) Proved by induction on n. It is clearly true for $Q_{1}(x)=x-1$. Let $n>1$ and suppose it is true for all $Q_{d}(x)$ where $1 \leq d<n$. By (i),

$$
Q_{n}(x)=\frac{x^{n}-1}{\prod_{d \mid n, d<n} Q_{d}(x)}
$$

By the induction hypothesis, the denominator is a polynomial with coefficients in the prime subfield of K (or \mathbb{Z} if char $K=0$). Applying long division yields the result.

Example 8.6

Let $n=3$, let K be any field with char $K \neq 3$, and let ζ be a primitive cube root of unity over K. Then

$$
Q_{3}(x)=(x-\zeta)\left(x-\zeta^{2}\right)=x^{2}-\left(\zeta+\zeta^{2}\right) x+\zeta^{3}=x^{2}+x+1
$$

Example 8.7

Let r be a prime and let $k \in \mathbb{N}$. Then

$$
Q_{r^{k}}(x)=1+x^{r^{k-1}}+x^{2 r^{k-1}}+\cdots+x^{(r-1) r^{k-1}}
$$

since

$$
Q_{r^{k}}(x)=\frac{x^{r^{k}}-1}{Q_{1}(x) Q_{r}(x) \cdots Q_{r^{k-1}}(x)}=\frac{x^{r^{k}}-1}{x^{r^{k-1}}-1}
$$

by Theorem 8.5 (i). When $k=1$, we have $Q_{r}(x)=1+x+x^{2}+\cdots+x^{r-1}$.

In fact, using the Moebius Inversion Formula, we can establish an explicit formula for the nth cyclotomic polynomial Q_{n}, for every $n \in \mathbb{N}$.

Theorem 8.8

For a field K of characteristic p and $n \in \mathbb{N}$ not divisible by p, the nth cyclotomic polynomial Q_{n} over K satisfies

$$
Q_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}=\prod_{d \mid n}\left(x^{\frac{n}{d}}-1\right)^{\mu(d)}
$$

Proof. Apply the multiplicative form of the Mobius Inversion Formula (Theorem 7.12) to the multiplicative group G of non-zero rational functions over K. Take $h(n)=Q_{n}(x)$ and $H(n)=$ $x^{n}-1$ for all $n \in \mathbb{N}$. By Theorem 8.5, the identity (3.3) is satisfied, and so applying Moebius Inversion yields the desired formula.

Example 8.9

Let $n=12$, and let K be any field over which Q_{12} is defined. Then

$$
\begin{aligned}
Q_{12}(x) & =\prod_{d \mid 12}\left(x^{\frac{12}{d}}-1\right)^{\mu(d)} \\
& =\left(x^{12}-1\right)^{\mu(1)}\left(x^{6}-1\right)^{\mu(2)}\left(x^{4}-1\right)^{\mu(3)}\left(x^{3}-1\right)^{\mu(4)}\left(x^{2}-1\right)^{\mu(6)}(x-1)^{\mu(12)} \\
& =\frac{\left(x^{12}-1\right)\left(x^{2}-1\right)}{\left(x^{6}-1\right)\left(x^{4}-1\right)}=x^{4}-x^{2}+1
\end{aligned}
$$

Before the next theorem, we make a definition.

Definition 8.10

Let n be a positive integer and b an integer relatively prime to n. Then the least positive integer k such that $n \mid b^{k}-1$ (equivalently, $b^{k} \equiv 1 \bmod n$) is called the multiplicative order of b modulo n, and denoted $\operatorname{ord}_{n}(b)$.

Example 8.11

(i) $\operatorname{ord}_{8}(5)=2$; (ii) $\operatorname{ord}_{31}(2)=5$; (iii) $\operatorname{ord}_{9}(4)=3$.

Theorem 8.12

The cyclotomic field $K^{(n)}$ is a simple algebraic extension of K. Moreover, if $K=\mathbb{F}_{q}$ with $\operatorname{gcd}(q, n)=1$, and $d=\operatorname{ord}_{n}(q)$, then

- Q_{n} factors into $\phi(n) / d$ distinct polynomials in $K[x]$ of the same degree d;
- $K^{(n)}$ is the splitting field of any such irreducible factor over K;
- $\left[K^{(n)}: K\right]=d$.

Proof. If there exists a primitive nth root of unity ζ over K, then $K^{(n)}=K(\zeta)$. Otherwise, we have the situation of Theorem 8.2 (ii); here $K^{(n)}=K^{(m)}$ and the first result again holds.

Now let K be the finite field \mathbb{F}_{q}, assume $\operatorname{gcd}(q, n)=1$, such that primitive nth roots of unity over \mathbb{F}_{q} exist. Let η be one of them. Then

$$
\eta \in \mathbb{F}_{q^{k}} \Leftrightarrow \eta^{q^{k}}=\eta \Leftrightarrow q^{k} \equiv 1 \bmod n
$$

The smallest positive integer for which this holds is $k=d$, so η is in $\mathbb{F}_{q^{d}}$ but not in any proper subfield. Thus the minimal polynomial of η over \mathbb{F}_{q} has degree d. Since η was an arbitrary root of $Q_{n}(x)$, the result follows, because we can successively divide by the minimal polynomials of the roots of $Q_{n}(x)$.

Example 8.13

Take $q=11$ and $n=12$.

- From Example 8.9, we have $K=\mathbb{F}_{11}$ and $Q_{12}(x)=x^{4}-x^{2}+1 \in \mathbb{F}_{11}[x]$. We are interested in $K^{(12)}$.
- Since $12 \nmid 11-1$ but $12 \mid 11^{2}-1$, the multiplicative order d of 11 modulo 12 is 2 .
- So, $Q_{12}(x)$ factors into $\phi(12) / 2=4 / 2=2$ monic quadratics, both irreducible over $\mathbb{F}_{11}[x]$, and the cyclotomic field $K^{(12)}=\mathbb{F}_{121}$.
- We can check that the factorization is in fact $Q_{12}(x)=\left(x^{2}+5 x+1\right)\left(x^{2}-5 x+1\right)$.

The following result, which ties together cyclotomic and finite fields, is very useful.

Theorem 8.14

The finite field \mathbb{F}_{q} is the ($q-1$)st cyclotomic field over any one of its subfields.
Proof. Since the $q-1$ non-zero elements of \mathbb{F}_{q} are all the roots of the polynomial $x^{q-1}-1$, this polynomial splits in \mathbb{F}_{q}. Clearly, it cannot split in any proper subfield of \mathbb{F}_{q}, so that \mathbb{F}_{q} is the splitting field of $x^{q-1}-1$ over any one of its subfields.

9 Using cyclotomic polynomials

Cyclotomic fields give us another way of expressing the elements of a finite field \mathbb{F}_{q}. Since \mathbb{F}_{q} is the $(q-1)$ st cyclotomic field over \mathbb{F}_{p}, we can construct it as follows:

- Find the decomposition of the $(q-1)$ st cyclotomic polynomial $Q_{q-1} \in \mathbb{F}_{p}[x]$ into irreducible factors in $\mathbb{F}_{p}[x]$, which are all of the same degree.
- A root α of any of these factors is a primitive $(q-1)$ st root of unity over \mathbb{F}_{p}, and hence a primitive element of \mathbb{F}_{q}.
- For such an α we have $\mathbb{F}_{q}=\left\{0, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}, \alpha^{q-1}=1\right\}$.

Example 9.1

Consider the field \mathbb{F}_{9}.

- $\mathbb{F}_{9}=\mathbb{F}_{3}^{(8)}$, the eighth cyclotomic field over \mathbb{F}_{3}.
- As in Example 8.7,

$$
Q_{8}(x)=\frac{x^{8}-1}{x^{4}-1}=x^{4}+1 \in \mathbb{F}_{3}[x] .
$$

Its decomposition into irreducible factors in $\mathbb{F}_{3}[x]$ is

$$
Q_{8}(x)=\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right) ;
$$

we have $\phi(8) / \operatorname{ord}_{8}(3)=4 / 2=2$ factors of degree 2 .

- Let ζ be a root of $x^{2}+x+2$; then ζ is a primitive eighth root of unity over \mathbb{F}_{3}. Hence $\mathbb{F}_{9}=\left\{0, \zeta, \zeta^{2}, \ldots, \zeta^{7}, \zeta^{8}=1\right\}$.

We can now ask: how does this new representation for \mathbb{F}_{9} correspond to our earlier viewpoint, where \mathbb{F}_{9} was considered as a simple algebraic extension of \mathbb{F}_{3} of degree 2 , obtained by adjoining a root of an irreducible quadratic?

Example 9.2

Consider the polynomial $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$. This quadratic is irreducible over \mathbb{F}_{3}. So we can build \mathbb{F}_{9} by adjoining a root α of $f(x)$ to \mathbb{F}_{3}. Then $f(\alpha)=\alpha^{2}+1=0$ in \mathbb{F}_{9}, and the nine elements of \mathbb{F}_{9} are given by $\{0,1,2, \alpha, \alpha+1, \alpha+2,2 \alpha, 2 \alpha+1,2 \alpha+2\}$.

Now, note that the polynomial $x^{2}+x+2 \in \mathbb{F}_{3}[x]$, from Example 9.1, has $\zeta=1+\alpha$ as a root. So, the elements in the two representations of \mathbb{F}_{9} correspond as in the following table

i	ζ^{i}
1	$1+\alpha$
2	2α
3	$1+2 \alpha$
4	2
5	$2+2 \alpha$
6	α
7	$2+\alpha$
8	1

Another use of cyclotomic polynomials is that they help us to determine irreducible polynomials.

Theorem 9.3

Let $I(q, n ; x)$ be (as in Theorem 7.16) the product of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n. Then for $n>1$ we have

$$
I(q, n ; x)=\prod_{m} Q_{m}(x),
$$

where the product is extended over all positive divisors m of $q^{n}-1$ for which n is the multiplicative order of q modulo m, and where $Q_{m}(x)$ is the m th cyclotomic polynomial over \mathbb{F}_{q}.

Proof.

- For $n>1$, let S be the set of elements of $\mathbb{F}_{q^{n}}$ that are of degree n over \mathbb{F}_{q}. Then every $\alpha \in S$ has a minimal polynomial over \mathbb{F}_{q} of degree n and is therefore a root of $I(q, n ; x)$. Conversely, if β is a root of $I(q, n ; x)$, then β is a root of some monic irreducible polynomial in $\mathbb{F}_{q}[x]$ of degree n, implying $\beta \in S$. Thus

$$
I(q, n ; x)=\prod_{\alpha \in S}(x-\alpha)
$$

- If $\alpha \in S$, then $\alpha \in \mathbb{F}_{q^{n}}^{*}$, so the order of α in that multiplicative group is a divisor of $q^{n}-1$. In fact, the order m of an element of S must be such that n is the least positive integer with $m \mid q^{n}-1$, i.e. $n=\operatorname{ord}_{m}(q)$. This is because an element $\gamma \in \mathbb{F}_{q^{n}}^{*}$ lies in a proper subfield $\mathbb{F}_{q^{d}}$ if and only if $\gamma^{q^{d}}=\gamma$, i.e. if and only if the order of γ divides $q^{d}-1$.
- For a positive divisor m of $q^{n}-1$ which satisfies $n=\operatorname{ord}_{m}(q)$, let S_{m} be the set of elements of S of order m. Then S is the disjoint union of the subsets S_{m}, so we have

$$
I(q, n ; x)=\prod_{m} \prod_{\alpha \in S_{m}}(x-\alpha)
$$

Now, S_{m} contains precisely all elements of $\mathbb{F}_{q^{n}}^{*}$ of order m. So S_{m} is the set of primitive m th roots of unity over \mathbb{F}_{q}. From the definition of cyclotomic polynomials, we have

$$
\prod_{\alpha \in S_{m}}(x-\alpha)=Q_{m}(x)
$$

and hence the result follows.

Example 9.4

We determine all monic irreducible polynomials in $\mathbb{F}_{3}[x]$ of degree 2 .

- Here $q=3$ and $n=2$, so $q^{n}-1=8$ and $2=\operatorname{ord}_{m}(3)$ for divisors $m=4$ and $m=8$ of $q^{n}-1$. Thus from Theorem 9.3 we have

$$
I(3,2 ; x)=Q_{4}(x) Q_{8}(x)
$$

- From Theorem 8.12, we know that $Q_{4}(x)$ factors into $\phi(4) / 2=1$ monic irreducible quadratic over \mathbb{F}_{3}, while $Q_{8}(x)$ factors into $\phi(8) / 2=2$ monic irreducible quadratics over \mathbb{F}_{3}.
- By Theorem 8.8,

$$
Q_{4}(x)=\prod_{d \mid 4}\left(x^{\frac{4}{d}}-1\right)^{\mu(d)}=\frac{x^{4}-1}{x^{2}-1}=x^{2}+1
$$

while

$$
Q_{8}(x)=x^{4}+1=\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)
$$

as in Example 9.1. Thus the irreducible polynomials in $\mathbb{F}_{3}[x]$ of degree 2 are $x^{2}+1, x^{2}+x+2$ and $x^{2}+2 x+2$.

Example 9.5

We determine all monic irreducible polynomials in $\mathbb{F}_{2}[x]$ of degree 4 .

- Here $q=2$ and $n=4$, so $q^{n}-1=15$ and $4=\operatorname{ord}_{m}(2)$ for divisors $m=5$ and $m=15$ of $q^{n}-1$. Thus from Theorem 9.3 we have

$$
I(2,4 ; x)=Q_{5}(x) Q_{15}(x)
$$

- From Theorem 8.12, we know that $Q_{5}(x)$ factors into $\phi(5) / 4=1$ monic irreducible quartic over \mathbb{F}_{2}, while $Q_{15}(x)$ factors into $\phi(15) / 4=8 / 4=2$ monic irreducible quartics over \mathbb{F}_{2}.
- By Theorem 8.8,

$$
Q_{5}(x)=\prod_{d \mid 5}\left(x^{\frac{5}{d}}-1\right)^{\mu(d)}=\frac{x^{5}-1}{x-1}=x^{4}+x^{3}+x^{2}+x+1
$$

and

$$
\begin{aligned}
Q_{15}(x) & =\prod_{d \mid 15}\left(x^{\frac{15}{d}}-1\right)^{\mu(d)} \\
& =\frac{\left(x^{15}-1\right)(x-1)}{\left(x^{5}-1\right)\left(x^{3}-1\right)} \\
& =\frac{x^{10}+x^{5}+1}{x^{2}+x+1} \\
& =x^{8}+x^{7}+x^{5}+x^{4}+x^{3}+x+1
\end{aligned}
$$

We note that $Q_{5}(x+1)=x^{4}+x^{3}+1$ is also irreducible in $\mathbb{F}_{2}[x]$ and hence must divide $Q_{15}(x)$, leading to the factorization

$$
Q_{15}(x)=\left(x^{4}+x^{3}+1\right)\left(x^{4}+x+1\right)
$$

Thus the irreducible polynomials in $\mathbb{F}_{2}[x]$ of degree 4 are $x^{4}+x^{3}+x^{2}+x+1, x^{4}+x^{3}+1$ and $x^{4}+x+1$.

