
Chapter 5

Automorphisms and bases

10 Automorphisms

In this chapter, we will once again adopt the viewpoint that afinite extensionF = Fqm of a finite
field K = Fq is a vector space of dimensionm overK.

In Theorem 7.3 we saw that the set of roots of an irreducible polynomial f ∈ Fq[x] of degreem
is the set ofm distinct elementsα,αq, αq2

, . . . , αqm−1

of Fqm.

Definition 10.1
Let Fqm be an extension ofFq and letα ∈ Fqm. The elementsα,αq , . . . , αqm−1

are called the
conjugates of α with respect toFq.

Remark 10.2
• The conjugates ofα ∈ Fqm with respect toFq are distinct if and only if the minimal polyno-

mial g of α over Fq has degreem.

• Otherwise, the degreed of the minimal polynomialg of α overFq is a proper divisor ofm, and
in this case the conjugates ofα with respect toFq are the distinct elementsα,αq, . . . , αqd−1

,
each repeatedm/d times.

Theorem 10.3
The conjugates ofα ∈ F

∗

q with respect to any subfield ofFq have the same order in the groupF
∗

q.

Proof. Apply Theorem 1.13 to the cyclic groupF∗

q, using the fact that every power of the charac-
teristic ofFq is coprime to the orderq − 1 of F

∗

q. �

This immediately implies the following observation.

Corollary 10.4
If α is a primitive element ofFqm, then so are all its conjugates with respect toFq.

Example 10.5
ExpressingF4 asF2(θ) = {0, 1, θ, θ + 1}, whereθ2 + θ + 1 = 0, we saw in Example 6.11 thatθ is
a primitive element ofF4. The conjugates ofθ ∈ F4 with respect toF2 areθ andθ2; from Example
6.11,θ2 = θ + 1 is also a primitive element.

Example 10.6
Let α ∈ F16 be a root off = x4 + x + 1 ∈ F2[x]. Then the conjugates ofα with respect toF2 are
α,α2, α4 = α + 1, α8 = α2 + 1, and all of these are primitive elements ofF16. The conjugates of
α with respect toF4 areα andα4 = α + 1.
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We next explore the relationship between conjugate elements and certain automorphisms of a
finite field.

Definition 10.7
An automorphism of Fqm over Fq is an automorphismσ of Fqm which fixes the elements ofFq

pointwise. Thus,σ is a one-to-one mapping fromFqm onto itself with

σ(α + β) = σ(α) + σ(β)

and
σ(αβ) = σ(α)σ(β)

for all α, β ∈ Fqm and
σ(a) = a for all a ∈ Fq.

This definition may look familiar to anyone who has studied Galois theory!

Theorem 10.8
The distinct automorphisms ofFqm over Fq are precisely the mappingsσ0, σ1, . . . , σm−1 defined
by

σj(α) = αqj

for α ∈ Fqm and0 ≤ j ≤ m − 1.

Proof. We first establish that the mappingsσj are automorphisms ofFqm overFq.

• For eachσj and allα, β ∈ Fqm , we haveσj(αβ) = σj(α)σj(β) andσj(α + β) = σj(α) +
σj(β) by Freshmen’s Exponentiation, so clearlyσj is an endomorphism ofFqm.

• Sinceσj(α) = 0 ⇔ α = 0, σj is injective. SinceFqm is a finite set,σj is also surjective, and
hence is an automorphism ofFqm.

• We haveσj(a) = a for all a ∈ Fq by Lemma 6.3, and so eachσj is an automorphism ofFqm

overFq.

• The mappingsσ1, . . . , σm−1 are distinct as they return distinct values for a primitive element
of Fqm.

Now, supposeσ is an arbitrary automorphism ofFqm overFq; we show that it is in factσj for
some0 ≤ j ≤ m − 1.

Let β be a primitive element ofFqm and letf = xm + am−1x
m−1 + · · · + a0 ∈ Fq[x] be its

minimal polynomial overFq. Then

0 = σ(βm + am−βm−1 + · · · + a0)

= σ(β)m + am−1σ(β)m−1 + · · · + a0,

so thatσ(β) is a root off in Fqm. By Theorem 7.3, we must haveσ(β) = βqj

for somej,
0 ≤ j ≤ m − 1. Sinceσ is a homomorphism andβ primitive, we get thatσ(α) = αqj

for all
α ∈ Fqm. �

Hence the conjugates ofα ∈ Fqm are obtained by applying all automorphisms ofFqm overFq

to the elementα.

Remark 10.9
The automorphisms ofFqm overFq form a group under composition of mappings, called theGalois
groupof Fqm overFq and denotedGal(Fqm/Fq). From Theorem 10.8, this group of automorphisms
is a cyclic group of orderm, generated byσ1.
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11 Traces and Norms

Let F = Fqm andK = Fq. We introduce a mapping fromF to K which turns out to beK-linear.

Definition 11.1
Forα ∈ F , thetrace TrF/K(α) of α overK is defined by

TrF/K(α) = sum of conjugates ofα w.r.t. K

= α + αq + αq2

+ · · · + αqm−1

If K is the prime subfield ofF , i.e. K = Fp wherep is the characteristic ofF , thenTrF/K(α) is
called the absolute trace ofα and denoted simply byTr(α).

A useful alternative way to think of the trace is as follows.

Definition 11.2
Let α ∈ F andf ∈ K[x] be the minimal polynomial ofα over K; its degreed is a divisor of
m = [F : K]. Theng = fm/d ∈ K[x] is called thecharacteristic polynomial of α overK.

By Theorem 7.3, the roots off in F areα,αq , . . . , αqd−1

; from Remark 10.2, the roots ofg in F
are precisely the conjugates ofα with respect toK. So

g = xm + am−1x
m−1 + · · · + a0

= (x − α)(x − αq) · · · (x − αqm−1

).

Comparing coefficients we see that

TrF/K(α) = −am−1.

In particular,TrF/K(α) must be an element ofK.

Theorem 11.3
Let K = Fq and letF = Fqm . Then the trace functionTrF/K satisfies the following properties.

(i) TrF/K(α + β) = TrF/K(α) + TrF/K(β) for all α, β ∈ F ;

(ii) TrF/K(cα) = cTrF/K(α) for all c ∈ K, α ∈ F ;

(iii) TrF/K is a linear transformation fromF ontoK (both viewed asK vector spaces);

(iv) TrF/K(a) = ma for all a ∈ K;

(v) TrF/K(αq) = TrF/K(α) for all α ∈ F .

Proof. (i) For α, β ∈ F , Freshmen’s Exponentiation yields

TrF/K(α + β) = α + β + (α + β)q + · · · + (α + β)q
m−1

= α + β + αq + βq + · · · + αqm−1

+ βqm−1

= TrF/K(α) + TrF/K(β).

(ii) By Lemma 6.3, forc ∈ K we havecqi

= c for all i ≥ 0. Then forα ∈ F ,

TrF/K(cα) = cα + cqαq + · · · + cqm−1

αqm−1

= cα + cαq + · · · + cαqm−1

= cTrF/K(α).



40 CHAPTER 5. AUTOMORPHISMS AND BASES

(iii) For all α ∈ F we haveTrF/K(α) ∈ K; this follows from the discussion above, or immedi-
ately from

(TrF/K(α))q = (α + αq + · · · + αqm−1

)q

= αq + · · · + αqm−1

+ α

= TrF/K(α).

Combining this with (i) and (ii) shows thatTrF/K is a K-linear transformation fromF into
K. To show that it is surjective, it suffices to demonstrate that there exists someα ∈ F with
TrF/K(α) 6= 0. We haveTrF/K(α) = 0 ⇔ α is a root ofxqm−1

+ · · ·+ xq + x ∈ K[x] in F ; since
this polynomial has at mostqm−1 roots inF whereasF hasqm elements, the result follows.
(iv) By Lemma 7.3,aqi

= a for all a ∈ K andi ≥ 0, and the result follows.
(v) Forα ∈ F we haveαqm

= α, and so

TrF/K(αq) = αq + αq2

+ · · · + αqm

= TrF/K(α).

�

In fact, the trace function provides a description for all linear transformations fromF into K, in
the following sense.

Theorem 11.4
Let F be a finite extension of the finite fieldK (both viewed as vector spaces overK). Then
the K-linear transformations fromF into K are precisely the mappingsLβ (β ∈ F ) given by
Lβ(α) = TrF/K(βα) for all α ∈ F . Moreover, ifα, β are distinct elements ofF thenLα 6= Lβ.

Proof. Omitted. Idea:(α, β) 7→ TrF/K(αβ) is a symmetric non-degenerate bilinear form on the
K-vectorspaceF . �

For a chain of extensions, we have the following rule.

Theorem 11.5 (Transitivity of trace)
Let K be a finite field, letF be a finite extension ofK andE a finite extension ofF . Then

TrE/K(α) = TrF/K(TrE/F (α))

for all α ∈ E.

Proof. Let K = Fq, let [F : K] = m and let[E : F ] = n, so that[E : K] = mn by Theorem
5.6. Forα ∈ E,

TrF/K(TrE/F (α)) =

m−1∑

i=0

TrF/K(α)q
i

=

m−1∑

i=0

(

n−1∑

j=0

αqjm

)q
i

=
m−1∑

i=0

n−1∑

j=0

αqjm+i

=
mn−1∑

k=0

αqk

= TrE/K(α).

�
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The multiplicative analogue of the trace function is calledthe norm.

Definition 11.6
Forα ∈ F = Fqm andK = Fq, thenorm NF/K(α) of α overK is defined by

NF/K(α) = product of conjugates ofα w.r.t. K

= α · αq · · ·αqm−1

= α(qm
−1)/(q−1).

Comparing this definition with the characteristic polynomial g of α overK, as before, we see
that

NF/K(α) = (−1)ma0.

In particular,NF/K(α) is always an element ofK.

Theorem 11.7
Let K = Fq, andF its degreem extension. The norm functionNF/K satisfies the following
properties:

(i) NF/K(αβ) = NF/K(α)NF/K(β) for all α, β ∈ F ;

(ii) NF/K mapsF ontoK andF ∗ ontoK∗;

(iii) NF/K(a) = am for all a ∈ K;

(iv) NF/K(αq) = NF/K(α) for all α ∈ F .

Proof. (i) Immediate from definition of norm.
(ii) From above,NF/K mapsF into K; sinceNF/K(α) = 0 ⇔ α = 0, we have thatNF/K maps
F ∗ into K∗.

We must now show thatNF/K is surjective. By (i),NF/K is a homomorphism between the

multiplicative groupsF ∗ andK∗. The elements of the kernel are the roots ofx
qm

−1

q−1 − 1 ∈ K[x] in
F ; denoting the order of the kernel byd, we haved ≤ qm

−1
q−1 . By the First Isomorphism Theorem,

the image has order(qm − 1)/d, which is at leastq − 1. SoNF/K mapsF ∗ ontoK∗ and henceF
ontoK.
(iii) Result is immediate upon noting that, fora ∈ K, all conjugates ofa are equal toa.
(iv) By (i), NF/K(αq) = NF/K(α)q; by (ii), NF/K(α) ∈ K and soNF/K(α)q = NF/K(α). �

Theorem 11.8 (Transitivity of Norm)
Let K be a finite field, letF be a finite extension ofK and letE be a finite extension ofF . Then

NE/K(α) = NF/K(NE/F (α))

for all α ∈ E.

Proof. Let [F : K] = m and[E : F ] = n. Then forα ∈ E,

NF/K(NE/F (α)) = NF/K(α
qmn

−1

qm
−1 )

= (α
qmn

−1

qm
−1 )

qm
−1

q−1

= α
qmn

−1

q−1 = NE/K(α).

�
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12 Bases and the Normal Basis Theorem

We first consider two important, and very natural, kinds of bases.
Recall thatFqm = Fq(α) ∼= Fq[x]/(f), wheref is an irreducible polynomial of degreem and

α is a root off in Fqm. So, every element ofFqm can be uniquely expressed as a polynomial inα
overFq of degree less thanm and hence, for any defining elementα, the set{1, α, . . . , αm−1} is a
basis forFqm overFq.

Definition 12.1
Let K = Fq andF = Fqm.

A polynomial basis of F over K is a basis of the form{1, α, α2, . . . , αm−1}, whereα is a
defining element ofF overK.

We can always insist that the elementα is a primitive element ofF , since by Theorem 6.12, every
primitive element ofF can serve as a defining element ofF overK.

Example 12.2
Let K = F3 andF = F9. ThenF is a simple algebraic extension ofK of degree2, obtained by
adjoining an appropriateθ to K. Let θ be a root of the irreducible polynomialx2 + 1 ∈ K[x]; then
{1, θ} is a polynomial basis forF overK. However,θ is not primitive sinceθ4 = 1. Now letα be
a root ofx2 + x + 2; then{1, α} is another polynomial basis forF overK, andα is a primitive
element ofF .

Definition 12.3
Let K = Fq andF = Fqm. A normal basis of F overK is a basis of the form{α,αq , . . . , αqm−1

},
consisting of a suitable elementα ∈ F and all its conjugates with respect toK. Such anα is called
a free or normal element.

Example 12.4
Let K = F2 andF = F8. Let α ∈ F8 be a root of the irreducible polynomialx3 + x2 + 1 in F2[x].
ThenB = {α,α2, 1 + α + α2} is a basis ofF8 over F2. Sinceα4 = 1 + α + α2, this is in fact
a normal basis forF over K. To the contrary, letβ ∈ F be a root of the irreducible polynomial
x3 + x + 1 ∈ K[x]. Then the conjugates{β, β2, β2 + β} of β do not form a basis ofK.

We now ask: does a normal basis exist for everyF andK?
We require two lemmas before proving the main result.

Lemma 12.5 (Artin Lemma)
Let χ1, . . . , χm be distinct homomorphisms from a groupG into the multiplicative groupF ∗ of an
arbitrary fieldF , and leta1, . . . , am ∈ F , not all zero. Then for someg ∈ G we have

a1χ1(g) + . . . + amχm(g) 6= 0.

Proof. The proof is by induction onm. We omit the details. �

Next, we recall a few concepts from linear algebra.

Definition 12.6
• If T is a linear operator on a finite dimensional vector spaceV over an arbitrary fieldK, then

a polynomialf = anxn + · · · + a1x + a0 ∈ K[x] is said toannihilate T if anT n + · · · +
a1T + a0I = 0, whereI and0 are the identity and zero operator onV , respectively.

• The uniquely determined monic polynomial of least degree with this property is called the
minimal polynomial for T . It divides any other polynomial inK[x] which annihilatesT .
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• Thecharacteristic polynomial g for T is given byg := det(xI−T ). It is a monic polynomial
of degreen = dim(V ); by the Cayley-Hamilton theorem it annihilatesT (and hence is
divisible by the minimal polynomial). In fact, the roots of the two polynomials are the same
up to multiplicity.

• A vectorα ∈ V is called acyclic vector for T if the vectorsT kα, k = 0, 1, . . . spanV .

We are now ready for the second lemma.

Lemma 12.7
Let T be a linear operator on the finite-dimensional vector spaceV . ThenT has a cyclic vector if
and only if the characteristic and minimal polynomials forT are identical.

Proof. Omitted. �

Theorem 12.8 (Normal Basis Theorem)
For any finite fieldK and any finite extensionF of K, there exists a normal basis ofF overK.

Proof. Let K = Fq andF = Fqm with m ≥ 2.

• From Theorem 10.8, the distinct automorphisms ofF overK are given by

ǫ, σ, σ2, . . . , σm−1,

whereǫ is the identity map onF , σ(α) = αq for α ∈ F andσi means composingσ with
itself i times.

• Sinceσ(α + β) = σ(α) + σ(β) andσ(cα) = cσ(α) for α, β ∈ F andc ∈ K, we can think
of σ as a linear operator on the vector spaceF overK.

• Sinceσm = ǫ, the polynomialxm − 1 ∈ K[x] annihilatesσ. Considerǫ, σ, σ2, . . . , σm−1 as
endomorphisms ofF ∗, and apply the Artin Lemma; this tells us that no nonzero polynomial
in K[x] of degree less thanm annihilatesσ. Thus,xm − 1 is the minimal polynomial for the
linear operatorσ.

• Since the characteristic polynomial forσ is a monic polynomial of degreem divisible by the
minimal polynomial forσ, we must have thatxm − 1 is the characteristic polynomial also.

• By Lemma 12.7, there must exist a cyclic vector forV ; i.e. there exists someα ∈ F such that
α, σ(α), σ2(α), . . . spanF .

• Dropping repeated elements, this says thatα, σ(α), . . . , σm−1(α) spanF , and hence form a
basis ofF overK. Since this basis consists of an element and its conjugates with respect to
K, it is a normal basis, as required!

�

In fact, it turns out that this result can be strengthened, inthe following way.

Theorem 12.9 (Primitive Normal Basis Theorem)
For any finite extensionF of a finite fieldK, there exists a normal basis ofF overK that consists
of primitive elements ofF .

Proof. Beyond the scope of this course! �

Example 12.10
Let K = F2 andF = F8 = K(α), whereα3 + α2 + 1 = 0. We saw in Example 12.4 that the basis
B = {α,α2, 1 + α + α2 = α4} from Example 12.4 is a normal basis forF overK. In fact,α is
a primitive element ofF (F ∗ is the cyclic group of order7 and hence any non-identity element is a
generator). So this is a primitive normal basis forF overK.


