Chapter 5

Automorphisms and bases

10 Automorphisms

In this chapter, we will once again adopt the viewpoint that a finite extension $F=\mathbb{F}_{q^{m}}$ of a finite field $K=\mathbb{F}_{q}$ is a vector space of dimension m over K.

In Theorem 7.3 we saw that the set of roots of an irreducible polynomial $f \in \mathbb{F}_{q}[x]$ of degree m is the set of m distinct elements $\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}$ of $\mathbb{F}_{q^{m}}$.

Definition 10.1

Let $\mathbb{F}_{q^{m}}$ be an extension of \mathbb{F}_{q} and let $\alpha \in \mathbb{F}_{q^{m}}$. The elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$ are called the conjugates of α with respect to \mathbb{F}_{q}.

Remark 10.2

- The conjugates of $\alpha \in \mathbb{F}_{q^{m}}$ with respect to \mathbb{F}_{q} are distinct if and only if the minimal polynomial g of α over \mathbb{F}_{q} has degree m.
- Otherwise, the degree d of the minimal polynomial g of α over \mathbb{F}_{q} is a proper divisor of m, and in this case the conjugates of α with respect to \mathbb{F}_{q} are the distinct elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{d-1}}$, each repeated m / d times.

Theorem 10.3

The conjugates of $\alpha \in \mathbb{F}_{q}^{*}$ with respect to any subfield of \mathbb{F}_{q} have the same order in the group \mathbb{F}_{q}^{*}.
Proof. Apply Theorem 1.13 to the cyclic group \mathbb{F}_{q}^{*}, using the fact that every power of the characteristic of \mathbb{F}_{q} is coprime to the order $q-1$ of \mathbb{F}_{q}^{*}.

This immediately implies the following observation.

Corollary 10.4

If α is a primitive element of $\mathbb{F}_{q^{m}}$, then so are all its conjugates with respect to \mathbb{F}_{q}.

Example 10.5

Expressing \mathbb{F}_{4} as $\mathbb{F}_{2}(\theta)=\{0,1, \theta, \theta+1\}$, where $\theta^{2}+\theta+1=0$, we saw in Example 6.11 that θ is a primitive element of \mathbb{F}_{4}. The conjugates of $\theta \in \mathbb{F}_{4}$ with respect to \mathbb{F}_{2} are θ and θ^{2}; from Example $6.11, \theta^{2}=\theta+1$ is also a primitive element.

Example 10.6

Let $\alpha \in \mathbb{F}_{16}$ be a root of $f=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. Then the conjugates of α with respect to \mathbb{F}_{2} are $\alpha, \alpha^{2}, \alpha^{4}=\alpha+1, \alpha^{8}=\alpha^{2}+1$, and all of these are primitive elements of \mathbb{F}_{16}. The conjugates of α with respect to \mathbb{F}_{4} are α and $\alpha^{4}=\alpha+1$.

We next explore the relationship between conjugate elements and certain automorphisms of a finite field.

Definition 10.7

An automorphism of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} is an automorphism σ of $\mathbb{F}_{q^{m}}$ which fixes the elements of \mathbb{F}_{q} pointwise. Thus, σ is a one-to-one mapping from $\mathbb{F}_{q^{m}}$ onto itself with

$$
\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta)
$$

and

$$
\sigma(\alpha \beta)=\sigma(\alpha) \sigma(\beta)
$$

for all $\alpha, \beta \in \mathbb{F}_{q^{m}}$ and

$$
\sigma(a)=a \text { for all } a \in \mathbb{F}_{q}
$$

This definition may look familiar to anyone who has studied Galois theory!

Theorem 10.8

The distinct automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} are precisely the mappings $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m-1}$ defined by

$$
\sigma_{j}(\alpha)=\alpha^{q^{j}}
$$

for $\alpha \in \mathbb{F}_{q^{m}}$ and $0 \leq j \leq m-1$.
Proof. We first establish that the mappings σ_{j} are automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

- For each σ_{j} and all $\alpha, \beta \in \mathbb{F}_{q^{m}}$, we have $\sigma_{j}(\alpha \beta)=\sigma_{j}(\alpha) \sigma_{j}(\beta)$ and $\sigma_{j}(\alpha+\beta)=\sigma_{j}(\alpha)+$ $\sigma_{j}(\beta)$ by Freshmen's Exponentiation, so clearly σ_{j} is an endomorphism of $\mathbb{F}_{q^{m}}$.
- Since $\sigma_{j}(\alpha)=0 \Leftrightarrow \alpha=0, \sigma_{j}$ is injective. Since $\mathbb{F}_{q^{m}}$ is a finite set, σ_{j} is also surjective, and hence is an automorphism of $\mathbb{F}_{q^{m}}$.
- We have $\sigma_{j}(a)=a$ for all $a \in \mathbb{F}_{q}$ by Lemma 6.3, and so each σ_{j} is an automorphism of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.
- The mappings $\sigma_{1}, \ldots, \sigma_{m-1}$ are distinct as they return distinct values for a primitive element of $\mathbb{F}_{q^{m}}$.

Now, suppose σ is an arbitrary automorphism of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}; we show that it is in fact σ_{j} for some $0 \leq j \leq m-1$.

Let β be a primitive element of $\mathbb{F}_{q^{m}}$ and let $f=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \in \mathbb{F}_{q}[x]$ be its minimal polynomial over \mathbb{F}_{q}. Then

$$
\begin{aligned}
0 & =\sigma\left(\beta^{m}+a_{m-} \beta^{m-1}+\cdots+a_{0}\right) \\
& =\sigma(\beta)^{m}+a_{m-1} \sigma(\beta)^{m-1}+\cdots+a_{0}
\end{aligned}
$$

so that $\sigma(\beta)$ is a root of f in $\mathbb{F}_{q^{m}}$. By Theorem 7.3, we must have $\sigma(\beta)=\beta^{q^{j}}$ for some j, $0 \leq j \leq m-1$. Since σ is a homomorphism and β primitive, we get that $\sigma(\alpha)=\alpha^{q^{j}}$ for all $\alpha \in \mathbb{F}_{q^{m}}$.

Hence the conjugates of $\alpha \in \mathbb{F}_{q^{m}}$ are obtained by applying all automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} to the element α.

Remark 10.9

The automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} form a group under composition of mappings, called the Galois group of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} and denoted $\operatorname{Gal}\left(\mathbb{F}_{q^{m}} / \mathbb{F}_{q}\right)$. From Theorem 10.8 , this group of automorphisms is a cyclic group of order m, generated by σ_{1}.

11 Traces and Norms

Let $F=\mathbb{F}_{q^{m}}$ and $K=\mathbb{F}_{q}$. We introduce a mapping from F to K which turns out to be K-linear.

Definition 11.1

For $\alpha \in F$, the trace $\operatorname{Tr}_{F / K}(\alpha)$ of α over K is defined by

$$
\begin{aligned}
\operatorname{Tr}_{F / K}(\alpha) & =\text { sum of conjugates of } \alpha \text { w.r.t. } K \\
& =\alpha+\alpha^{q}+\alpha^{q^{2}}+\cdots+\alpha^{q^{m-1}}
\end{aligned}
$$

If K is the prime subfield of F, i.e. $K=\mathbb{F}_{p}$ where p is the characteristic of F, then $\operatorname{Tr}_{F / K}(\alpha)$ is called the absolute trace of α and denoted simply by $\operatorname{Tr}(\alpha)$.

A useful alternative way to think of the trace is as follows.

Definition 11.2

Let $\alpha \in F$ and $f \in K[x]$ be the minimal polynomial of α over K; its degree d is a divisor of $m=[F: K]$. Then $g=f^{m / d} \in K[x]$ is called the characteristic polynomial of α over K.

By Theorem 7.3, the roots of f in F are $\alpha, \alpha^{q}, \ldots, \alpha^{q^{d-1}}$; from Remark 10.2, the roots of g in F are precisely the conjugates of α with respect to K. So

$$
\begin{aligned}
g & =x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \\
& =(x-\alpha)\left(x-\alpha^{q}\right) \cdots\left(x-\alpha^{q^{m-1}}\right)
\end{aligned}
$$

Comparing coefficients we see that

$$
\operatorname{Tr}_{F / K}(\alpha)=-a_{m-1}
$$

In particular, $\operatorname{Tr}_{F / K}(\alpha)$ must be an element of K.

Theorem 11.3

Let $K=\mathbb{F}_{q}$ and let $F=\mathbb{F}_{q^{m}}$. Then the trace function $\operatorname{Tr}_{F / K}$ satisfies the following properties.
(i) $\operatorname{Tr}_{F / K}(\alpha+\beta)=\operatorname{Tr}_{F / K}(\alpha)+\operatorname{Tr}_{F / K}(\beta)$ for all $\alpha, \beta \in F$;
(ii) $\operatorname{Tr}_{F / K}(c \alpha)=c \operatorname{Tr}_{F / K}(\alpha)$ for all $c \in K, \alpha \in F$;
(iii) $\operatorname{Tr}_{F / K}$ is a linear transformation from F onto K (both viewed as K vector spaces);
(iv) $\operatorname{Tr}_{F / K}(a)=m a$ for all $a \in K$;
(v) $\operatorname{Tr}_{F / K}\left(\alpha^{q}\right)=\operatorname{Tr}_{F / K}(\alpha)$ for all $\alpha \in F$.

Proof. (i) For $\alpha, \beta \in F$, Freshmen's Exponentiation yields

$$
\begin{aligned}
\operatorname{Tr}_{F / K}(\alpha+\beta) & =\alpha+\beta+(\alpha+\beta)^{q}+\cdots+(\alpha+\beta)^{q^{m-1}} \\
& =\alpha+\beta+\alpha^{q}+\beta^{q}+\cdots+\alpha^{q^{m-1}}+\beta^{q^{m-1}} \\
& =\operatorname{Tr}_{F / K}(\alpha)+\operatorname{Tr}_{F / K}(\beta)
\end{aligned}
$$

(ii) By Lemma 6.3, for $c \in K$ we have $c^{q^{i}}=c$ for all $i \geq 0$. Then for $\alpha \in F$,

$$
\begin{aligned}
\operatorname{Tr}_{F / K}(c \alpha) & =c \alpha+c^{q} \alpha^{q}+\cdots+c^{q^{m-1}} \alpha^{q^{m-1}} \\
& =c \alpha+c \alpha^{q}+\cdots+c \alpha^{q^{m-1}} \\
& =c \operatorname{Tr}_{F / K}(\alpha)
\end{aligned}
$$

(iii) For all $\alpha \in F$ we have $\operatorname{Tr}_{F / K}(\alpha) \in K$; this follows from the discussion above, or immediately from

$$
\begin{aligned}
\left(\operatorname{Tr}_{F / K}(\alpha)\right)^{q} & =\left(\alpha+\alpha^{q}+\cdots+\alpha^{q^{m-1}}\right)^{q} \\
& =\alpha^{q}+\cdots+\alpha^{q^{m-1}}+\alpha \\
& =\operatorname{Tr}_{F / K}(\alpha)
\end{aligned}
$$

Combining this with (i) and (ii) shows that $\operatorname{Tr}_{F / K}$ is a K-linear transformation from F into K. To show that it is surjective, it suffices to demonstrate that there exists some $\alpha \in F$ with $\operatorname{Tr}_{F / K}(\alpha) \neq 0$. We have $\operatorname{Tr}_{F / K}(\alpha)=0 \Leftrightarrow \alpha$ is a root of $x^{q^{m-1}}+\cdots+x^{q}+x \in K[x]$ in F; since this polynomial has at most q^{m-1} roots in F whereas F has q^{m} elements, the result follows.
(iv) By Lemma 7.3, $a^{q^{i}}=a$ for all $a \in K$ and $i \geq 0$, and the result follows.
(v) For $\alpha \in F$ we have $\alpha^{q^{m}}=\alpha$, and so

$$
\operatorname{Tr}_{F / K}\left(\alpha^{q}\right)=\alpha^{q}+\alpha^{q^{2}}+\cdots+\alpha^{q^{m}}=\operatorname{Tr}_{F / K}(\alpha)
$$

In fact, the trace function provides a description for all linear transformations from F into K, in the following sense.

Theorem 11.4

Let F be a finite extension of the finite field K (both viewed as vector spaces over K). Then the K-linear transformations from F into K are precisely the mappings $L_{\beta}(\beta \in F)$ given by $L_{\beta}(\alpha)=\operatorname{Tr}_{F / K}(\beta \alpha)$ for all $\alpha \in F$. Moreover, if α, β are distinct elements of F then $L_{\alpha} \neq L_{\beta}$.

Proof. Omitted. Idea: $(\alpha, \beta) \mapsto \operatorname{Tr}_{F / K}(\alpha \beta)$ is a symmetric non-degenerate bilinear form on the K-vectorspace F.

For a chain of extensions, we have the following rule.

Theorem 11.5 (Transitivity of trace)

Let K be a finite field, let F be a finite extension of K and E a finite extension of F. Then

$$
\operatorname{Tr}_{E / K}(\alpha)=\operatorname{Tr}_{F / K}\left(\operatorname{Tr}_{E / F}(\alpha)\right)
$$

for all $\alpha \in E$.
Proof. Let $K=\mathbb{F}_{q}$, let $[F: K]=m$ and let $[E: F]=n$, so that $[E: K]=m n$ by Theorem 5.6. For $\alpha \in E$,

$$
\begin{aligned}
\operatorname{Tr}_{F / K}\left(\operatorname{Tr}_{E / F}(\alpha)\right) & =\sum_{i=0}^{m-1} \operatorname{Tr}_{F / K}(\alpha)^{q^{i}} \\
& =\sum_{i=0}^{m-1}\left(\sum_{j=0}^{n-1} \alpha^{q^{j m}}\right)^{q^{i}} \\
& =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \alpha^{q^{j m+i}} \\
& =\sum_{k=0}^{m n-1} \alpha^{q^{k}}=\operatorname{Tr}_{E / K}(\alpha)
\end{aligned}
$$

The multiplicative analogue of the trace function is called the norm.

Definition 11.6

For $\alpha \in F=\mathbb{F}_{q^{m}}$ and $K=\mathbb{F}_{q}$, the norm $N_{F / K}(\alpha)$ of α over K is defined by

$$
\begin{aligned}
N_{F / K}(\alpha) & =\text { product of conjugates of } \alpha \text { w.r.t. } K \\
& =\alpha \cdot \alpha^{q} \cdots \alpha^{q^{m-1}} \\
& =\alpha^{\left(q^{m}-1\right) /(q-1)}
\end{aligned}
$$

Comparing this definition with the characteristic polynomial g of α over K, as before, we see that

$$
N_{F / K}(\alpha)=(-1)^{m} a_{0}
$$

In particular, $N_{F / K}(\alpha)$ is always an element of K.

Theorem 11.7

Let $K=\mathbb{F}_{q}$, and F its degree m extension. The norm function $N_{F / K}$ satisfies the following properties:
(i) $N_{F / K}(\alpha \beta)=N_{F / K}(\alpha) N_{F / K}(\beta)$ for all $\alpha, \beta \in F$;
(ii) $N_{F / K}$ maps F onto K and F^{*} onto K^{*};
(iii) $N_{F / K}(a)=a^{m}$ for all $a \in K$;
(iv) $N_{F / K}\left(\alpha^{q}\right)=N_{F / K}(\alpha)$ for all $\alpha \in F$.

Proof. (i) Immediate from definition of norm.
(ii) From above, $N_{F / K}$ maps F into K; since $N_{F / K}(\alpha)=0 \Leftrightarrow \alpha=0$, we have that $N_{F / K}$ maps F^{*} into K^{*}.

We must now show that $N_{F / K}$ is surjective. By (i), $N_{F / K}$ is a homomorphism between the multiplicative groups F^{*} and K^{*}. The elements of the kernel are the roots of $x^{\frac{q^{m}-1}{q-1}}-1 \in K[x]$ in F; denoting the order of the kernel by d, we have $d \leq \frac{q^{m}-1}{q-1}$. By the First Isomorphism Theorem, the image has order $\left(q^{m}-1\right) / d$, which is at least $q-1$. So $N_{F / K}$ maps F^{*} onto K^{*} and hence F onto K.
(iii) Result is immediate upon noting that, for $a \in K$, all conjugates of a are equal to a.
(iv) By (i), $N_{F / K}\left(\alpha^{q}\right)=N_{F / K}(\alpha)^{q}$; by (ii), $N_{F / K}(\alpha) \in K$ and so $N_{F / K}(\alpha)^{q}=N_{F / K}(\alpha)$.

Theorem 11.8 (Transitivity of Norm)

Let K be a finite field, let F be a finite extension of K and let E be a finite extension of F. Then

$$
N_{E / K}(\alpha)=N_{F / K}\left(N_{E / F}(\alpha)\right)
$$

for all $\alpha \in E$.
Proof. Let $[F: K]=m$ and $[E: F]=n$. Then for $\alpha \in E$,

$$
\begin{aligned}
N_{F / K}\left(N_{E / F}(\alpha)\right) & =N_{F / K}\left(\alpha^{\frac{q^{m n}-1}{q^{m}-1}}\right) \\
& =\left(\alpha^{\frac{q^{m n}-1}{q^{m}-1}}\right)^{\frac{q^{m}-1}{q-1}} \\
& =\alpha^{\frac{q^{m n}-1}{q-1}}=N_{E / K}(\alpha)
\end{aligned}
$$

12 Bases and the Normal Basis Theorem

We first consider two important, and very natural, kinds of bases.
Recall that $\mathbb{F}_{q^{m}}=\mathbb{F}_{q}(\alpha) \cong \mathbb{F}_{q}[x] /(f)$, where f is an irreducible polynomial of degree m and α is a root of f in $\mathbb{F}_{q^{m}}$. So, every element of $\mathbb{F}_{q^{m}}$ can be uniquely expressed as a polynomial in α over \mathbb{F}_{q} of degree less than m and hence, for any defining element α, the set $\left\{1, \alpha, \ldots, \alpha^{m-1}\right\}$ is a basis for $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

Definition 12.1

Let $K=\mathbb{F}_{q}$ and $F=\mathbb{F}_{q^{m}}$.
A polynomial basis of F over K is a basis of the form $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$, where α is a defining element of F over K.

We can always insist that the element α is a primitive element of F, since by Theorem 6.12 , every primitive element of F can serve as a defining element of F over K.

Example 12.2

Let $K=\mathbb{F}_{3}$ and $F=\mathbb{F}_{9}$. Then F is a simple algebraic extension of K of degree 2 , obtained by adjoining an appropriate θ to K. Let θ be a root of the irreducible polynomial $x^{2}+1 \in K[x]$; then $\{1, \theta\}$ is a polynomial basis for F over K. However, θ is not primitive since $\theta^{4}=1$. Now let α be a root of $x^{2}+x+2$; then $\{1, \alpha\}$ is another polynomial basis for F over K, and α is a primitive element of F.

Definition 12.3

Let $K=\mathbb{F}_{q}$ and $F=\mathbb{F}_{q^{m}}$. A normal basis of F over K is a basis of the form $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}\right\}$, consisting of a suitable element $\alpha \in F$ and all its conjugates with respect to K. Such an α is called a free or normal element.

Example 12.4

Let $K=\mathbb{F}_{2}$ and $F=\mathbb{F}_{8}$. Let $\alpha \in \mathbb{F}_{8}$ be a root of the irreducible polynomial $x^{3}+x^{2}+1$ in $\mathbb{F}_{2}[x]$. Then $B=\left\{\alpha, \alpha^{2}, 1+\alpha+\alpha^{2}\right\}$ is a basis of \mathbb{F}_{8} over \mathbb{F}_{2}. Since $\alpha^{4}=1+\alpha+\alpha^{2}$, this is in fact a normal basis for F over K. To the contrary, let $\beta \in F$ be a root of the irreducible polynomial $x^{3}+x+1 \in K[x]$. Then the conjugates $\left\{\beta, \beta^{2}, \beta^{2}+\beta\right\}$ of β do not form a basis of K.

We now ask: does a normal basis exist for every F and K ?
We require two lemmas before proving the main result.

Lemma 12.5 (Artin Lemma)

Let $\chi_{1}, \ldots, \chi_{m}$ be distinct homomorphisms from a group G into the multiplicative group F^{*} of an arbitrary field F, and let $a_{1}, \ldots, a_{m} \in F$, not all zero. Then for some $g \in G$ we have

$$
a_{1} \chi_{1}(g)+\ldots+a_{m} \chi_{m}(g) \neq 0
$$

Proof. The proof is by induction on m. We omit the details.
Next, we recall a few concepts from linear algebra.

Definition 12.6

- If T is a linear operator on a finite dimensional vector space V over an arbitrary field K, then a polynomial $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in K[x]$ is said to annihilate T if $a_{n} T^{n}+\cdots+$ $a_{1} T+a_{0} I=0$, where I and 0 are the identity and zero operator on V, respectively.
- The uniquely determined monic polynomial of least degree with this property is called the minimal polynomial for T. It divides any other polynomial in $K[x]$ which annihilates T.
- The characteristic polynomial g for T is given by $g:=\operatorname{det}(x I-T)$. It is a monic polynomial of degree $n=\operatorname{dim}(V)$; by the Cayley-Hamilton theorem it annihilates T (and hence is divisible by the minimal polynomial). In fact, the roots of the two polynomials are the same up to multiplicity.
- A vector $\alpha \in V$ is called a cyclic vector for T if the vectors $T^{k} \alpha, k=0,1, \ldots$ span V.

We are now ready for the second lemma.

Lemma 12.7

Let T be a linear operator on the finite-dimensional vector space V. Then T has a cyclic vector if and only if the characteristic and minimal polynomials for T are identical.

Proof. Omitted.

Theorem 12.8 (Normal Basis Theorem)

For any finite field K and any finite extension F of K, there exists a normal basis of F over K.
Proof. Let $K=\mathbb{F}_{q}$ and $F=\mathbb{F}_{q^{m}}$ with $m \geq 2$.

- From Theorem 10.8, the distinct automorphisms of F over K are given by

$$
\epsilon, \sigma, \sigma^{2}, \ldots, \sigma^{m-1}
$$

where ϵ is the identity map on $F, \sigma(\alpha)=\alpha^{q}$ for $\alpha \in F$ and σ^{i} means composing σ with itself i times.

- Since $\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta)$ and $\sigma(c \alpha)=c \sigma(\alpha)$ for $\alpha, \beta \in F$ and $c \in K$, we can think of σ as a linear operator on the vector space F over K.
- Since $\sigma^{m}=\epsilon$, the polynomial $x^{m}-1 \in K[x]$ annihilates σ. Consider $\epsilon, \sigma, \sigma^{2}, \ldots, \sigma^{m-1}$ as endomorphisms of F^{*}, and apply the Artin Lemma; this tells us that no nonzero polynomial in $K[x]$ of degree less than m annihilates σ. Thus, $x^{m}-1$ is the minimal polynomial for the linear operator σ.
- Since the characteristic polynomial for σ is a monic polynomial of degree m divisible by the minimal polynomial for σ, we must have that $x^{m}-1$ is the characteristic polynomial also.
- By Lemma 12.7, there must exist a cyclic vector for V; i.e. there exists some $\alpha \in F$ such that $\alpha, \sigma(\alpha), \sigma^{2}(\alpha), \ldots$ span F.
- Dropping repeated elements, this says that $\alpha, \sigma(\alpha), \ldots, \sigma^{m-1}(\alpha)$ span F, and hence form a basis of F over K. Since this basis consists of an element and its conjugates with respect to K, it is a normal basis, as required!

In fact, it turns out that this result can be strengthened, in the following way.

Theorem 12.9 (Primitive Normal Basis Theorem)

For any finite extension F of a finite field K, there exists a normal basis of F over K that consists of primitive elements of F.

Proof. Beyond the scope of this course!

Example 12.10

Let $K=\mathbb{F}_{2}$ and $F=\mathbb{F}_{8}=K(\alpha)$, where $\alpha^{3}+\alpha^{2}+1=0$. We saw in Example 12.4 that the basis $B=\left\{\alpha, \alpha^{2}, 1+\alpha+\alpha^{2}=\alpha^{4}\right\}$ from Example 12.4 is a normal basis for F over K. In fact, α is a primitive element of $F\left(F^{*}\right.$ is the cyclic group of order 7 and hence any non-identity element is a generator). So this is a primitive normal basis for F over K.

