Chapter 4

Finite fields: further properties

8 Roots of unity in finite fields

In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial $x^n - 1$. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields.

Definition 8.1

Let $n \in \mathbb{N}$. The splitting field of $x^n - 1$ over a field K is called the *nth cyclotomic field* over K and denoted by $K^{(n)}$. The roots of $x^n - 1$ in $K^{(n)}$ are called the *n*th roots of unity over K and the set of all these roots is denoted by $E^{(n)}$.

The following result, concerning the properties of $E^{(n)}$, holds for an arbitrary (not just a finite!) field K.

Theorem 8.2

Let $n \in \mathbb{N}$ and K a field of characteristic p (where p may take the value 0 in this theorem). Then

- (i) If $p \nmid n$, then $E^{(n)}$ is a cyclic group of order n with respect to multiplication in $K^{(n)}$.
- (ii) If $p \mid n$, write $n = mp^e$ with positive integers m and e and $p \nmid m$. Then $K^{(n)} = K^{(m)}$, $E^{(n)} = E^{(m)}$ and the roots of $x^n 1$ are the m elements of $E^{(m)}$, each occurring with multiplicity p^e .

Proof.

- (i) The n = 1 case is trivial. For $n \ge 2$, observe that $x^n 1$ and its derivative nx^{n-1} have no common roots; thus $x^n 1$ cannot have multiple roots and hence $E^{(n)}$ has n elements. To see that $E^{(n)}$ is a multiplicative group, take $\alpha, \beta \in E^{(n)}$: we have $(\alpha\beta^{-1})^n = \alpha^n(\beta^n)^{-1} = 1$ and so $\alpha\beta^{-1} \in E^{(n)}$. It remains to show that the group $E^{(n)}$ is cyclic; this can be proved by an analogous argument to the proof of Theorem 6.9 (exercise: fill in details).
- (ii) Immediate from $x^n 1 = x^{mp^e} 1 = (x^m 1)^{p^e}$ and part (i).

Definition 8.3

Let K be a field of characteristic p and n a positive integer not divisible by p. Then a generator of the cyclic group $E^{(n)}$ is called a *primitive nth root of unity over* K.

By Theorem 1.13, $E^{(n)}$ has $\phi(n)$ generators, i.e. there are $\phi(n)$ primitive *n*th roots of unity over K. Given one such, ζ say, the set of all primitive *n*th roots of unity over K is given by

$$\{\zeta^s : 1 \le s \le n, \gcd(s, n) = 1\}.$$

We now consider the polynomial whose roots are precisely this set.

Definition 8.4

Let K be a field of characteristic p, n a positive integer not divisible by p and ζ a primitive nth root of unity over K. Then the polynomial

$$Q_n(x) = \prod_{\substack{s=1\\(s,n)=1}}^n (x - \zeta^s)$$

is called the *n*th cyclotomic polynomial over K. It is clear that $Q_n(x)$ has degree $\phi(n)$.

Theorem 8.5

Let K be a field of characteristic p and n a positive integer not divisible by p. Then

- (i) $x^n 1 = \prod_{d|n} Q_d(x);$
- (ii) the coefficients of $Q_n(x)$ belong to the prime subfield of K (and in fact to \mathbb{Z} if the prime subfield is \mathbb{Q}).

Proof. (i) Each *n*th root of unity over *K* is a primitive *d*th root of unity over *K* for exactly one positive divisor *d* of *n*. Specifically, if ζ is a primitive *n*th root of unity over *K* and ζ^s is an arbitrary *n*th root of unity over *K*, then d = n/gcd(s, n), i.e. *d* is the order of ζ^s in $E^{(n)}$. Since

$$x^{n} - 1 = \prod_{s=1}^{n} (x - \zeta^{s}).$$

we obtain the result by collecting together those factors $(x - \zeta^s)$ for which ζ^s is a primitive *d*th root of unity over *K*.

(ii) Proved by induction on n. It is clearly true for $Q_1(x) = x - 1$. Let n > 1 and suppose it is true for all $Q_d(x)$ where $1 \le d < n$. By (i),

$$Q_n(x) = \frac{x^n - 1}{\prod_{d \mid n, d < n} Q_d(x)}.$$

By the induction hypothesis, the denominator is a polynomial with coefficients in the prime subfield of K (or \mathbb{Z} if charK = 0). Applying long division yields the result.

Example 8.6

Let n = 3, let K be any field with $char K \neq 3$, and let ζ be a primitive cube root of unity over K. Then

$$Q_3(x) = (x - \zeta)(x - \zeta^2) = x^2 - (\zeta + \zeta^2)x + \zeta^3 = x^2 + x + 1.$$

Example 8.7

Let r be a prime and let $k \in \mathbb{N}$. Then

$$Q_{r^k}(x) = 1 + x^{r^{k-1}} + x^{2r^{k-1}} + \dots + x^{(r-1)r^{k-1}}$$

since

$$Q_{r^k}(x) = \frac{x^{r^k} - 1}{Q_1(x)Q_r(x)\cdots Q_{r^{k-1}}(x)} = \frac{x^{r^k} - 1}{x^{r^{k-1}} - 1}$$

by Theorem 8.5 (i). When k = 1, we have $Q_r(x) = 1 + x + x^2 + \dots + x^{r-1}$.

8. ROOTS OF UNITY IN FINITE FIELDS

In fact, using the Moebius Inversion Formula, we can establish an explicit formula for the *n*th cyclotomic polynomial Q_n , for every $n \in \mathbb{N}$.

Theorem 8.8

For a field K of characteristic p and $n \in \mathbb{N}$ not divisible by p, the nth cyclotomic polynomial Q_n over K satisfies

$$Q_n(x) = \prod_{d|n} (x^d - 1)^{\mu(\frac{n}{d})} = \prod_{d|n} (x^{\frac{n}{d}} - 1)^{\mu(d)}.$$

Proof. Apply the multiplicative form of the Mobius Inversion Formula (Theorem 7.12) to the multiplicative group G of non-zero rational functions over K. Take $h(n) = Q_n(x)$ and $H(n) = x^n - 1$ for all $n \in \mathbb{N}$. By Theorem 8.5, the identity (3.3) is satisfied, and so applying Moebius Inversion yields the desired formula.

Example 8.9

Let n = 12, and let K be any field over which Q_{12} is defined. Then

$$Q_{12}(x) = \prod_{d|12} (x^{\frac{12}{d}} - 1)^{\mu(d)}$$

= $(x^{12} - 1)^{\mu(1)} (x^6 - 1)^{\mu(2)} (x^4 - 1)^{\mu(3)} (x^3 - 1)^{\mu(4)} (x^2 - 1)^{\mu(6)} (x - 1)^{\mu(12)}$
= $\frac{(x^{12} - 1)(x^2 - 1)}{(x^6 - 1)(x^4 - 1)} = x^4 - x^2 + 1.$

Before the next theorem, we make a definition.

Definition 8.10

Let *n* be a positive integer and *b* an integer relatively prime to *n*. Then the least positive integer *k* such that $n|b^k - 1$ (equivalently, $b^k \equiv 1 \mod n$) is called the *multiplicative order* of *b* modulo *n*, and denoted $\operatorname{ord}_n(b)$.

Example 8.11

(i) $\operatorname{ord}_8(5) = 2$; (ii) $\operatorname{ord}_{31}(2) = 5$; (iii) $\operatorname{ord}_9(4) = 3$.

Theorem 8.12

The cyclotomic field $K^{(n)}$ is a simple algebraic extension of K. Moreover, if $K = \mathbb{F}_q$ with gcd(q, n) = 1, and $d = ord_n(q)$, then

- Q_n factors into $\phi(n)/d$ distinct polynomials in K[x] of the same degree d;
- $K^{(n)}$ is the splitting field of any such irreducible factor over K;
- $[K^{(n)}:K] = d.$

Proof. If there exists a primitive *n*th root of unity ζ over *K*, then $K^{(n)} = K(\zeta)$. Otherwise, we have the situation of Theorem 8.2 (ii); here $K^{(n)} = K^{(m)}$ and the first result again holds.

Now let K be the finite field \mathbb{F}_q , assume gcd(q, n) = 1, such that primitive nth roots of unity over \mathbb{F}_q exist. Let η be one of them. Then

$$\eta \in \mathbb{F}_{q^k} \Leftrightarrow \eta^{q^k} = \eta \Leftrightarrow q^k \equiv 1 \bmod n$$

The smallest positive integer for which this holds is k = d, so η is in \mathbb{F}_{q^d} but not in any proper subfield. Thus the minimal polynomial of η over \mathbb{F}_q has degree d. Since η was an arbitrary root of $Q_n(x)$, the result follows, because we can successively divide by the minimal polynomials of the roots of $Q_n(x)$.

Example 8.13

Take q = 11 and n = 12.

- From Example 8.9, we have $K = \mathbb{F}_{11}$ and $Q_{12}(x) = x^4 x^2 + 1 \in \mathbb{F}_{11}[x]$. We are interested in $K^{(12)}$.
- Since $12 \nmid 11 1$ but $12 \mid 11^2 1$, the multiplicative order d of 11 modulo 12 is 2.
- So, Q₁₂(x) factors into φ(12)/2 = 4/2 = 2 monic quadratics, both irreducible over F₁₁[x], and the cyclotomic field K⁽¹²⁾ = F₁₂₁.
- We can check that the factorization is in fact $Q_{12}(x) = (x^2 + 5x + 1)(x^2 5x + 1)$.

The following result, which ties together cyclotomic and finite fields, is very useful.

Theorem 8.14

The finite field \mathbb{F}_q is the (q-1)st cyclotomic field over any one of its subfields.

Proof. Since the q-1 non-zero elements of \mathbb{F}_q are all the roots of the polynomial $x^{q-1} - 1$, this polynomial splits in \mathbb{F}_q . Clearly, it cannot split in any proper subfield of \mathbb{F}_q , so that \mathbb{F}_q is the splitting field of $x^{q-1} - 1$ over any one of its subfields.

9 Using cyclotomic polynomials

Cyclotomic fields give us another way of expressing the elements of a finite field \mathbb{F}_q . Since \mathbb{F}_q is the (q-1)st cyclotomic field over \mathbb{F}_p , we can construct it as follows:

- Find the decomposition of the (q − 1)st cyclotomic polynomial Q_{q−1} ∈ F_p[x] into irreducible factors in F_p[x], which are all of the same degree.
- A root α of any of these factors is a primitive (q − 1)st root of unity over F_p, and hence a primitive element of F_q.
- For such an α we have $\mathbb{F}_q = \{0, \alpha, \alpha^2, \dots, \alpha^{q-2}, \alpha^{q-1} = 1\}.$

Example 9.1

Consider the field \mathbb{F}_9 .

- $\mathbb{F}_9 = \mathbb{F}_3^{(8)}$, the eighth cyclotomic field over \mathbb{F}_3 .
- As in Example 8.7,

$$Q_8(x) = \frac{x^8 - 1}{x^4 - 1} = x^4 + 1 \in \mathbb{F}_3[x].$$

Its decomposition into irreducible factors in $\mathbb{F}_3[x]$ is

$$Q_8(x) = (x^2 + x + 2)(x^2 + 2x + 2);$$

we have $\phi(8)/\text{ord}_8(3) = 4/2 = 2$ factors of degree 2.

• Let ζ be a root of $x^2 + x + 2$; then ζ is a primitive eighth root of unity over \mathbb{F}_3 . Hence $\mathbb{F}_9 = \{0, \zeta, \zeta^2, \dots, \zeta^7, \zeta^8 = 1\}.$

We can now ask: how does this new representation for \mathbb{F}_9 correspond to our earlier viewpoint, where \mathbb{F}_9 was considered as a simple algebraic extension of \mathbb{F}_3 of degree 2, obtained by adjoining a root of an irreducible quadratic?

9. USING CYCLOTOMIC POLYNOMIALS

Example 9.2

Consider the polynomial $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$. This quadratic is irreducible over \mathbb{F}_3 . So we can build \mathbb{F}_9 by adjoining a root α of f(x) to \mathbb{F}_3 . Then $f(\alpha) = \alpha^2 + 1 = 0$ in \mathbb{F}_9 , and the nine elements of \mathbb{F}_9 are given by $\{0, 1, 2, \alpha, \alpha + 1, \alpha + 2, 2\alpha, 2\alpha + 1, 2\alpha + 2\}$.

Now, note that the polynomial $x^2 + x + 2 \in \mathbb{F}_3[x]$, from Example 9.1, has $\zeta = 1 + \alpha$ as a root. So, the elements in the two representations of \mathbb{F}_9 correspond as in the following table

i	ζ^i
1	$1 + \alpha$
2	2α
3	$1+2\alpha$
4	2
5	$2+2\alpha$
6	α
7	$2 + \alpha$
8	1

Another use of cyclotomic polynomials is that they help us to determine irreducible polynomials.

Theorem 9.3

Let I(q, n; x) be (as in Theorem 7.16) the product of all monic irreducible polynomials in $\mathbb{F}_q[x]$ of degree n. Then for n > 1 we have

$$I(q,n;x) = \prod_{m} Q_m(x),$$

where the product is extended over all positive divisors m of $q^n - 1$ for which n is the multiplicative order of q modulo m, and where $Q_m(x)$ is the mth cyclotomic polynomial over \mathbb{F}_q .

Proof.

For n > 1, let S be the set of elements of F_{qⁿ} that are of degree n over F_q. Then every α ∈ S has a minimal polynomial over F_q of degree n and is therefore a root of I(q, n; x). Conversely, if β is a root of I(q, n; x), then β is a root of some monic irreducible polynomial in F_q[x] of degree n, implying β ∈ S. Thus

$$I(q, n; x) = \prod_{\alpha \in S} (x - \alpha).$$

- If α ∈ S, then α ∈ ℝ^{*}_{qⁿ}, so the order of α in that multiplicative group is a divisor of qⁿ − 1. In fact, the order m of an element of S must be such that n is the least positive integer with m|qⁿ − 1, i.e. n = ord_m(q). This is because an element γ ∈ ℝ^{*}_{qⁿ} lies in a proper subfield ℝ_{q^d} if and only if γ^{q^d} = γ, i.e. if and only if the order of γ divides q^d − 1.
- For a positive divisor m of $q^n 1$ which satisfies $n = \operatorname{ord}_m(q)$, let S_m be the set of elements of S of order m. Then S is the disjoint union of the subsets S_m , so we have

$$I(q,n;x) = \prod_{m} \prod_{\alpha \in S_m} (x - \alpha).$$

Now, S_m contains precisely all elements of $\mathbb{F}_{q^n}^*$ of order m. So S_m is the set of primitive mth roots of unity over \mathbb{F}_q . From the definition of cyclotomic polynomials, we have

$$\prod_{\alpha \in S_m} (x - \alpha) = Q_m(x),$$

and hence the result follows.

Example 9.4

We determine all monic irreducible polynomials in $\mathbb{F}_3[x]$ of degree 2.

• Here q = 3 and n = 2, so $q^n - 1 = 8$ and $2 = \text{ord}_m(3)$ for divisors m = 4 and m = 8 of $q^n - 1$. Thus from Theorem 9.3 we have

$$I(3,2;x) = Q_4(x)Q_8(x).$$

- From Theorem 8.12, we know that Q₄(x) factors into φ(4)/2 = 1 monic irreducible quadratic over F₃, while Q₈(x) factors into φ(8)/2 = 2 monic irreducible quadratics over F₃.
- By Theorem 8.8,

$$Q_4(x) = \prod_{d|4} (x^{\frac{4}{d}} - 1)^{\mu(d)} = \frac{x^4 - 1}{x^2 - 1} = x^2 + 1,$$

while

$$Q_8(x) = x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2)$$

as in Example 9.1. Thus the irreducible polynomials in $\mathbb{F}_3[x]$ of degree 2 are x^2+1 , x^2+x+2 and x^2+2x+2 .

Example 9.5

We determine all monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 4.

• Here q = 2 and n = 4, so $q^n - 1 = 15$ and $4 = \operatorname{ord}_m(2)$ for divisors m = 5 and m = 15 of $q^n - 1$. Thus from Theorem 9.3 we have

$$I(2,4;x) = Q_5(x)Q_{15}(x).$$

- From Theorem 8.12, we know that Q₅(x) factors into φ(5)/4 = 1 monic irreducible quartic over F₂, while Q₁₅(x) factors into φ(15)/4 = 8/4 = 2 monic irreducible quartics over F₂.
- By Theorem 8.8,

$$Q_5(x) = \prod_{d|5} (x^{\frac{5}{d}} - 1)^{\mu(d)} = \frac{x^5 - 1}{x - 1} = x^4 + x^3 + x^2 + x + 1$$

and

$$Q_{15}(x) = \prod_{d|15} (x^{\frac{15}{d}} - 1)^{\mu(d)}$$

= $\frac{(x^{15} - 1)(x - 1)}{(x^5 - 1)(x^3 - 1)}$
= $\frac{x^{10} + x^5 + 1}{x^2 + x + 1}$
= $x^8 + x^7 + x^5 + x^4 + x^3 + x + 1$

We note that $Q_5(x+1) = x^4 + x^3 + 1$ is also irreducible in $\mathbb{F}_2[x]$ and hence must divide $Q_{15}(x)$, leading to the factorization

$$Q_{15}(x) = (x^4 + x^3 + 1)(x^4 + x + 1).$$

Thus the irreducible polynomials in $\mathbb{F}_2[x]$ of degree 4 are $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$ and $x^4 + x + 1$.