Chapter 5

Automorphisms and bases

10 Automorphisms

In this chapter, we will once again adopt the viewpoint théihie extensiont” = F ~ of a finite
field K = F, is a vector space of dimension over K.

In Theorem 7.3 we saw that the set of roots of an irreduciblgnponial f € F,[x] of degreen
is the set ofn distinct elementsy, a9, a?”, ..., 04" " of Fym.

Definition 10.1
Let F,» be an extension df, and leta € Fy». The elementsy, a?, ... ,oﬂmfl are called the
conjugates of a with respect tdr,,.

Remark 10.2
e The conjugates af € IF,~» with respect tdF, are distinct if and only if the minimal polyno-
mial g of o overF, has degreen.

e Otherwise, the degrekof the minimal polynomiag of o overF, is a proper divisor ofn, and
in this case the conjugates @fwith respect tdf, are the distinct elements o4, .. ., ad’

each repeategh /d times.

Theorem 10.3
The conjugates aof € T with respect to any subfield @, have the same order in the grosip.

Proof.  Apply Theorem 1.13 to the cyclic grougj, using the fact that every power of the charac-
teristic of F,, is coprime to the ordey — 1 of IF;. [ |

This immediately implies the following observation.

Corollary 10.4
If o is a primitive element oF ,~, then so are all its conjugates with respecito

Example 10.5

ExpressingF, asFy(6) = {0,1,6,6 + 1}, wheref? + 0 + 1 = 0, we saw in Example 6.11 thatis
a primitive element of;. The conjugates af € F, with respect td, ared andd?; from Example
6.11,6% = 6 + 1 is also a primitive element.

Example 10.6

Let o € 14 be aroot off = 2* + z + 1 € Fa[z]. Then the conjugates of with respect tdF, are
a,0?,0* = a+ 1,08 = a? + 1, and all of these are primitive elementsiyf. The conjugates of
o with respect tdf, area anda? = o + 1.
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We next explore the relationship between conjugate elesreamd certain automorphisms of a
finite field.

Definition 10.7
An automorphism of F,= over I, is an automorphisna of F,» which fixes the elements df,
pointwise. Thusg is a one-to-one mapping froffy,» onto itself with

o(a+ ) =o(a) +0o(B)

and
o(af) = o(a)o(B)
forall o, B € Fym and
o(a) =aforallaeF,.

This definition may look familiar to anyone who has studieddatheory!

Theorem 10.8
The distinct automorphisms &~ overF, are precisely the mappings,o1,...,omn—1 defined
by _

oj(a) = a?

fora € Fym and0 < j <m — 1.
Proof. We first establish that the mappinggare automorphisms @~ overF,.

e For eachy; and allo, 5 € Fym, we haver;(af) = oj(a)o;(6) andoj(a + () = oj(a) +
() by Freshmen’s Exponentiation, so cleaslyis an endomorphism df ;.

e Sincer;(a) =0 < a =0, g; is injective. Sincer,~ is a finite setg; is also surjective, and
hence is an automorphism Bf.

e We havesj(a) = aforall a € F, by Lemma 6.3, and so eaet) is an automorphism df ;m
overlF,.

e The mappings, ..., 0,1 are distinct as they return distinct values for a primitilengent
of qu .

Now, supposer is an arbitrary automorphism @~ overF,; we show that it is in fact; for
some) < j <m — 1.

Let 3 be a primitive element df ;= and letf = 2™ + a,,—12™ ! + -+ + ag € F,[z] be its
minimal polynomial oveif,. Then

0 = o(B"+ampB" '+ +a)
= o(B)™ + am_10(8)" + - + ao,

so thato () is a root of f in F,m. By Theorem 7.3, we must have(3) = 37 for somej,
0 < j < m — 1. Sinceo is a homomorphism and primitive, we get thatr(a) = o for all
(VRS qu. [ ]

Hence the conjugates of € [F,» are obtained by applying all automorphismskgf. overF,
to the element..

Remark 10.9

The automorphisms df ;» overF, form a group under composition of mappings, calledG/éois
groupof F,~ overF, and denoteal(F,~ /F,). From Theorem 10.8, this group of automorphisms
is a cyclic group of ordeim, generated by .
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11 Traces and Norms

Let ' = F,m» andK = [F,. We introduce a mapping from to K" which turns out to bé(-linear.

Definition 11.1
Fora € F, thetrace Try, i () of e over K is defined by

Trp/x(a) = sum of conjugates of w.r.t. K
m—1

= a—|—aq—|—aq2—|—---—{—aq

If K is the prime subfield of", i.e. K = F, wherep is the characteristic of', thenTr/x («) is
called the absolute trace afand denoted simply b¥r(«).

A useful alternative way to think of the trace is as follows.

Definition 11.2
Leta € F and f € KJ[z]| be the minimal polynomial o over K; its degreed is a divisor of

m = [F : K]. Theng = f™¢ ¢ K|x] is called thecharacteristic polynomial of o over K.

By Theorem 7.3, the roots ¢fin F area, of, ... ,oﬂd_l; from Remark 10.2, the roots gfin F’
are precisely the conjugates @fwvith respect ta. So

g = 2"+ amaa™ "+ +ag
= (x—a)(w—aq)---(az—aqm_l).

Comparing coefficients we see that
Trp/k (@) = —am-1.

In particular, Tr -/ () must be an element af .

Theorem 11.3
LetK =, and letF" = F,~. Then the trace functiolir ;i satisfies the following properties.

() Trp/x(a+B) = Trpyk(a) + Trp () forallo, § € F;

(i) Trp/k(ca) = cTrp/k(a) forallce K,a € F;

(iii) Trg, g is a linear transformation fromi onto K (both viewed ad< vector spaces);

(iv) Trp/k(a) =maforalla € K;

(v) Trp/g(a?) = Trp g (a) forall a € F.
Proof. (i) Fora, 8 € F, Freshmen’s Exponentiation yields

Trp(a+0) = a+B+@+B)i+ -+ (at+B)

= a+fB+al+Bli4+. . tal" 3
= Trpr(a) + Trp/(8).

m—1

(i) By Lemma 6.3, forc € K we havec? = ¢ for all i > 0. Then fora € F,

m—1 m—1
Trp/g(ca) = ca+claf+--- 4+ ol
m—1

coa+cal + - 4 cat

= Trp/g(a).
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(iii) For all a € F'we havelry/ k(o) € K this follows from the discussion above, or immedi-
ately from

m—1

(Trp/g(a)? = (a+al4---+a? )
= aq+...+aqM71_’_a
= Trp/g(a).

Combining this with (i) and (ii) shows thalr/x is a K-linear transformation front” into
K. To show that it is surjective, it suffices to demonstrate thare exists some: € F with
Trr k(o) # 0. We havelrp k(o) = 0 < ais aroot ofr?" ' 4 ...+ 294z € K[z]in F; since
this polynomial has at mogt™~! roots inF' whereasF” hasg™ elements, the result follows.
(iv) By Lemma 7.34% = a for all a € K andi > 0, and the result follows.
(v) Fora € F we haven?" = «, and so

Trp/g(a?) = af + o 4. 40" = Trp k().
|

In fact, the trace function provides a description for alefr transformations frorf' into K, in
the following sense.

Theorem 11.4

Let F' be a finite extension of the finite field (both viewed as vector spaces ou€). Then
the K -linear transformations front' into K are precisely the mappings; (3 € F') given by
Lg(a) = Trp i (Ba) for all o € F'. Moreover, ifa, 3 are distinct elements df thenL,, # Lg.

Proof.  Omitted. Ideax(«, 8) — Trp/k(a/3) is @ symmetric non-degenerate bilinear form on the
K-vectorspace-'. ]

For a chain of extensions, we have the following rule.

Theorem 11.5 (Transitivity of trace)
Let K be a finite field, let" be a finite extension dk andFE a finite extension oF'. Then

Trg k(@) = Trp/k(Tre/r(a))

foralla € E.

Proof. LetK =, let[F : K] = mandletlE : F| = n, so thatlE : K] = mn by Theorem
5.6. Fora € E,

Trp/x(Trp/r(a)) = ZTYF/K(OC)Q
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The multiplicative analogue of the trace function is called norm.

Definition 11.6
Fora € F =F,m andK = Ty, thenorm Ny, x (o) of a over K is defined by

Np/k(a) = product of conjugates af w.r.t. K

m—1

= - Oéq e aq
o@D/ (a-1)

Comparing this definition with the characteristic polynahy of o over K, as before, we see
that

NF/K(Oé) = (—1)ma0.
In particular, Nk (o) is always an element dft .

Theorem 11.7
Let K = F,, andF its degreem extension. The norm functiol .,y satisfies the following
properties:

() Np/x(aB) = Np/k(a)Np/k(B) foralla, 5 € F;
(i) Np/x mapst' ontoK andF™ onto K*;
(i) Np/k(a)=a™ foralla € K;

(iv) Np/g(a?) = Np/g(a) foralla € F.

Proof. (i) Immediate from definition of norm.
(if) From above,Np,x mapsF into K'; sinceNp i (a) = 0 < a = 0, we have thatVy, ;. maps
F*into K*.

We must now show thalr i is surjective. By (i), N k is @ homomorphism between the

multiplicative groupst™* and K*. The elements of the kernel are the roots;cfﬁ—Tl —1€ K[z]in
F; denoting the order of the kernel laly we haved < % By the First Isomorphism Theorem,
the image has ordéy™ — 1)/d, which is at leasy — 1. SONp,x mapsF* onto K* and hence”
onto K.

(iii) Result is immediate upon noting that, farc K, all conjugates of, are equal ta:.

(V) By (i), Np/i(a?) = Np/g(a)?; by (i), Np/k (o) € K and sONp g (a)? = Npjg(a). B

Theorem 11.8 (Transitivity of Norm)
Let K be a finite field, letr’ be a finite extension df and letE be a finite extension df'. Then

Ng/k(a) = Np/g(Ng/r(a))
forallo € E.

Proof. Let[F :K|=mand[E : F|=n. Thenfora € E,

mn _q

Np/(Ngjp(a)) = Npjgla o)
qmn71 qul
= (a7 1) a1

gmn 1

= a T = Ng/g(a).
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12 Bases and the Normal Basis Theorem

We first consider two important, and very natural, kinds cfdsa

Recall thatF,» = F,(a) = F,[z]/(f), wheref is an irreducible polynomial of degree and
ais aroot of f in Fym. So, every element & ,~» can be uniquely expressed as a polynomiakin
overF, of degree less tham and hence, for any defining elementthe set{1,a,...,a™ 1} isa
basis forl,~ overF,.

Definition 12.1
Let K =F, andF = Fym.

A polynomial basis of F over K is a basis of the forn{1, o, a?,...,a™ 1}, wherea is a
defining element of" over K.

We can always insist that the elements a primitive element of’, since by Theorem 6.12, every
primitive element ofF' can serve as a defining elementfobver K.

Example 12.2

Let K = F3 andF = Fy. ThenF is a simple algebraic extension &f of degree2, obtained by
adjoining an appropriaté to K. Let# be a root of the irreducible polynomiaf + 1 € K[z]; then
{1,6} is a polynomial basis foF" over K. However,d is not primitive since#* = 1. Now leta be
a root ofz? + x + 2; then{1, a} is another polynomial basis fdf over K, anda is a primitive
element ofF".

Definition 12.3

Let K = F, andF = F,=. A normal basis of F' over K is a basis of the fornfa, a4, . . . ,ad" Y,
consisting of a suitable elemente F' and all its conjugates with respect&. Such an is called
afree or normal element.

Example 12.4

Let K = Fy andF = Fg. Leta € Fg be a root of the irreducible polynomiaf + 22 + 1 in Fa[z].
ThenB = {a,a?,1 + a + o?} is a basis offg overFs. Sincea? = 1 + a + o2, this is in fact
a normal basis fo#' over K. To the contrary, lef € F be a root of the irreducible polynomial
23 4+ x + 1 € K[z]. Then the conjugate§3, 32, 32 + 3} of 3 do not form a basis oK.

We now ask: does a normal basis exist for evErgnd K ?
We require two lemmas before proving the main result.

Lemma 12.5 (Artin Lemma)
Letxi,...,xm be distinct homomorphisms from a groGpinto the multiplicative grou@™ of an
arbitrary fieldF’, and letay, . .. ,a,, € F, not all zero. Then for somge G we have

a1x1(g9) + ...+ amxm(g) # 0.

Proof. The proof is by induction om:. We omit the detalils. [ |

Next, we recall a few concepts from linear algebra.

Definition 12.6
e If T is alinear operator on a finite dimensional vector sgaasver an arbitrary field(, then
a polynomialf = a,a"™ + -+ + a1z + a9 € K|z] is said toannihilate T if a, 7™ + --- +
a1 T + agl = 0, wherel and0 are the identity and zero operator B respectively.

e The uniquely determined monic polynomial of least degreth Wiis property is called the
minimal polynomial for T'. It divides any other polynomial i& [z] which annihilates".
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e Thecharacteristic polynomial g for T'is given byg := det(xzI —T'). Itis a monic polynomial
of degreen = dim(V'); by the Cayley-Hamilton theorem it annihilatds (and hence is
divisible by the minimal polynomial). In fact, the roots difet two polynomials are the same
up to multiplicity.

e Avectora € V is called acyclic vector for T if the vectorsT*«a, k = 0,1,... spanV..
We are now ready for the second lemma.

Lemma 12.7
LetT be a linear operator on the finite-dimensional vector spac&henT has a cyclic vector if
and only if the characteristic and minimal polynomials Toare identical.

Proof. Omitted. ]

Theorem 12.8 (Normal Basis Theorem)
For any finite fieldK and any finite extensioR of K, there exists a normal basis BfoverK .

Proof. LetK =F,andF = F = withm > 2.

e From Theorem 10.8, the distinct automorphismg'adver K are given by

2 m—1
€,0,0%...,0 ,

wheree is the identity map orF, o(a) = af for a € F ando? means composing with
itself 7 times.

e Sincec(a + ) = o(a) + o(B) ando(ca) = co(a) for o, 8 € F andc € K, we can think
of ¢ as a linear operator on the vector spatever K.

e Sincec™ = ¢, the polynomiak™ — 1 € K[z] annihilatess. Consider, o,02,...,0™ ! as
endomorphisms of ™, and apply the Artin Lemma; this tells us that no nonzero poigial
in K[z] of degree less tham annihilatess. Thus,z™ — 1 is the minimal polynomial for the
linear operatop.

e Since the characteristic polynomial feris a monic polynomial of degree divisible by the
minimal polynomial foro, we must have that™ — 1 is the characteristic polynomial also.

e By Lemma 12.7, there must exist a cyclic vector ¥ari.e. there exists some € F such that
a,o(a),o0?(a),...spank.

e Dropping repeated elements, this says that(a), ...,o™ (a) spanF, and hence form a
basis of " over K. Since this basis consists of an element and its conjugdthsaspect to
K, itis a normal basis, as required!

|
In fact, it turns out that this result can be strengthenethérfollowing way.

Theorem 12.9 (Primitive Normal Basis Theorem)
For any finite extensiof of a finite field, there exists a normal basis Bfover K that consists
of primitive elements of'.

Proof. Beyond the scope of this course! [ |

Example 12.10

Let K = Fy andF = Fg = K (a), wherea? + o? + 1 = 0. We saw in Example 12.4 that the basis
B = {a,a?,1+ a + o? = o*} from Example 12.4 is a normal basis fBrover K. In fact, « is

a primitive element of" (F™* is the cyclic group of ordeT and hence any non-identity element is a
generator). So this is a primitive normal basis foover K.



