Chapter 4

Finite fields: further properties

8 Roots of unity in finite fields

In this section, we will generalize the concept of roots afyuwell-known for complex numbers)
to the finite field setting, by considering the splitting fielithe polynomial:™ — 1. This has links
with irreducible polynomials, and provides an effectiveywsd obtaining primitive elements and
hence representing finite fields.

Definition 8.1
Letn € N. The splitting field ofz™ — 1 over a fieldK is called thenth cyclotomic fieldbver K and

denoted byK (™). The roots of:” — 1 in K™ are called the:th roots of unity overk” and the set
of all these roots is denoted (™).

The following result, concerning the propertiesff*), holds for an arbitrary (not just a finite!)
field K.

Theorem 8.2
Letn € N andK a field of characteristip (wherep may take the value in this theorem). Then

() If ptn, thenE™ is a cyclic group of orden with respect to multiplication i< (™).

(i) If p | n, write n = mp° with positive integersn ande andp t m. ThenK™ = K(m),
E™M = EM) and the roots of:" — 1 are them elements ofE(™), each occurring with
multiplicity p©.

Proof.

(i) Then = 1 case is trivial. Fom > 2, observe that™ — 1 and its derivativerz™~! have no
common roots; thus™ — 1 cannot have multiple roots and heng€& hasn elements. To see
that £(™ is a multiplicative group, takey, 3 € E(™: we have(a~!)" = o"(8")~! =1
and soa8~! € E™. It remains to show that the group™ is cyclic; this can be proved by
an analogous argument to the proof of Theorem 6.9 (exerfiiise: details).

(i) Immediate fromz™ — 1 = 2™ — 1 = (2™ — 1)?° and part (i).
|

Definition 8.3
Let K be a field of characteristigc andn a positive integer not divisible by. Then a generator of
the cyclic groupE(™ is called aprimitive nth root of unity overk.
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By Theorem 1.13E(™ hasg(n) generators, i.e. there agén) primitive nth roots of unity over
K. Given one such; say, the set of all primitiveith roots of unity overk is given by

{¢°:1<s<m,ged(s,n) =1}.
We now consider the polynomial whose roots are precisesysbi.

Definition 8.4
Let K be a field of characteristig, n a positive integer not divisible byand( a primitive nth root
of unity over K. Then the polynomial

is called thenth cyclotomic polynomial ovek. It is clear that),,(z) has degree(n).

Theorem 8.5
Let K be a field of characteristic andn a positive integer not divisible by. Then

(i) =" = 1= 1y, Qa(x);

(i) the coefficients ofQ,(z) belong to the prime subfield df (and in fact toZ if the prime
subfield isQ).

Proof. (i) Eachnth root of unity overK is a primitive dth root of unity overK for exactly one
positive divisord of n. Specifically, if¢ is a primitiventh root of unity overK and(® is an arbitrary
nth root of unity overk, thend = n/gcd(s, n), i.e. d is the order of* in E(™). Since

we obtain the result by collecting together those factors (*) for which ¢* is a primitivedth root
of unity overk.

(i) Proved by induction om. It is clearly true forQ,(z) = = — 1. Letn > 1 and suppose it is true
for all Q4(x) wherel < d < n. By (i),

" —1
Qn(r)= =——F—.
) Hd\n,d<n Qd(l’)
By the induction hypothesis, the denominator is a polynbmith coefficients in the prime subfield
of K (orZ if char K = 0). Applying long division yields the result. |

Example 8.6
Letn = 3, let K be any field withchar K’ = 3, and let be a primitive cube root of unity ovek'.
Then

Q) =(z =)@ - =2 -+ P+ C ="+ +1.

Example 8.7
Letr be a prime and let € N. Then

Qr(r) =1+ 2 g2 e

since . .
-1 =1

G Q@@ Q@ o
by Theorem 8.5 (i). Whek = 1, we haveQ, () = 1+ o + 22 +--- + 2" L,
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In fact, using the Moebius Inversion Formula, we can esthbdin explicit formula for theith
cyclotomic polynomial?,,, for everyn € N.

Theorem 8.8
For a fieldK of characteristipp andn € N not divisible byp, thenth cyclotomic polynomial),,

over K satisfies
Qu(@) = ] = @) = [ — 1.
din din

Proof.  Apply the multiplicative form of the Mobius Inversion Fortau(Theorem 7.12) to the
multiplicative groupG of non-zero rational functions ovet. Takeh(n) = Q,(x) andH(n) =
z™ — 1 for all n € N. By Theorem 8.5, the identity (3.3) is satisfied, and so apglyMoebius
Inversion yields the desired formula. [ |

Example 8.9
Letn = 12, and letK be any field over whicld) is defined. Then

Qua(z) = [ —1pH@

— (:Ul? _ 1)#(1)(906 _ 1)#(2) (x4 _ 1)#(3) (5,33 _ 1)#(4) (x2 _ 1)u(6) (z — 1)#(12)
(2 — 1)(a? — 1)

4 2
= == — 1.
@ -DEi-n C T

Before the next theorem, we make a definition.

Definition 8.10

Let n be a positive integer andan integer relatively prime ta. Then the least positive integér
such that|b* — 1 (equivalently,b* = 1mod n) is called themultiplicative orderof b modulon,
and denotedrd,, (b).

Example 8.11
(i) ordg(5) = 2; (ii) ords;(2) = 5; (iii) ordg(4) = 3.

Theorem 8.12
The cyclotomic fieldK ™) is a simple algebraic extension &f. Moreover, ifK = T, with
ged(g,n) = 1, andd = ord,(q), then

e ), factors intop(n)/d distinct polynomials inK [x] of the same degre&
o K js the splitting field of any such irreducible factor ovér
o [KW K] =d.

Proof.  If there exists a primitive:th root of unity¢ over K, then K (™) = K (¢). Otherwise, we
have the situation of Theorem 8.2 (ii); hek&€™ = K (™) and the first result again holds.

Now let K be the finite fieldF,, assumegcd(g, n) = 1, such that primitiventh roots of unity
overlF, exist. Letn be one of them. Then

URSHI <:>77q]C =< ¢ =1modn.

The smallest positive integer for which this holdskis= d, son is in F . but not in any proper
subfield. Thus the minimal polynomial gfoverF, has degred. Sincen was an arbitrary root of
Qn(x), the result follows, because we can successively dividéheyriinimal polynomials of the
roots of @, (). [ |
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Example 8.13
Takeq = 11 andn = 12.

e From Example 8.9, we ha¥§ = Fy; andQ1»(z) = 2* — 22 +1 € Fy;[x]. We are interested
in K(12),

e Sincel2 {11 — 1 but12|11% — 1, the multiplicative ordet] of 11 modulo12 is 2.

e S0,Q12(x) factors intog(12)/2 = 4/2 = 2 monic quadratics, both irreducible ov&r; [z],
and the cyclotomic field(12) = Fy.

e We can check that the factorization is in fégts (z) = (22 + 5z + 1)(2? — 5z + 1).

The following result, which ties together cyclotomic andtérfields, is very useful.

Theorem 8.14
The finite fieldF, is the(q — 1)st cyclotomic field over any one of its subfields.

Proof.  Since theg — 1 non-zero elements df, are all the roots of the polynomiat/—! — 1,
this polynomial splits iri',. Clearly, it cannot split in any proper subfield Bf, so thatF, is the
splitting field of ¢~ — 1 over any one of its subfields. [ |

9 Using cyclotomic polynomials

Cyclotomic fields give us another way of expressing the eteémef a finite fieldF,. SinceF, is
the (¢ — 1)st cyclotomic field oveif,,, we can construct it as follows:

e Find the decomposition of thig — 1)st cyclotomic polynomia®),—; € F,[z] into irreducible
factors inFF,,[z], which are all of the same degree.

e A oot a of any of these factors is a primitivg — 1)st root of unity overl,, and hence a
primitive element off,.

e For such am we haveF, = {0,a,a?,...,a972, 471 = 1}.

Example 9.1
Consider the fieldry.

o Fg = F§8>, the eighth cyclotomic field ovéfs.
e Asin Example 8.7,
-1
Qsr) = —— = 2t 41 € F3z].

Its decomposition into irreducible factorsiifa[z] is

Qs(x) = (2% + 2 +2)(2” + 22 +2);
we haveyp(8) /ords(3) = 4/2 = 2 factors of degree.

e Let ¢ be a root ofz? + = + 2; then( is a primitive eighth root of unity oveFs;. Hence

F9:{07<7C27"'7<77<8:1}'

We can now ask: how does this new representatiofif§arorrespond to our earlier viewpoint,
wherelFg was considered as a simple algebraic extensidry aff degree2, obtained by adjoining a
root of an irreducible quadratic?
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Example 9.2
Consider the polynomiaf (z) = 22 + 1 € F3[x]. This quadratic is irreducible ovél;. So we can
build F¢ by adjoining a root: of f(z) to F3. Thenf(a) = a? +1 = 0 in Fy, and the nine elements
of Fg are given by{0,1,2, o, + 1, + 2,20, 2cx + 1, 200 + 2}.
Now, note that the polynomial® + x + 2 € F3[z], from Example 9.1, hagé = 1 + « as a root.
So, the elements in the two representation8p€orrespond as in the following table
(i
14+«
2«
14 2«
2
2+ 2«
«
2+«
1

OO\ICDO“»-BOJ[\')!—*‘N~

Another use of cyclotomic polynomials is that they help udétermine irreducible polynomi-
als.

Theorem 9.3
LetI(q,n;x) be (as in Theorem 7.16) the product of all monic irreducitdé/pomials inF,[x] of
degreen. Then forn > 1 we have

I(g,n;z) = [[ Qm(2),

where the product is extended over all positive divisarsf ¢™ — 1 for whichn is the multiplicative
order ofg modulom, and wheré),,(x) is themth cyclotomic polynomial oveF,.

Proof.

e Forn > 1, let S be the set of elements &~ that are of degreea overF,. Then every
a € S has a minimal polynomial ovef, of degreen and is therefore a root df(q, n; x).
Conversely, if3 is a root ofI (¢, n; z), thens is a root of some monic irreducible polynomial
in Fy[x] of degreen, implying 3 € S. Thus

I(g,n;z) = H(w—a).

aesS

e If o € 5, thena € Fy., so the order ofv in that multiplicative group is a divisor af* — 1.
In fact, the ordern of an element o5 must be such that is the least positive integer with
m|q" —1,i.e.n = ord,,(q). This is because an element ;.. lies in a proper subfield .

if and only if fyqd = ~, i.e. if and only if the order ofy dividesq? — 1.

e For a positive divisor of ¢™ — 1 which satisfies: = ord,,(q), let.S,, be the set of elements
of S of orderm. ThenS is the disjoint union of the subsess,, so we have

I(g,n;x) :H H (x — a).
m a€Sm

Now, Sy, contains precisely all elementsgf. of orderm. SoS,, is the set of primitiventh
roots of unity ovetf',. From the definition of cyclotomic polynomials, we have

I1 @) = Qul),

aESm

and hence the result follows.
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Example 9.4
We determine all monic irreducible polynomialshg|x] of degree2.

e Hereq = 3 andn = 2, so¢"” — 1 = 8 and2 = ord,,(3) for divisorsm = 4 andm = 8 of
g" — 1. Thus from Theorem 9.3 we have

1(3,2;2) = Qu(z)Qs(x).

e From Theorem 8.12, we know th@t (=) factors intog(4) /2 = 1 monic irreducible quadratic
over[Fs, while Qg (z) factors intog(8)/2 = 2 monic irreducible quadratics ov&s.

e By Theorem 8.8,

4
-1
Que) = [J@i -1 = H— =241,

d)4

a’/‘ [e—
while

Qs(z) =zt +1= (2 +2+2)(z* +22+2)
as in Example 9.1. Thus the irreducible polynomial®ifr] of degree arex?+1, 22 +x+2
andz? + 2z + 2.

Example 9.5
We determine all monic irreducible polynomialshn|x| of degreet.

e Hereq =2 andn = 4, soq"” — 1 = 15 and4 = ord,,(2) for divisorsm = 5 andm = 15 of
q" — 1. Thus from Theorem 9.3 we have

1(2,4;2) = Q5(2)Q15().

e From Theorem 8.12, we know th@k;(x) factors intog(5)/4 = 1 monic irreducible quartic
overlFy, while Q15 (z) factors intog(15)/4 = 8/4 = 2 monic irreducible quartics ovéfs.

e By Theorem 8.8,

-1
Q5(x):H(x%—1)“(d) :%:x4+w3+x2+x+1
dJ5

and

Qus(z) = H(x% — 1)@

d|15

(21 —1)(z - 1)

(x> =1)(23 - 1)

210 425 41

2?2 4+ax+1

= BT+ 4+ + 2+ + 1.

We note thaQs(z + 1) = z* + 23 + 1 is also irreducible irF;y[x] and hence must divide
Q15(x), leading to the factorization

Qis(z) = (2t + 22 + V(' + 2+ 1).

Thus the irreducible polynomials Ify[z] of degreet arex* + 23 + 22+ +1, 2% + 23 + 1
andz? +x + 1.



