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Chapter 1

A survival kit of linear algebra

In this chapter we recall some elementary facts of linear algebra, which are needed throughout the
course, in particular to set up notation.

1 Vector spaces and subspaces
Reminder 1.1 (Vector space)
Let F be a field. An F-vector space V is a set with two operations

V × V → V
(v,w) 7→ v + w

and
F× V → V
(λ,w) 7→ λ · w

called addition and multiplication by scalars with the usual axioms (see MT3501 for details).

Example 1.2 (Complex row space)
The set of row vectors of length n containing complex numbers is denoted by

C1×n
:= {[α1, . . . , αn] | α1, . . . , αn ∈ C} .

It is a C-vector space, we add vectors and multiply them by scalars as exhibited in the following
examples:

[1,−2, 3] + [4, 5, 6] = [1+ 4,−2+ 5, 3+ 6] = [5, 3, 9]

and

(−3) · [4, 1/2,−2] = [−3 · 4, (−3) · (1/2), (−2) · (−3)] = [−12,−3/2, 6] = (−1)[12, 3/2,−6].

Remarks: Multiplication by−1 is additive inversion, we often leave out the dot · for multiplication.

Reminder 1.3 (Linear combinations, span, spanning set)
If V is a C-vector space, v1, . . . , vk ∈ V and λ1, . . . , λk ∈ C, then

w :=

k∑
i=1

λivi = λ1v1 + λ2v2 + · · · + λkvk

is called a linear combination of the vi , we say that “w ∈ V is a linear combination of the vi ”,
the coefficients λ1, . . . , λk are not necessarily uniquely defined!
The set of linear combinations

Span(v1, . . . , vk) := {w ∈ V | w is a linear combination of the vi }
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4 CHAPTER 1. A SURVIVAL KIT OF LINEAR ALGEBRA

is called the span of the vectors v1, . . . , vk .
If M ⊆ V is a (possibly infinite) subset, then its span is the union

Span(M) :=
⋃
n∈N

 ⋃
v1,...,vn∈M

Span(v1, . . . , vn)

 ,
of all spans of all finite sequences of vectors in M .
Remember: Linear combinations are always finite sums.

Reminder 1.4 (Subspace)
Let V be a C-vector space. A non-empty subset W ⊆ V is called a subspace, if

u + v ∈ W and λu ∈ W for all u, v ∈ W and all λ ∈ C.

In particular, a subspace is itself a C-vector space. In fact, every subspace W is the span of some
vectors v1, . . . , vk for some k, and every such span is a subspace.

Example 1.5 (Sub-row space)
The following is a subspace of C1×3:

Span([1, 0,−1], [0, 2, 1], [1, 2, 0]) =
{
[x, y, z] ∈ C1×3

∣∣∣z = y/2− x
}
.

Exercise: Prove this equality (consider an arbitrary linear combination of the three row vectors)!

2 Bases, dimension and linear maps
Definition 2.1 (Linear independence)
A tuple (v1, . . . , vk) of vectors in a C-vector space V are called linearly independent, if one of the
following equivalent statements is true:

(i) For arbitrary numbers λ1, . . . , λk ∈ C the following implication holds:

k∑
i=1

λkvk = 0 H⇒ λ1 = λ2 = · · · = λk = 0.

(ii) Every vector in Span(v1, . . . , vk) can be expressed as a linear combination of the vectors
v1, . . . , vk in a unique way.

(iii) No vector vi is contained in the span of the others:

vi /∈ Span(vj | 1 ≤ j ≤ k, j 6= i) for all i.

Otherwise the tuple is called linearly dependent. Linear dependence is a property of the tuple and
not of the individual vectors.

Example 2.2 (Linear independent vectors)
The tuple of vectors

([5, 0, 2], [2, 3, 0], [−1, 0, 0])

is linearly independent.

Definition 2.3 (Basis of a vector space)
Let V be a C-vector space. A tuple (v1, . . . , vn) of vectors in V is called a basis of V , if
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• V = Span(v1, . . . , vn) and

• (v1, . . . , vn) is linearly independent.

Theorem 2.4 (Dimension)
In a C-vector space V any two bases have the same number of elements. The number of elements
in an arbitrary basis of V is called the dimension of V .

Note: In this course, we only deal with finite-dimensional vector spaces.

Example 2.5
The C-vector space C1×n is n-dimensional because

([1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1])

is a basis of length n, it is called the standard basis.

Reminder 2.6 (Linear maps)
Let V and W be C-vector spaces. A map ϕ : V → W is called C-linear, if

(u + v)ϕ = uϕ + vϕ and (λv)ϕ = λ(vϕ)

for all u, v ∈ V and all λ ∈ C. We write all maps on the right hand side.

Theorem 2.7 (Linear map determined by values on a basis)
Let (v1, . . . , vn) be a basis of a C-vector space V and let W be a C-vector space. Then for every
tuple (w1, . . . , wn) of vectors in W , there is a unique linear map ϕ : V → W with viϕ = wi for
1 ≤ i ≤ n, it maps (

n∑
i=1

λivi

)
to

(
n∑

i=1

λivi

)
ϕ :=

n∑
i=1

λiwi ∈ W.

Example 2.8 (Example for a linear map)
The map

C1×3
→ C1×3, [x, y, z] 7→ [2x − y + 3z, x + z,−x + 7z + 6y]

is C-linear. It is uniquely defined by doing

[1, 0, 0] 7→ [2, 1,−1] and [0, 1, 0] 7→ [−1, 0, 6] and [0, 0, 1] 7→ [3, 1, 7].

Theorem 2.9 (Matrix of a linear map)
Let V and W be C-vector spaces, and (v1, . . . , vm) and (w1, . . . , wn) be bases of V and W respect-
ively. Then there is a C-linear bijection between the set of C-linear maps from V to W and the set
Cm×n of m × n-matrices with entries in C, given by

ϕ 7→ [ai, j ]1≤i≤m,1≤ j≤n where viϕ =

n∑
j=1

ai, jwj for all i.

Note that this convention might be different from what you know, it comes from the fact that we
write mappings on the right hand side and use row vectors.
For three spaces, the composition ϕ ·ψ (do ϕ first, then ψ) is mapped to the matrix product of the
matrices corresponding to ϕ and ψ respectively, if the same basis is chosen in the range of ϕ and
the source of ψ .
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Example 2.10 (Continuation of Example 2.8)
The matrix of the linear map in Example 2.8 with respect to the standard basis (in both domain and
range) is  2 1 −1

−1 0 6
3 1 7


since [1, 0, 0]ϕ = [2, 1,−1] = 2 · [1, 0, 0] + 1 · [0, 1, 0] + (−1) · [0, 0, 1].

Definition 2.11 (Endomorphisms)
For a C-vector space V we denote the set of C-linear maps from V to V by End(V ) and call them
linear endomorphisms. The subset (in fact, subgroup) of invertible endomorphisms is denoted by
GL(V ). We call an endomorphism ϕ ∈ End(V ) nilpotent, if there is an n ∈ N with ϕn

= 0.

3 Direct sums
Definition 3.1 (Direct sum)
The C-vector space V is said to be the direct sum U ⊕ W of two subspaces U and W of V , if one
and thus both of the following equivalent conditions holds:

• V = U +W := {u + w | u ∈ U, w ∈ W } and U ∩W = {0},

• every vector v ∈ V can be written as a sum u + w of a vector u ∈ U and a vector w ∈ W in
a unique way.

Both statements generalise more than two subspaces: The C-vector space V is said to be the direct
sum U1 ⊕ · · · ⊕ Uk of k subspaces U1, . . . ,Uk if one and thus both of the following equivalent
conditions holds:

• V = U1 + · · · +Uk := {u1 + u2 + · · · + uk | ui ∈ Ui } and

Ui ∩ (U1 + · · · +Ui−1 +Ui+1 + · · · +Uk) = {0} for 1 ≤ i ≤ k.

• Every vector v ∈ V can be written as a sum u1 + · · · + uk of vectors ui ∈ Ui for 1 ≤ i ≤ k
in a unique way.

Theorem 3.2 (Basis of a direct sum)
If V = U ⊕W and (u1, . . . , um) is a basis of U and (w1, . . . , wn) is a basis of W , then

(u1, . . . , um, w1, . . . , wn)

is a basis of V and we have dim(V ) = dim(U )+ dim(W ).

Example 3.3 (Direct sum decomposition)
We have

C1×3
= Span([1, 2, 3])⊕

{
[x, y, z] ∈ C1×3

| z = x − y
}
.

Exercise: Prove this statement.

Remark 3.4 (Complements)
Note that for every subspace U of a C-vector space V there is a (not necessarily unique) subspace
W of V such that V = U ⊕W .



Chapter 2

Fundamental definitions

4 Lie algebras
Definition 4.1 (Lie algebra)
A Lie algebra is a vector space L over a field F together with a multiplication

L × L → L , (x, y) 7→ [x, y],

satisfying the following axioms:

(L1) [x + y, z] = [x, z] + [y, z] and [x, y + z] = [x, y] + [x, z],

(L2) [λx, y] = [x, λy] = λ[x, y],

(L3) [x, x] = 0, and

(L4) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

whenever x, y, z ∈ L and λ ∈ F. Axiom (L4) is called the Jacobi identity.
Note that [[x, y], z] is not necessarily equal to [x, [y, z]], we do not have associativity!

Remark: In this course, we will mostly study Lie algebras over the complex field C.

Lemma 4.2 (First properties)
Let L be a Lie algebra over a field F. Then [x, y] = −[y, x] for all x, y ∈ L . The Lie multiplication
is anticommutative.

Proof. We have 0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]. �

Example 4.3 (Abelian Lie algebras)
Every F-vector space L with [x, y] = 0 for all x, y ∈ L is a Lie algebra. Such a Lie algebra is
called abelian. Abelian Lie algebras are somewhat boring.

Example 4.4 (Lie(A), the Lie algebra of an associative algebra)
Let A be an associative algebra over a field F. That is, A is a ring with identity together with a ring
homomorphism ι : F→ Z(A)where Z(A) := {x ∈ A | xy = yx for all y ∈ A} is the centre of A,
the set of elements of A that commute with every other element. Such an A is then automatically
an F-vector space by setting λ · a := ι(λ) · a for λ ∈ F and a ∈ A. In particular, the multiplication
of A is associative: (x · y) · z = x · (y · z).
If you do not remember this structure, simply think of A = Cn×n , the set of all n × n-matrices with
componentwise addition and matrix multiplication. The map ι here is the embedding of C into the
scalar multiples of the identity matrix.

7
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Every associative algebra A becomes a Lie algebra by defining the Lie product in this way:

[x, y] := x · y − y · x for all x, y ∈ A.

We check the axioms:

(L1) [x + y, z] = (x + y) · z − z · (x + y) = x · z + y · z = [x, z] + [y, z].

(L2) [λx, y] = (λx) · y− y · (λx) = x · (λy)− (λy) · x = [x, λy] and this is equal to λ(x · y− y · x).

(L3) [x, x] = x · x − x · x = 0.

(L4) [[x, y], z] = [xy − yx, z] = xyz − yxz + zxy − zyx , permuting cyclically and adding up
everything shows the Jacobi identity.

For a C-vector space V , the set of endomorphisms End(V ) (linear maps of V into itself) is an
associative algebra with composition as multiplication. The map ι here is the embedding of C into
the scalar multiples of the identity map.
We set gl(V ) := Lie(End(V )). By choosing a basis of V this is the same as Lie(Cn×n) if dimC(V ) =
n (see 4.8 below). Thus, we can compute in gl(C1×2)[[

1 2
3 4

]
,

[
−1 1
1 0

]]
=

[
1 2
3 4

]
·

[
−1 1
1 0

]
−

[
−1 1
1 0

]
·

[
1 2
3 4

]
=

[
−1 −1
0 1

]
,

using the standard basis.

Example 4.5 (Vector product)
Let L := R1×3 be the 3-dimensional real row space with the following product:

[[a, b, c], [x, y, z]] := [a, b, c] × [x, y, z] := [bz − cy, cx − az, ay − bx].

This is a Lie algebra over the field R of real numbers.
Note: The vector v := [a, b, c]× [x, y, z] is zero if and only if the vectors [a, b, c] and [x, y, z] are
parallel. Otherwise v is orthogonal to both [a, b, c] and [x, y, z] and its length is equal to the area
of the parallelogram spanned by [a, b, c] and [x, y, z].
Exercise: Check the Jacobi identity for this Lie algebra.

Example 4.6 (sl2)
Let sl2 be the subspace of C2×2 containing all matrices of trace 0:

sl2 :=
{

M ∈ C2×2
| Tr(M) = 0

}
(remember, the trace Tr(M) of a square matrix M is the sum of the main diagonal entries).
Then sl2 with

[A, B] := A · B − B · A for all A, B ∈ sl2

as Lie product is a Lie algebra, since Tr(A · B) = Tr(B · A) for arbitrary square matrices A and B.
This Lie algebra will play a major role in this whole theory! It is somehow the smallest interesting
building block.

Definition 4.7 (Homomorphisms, isomorphisms)
Let L1 and L2 be Lie algebras over the same field F. A homomorphism of Lie algebras from L1

to L2 is a linear map ϕ : L1 → L2, such that

[x, y]ϕ = [xϕ, yϕ] for all x, y ∈ L1.

If ϕ is bijective, then it is called an isomorphism of Lie algebras.



4. LIE ALGEBRAS 9

Example 4.8 (gl(C1×n) and Lie(Cn×n) are isomorphic)
Choosing a basis (v1, . . . , vn) of the C-vector space C1×n gives rise to an isomorphism of Lie
algebras gl(C1×n) ∼= Lie(Cn×n) by mapping a linear map ϕ : C1×n

→ C1×n to its matrix with
respect to the basis (v1, . . . , vn) as in Theorem 2.9.

Definition 4.9 (Subalgebras and ideals)
Let L be a Lie algebra over a field F and let H and K be subspaces of L . We then set

[H, K ] := Span
({
[h, k] ∈ L

∣∣ h ∈ H, k ∈ K
})
.

Note [H, K ] = [K , H ] and that we have to use Span here to ensure that this is a subspace of L .
A Lie subalgebra or short subalgebra of L is a subspace H with [H, H ] ≤ H .
A Lie ideal or short ideal of L is a subspace K with [K , L] ≤ K .
Obviously, every ideal is a subalgebra.

Example 4.10 (Centre and derived subalgebra)
Let L be a Lie algebra over a field F. Then the centre Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L}
and the derived algebra [L , L] := Span({[x, y] | x, y ∈ L}) are ideals in L .

Definition 4.11 (Normaliser and centraliser)
Let L be a Lie algebra over a field F and let H be a subspace of L (not necessarily a subalgebra!).
We then define the normaliser NL(H) of H in L to be the space

NL(H) := {x ∈ L | [x, H ] ⊆ H} .

We define the centraliser CL(H) of H in L to be the space

CL(H) := {x ∈ L | [x, H ] = 0} .

Exercise: Use the Jacobi identity to show that both the normaliser and the centraliser are Lie sub-
algebras of L .

Proposition 4.12 (Properties of subalgebras)
Let H and K be subspaces of a Lie algebra L over F and let H + K := {h + k | h ∈ H, k ∈ K } be
their sum as subspaces.

(i) If H and K are subalgebras, then H ∩ K is.

(ii) If H and K are ideals, then H ∩ K is.

(iii) If H is an ideal and K is a subalgebra, then H + K is a subalgebra of L .

Proof. Left as an exercise for the reader. �

Example 4.13 (Lie(Cn×n) revisited)
Let L = Cn×n with n ≥ 2.
The subspace H of matrices with trace 0 is an ideal since Tr(A·B) = Tr(B ·A) for arbitrary matrices
A and B and thus Tr([A, B]) = 0 for all A ∈ H and B ∈ L .
The subspace K of skew-symmetric matrices, i.e.

{
A ∈ Cn×n

| At
= −A

}
where At is the trans-

posed matrix of A, is a subalgebra but not an ideal: If A, B ∈ K , then

[A, B]t = (A · B− B · A)t = B t
· At
− At
· B t
= (−B) · (−A)− (−A) · (−B) = [B, A] = −[A, B].

Exercise: Show that K is not an ideal.
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Lemma 4.14 (Kernels of homomorphisms are ideals and images are subalgebras)
Let L and H be Lie algebras over a field F and ϕ : L → H . Then the image I := im (ϕ) is a Lie
subalgebra of H and the kernel K := ker (ϕ) is a Lie ideal of L .

Proof. Since ϕ is F-linear, both I and K are subspaces.
If x, y ∈ I , there are x̃, ỹ ∈ L with x̃ϕ = x and ỹϕ = y. Then [x, y] = [x̃, ỹ]ϕ ∈ I as well.
If x ∈ K , that is, xϕ = 0, then for y ∈ L we have [x, y]ϕ = [xϕ, yϕ] = [0, yϕ] = 0 and thus
[x, y] ∈ K as well. �

Note: In fact, Lie ideals are exactly the kernels of Lie algebra homomorphisms, as we will see next.

Definition 4.15 (Quotient Lie algebra)
Let L be a Lie algebra over a field F and K an ideal of L . Then the quotient space

L/K := {x + K | x ∈ L}

consisting of the cosets x + K := {x + k | k ∈ K } for x ∈ L , is a Lie algebra by defining

(x+K )+ (y+K ) := (x+ y)+K and λ · (x+K ) := (λ · x)+K and [x+K , y+K ] := [x, y]+K

for all x, y ∈ L and all λ ∈ F. This is well-defined because K is an ideal, and it inherits all the
axioms directly from L . There is a surjective homomorphism π : L → L/K , x 7→ x + K of Lie
algebras called the canonical map.

Proof. Lots of little details have to be checked here. Most of it is just the standard construction of
the quotient vector space, which can be found in every book on linear algebra and we do not repeat
them here. The most important additional one is the well-definedness of the Lie product: Assume
x + K = x̃ + K and y+ K = ỹ+ K , that is, x̃ = x + k1 and ỹ = y+ k2 for some k1, k2 ∈ K . Then

[x + k1, y + k2] = [x, y] + [x, k2] + [k1, y] + [k1, k2]︸ ︷︷ ︸
∈ K

but all three latter products lie in K because K is an ideal. All statements about π are routine
verifications. �

Theorem 4.16 (First Isomorphism Theorem)
Let ϕ : L → H a homomorphism of Lie algebras over a field F and K := ker (ϕ). Then

ψ : L/K → im (ϕ)

x + K 7→ xϕ

is an isomorphism of Lie algebras.

Proof. The map ψ is well-defined since x + K = y + K is equivalent to x − y ∈ K = ker (ϕ)
and thus xϕ = yϕ. This also proves that ψ is injective, and surjectivity to the image of ϕ is obvious.
The map ψ is clearly F-linear and a homomorphism of Lie algebras because ϕ is. �

Theorem 4.17 (Second Isomorphism Theorem)
Let L be a Lie algebra, K an ideal and H a subalgebra. Then H ∩ K is an ideal of H and the map

ψ : H/(H ∩ K ) → (H + K )/K
h + (H ∩ K ) 7→ h + K

is an isomorphism of Lie algebras.
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Proof. The ideal K of L is automatically an ideal of the subalgebra H + K (see Proposi-
tion 4.12.(iii)). Define a map ψ̃ : H → (H + K )/K by setting hψ̃ := h + K . This is clearly
linear and a homomorphism of Lie algebras. Its image is all of (H + K )/K since every coset in
there has a representative in H . The kernel of ψ̃ is exactly H ∩ K and it follows that this is an ideal
in H . The First Isomorphism Theorem 4.16 then does the rest.
Alternative proof (to get more familiar with quotient arguments): The subspace H + K is a
subalgebra by Proposition 4.12.(iii) and K is an ideal in H + K because it is one even in L . The
subspace H ∩ K is an ideal in H because [h, l] ∈ H ∩ K for all h ∈ H and l ∈ H ∩ K . Thus we
can form both quotients.
The map ψ is well-defined, since if h + (H ∩ K ) = h̃ + (H ∩ K ), that is, h − h̃ ∈ H ∩ K , then in
particular h − h̃ ∈ K and thus h + K = h̃ + K . In fact, this reasoning immediately shows that ψ is
injective. The map ψ is clearly linear and a homomorphism of Lie algebras by routine verification.
It is surjective since every coset in (H + K )/K has a representative in H . �

5 Nilpotent and soluble Lie algebras
Definition 5.1 (Simple and trivial Lie algebras)
A Lie algebra L is called simple, if it is non-abelian (that is, the Lie product is not constant zero)
and has no ideals other than 0 and L . A one-dimensional Lie algebra is automatically abelian and
is called the trivial Lie algebra.

Example 5.2 (sl2 revisited)
The 3-dimensional Lie algebra L := sl2 from Section 4.6 is simple. Let

x :=
[

0 1
0 0

]
, y :=

[
0 0
1 0

]
and h :=

[
1 0
0 −1

]
,

we then have L = Span(x, y, h) and the relations

[x, y] = h and [h, x] = 2x = −[x, h] and [h, y] = −2y = −[y, h].

Let 0 6= K ≤ L be an ideal of L and 0 6= z := ax + by + ch ∈ K with a, b, c ∈ C. Then we
have [[z, x], x] = −2bx and [[z, y], y] = 2ay and thus, if either a or b is non-zero, then K = L .
If otherwise a = b = 0, then c 6= 0 since z 6= 0 and thus K = L as well because [z, x] = 2cx and
[z, y] = −2cy. Thus the only ideals of L are 0 and L itself.

Definition 5.3 (Lower central series, nilpotent Lie algebra)
Let L be a Lie algebra over a field F. We define the lower central series as L0

:= L and L i
:=

[L i−1, L] for i ≥ 1. This gives a descending sequence of ideals

L = L0
⊇ L1

= [L , L] ⊇ L2
⊇ · · ·

The Lie algebra L is called nilpotent, if there is an n ∈ N with Ln
= 0.

Exercise: Convince yourself that all L i are in fact ideals of L . Remember that [L , L] is the span of
all bracket expressions [x, y] for x, y ∈ L .

Example 5.4 (Strictly lower triangular matrices)
Every abelian Lie algebra L is nilpotent, since L1

= [L , L] = 0. No simple Lie algebra L is
nilpotent, since [L , L] is a non-zero ideal and thus equal to L . In particular, sl2 from 4.6 is not
nilpotent.
Let L be the subalgebra of Lie(Cn×n) of stricly lower triangular matrices (with zeros on the diag-
onal). Then L has dimension n(n − 1)/2 and L i is strictly smaller than L i−1 for i ≥ 1 and Ln

= 0,
thus L is nilpotent. This is proved by proving that

L i
=
{(

m j,k
)
∈ Cn×n

| m j,k = 0 if j ≤ k + i
}
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using induction. (See exercise sheet 1.)

Definition 5.5 (Derived series, soluble Lie algebra)
Let L be a Lie algebra over a field F. We then define the derived series as L (0) := L and L (i) :=
[L (i−1), L (i−1)

] for i ≥ 1. This gives a descending sequence of ideals

L = L (0) ⊇ L (1) = [L , L] ⊇ L (2) ⊇ · · ·

The Lie algebra L is called soluble, if there is an n ∈ N with L (n) = 0.
Exercise: Convince yourself that all L (i) are in fact ideals of L . Remember that [L , L] is the span
of all bracket expressions [x, y] for x, y ∈ L .

Example 5.6 (Lower triangular matrices)
Every abelian Lie algebra L is soluble, since L (1) = [L , L] = 0. No simple Lie algebra L is soluble,
since [L , L] is a non-zero ideal and thus equal to L . In particular, sl2 from 4.6 is not soluble.
Let L be the subalgebra of sl2 (see 4.6) of lower triangular matrices

L :=
{[

a 0
b −a

] ∣∣∣ a, b ∈ C
}
.

Then L (1) = [L , L] are the subset of matrices with zeros on the diagonal and L (2) = 0, thus L is
soluble. Note that it is not nilpotent.

Theorem 5.7 (Nilpotent and soluble Lie algebras)
Let L be a Lie algebra H a subalgebra and K an ideal. Then the following hold:

(i) If L is abelian, nilpotent or soluble, then the same is true for H and L/K .

(ii) If K and L/K are soluble then L is soluble, too.

(iii) If L/Z(L) is nilpotent, then so is L .

(iv) [Lk, Lm
] ≤ Lk+m for all k,m ∈ N.

(v) L (m) ≤ L2m−1
for all m ∈ N.

(vi) Every nilpotent Lie algebra is soluble.

(vii) If L is nilpotent and L 6= 0, then Z(L) 6= 0.

Proof. If L is abelian, then clearly all Lie products in H and L/K are zero as well which proves
(i) for “abelian”. For nilpotent and soluble the inclusions

H i
⊆ L i and H (i)

⊆ L (i)

and the equations

(L/K )i = {x + K | x ∈ L i
} and (L/K )(i) = {x + K | x ∈ L (i)}

immediately imply (i).
For (ii) assume that both K and L/K are soluble, that is, there are m, k ∈ N such that (L/K )(m) =
{0+ K } and K (k)

= 0. But the former directly implies L (m) ⊆ K and thus L (m+k)
= 0 which shows

that L is soluble. Note that the same proof for nilpotent does not work!
To prove (iii) assume Ln

⊆ Z(L), then Ln+1
= [Ln, L] ⊆ [Z(L), L] = 0.
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Now we consider (iv). The statement holds for m = 1 by definition of Lk+1
= [Lk, L] since

[Lk, L1
] = [Lk, [L , L]] ≤ [Lk, L] = Lk+1. Next we use induction on m. Suppose (iv) is true for

all m ≤ r and all k. Then

[Lk, Lr+1
] = [Lk, [Lr , L]] = [[Lr , L], Lk

]
(1)
≤ [[Lk, Lr

], L] + [[L , Lk
], Lr
]

(2)
≤ [Lk+r , L] + [Lk+1, Lr

]
(3)
≤ Lk+r+1,

where the inequality (1) follows from the Jacobi identity [[x, y], z] = −[[z, x], y] − [[y, z], x] for
all x, y, z ∈ L and (2) and (3) follow by induction.
Statement (v) now follows by induction on m. Namely, we have L (1) = [L , L] = L1

= L20
for the

induction start. Suppose L (i) ≤ L2i−1
, then L (i+1)

= [L (i), L (i)] ≤ [L2i−1
, L2i−1

] ≤ L2i−1
+2i−1
= L2i

by using (iv).
For statement (vi) suppose that L is nilpotent, that is, there is an n such that Ln

= 0 and thus all
Lk
= 0 for all k ≥ n. But then L (n) ≤ L2n−1

= 0 as well since 2n−1
≥ n for all n ≥ n. Thus L is

soluble.
Finally for statement (vii) note that the last non-zero term in the lower central series is contained in
the centre Z(L). �

Theorem 5.8 (Radical)
Let L be a Lie algebra and H1, H2 soluble ideals of L . Then H1 + H2 is a soluble ideal of L , too.
Furthermore, if L is finite-dimensional, there is a soluble ideal rad(L) of L that contains every
soluble ideal of L . It is called the radical or L .

Proof. Suppose H1 and H2 are soluble ideals. Then (H1 + H2)/H1
∼= H2/(H1 ∩ H2) by the

Second Isomorphism Theorem 4.17 and it follows from Proposition 5.7.(i) that this is soluble as
quotient of the soluble Lie algebra H2. But then H1 is an ideal of H1 + H2 such that both the
quotient (H1+ H2)/H1 and the ideal are soluble, so by Proposition 5.7.(ii) the Lie algebra H1+ H2

is soluble as well.
If L is finite-dimensional, then there is a soluble ideal K of maximal dimension. By the above reas-
oning and maximality this ideal contains every other soluble ideal and is thus uniquely determined.
It is called the radical and denoted by rad(L). �

Definition 5.9 (Semisimple Lie algebra)
A Lie algebra L over a field F is called semisimple if it has no soluble ideals other than 0.

Lemma 5.10 (Radical quotient is semisimple)
For every finite-dimensional Lie algebra L , the quotient Lie algebra L/rad(L) is semisimple.

Proof. The preimage of any soluble ideal of L/rad(L) under the canonical map L → L/rad(L)
would be a soluble ideal of L that properly contains rad(L) (use Proposition 5.7.(ii) again). �

Example 5.11 (Direct sums of simple Lie algebras are semisimple)
Every simple Lie algebra L is semisimple, since it contains no ideals other than L and 0 and L is
not soluble (see 5.6). The direct sum S := L1 ⊕ · · · ⊕ Lk of simple Lie algebras L1, . . . , Lk is
semisimple.

Proof. By the direct sum we mean the direct sum of vector spaces with component-wise Lie
product. It is a routine verification that this makes the direct sum into a Lie algebra, such that every
summand L i is an ideal, since [L i , L j ] = 0 for i 6= j in this Lie algebra.
Assume now that K is any soluble ideal of the sum S = L1 ⊕ · · · ⊕ Lk , denote by pi : S → L i

the projection to the i-th summand, all pi are homomorphisms of Lie algebras. Thus the image
of K under each pi is a soluble subalgebra of L i (use the First Isomorphism Theorem 4.16 and
Theorem 5.7). Since all L i are simple, pi (K ) is equal to {0} for all i . However, this implies that K
is equal to {0} since all its projections are zero. �
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In fact, we will prove the following theorem later in the course:

Theorem 5.12 (Characterisation of semisimple Lie algebras)
A Lie algebra L over C is semisimple if and only if it is the direct sum of minimal ideals which are
simple Lie algebras.

Proof. See later. �

We can now formulate the ultimate goal of this course:

Classify all finite-dimensional, semisimple Lie algebras over C up to isomorphism.

In view of the promised Theorem 5.12, this amounts to proving this theorem and classifying the
simple Lie algebras over C up to isomorphism.

6 Lie algebra representations
Definition 6.1 (Lie algebra representation)
Let L be a Lie algebra over the field F. A representation of L is a Lie algebra homomorphism

ρ : L → Lie(End(V ))

for some F-vector space V of dimension n ∈ N, which is called the degree of ρ. This means nothing
but: ρ is a linear map and

[x, y]ρ = [xρ, yρ] = (xρ) · (yρ)− (yρ) · (xρ)

for all x, y ∈ L .
Two representations ρ : L → Lie(End(V )) and ρ ′ : L → Lie(End(V ′)) of degree n are called
equivalent, if there is an invertible linear map T : V → V ′ such that (xρ) · T = T · (xρ ′) for all
x ∈ L (the dot · denotes composition of maps).

Definition 6.2 (Lie algebra module)
Let L be a Lie algebra over a field F. An L-module is a finite-dimensional F-vector space V
together with an action

V × L → V, (v, l) 7→ vl

such that

• (v + w)x = vx + wx and (λv)x = λ(vx) (the action is linear),

• v(λx + y) = λ · (vx)+ vy, and

• v[x, y] = (vx)y − (vy)x .

for all v,w ∈ V and all x, y ∈ L and all λ ∈ F respectively.

Lemma 6.3 (Representations and modules are the same thing)
Let L be a Lie algebra over a field F. A representation ρ : L → Lie(End(F1×n)) makes the
row space F1×n into an L-module by setting vx := v(xρ). Conversely, if V is an L-module then
expressing the linear action as endomorphisms defines a representation of L of degree n.
Thus, the two concepts are two aspects of the same thing.

Proof. The first axiom in Definition 6.2 is needed to make the action of elements of L on V into
linear maps. The other two axioms are needed to make the map L → Lie(End(V )) a Lie algebra
homomorphism. The remaining details of this proof are left as an exercise to the reader. �
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Example 6.4 (A representation)
Let L be the Lie subalgebra of Lie(Cn×n) of lower triangular matrices. The map

π2 : L → End(C1×2)

[ai, j ]1≤i, j≤n 7→

[
a1,1 a1,2

a2,1 a2,2

]
(and then viewing the 2 × 2-matrices as endomorphisms of C1×2) is a Lie algebra homomorphism
and thus a representation. This makes C1×2 into an L-module.
We notice that a representation might not “see all of L”. The map π2 for example has a non-trivial
kernel.

Example 6.5 (The adjoint representation)
Let L be any Lie algebra over a field F. The adjoint representation of L is its action on itself:

ad : L → Lie(End(L))
x 7→ xad

:= (y 7→ [y, x])
.

Note that we denote the image of an element x ∈ L under the map ad by xad throughout. The map
ad is in fact a Lie algebra homomorphism and thus a representation. To verify this, we first check
that xad is a linear map from L to L for every x ∈ L:

(y + λz)xad
= [y + λz, x] = [y, x] + λ[z, x] = yxad

+ λ(zxad)

for y, z ∈ L and λ ∈ F. The map ad itself is linear, since

z(x + λy)ad
= [z, x + λy] = [z, x] + λ[z, y] = zxad

+ z(λyad)

for all x, y, z ∈ L and all λ ∈ F. Finally, the Jacobi identity shows that ad is a homomorphism of
Lie algebras:

z[x, y]ad
= [z, [x, y]] = −[x, [y, z]]−[y, [z, x]] = [[z, x], y]−[[z, y], x] = (zxad)yad

− (zyad)xad

for all x, y, z ∈ L .

Example 6.6 (One-dimensional representation)
A one-dimensional representation of a Lie algebra L over F is simply a linear map ρ : L → F with

[x, y]ρ = (xρ) · (yρ)− (yρ) · (xρ) = 0

for all x, y ∈ L since F is commutative. So the one-dimensional representations of L are precisely
the F-linear maps to F that vanish on the subspace L1

= L (1) = [L , L]. This shows for example
that the simple Lie algebra sl2 from 4.6 has only one one-dimensional representation which is the
zero map:

sl2 → C, x 7→ 0.

Anyway, the kernel of such a representation is an ideal so it can only be 0 or sl2 because sl2 is
simple. Since C is one-dimensional, the kernel cannot be 0 because of the dimension formula for
linear maps.

Definition 6.7 (Submodules, irreducible modules)
Let L be a Lie algebra over a field F and V be an L-module. A subspace W of V is called a
submodule, if it is invariant under the action of L:

wx ∈ W for all w ∈ W and x ∈ L .

A module V is called irreducible, if it has no submodules other than 0 and V itself. A module V is
the direct sum W1 ⊕ · · · ⊕Wk of submodules W1,W2, . . . ,Wk , if it is the direct vector space direct
sum of the Wi . A module V is called indecomposable if it is not the direct sum of two non-trivial
submodules.
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Remark 6.8 (Irreducible implies indecomposable)
An irreducible L-module is clearly indecomposable. However, the reverse implication does not
hold in general. There are Lie algebras with modules V that have a proper submodule 0 < W < V ,
for which there is no other submodule U with V = W ⊕U .

Remark 6.9 (Irreducible adjoint representation)
Let V := L be the L-module given by the adjoint representation (see 6.5). A submodule of V is the
same as an ideal of L . The module V is irreducible if and only if L is a simple Lie algebra.

Definition 6.10 (Homomorphisms of modules)
Let L be a Lie algebra over a field F. A homomorphism of L-modules is an F-linear map

T : V → V ′

between two L-modules V and V ′, such that (vT )x = (xv)T for all v ∈ V and all x ∈ L . It is
called an isomorphism if there is a homomorphism S : V ′→ V of L-modules with T S = idV and
ST = idV ′ .

Definition/Proposition 6.11 (Eigenvectors and eigenvalues)
Let V be an F-vector space and T : V → V a linear map. Then an eigenvalue is an element λ ∈ F,
for which a vector v ∈ V \ {0} exists with

vT = λ · v.

Every such v is called an eigenvector for the eigenvalue λ. The set of eigenvectors for the eigen-
value λ together with the zero vector is called the eigenspace for the eigenvalue λ. Note that an
eigenvector v has to be non-zero, otherwise every λ ∈ F would be an eigenvalue.
For F = C, every endomorphism T has an eigenvalue, since the characteristic polynomial of T has
a root (C is algebraically closed).

Proof. See any linear algebra book and use the fundamental theorem of algebra. �

Lemma 6.12 (Schur I)
Let V and V ′ be irreducible L-modules for a Lie algebra L over F and let T : V → V ′ be an
L-module homomorphism. Then either T maps every element of V to zero or it is an isomorphism.

Proof. The image im T and the kernel ker T of T are submodules of V ′ and V respectively. Since
both V and V ′ are irreducible, either im T = 0 and ker T = V , or im T = V ′ and ker T = 0. �

Corollary 6.13 (Schur II)
Let V be an irreducible L-module for a Lie algebra L over C and T : V → V be an L-module
homomorphism (or shorter L-endomorphism). Then T is a scalar multiple of the identity map
(possibly the zero map).

Proof. Let T : V → V be any L-endomorphism. Then T is in particular a linear map from V to
V so it has an eigenvalue λ with corresponding eigenvector v ∈ V by Proposition 6.11. Thus, the
linear map T − λ · idV has v 6= 0 in its kernel, and it is an L-endomorphism, since both T and idV

are. By Lemma 6.13, this linear map T − λ · idV must be equal to zero and thus T = λ · idV . Note
that λ (and thus T ) can be equal to 0. �

Theorem 6.14 (Weyl)
Let L be a semisimple Lie algebra over C and V a finite-dimensional L-module. Then V has
irreducible submodules W1,W2, . . . ,Wk , such that V = W1 ⊕ · · · ⊕ Wk , for some k ∈ N. That is,
V is the direct sum of irreducible submodules.

Proof. Omitted. �



Chapter 3

Representations of sl2

For the whole chapter let sl2 from Example 4.6, which is the C-span of the three elements

e :=
[

0 1
0 0

]
, f :=

[
0 0
1 0

]
, h :=

[
1 0
0 −1

]
with the usual commutator [a, b] := a · b − b · a as Lie product. We know that it is a simple Lie
algebra and the following relations hold (see Example 5.2):

[e, f ] = h and [h, e] = 2e = −[e, h] and [h, f ] = −2 f = −[ f, h].

We want to classify all its finite-dimensional modules. Since sl2 is simple, it is semisimple (see
Example 5.11). Thus by Weyl’s Theorem 6.14 it is enough to classify the irreducible modules,
because all others are direct sums of irreducible ones.

7 The irreducible sl2-modules introduced
Proposition 7.1 (The modules Vd)
Let d ∈ N ∪ {0} and let C[X, Y ] be the polynomial ring over C in two indeterminates X and Y . Let

Vd := Span(Xd, Xd−1Y, . . . , XY d−1, Y d),

this is a C-vector space of dimension d + 1, actually, Vd is the set of homogeneous polynomials of
total degree d. For d = 0, the vector space V0 consists of the constant polynomials and dim(V0) = 1.
The following equations together with linear extension make Vd into an sl2-module:

(XaY b)e := Y ·
∂

∂X
(XaY b) = a · Xa−1Y b+1,

(XaY b) f := X ·
∂

∂Y
(XaY b) = b · Xa+1Y b−1,

(XaY b)h := (a − b) · XaY b

all for a + b = d and 0 ≤ a, b ≤ d .

Proof. Since we can prescribe a linear map from Vd into itself arbitrarily on a basis, this defines
endomorphisms for e, f and h uniquely. Linear extension gives us a C-linear map

ϕ : sl2 → Lie(End(Vd)).

To check that this is a representation of Lie algebras we only have to check that it respects the Lie
product, that is:

v([x, y]ϕ) = (v(xϕ))(yϕ)− (v(yϕ))(xϕ)

17
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for all v ∈ Vd and all x, y ∈ sl2. Since ϕ is C-linear and all (xϕ) are C-linear it is enough to check
all this for basis elements, that is, we have to check

(XaY b)[e, f ] = ((XaY b)e) f − ((XaY b) f )e and

(XaY b)[h, e] = ((XaY b)h)e − ((XaY b)e)h and

(XaY b)[h, f ] = ((XaY b)h) f − ((XaY b) f )h

for all 0 ≤ a, b ≤ d with a + b = d . This is left as an exercise for the reader. �

Illustration 7.2 (The action on Vd)
Pictorially, this means:

0 Xd
e
·d

��

f

·0

[[

h
·d

��

Xd−1Y
e

·(d−1)

""

f

·1

__

h

·(d−2)

��

Xd−2Y 2
e

·(d−2)

��

f

·2

bb

h

·(d−4)

��
· · · X2Y d−2

e
·2

""

f

·(d−2)

^^

h

·(4−d)

��

XY d−1
e
·1

��

f

·(d−1)

bb

h

·(2−d)

��

Y d
e
·0

��

f

·d

__

h

·(−d)

��

0

Illustration 7.3 (The action as matrices)
If we express the action of e, f and h by matrices with respect to the monomial basis

(Xd, Xd−1Y, . . . , XY d−1, Y d)

in row convention, we get:

e ↔



0 d 0 · · · 0

0 0 d − 1
. . .

...
...

. . .
. . .

. . . 0
... 0

. . .
. . . 1

0 · · · · · · 0 0



f ↔



0 0 · · · · · · 0

1 0
. . . 0

...

0
. . .

. . .
. . .

...
...

. . . d − 1 0 0
0 · · · 0 d 0



h ↔


d 0 · · · 0

0 d − 2
. . .

...
...

. . .
. . . 0

0 · · · 0 −d


Proposition 7.4 (All Vd are irreducible)
For all d ∈ N ∪ {0}, the module Vd is irreducible.

Proof. Assume 0 < W ≤ Vd is a non-zero subspace that is invariant under the action of sl2.
The endomorphism of W induced by the action of h has an eigenvalue λ with a corresponding
eigenvector 0 6= w ∈ W (see Proposition 6.11). Since h has 1-dimensional eigenspaces spanned
by the monomials Xd, XY d−1, . . . , Y d , the vector w is a scalar multiple of one of these. But then
the subspace W contains all such monomials since successive applications of e and f map one to
some non-zero scalar multiple of every other one. Thus W = Vd and we have proved that Vd is
irreducible. �
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8 Every irreducible sl2-module is isomorphic to one of the Vd

Lemma 8.1 (Eigenvectors to different eigenvalues are linearly independent)
Let V be an F-vector space and ϕ ∈ End(V ) an arbitrary endomorphism. Let (v1, v2, . . . , vn)

be a tuple of eigenvectors of ϕ to pairwise different eigenvalues λ1, λ2, . . . , λn respectively. Then
(v1, . . . , vn) is linearly independent.

Proof. Assume for a contradiction that (v1, . . . , vn) is linearly dependent. Let k ∈ N be minimal
such that (v1, . . . , vk) is linearly independent and vk+1 ∈ Span(v1, . . . , vk). We have k ≥ 1 because
eigenvectors are non-zero and k < n because of our assumption. If vk+1 =

∑k
i=1 µivi for some

µi ∈ F, then

k∑
i=1

λi · µivi =

k∑
i=1

(µivi )ϕ = vk+1ϕ = λk+1 · vk+1 =

k∑
i=1

λk+1 · µivi ,

which is a contradiction since (v1, . . . , vk) is linearly independent and the eigenvalues are pairwise
different. �

Lemma 8.2 (Eigenvectors in sl2-modules)
Let V be an sl2-module over C and λ be an eigenvalue of h with eigenvector v ∈ V .

• Either ve = 0 or ve is an eigenvector of h for the eigenvalue λ− 2.

• Either v f = 0 or v f is an eigenvector of h for the eigenvalue λ+ 2.

Proof. By the module axioms and the relations [h, e] = 2e and [h, f ] = −2 f , we get:

(ve)h = (vh)e − v[h, e] = λ · (ve)− v · (2e) = (λ− 2) · (ve)

(v f )h = (vh) f − v[h, f ] = λ · (v f )+ v · (2 f ) = (λ+ 2) · (v f )

This proves the lemma, since eigenvectors have to be non-zero by definition. �

Lemma 8.3 (Highest weights)
Let V be a finite-dimensional sl2-module over C. Then V contains an eigenvector w of h such that
w f = 0.

Proof. Since we work over the complex numbers C, the endomorphism of V induced by h has
an eigenvalue λ with corresponding eigenvector v (see Proposition 6.11). We consider the sequence

v, v f, v f 2, . . . , v f k, . . . ,

where v f k stands for the vector one gets by acting repeatedly with f altogether k times. By
Lemma 8.2 these are all either equal to zero or are eigenvectors of h to different eigenvalues,
namely λ, λ + 2, λ + 4, . . .. If they were all non-zero, then they would all be linearly independent
by Lemma 8.1, which can not be true since V is finite-dimensional. Thus there is a k with v f k

6= 0
and v f k+1

= 0, the vector w := v f k is an eigenvector of h with w f = 0. �

Definition 8.4 (Highest weight vector)
A vector w as in Lemma 8.3 is called a highest weight vector of the sl2-module V and its corres-
ponding eigenvalue is called a highest weight. We shall extend this definition later.

We are now in a position to prove the main result of this chapter:

Theorem 8.5 (Classification of finite-dimensional irreducible sl2-modules)
Let V be an irreducible sl2-module of dimension d + 1, then V is isomorphic to Vd .
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Proof. Since V is finite-dimensional over C, the endomorphism h of V has an eigenvector w
with w f = 0 be Lemma 8.3. Let λ be the corresponding eigenvalue. We consider the sequence

w,we, we2, . . .

where wek stands for the vector one gets by acting repeatedly with e altogether k times. By
Lemma 8.2 these are all either equal to 0 or eigenvectors of h with eigenvalues λ, λ− 2, λ− 4, . . .
respectively. As in the proof of Lemma 8.3 we conclude that there is a k with wek+1

= 0 and
wek
6= 0.

We claim that W := Span(w,we, we2, . . . , wek) is an sl2-submodule of V and that

B := (w,we, . . . , wek)

is a basis. All these vectors are eigenvectors of h, so W is invariant under h. By construction
and because of wek+1

= 0 the space W is invariant under e. Note that Span(w,we, . . . , wei )e =
Span(w,we, . . . , wei+1).
Invariance under f comes from the fact that

(wei ) f = (wei−1)e f − (wei−1) f e + (wei−1) f e = (wei−1)h + ((wei−1) f )e for 1 ≤ i ≤ k

and w f = 0 using induction by i . We have shown that W is invariant under h, e and f and thus
under all elements of sl2. Since W is non-zero and V is irreducible, we have W = V . Since
B = (w,we, . . . , wek) is linearly independent by Lemma 8.1, it is a basis of W and thus of V and
we conclude k = d because dim(V ) = d + 1.
With respect to the basis B the endomorphism induced by h is a diagonal matrix with diagonal
entries λ, λ − 2, . . . , λ − 2d , thus its trace is equal to λ · (d + 1) − d(d + 1) (recall that

∑d
i=0 =

d(d + 1)/2). But since h = [e, f ] this trace is zero, from which follows λ = d. The eigenvalues of
h in its action on V are therefore d, d − 2, d − 4, . . . , 4− d, 2− d,−d .
Now we modify our basis B of V slightly to show that the action of sl2 on V is the same as the one on
Vd . Let w0 := w and wi+1 :=

1
d−i ·wi e for 0 ≤ i < d , forming a new basis B ′ := (w0, w1, . . . , wd)

of V .
With respect to this basis, the endomorphisms induced by the action of h and e are exactly as in
Illustration 7.3, since we have

wi h = (d − 2i)wi and wi e = (d − i)wi+1

for 0 ≤ i ≤ d where wd+1 := 0. We claim that the same holds for the endomorphism induced
by the action of f . We have w0 f = w f = 0 so the first row is zero. Furthermore, we claim that
wi f = iwi−1 for 1 ≤ i ≤ d . This follows by induction using a similar computation as above, we
have

wi+1 f =
1

d − i
wi e f =

1
d − i

(wi h + (wi f )e) =
1

d − i
((d − 2i)wi + iwi−1e)

=
d − 2i + i(d + 1− i)

d − i
wi =

id − i2
+ d − i

d − i
wi = (i + 1)wi

for 0 ≤ i < d where w−1 := 0.
Since the action of h, e and f , and thus of all elements of sl2, are the same with respect to the bases
(Xd, Xd−1Y, . . . , XY d−1, Y d) of Vd and B ′ of V , the linear map Xd−i Y i

7→ wi is an isomorphism
of Vd onto V , proving the theorem. �

Because of Weyl’s Theorem we have thus proved:

Theorem 8.6 (Representations of sl2(C))
Let V be a finite-dimensional sl2(C)-module. Then V has irreducible submodules W1,W2, . . . ,Wk ,
for some k ∈ N, such that V = W1 ⊕ W2 ⊕ · · · ⊕ Wk and there are numbers d1, . . . , dk ∈ N ∪ {0}
such that Wi

∼= Vdi . �



Chapter 4

Engel’s and Lie’s Theorems

9 Engel’s Theorem on nilpotent Lie algebras
Definition 9.1 (Nilpotent elements)
Let V be a vector space and T ∈ End(V ) an endomorphism. Then T is called nilpotent, if there is
a k ∈ N such that T k

= 0 (the zero map).
Let L be a Lie algebra and x ∈ L . Then x is called ad-nilpotent, if xad

∈ End(L) is nilpotent.
Note that this means that (xad)k = 0 for some k ∈ N and this uses the regular composition of maps
rather than the Lie product!

Proposition 9.2 (Eigenvalues of nilpotent elements)
Let V be a finite-dimensional vector space over F and T ∈ End(V ) be nilpotent. Then 0 is the only
eigenvalue of T .

Proof. Let λ be an eigenvalue with eigenvector 0 6= v ∈ V and let k ∈ N with T k
= 0. Then

0 = vT k
= λkv so λk

= 0 and thus λ = 0 since F is a field. However, 0 is an eigenvalue since T is
not invertible. �

In this section we want to prove the following theorem:

Theorem 9.3 (Engel)
Let L be a finite-dimensional Lie algebra over a field F. Then L is nilpotent if and only if every
element x of L is ad-nilpotent.

We only prove the “only-if”-part here, the “if”-part is proved in the rest of this section.

Proof. If L is nilpotent, then there is a k such that Lk
= 0. This means in particular that every

expression
[[· · · [[x0, x1], x2], · · · ], xk] = 0

for arbitrary elements x0, x1, . . . , xk ∈ L . This implies immediately that

xad
1 · x

ad
2 · · · · · x

ad
k = 0 ∈ End(L)

and in particular that (xad)k = 0 for all x ∈ L . So every element x of L is ad-nilpotent. �

We first prove some helper results:

Lemma 9.4 (Quotient modules)
Let L be a Lie algebra and V an L-module with a submodule 0 < W < V . Then the quotient space
V/W = {v +W | v ∈ V } is an L module with the induced action

(v +W )x := vx +W.

21
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Proof. Details omitted, but routine verification. Check well-definedness first, the module actions
are directly inherited from V . �

Lemma 9.5 (ad-quotients)
Let L be a Lie algebra and H a subalgebra. Then we can restrict ad : L → Lie(End(L)) to H
and thus get a representation ad|H : H → Lie(End(L)). This makes L into an H -module and H
itself is an H -submodule of L . Thus the quotient space L/H is an H -module as well. If y ∈ H is
ad-nilpotent, then it acts as a nilpotent endomorphism on L/H as well.

Proof. It is clear that ad|H is a Lie algebra homomorphism and thus that L is an H -module. Since
H is a subalgebra (i.e. [H, H ] ≤ H ), it follows that H is an H -submodule of L . By Lemma 9.4,
the quotient space L/H (which is not a Lie algebra!) is an H -module as well with action (x +
H)h := xhad

+ H = [x, h] + H for all x ∈ L and all h ∈ H . If (had)k = 0 for some k, then
(x + H)(had)k = x(had)k + H = 0+ H for all x ∈ L . �

Lemma 9.6 (ad-nilpotency)
Let L be a Lie subalgebra of gl(V ) for some finite-dimensional vector space V over F and suppose
that L consists of nilpotent endomorphisms of V . Then for all x ∈ L the endomorphism xad

∈

End(L) is nilpotent.

Proof. If k ∈ N such that xk
= 0, then

[· · · [[y, x], x], . . .], x]︸ ︷︷ ︸
2k times

=

2k∑
i=0

ci x i yx2k−i

for some numbers ci ∈ F. Since for every summand in this sum there are at least k factors of x on
at least one side of y, the whole sum is equal to 0. As this holds for all y ∈ L , we have proved that
(xad)2k

= 0. �

Proposition 9.7 (Helper for Engel)
Let V be a finite-dimensional vector space over F and L a Lie subalgebra of gl(V ) consisting of
nilpotent endomorphisms. Then there is a non-zero v ∈ V with vx = 0 for all x ∈ L .

Proof. We proceed by induction on dim(L). If dim(L) = 1, then L consists of the scalar multiples
of a single nilpotent endomorphism x ∈ End(V ). By Proposition 9.2 it has 0 as eigenvalue, thus
there is an eigenvector 0 6= v ∈ V with vx = 0 and we are done.
Now suppose dim(L) > 1 and the proposition is already proved for nilpotent Lie algebras of smaller
dimension. We proceed in two steps:
Step 1: Let H be a maximal subalgebra of L (that is, H is a subalgebra such that there is no
subalgebra K of L with H < K < L). Such an H exists and is non-zero, since every 1-dimensional
subspace of L is a subalgebra and dim(L) <∞. We claim that dim(H) = dim(L)− 1 and that H
is an ideal in L .
As in Lemma 9.5 we view L as H -module with submodule H and thus L/H as H -module with
the action (x + H)h := xhad

+ H . This gives us a representation of H on the vector space L/H
and thus a homomorphism of Lie algebras ϕ : H → Lie(End(L/H)). Since L and thus H consists
of nilpotent elements we conclude that Hϕ consists of nilpotent endomorphisms of L/H using
Lemma 9.6. Since dim(Hϕ) ≤ dim(H) < dim(L), we can use the induction hypothesis to conclude
that there is a y ∈ L \H such that (y+H)h = 0+H for all h ∈ H , that is, [y, H ] ≤ H but y /∈ H .
But then H + Span(y) is a subalgebra of L that properly contains H . By the maximality of H it
follows that H + Span(y) = L and so dim(H) = dim(L)− 1 and H is an ideal in L .
Step 2: Now we apply the induction hypothesis to H ≤ L ≤ gl(V ). We conclude that there is
a w ∈ V with wh = 0 for all h ∈ H . Thus W := {v ∈ V | vh = 0 ∀h ∈ H} is a non-zero
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subspace of V . It is certainly invariant under H (mapped to 0 by it!) and invariant under y, since
vyh = v[y, h] + vhy = 0 for all v ∈ W and all h ∈ H , since [y, h] ∈ H . Since y is nilpotent on
V and thus on W , it has an eigenvector 0 6= v ∈ W with eigenvalue 0 (see Proposition 9.2), that is,
vy = 0. However, since vh = 0 for all h ∈ H and L = H + Span(y), it follows that vx = 0 for all
x ∈ L . �

Now we prove a theorem, from which Engel’s Theorem 9.3 follows immediately:

Theorem 9.8 (Engel’s Theorem in gl(V ))
Let K be a Lie subalgebra of gl(V ) for some finite-dimensional vector space V over a field F, such
that every element x of K is a nilpotent endomorphism. Then there is a basis B of V such that
every element x of K corresponds to a strictly lower triangular matrix with respect to B. It follows
that K is a nilpotent Lie algebra.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1 then the dimension of K is either 0
or 1 and in both cases the matrices with respect to any basis B are all zero because they are nilpotent
1× 1-matrices.
Suppose now that n := dim(V ) ≥ 2 and the statement is proved for all cases with smaller dimen-
sion. By Proposition 9.7 there is a vector 0 6= v0 ∈ V with v0x = 0 for all x ∈ K . Obviously,
W := Span(v0) is a K -submodule of V and thus by Proposition 9.4, the quotient space V/W is a
K -module. We denote the Lie subalgebra of gl(V/W ) induced by this action of K by K̄ . Since
dim(V/W ) = dim(V )− 1 = n − 1 and K̄ consists of nilpotent endomorphisms, we can use the in-
duction hypothesis to conclude that V/W has a basis B̄ = (v1+W, . . . , vn−1+W ) such that every
element of K̄ corresponds to a strictly lower triangular matrix with respect to B̄. But then every ele-
ment of K corresponds to a strictly lower triangular matrix with respect to B := (v0, v1, . . . , vn−1).
This implies that K is isomorphic to a subalgebra of the Lie algebra of all strictly lower triangular
matrices, which was shown to be nilpotent in Example 5.4. Thus K itself is nilpotent as well. �

We can now prove the missing implication in Engel’s Theorem 9.3.

Proof. Suppose that L is a finite-dimensional Lie algebra over a field F such that every element
of L is ad-nilpotent. Then K := Lad is a Lie subalgebra of Lie(End(L)) fulfilling the hypotheses
of Theorem 9.8 and is thus nilpotent. Since ad is a homomorphism of Lie algebras with kernel
Z(L) and image K , we have shown that L/Z(L) ∼= K is nilpotent, using the First Isomorphism
Theorem 4.16. Therefore by Theorem 5.7 the Lie algebra L itself is nilpotent. �

Remark 9.9 (A warning)
Not for every nilpotent Lie algebra contained in gl(V ) there is a basis of V such that all elements
correspond to strictly lower triangular matrices. For example L := Span(idV ) is abelian and thus
nilpotent but it contains the identity, which corresponds to the identity matrix with respect to every
basis of V .

10 Lie’s Theorem on soluble Lie algebras

We want to derive a similar result to Theorem 9.8 for soluble Lie algebras over C.

Definition 10.1 (Dual space and weights)
Let L be any F-vector space. Then we denote the set of F-linear maps from L to F by L∗ and call it
the dual space of L .
Let L be a Lie algebra over F and V a finite-dimensional L-module. A weight of L (on V ) is an
element λ ∈ L∗ such that

Vλ := {v ∈ V | vx = (xλ) · v for all x ∈ L}
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is not equal to {0}. The subspace Vλ for a weight λ is called a weight space. It consists of simul-
taneous eigenvectors of all elements of L and the zero vector.

The following lemma is crucial for what we want to do:

Lemma 10.2 (Invariance)
Let L be a Lie algebra over a field F of characteristic 0, V a finite-dimensional L-module and K an
ideal in L . Assume that λ is a weight of K on V , that is, the weight space

Vλ := {v ∈ V | vk = (kλ)v for all k ∈ K }

is non-zero. Then Vλ is invariant under the action of L .

Proof. Let 0 6= v ∈ Vλ and x ∈ L . Then

vxk = v[x, k] + vkx = ([x, k]λ) · v + (kλ) · vx .

Note, that [x, k] ∈ K since K is an ideal of L . That is, if we could show that [x, k]λ = 0 for all
k ∈ K and all x ∈ L , we would be done.
To this end, we consider the sequence of vectors

v, vx, vx2, . . .

and let m be the least integer, such that (v, vx, . . . , vxm) is linearly dependent. We claim that
U := Span(v, vx, . . . , vxm−1) is invariant under K and that the matrix Mk of the action of any
k ∈ K with respect to the basis B := (v, vx, . . . , vxm−1) is a lower triangular matrix with all
diagonal entries being kλ:

Mk =


kλ 0 · · · 0

∗ kλ
. . .

...
...

. . .
. . . 0

∗ · · · ∗ kλ

 .
Indeed, vk = (kλ)v showing that the first row of Mk is (kλ, 0, . . . , 0). We then proceed by induction
on the rows showing that vx i k = (kλ)vx i

+w for some w ∈ Span(v, vx, . . . , vx i−1) for 1 ≤ i < m
using

vx i+1k = vx i
[x, k] + vx i kx = (kλ)vx i+1

+ u

for some u ∈ Span(v, vx, . . . , vx i ) because [x, k] ∈ K and the induction hypothesis.
We have showed that U is invariant under K and under x , so it is invariant under the whole Lie
subalgebra K + Span(x) of L . For every element k ∈ K , the commutator [x, k] is contained in K ,
so the matrix M[x,k] of its action on U with respect to the basis B is lower triangular with [x, k]λ
on the diagonal. On the other hand, this matrix is the commutator of the matrices Mx and Mk , so in
particular its trace is zero. Thus [x, k]λ = 0 and we have proved the Invariance Lemma.
Note that we have proved at the same time that U ≤ Vλ. �

We prove a Proposition analogous to Proposition 9.7:

Proposition 10.3 (Helper for Lie)
Let L be a soluble Lie subalgebra of gl(V ) for some finite-dimensional C-vector space V . Then L
has a weight λ on V and thus a non-zero weight space.
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Proof. We need to find a simultaneous eigenvector for all elements of L . We proceed by induction
on dim(L) very similarly to the proof of Proposition 9.7. If dim(L) = 1, then L consists of the scalar
multiples of a single non-zero element x . This element has an eigenvalue µ with corresponding
eigenvector v by Proposition 6.11 because V is over C. Thus λ : L → C, c · x 7→ c ·µ for c ∈ C is
a weight with weight space Vλ containing at least Span(v).
Now suppose n := dim(L) ≥ 2 and the statement is already proved for all Lie algebras of dimension
less than n. Since L is soluble, the space L (1) = [L , L] is a proper ideal of L . Let K be an (n − 1)-
dimensional subspace of L containing [L , L] and x ∈ L \ K , such that we have L = K + Span(x).
The subspace K is an ideal of L since every commutator in L is contained in [L , L] and thus in K .
Therefore K is in particular a subalgebra of smaller dimension than L and thus by Theorem 5.7 itself
soluble. Using the induction hypothesis we conclude that K has a weight λ̃ ∈ K ∗. Let W := Vλ̃ be
the corresponding weight space.
Using the Invariance Lemma 10.2 we conclude that W is invariant under x and thus under all of L .
Since we are working over the complex numbers C, the endomorphism induced by x on W has an
eigenvector w with eigenvalue µ, that is, wx = µ · w. But if we now define λ : L → C setting

(k + ν · x)λ := kλ̃+ νµ

this defines a C-linear map and thus an element λ ∈ L∗, such that

w(k + ν · x) = wk + ν · wx = (kλ̃)w + νµw = (k + ν · x)λ · w

for all k ∈ K and all ν ∈ C showing that λ is a weight of L such that the weight space Vλ contains
w. �

Theorem 10.4 (Lie)
Let L be a soluble Lie algebra over C and V is a finite-dimensional L-module. Then there is a basis
B of V , such that the matrix the action of every element of L with respect to B is a lower triangular
matrix.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1 then the dimension the matrices with
respect to any basis B are lower triangular because they are 1× 1-matrices.
Suppose now that n := dim(V ) ≥ 2 and the statement is proved for all cases with smaller di-
mension. Being a module, V gives rise to a Lie algebra homomorphism ϕ : L → gl(V ) and
the image Lϕ is soluble using Theorem 5.7 and the First Isomorphism Theorem 4.16. By Pro-
position 10.3 applied to Lϕ there is weight λ′ of Lϕ on V . However, this immediately gives rise
to a weight λ := ϕλ′ of L . In particular, we have a non-zero vector v0 in the weight space Vλ.
That is, v0x = (xλ)v0 for all x ∈ L . Obviously, W := Span(v0) is an L-submodule of V and
thus by Proposition 9.4, the quotient space V/W is an L-module of smaller dimension. Since
dim(V/W ) = dim(V )− 1 = n − 1 we can use the induction hypothesis to conclude that V/W has
a basis B̄ = (v1+W, . . . , vn−1+W ) such that every element of L corresponds to a lower triangular
matrix with respect to B̄. But then every element of L corresponds to a lower triangular matrix with
respect to the basis B := (v0, v1, . . . , vn−1) of V . �



Chapter 5

Jordan decomposition and Killing form

11 Jordan decomposition

We recall some definitions and results from linear algebra:

Definition/Proposition 11.1 (Jordan normal form)
Let V be an n-dimensional vector space over C and T ∈ End(V ). Then V has a basis B such that
the matrix corresponding to T with respect to B is of the block matrix form

J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jk


and each Ji is of the form 

λi 0 · · · · · · 0

1 λi
. . . 0

...

0 1 λi
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 λi


,

for some λi ∈ C. The Ji are called Jordan blocks, we say that such a matrix is in Jordan normal
form. The number of Jordan blocks with a given diagonal entry λ and a given size is equal for
all choices of such a basis B. An endomorphism T is called diagonalisable, if all Jordan blocks
in its Jordan normal form have size (1 × 1), that is, the Jordan normal form is a diagonal matrix.
Obviously, T is nilpotent if and only if all diagonal entries in all Jordan blocks are equal to 0.

From this result we immediately get:

Definition/Proposition 11.2 (Jordan decomposition)
Let T ∈ End(V ) for a finite-dimensional C-vector space V . The Jordan decomposition of T is an
expression of T as T = D + N with D, N ∈ End(V ), such that D is diagonalisable, N is nilpotent
and DN = N D. Both endomorphisms D and N are uniquely defined by these conditions. There is
a polynomial p ∈ C[X ] with D = p(T ).

Proof. We only give a rough idea here:
Choose a basis B of V such that the matrix of T with respect to B is in Jordan normal form. The
matrix of D with respect to B is the diagonal matrix containing only the diagonal entries of the

26
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Jordan blocks, such that N := T − D is nilpotent. The endomorphisms D and N commute since
for every Jordan block the two matrices

λi 0 · · · · · · 0

0 λi
. . . 0

...

0 0 λi
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 λi


and



0 0 · · · · · · 0

1 0
. . . 0

...

0 1 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 0


commute. One proves next the existence of the polynomial p, which we skip here.
We need to prove the uniqueness. Let T = D + N = D̃ + Ñ be two Jordan decompositions of T .
Since D and D̃ are polynomials in T , they commute with each other and thus can be diagonalised
simultaneously. But then since D + N = D̃ + Ñ we get D − D̃ = Ñ − N is nilpotent which can
only be if D = D̃. �

Proposition 11.3 (Solubility implies zero traces)
Let L be a soluble subalgebra of gl(V ) where V is a finite-dimensional C-vector space. Then for all
x ∈ L and all y ∈ [L , L] we have Tr(xy) = 0.

Proof. We use Lie’s Theorem 10.4: There is a basis B of V such that the every element x ∈ L
corresponds to a lower triangular matrix with respect to B. Since y ∈ [L , L] is a sum of commut-
ators, the diagonal entries of its matrix with respect to B are all zero. But then all diagonal entries
of the matrix of xy are zero and thus the trace of xy is zero. �

For the other direction, we need a slightly stronger hypothesis:

Proposition 11.4 (Zero traces imply solubility)
Let V be a finite-dimensional C-vector space and L a Lie subalgebra of gl(V ). Suppose that
Tr(xy) = 0 for all x, y ∈ L . Then L is soluble.

Proof. Not extremely difficult, but left out of these notes for the sake of brevity. �

Surprisingly, these two can be put together for this result:

Theorem 11.5 (Criterion for solubility)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if Tr(xad yad) = 0
for all x ∈ L and y ∈ [L , L].

Proof. Assume that L is soluble. Then Lad is a soluble subalgebra of gl(L) by Theorem 5.7
and because ad is a homomorphism of Lie algebras. The statement of the theorem now follows
immediately from Proposition 11.3 since [u, v]ad

= [uad, vad
] by the Jacobi identity.

Assume conversely that Tr(xad yad) = 0 for all x ∈ L and all y ∈ [L , L]. Then Proposition 11.4
implies that [L , L]ad

= [Lad, Lad
] is soluble (using our hypothesis only for x, y ∈ [L , L]. Thus

Lad itself is soluble since [Lad, Lad
] = (Lad)(1). But since Lad ∼= L/Z(L) it follows using The-

orem 5.7.(ii) that L itself is soluble as Z(L) is abelian. �

12 The Killing form
Definition/Proposition 12.1 (The Killing form)
Let L be a Lie algebra over a field F. Then the mapping

κ : L × L → F
(x, y) 7→ Tr(xad yad)
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is bilinear, that is, κ(x + λx̃, y) = κ(x, y)+ λκ(x̃, y) and κ(x, y + λỹ) = κ(x, y)+ λκ(x, ỹ) for
all x, x̃, y, ỹ ∈ L and all λ ∈ F. The map κ is called the Killing form. It is symmetric, that is,

κ(x, y) = κ(y, x) for all x, y ∈ L .

The Killing form is associative, that is,

κ([x, y], z) = κ(x, [y, z]) for all x, y, z ∈ L .

The latter property comes from the fact that Tr((uv−vu)w) = Tr(u(vw−wv)) for all endomorph-
isms u, v, w ∈ End(V ) for any vector space V .

We can now restate Theorem 11.5 using this language:

Theorem 12.2 (Cartan’s First Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if κ(x, y) = 0 for
all x ∈ L and y ∈ [L , L].

The Killing form can not only ”‘detect solubility”’, but also semisimplicity. We need a few more
definitions.

Definition 12.3 (Perpendicular space, non-degeneracy)
Let V be a vector space over a field F and τ : V × V → F a symmetric bilinear form. For any
subspace W ≤ V we define

W⊥ := {v ∈ V | τ(v,w) = 0 for all w ∈ W }

and call it the perpendicular space of W . It is a subspace of V . We call τ non-degenerate, if
V⊥ = {0}, that is, there is no 0 6= u ∈ V with τ(u, v) = 0 for all v ∈ V . Otherwise, we call τ
degenerate. If τ is non-degenerate, then

dimF(V ) = dimF(W )+ dimF(W⊥)

for all subspaces W ≤ V .

Lemma 12.4 (Perpendicular space of ideals with respect to the Killing form)
Let L be a Lie algebra, K be an ideal of L and κ the Killing form of L . Then K⊥ (with respect to κ)
is an ideal of L as well.

Proof. This uses the associativity of the Killing form: Let x ∈ K⊥, that is, κ(x, z) = 0 for all
z ∈ K . We have κ([x, y], z) = κ(x, [y, z]) = 0 for all y ∈ L and all z ∈ K because [y, z] ∈ K . �

Theorem 12.5 (Cartan’s Second Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is semisimple if and only if κ is non-
degenerate.

Proof. Suppose that L is semisimple. By Lemma 12.4, the space L⊥ (with respect to κ) is an ideal
of L , such that κ(x, y) = 0 for all x ∈ L⊥ and all y ∈ [L⊥, L⊥] (indeed, even for all y ∈ L). Thus,
by Theorem 12.2, the ideal L⊥ is soluble. However, because we assumed that L is semisimple, it
has no soluble ideals except {0} and thus L⊥ = 0 and thus κ is non-degenerate.
Suppose that L is not semisimple. By Exercise 6 on Tutorial Sheet 2 it then has a non-zero abelian
ideal A. Let a ∈ A be a non-zero element. For every x ∈ L , the map aadxadaad sends all of L
to 0, since [[z, a], x] ∈ A and thus [[[z, a], x], a] = 0 for every z ∈ L . Thus (aadxad)2 = 0 and
therefore aadxad is a nilpotent endomorphism. However, nilpotent endomorphisms have trace 0, so
a is a non-zero element of L⊥ and κ is shown to be degenerate. �
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Lemma 12.6 (Killing form on ideal)
Let I be an ideal in a finite-dimensional Lie algebra over C. Then I is in particular a subalgebra
and thus a Lie algebra on its own. The Killing form of I is then the restriction of the Killing from
of L to I :

κI (x, y) = κ(x, y) for all x, y ∈ I.

Proof. Choose a basis of I and extend it to a basis of L . Then write matrices of xad for elements
x ∈ I with respect to this basis. The result follows. �

Lemma 12.7 (Ideals in semisimple Lie algebras)
Let I be a non-trivial proper ideal in a complex semisimple Lie algebra L , then L = I ⊕ I⊥. The
ideal I is a semisimple Lie algebra in its own right.

Proof. Let κ denote the Killing form on L , it is non-degenerate by Cartan’s Second Criterion 12.5
since L is semisimple. The restriction of κ to I ∩ I⊥ is identically 0, so by Cartan’s First Cri-
terion 12.2 we get I ∩ I⊥ = 0 because L does not have a non-zero soluble ideal. Counting dimen-
sions now gives L = I ⊕ I⊥.
We need to show that I is a semisimple Lie algebra. Suppose not, then its Killing form is degenerate
(using Cartan’s Second Criterion 12.5). Thus, there is an 0 6= a ∈ I such that κI (a, x) = 0 for all
x ∈ I , where κI is the Killing form of I . By Lemma 12.6 this means that κ(a, x) = 0 for all x ∈ I .
But then a ∈ L⊥ since L = I ⊕ I⊥ contradicting that L is semisimple. �

Using Lemma 12.7 it is now relatively easy to prove Theorem 5.12:

Theorem 12.8 (Characterisation of semisimple Lie algebras)
A finite-dimensional Lie algebra L over C is semisimple if and only if it is the finite direct sum of
minimal ideals which are simple Lie algebras.

Proof. We only give the idea for the “only if” part: Use induction by the dimension, for the
induction step choose a minimal non-zero ideal I and use Lemma 12.7 to write L = I ⊕ I⊥ and to
show that I⊥ is again semisimple of lower dimension. The ideal I is a simple Lie algebra because
it was chosen minimal. �

13 Abstract Jordan decomposition

Can we have a Jordan decomposition in an abstract Lie algebra?
If L is a one-dimensional Lie algebra, then every linear map ϕ : L → gl(V ) is a representation.
So in general, an element x ∈ L can be mapped to an arbitrary endomorphism of V . However, for
complex semisimple Lie algebras, we can do better:

Theorem 13.1 (Abstract Jordan decomposition)
Let L be a finite-dimensional semisimple Lie algebra over C. Each x ∈ L can be written uniquely
as x = d + n, where d, n ∈ L are such that dad is diagonalisable, nad is nilpotent, and [d, n] = 0.
Furthermore, if [x, y] = 0 for some y ∈ L , then [d, y] = 0 = [n, y].
The decomposition x = d + n as above is called abstract Jordan decomposition of x .

Proof. Omitted. �

This in fact covers all representations of L:

Theorem 13.2 (Jordan decompositions)
Let L be a finite-dimensional semisimple Lie algebra over C and let ϕ : L → gl(V ) by any repres-
entation. Let x = d + n be the abstract Jordan decomposition of x . Then the Jordan decomposition
of xϕ ∈ gl(V ) is xϕ = dϕ + nϕ.

Proof. Omitted. �



Chapter 6

Classification of semisimple Lie algebras

When we studied sl2(C), we discovered that it is spanned by elements e, f and h fulfilling the
relations:

[e, h] = −2e, [ f, h] = 2 f and [e, f ] = h.

Furthermore h was diagonalisable in every irreducible representation and H := Span(h) is obvi-
ously an abelian subalgebra. Note that h = h + 0 is the abstract Jordan decomposition of h, that
H = CL(H) is the weight space of H , acting on L with the adjoint action, corresponding to the
weight 0 ∈ H ∗. Likewise, Span(e) is the weight space for the weight c · h 7→ −2c for c ∈ C, and
Span( f ) is the weight space for the weight c · h 7→ 2c for c ∈ C.
This approach can be generalised. Our big plan will be:

1. Find a maximal abelian subalgebra H consisting of elements that are diagonalisable in every
representation.

2. Restrict the adjoint representation of L to H and show that L is the direct sum of weight
spaces with respect to H (“root space decomposition”).

3. Prove general results about the set of weights (“root systems”).

4. Show that the isomorphism type of L is completely determined by its root system.

5. Classify such root systems.

The rest of the course will be more expository than before.

14 Maximal toral subalgebras
Definition 14.1 (Semisimple elements)
Let L be a finite-dimensional semisimple Lie algebra over C. The element x ∈ L is called
semisimple, if its abstract Jordan decomposition is x = x + 0, that is, the nilpotent part is equal
to zero (see Theorem 13.1). This means, that x acts diagonalisably on every L-module (see The-
orem 13.2).

Definition 14.2 (Maximal toral subalgebras)
Let L be a finite-dimensional semisimple Lie algebra over C. A toral subalgebra T is a subalgebra
consisting of semisimple elements. A toral subalgebra T ≤ L is called a maximal toral subal-
gebra if L has no toral subalgebra properly containing T . It is clear that every finite-dimensional
semisimple Lie algebra over C has a maximal toral subalgebra. All these are non-zero since L
contains semisimple elements (because of Theorem 13.1, note that if all elements of L were equal
to their nilpotent part in the abstract Jordan decomposition, then they would in particular be ad-
nilpotent and thus L would be nilpotent, a contradiction to being semisimple).

30
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Lemma 14.3 (Maximal toral subalgebras are abelian)
Let L be a finite-dimensional semisimple Lie algebra over C. Every maximal toral subalgebra T of
L is abelian.

Proof. Omitted. �

Definition 14.4 (Cartan subalgebra)
Let L be a finite-dimensional semisimple Lie algebra over C. A maximal abelian toral subalgebra
is called Cartan subalgebra. By Lemma 14.3 every such L has a Cartan subalgebra since every
maximal toral subalgebra is abelian.

Theorem 14.5 (Cartan subalgebras are self-centralising)
Let H be a Cartan subalgebra of a finite-dimensional semisimple Lie algebra L over C. Then
CL(H) = H .

Proof. Omitted. �

Theorem 14.6 (Simultaneous diagonalisation)
Let T1, T2, . . . , Tk ∈ End(V ) be endomorphisms of a finite-dimensional F-vector space V . Suppose
that all Ti are diagonalisable and that Ti Tj = Tj Ti for all 1 ≤ i < j ≤ k. Then there is a basis B of
V such that the matrices of all Ti with respect to B are diagonal.

Proof. Omitted here, see Exercise 3 of tutorial sheet 3 or a text on Linear Algebra. �

For the rest of the chapter L will always be a finite-dimensional semisimple Lie algebra over C and
H a Cartan subalgebra. We denote the Killing form by κ .

Definition/Proposition 14.7 (Root space decomposition)
In this situation, L is an H -module by the adjoint action of H on L: The map

ad|H : H → Lie(End(L))
h 7→ had

is a representation of H . We consider all its weight spaces (see Definition 10.1). Let 8 ⊆ H ∗

be the set of non-zero weights, note that the zero map (h 7→ 0) is a weight and that L0 = H by
Theorem 14.5.
The space L is the direct sum of the weight spaces for H :

L = H ⊕
⊕
α∈8

Lα.

This decomposition is called the root space decomposition of L with respect to H . As defined in
Definition 10.1, we have

Lα = {x ∈ L | [x, h] = (hα) · x for all h ∈ H} .

The set8 is called the set of roots of L with respect to H and the Lα for α ∈ 8∪ {0} are called the
root spaces. Note that we immediately conclude from the finite dimension of L that 8 is finite!

Proof. Let h1, . . . , hk be a basis of H . Since H is abelian, the endomorphisms had
1 , . . . , had

k ∈

End(L) fulfill the hypothesis of Theorem 14.6. Thus L has a basis B of simultaneous eigenvectors
of the had

i . Since every element of B is contained in a root space, L is the sum of the weight spaces.
The intersection of two root spaces Lα and Lβ for α 6= β is equal to the zero space, since if
hα 6= hβ, then x ∈ Lα ∩ Lβ implies (hα)x = xh = (hβ)x and thus x = 0. A short inductive
argument shows that the sum of all root spaces in the root space decomposition is in fact direct (just
add in one root space at a time). �
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In the sequel we will study the set 8 of roots.

Lemma 14.8 (Properties of 8)
Suppose that α, β ∈ 8 ∩ {0}. Then:

(i) [Lα, Lβ] ≤ Lα+β .

(ii) If α + β 6= 0, then κ(Lα, Lβ) = {0}.

(iii) The restriction of κ to L0 is non-degenerate.

Proof. Let x ∈ Lα and y ∈ Lβ . Then

[[x, y], h] = [[x, h], y] + [x, [y, h]] = (hα)[x, y] + (hβ)[x, y] = (h(α + β))[x, y],

thus [x, y] ∈ Lα+β which proves (i).
For (ii), we conclude from α + β 6= 0 that there is some h ∈ H with h(α + β) 6= 0. Then

(hα)κ(x, y) = κ([x, h], y) = κ(x, [h, y]) = −(hβ)κ(x, y),

and thus (h(α + β) · κ(x, y) = 0. Therefore, κ(x, y) = 0.
For (iii), suppose that z ∈ L0 and κ(z, x0) = 0 for all x0 ∈ L0. Since every x ∈ L can be written as

x = x0 +
∑
α∈8

xα

with xα ∈ Lα, we immediately get κ(z, x) = 0 for all x ∈ L from (ii) contradicting the non-
degeneracy of κ on L . �

Quite surprisingly, every semisimple Lie algebra over C contains lots of copies of sl2(C):

Theorem 14.9 (Copies of sl2(C) in L)
Let α ∈ 8 and 0 6= e ∈ Lα. Then −α is a root and there exists f ∈ L−α such that Span(e, f, h)
with h := [e, f ] is a Lie subalgebra of L with

[e, h] = −2e and [ f, h] = 2 f.

Thus, it is isomorphic to sl2.

Note that we can replace (e, f, h) by (λe, f/λ, h) for some 0 6= λ ∈ C without changing the
relations. However, h and Span(e, f, h) remains always the same!

Proof. This proof was not be presented in the class but is contained in the notes for the sake of
completeness.
Since κ is non-degenerate, there is an x ∈ L with κ(e, x) 6= 0. Write x =

∑
α∈8∪{0} xα with

xα ∈ Lα. By Lemma 14.8.(ii) we conclude that x−α 6= 0 and κ(e, x−α) 6= 0. Therefore, −α is a
root. Set f̃ := x−α. Since α 6= 0 there is a t ∈ h with tα 6= 0. Thus

κ([e, f̃ ], t) = κ(e, [ f̃ , t]) = −(tα) · κ(e, f̃ ) 6= 0

showing that h̃ := [e, f̃ ] 6= 0. Note that f̃ ∈ H = L0 by Lemma 14.8.(i).
We claim that h̃α 6= 0. Namely, if h̃α were equal to 0, then [e, h̃] = (h̃α)e = 0 and [ f̃ , h̃] =
−(h̃α) f̃ = 0. Therefore by Proposition 14.10 h̃ad would be nilpotent. However, h̃ is semisimple,
and the only semisimple and nilpotent element is 0. We can now set f := −2 f̃ /(h̃α) and h :=
[e, f ] = −2h̃/(h̃α) to get the relations in the theorem. �

Note that by this L is an sl2(C)-module in many ways! This allows us to use our results about the
representations of sl2(C) for every α ∈ 8 separately!
We have used:

Proposition 14.10
Let x, y ∈ End(V ) be endomorphism of the finite-dimensional complex vector space V . Suppose
that both x and y commute with [x, y] = xy − yx . Then [x, y] is a nilpotent map.
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15 Root systems

We keep our general hypothesis that L is a finite-dimensional semisimple Lie algebra over C with
Cartan subalgebra H and corresponding set of roots 8.
For this section, let E be a finite-dimensional vector space over R with a positive definite symmetric
bilinear form (−|−) : E × E → R (“positive definite” means (x |x) > 0 if and only if x 6= 0).

Definition 15.1 (Reflections)
For v ∈ E , the map

sv : E → E
x 7→ x − 2(x |v)

(v|v)
v

is called the reflection along v. It is linear, interchanges v and −v and fixes the hyperplane ortho-
gonal to v. As an abbreviation, we use 〈x |v〉 := 2(x |v)

(v|v)
for x, v ∈ E , note that 〈−|−〉 is only linear

in the first component. We have xsv = x − 〈x |v〉 v.

Definition 15.2 (Root system)
A subset R ⊆ E is called a root system, if

(R1) R is finite, Span(R) = E and 0 /∈ R.

(R2) If α ∈ R, then the only scalar multiples of α in R are α and −α.

(R3) If α ∈ R, then sα permutes the elements of R.

(R4) If α, β ∈ R, then 〈α|β〉 ∈ Z.

Theorem 15.3 (8 is a root system)
Then 8 is a root system if we take E to be the R-span of 8 with the bilinear form induced by the
Killing form κ .

Proposition 15.4 (Moving forms)
The Killing form κ restricted to H is non-degenerate by Lemma 14.8.(iii). Therefore, the linear
map

H → H ∗

h 7→ (x 7→ κ(h, x))

is injective and thus bijective since H and H ∗ have the same finite dimension. Therefore, for every
α ∈ H ∗, there is a unique tα ∈ H with xα = κ(tα, x) for all x ∈ H . We set (α|β) := κ(tα, tβ) for
all α, β ∈ H ∗, this defines a non-degenerate bilinear form on H ∗, which we call the bilinear form
on H ∗ induced by κ .

The proof of Theorem 15.3 works through a series of little results always using all those sl2(C)-
subalgebras and the fact that L is an sl2(C)-module in different ways. Here we just look at a few of
them without proofs:

Lemma 15.5
Let α ∈ 8. If x ∈ L−α and y ∈ Lα, then [x, y] = κ(x, y)tα.

Proof. For all h ∈ H , we have

κ([x, y], h) = κ(x, [y, h]) = (hα)κ(x, y) = κ(tα, h)κ(x, y) = κ(κ(x, y)tα, h).

Thus [x, y] − κ(x, y)tα ∈ H⊥ and is therefore equal to 0, since κ is non-degenerate on H . �
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Lemma 15.6
Let α ∈ 8 and 0 6= e ∈ Lα and slα := Span(e, f, h) as in Theorem 14.9. If M is an slα-submodule
of L , then the eigenvalues of h on M are integers.

Proof. Follows immediately from Weyl’s Theorem and our classification of sl2-modules. �

Lemma 15.7
Let α ∈ 8. The root spaces Lα and L−α are 1-dimensional. Moreover, the only scalar multiples of
α that are in 8 are α itself and −α.

Note that it follows that this now identifies the copy of sl2(C) sitting in Lα ⊕ H ⊕ L−α uniquely
since we only have a choice for e ∈ Lα up to a scalar. All these choices give us the same slα. It even
identifies a unique hα ∈ H !

Lemma 15.8
Suppose that α, β ∈ 8 and β /∈ {α,−α}. Then:

(i) hαβ =
2(β|α)
(α|α)
= 〈β|α〉 ∈ Z.

(ii) There are integers r, q ≥ 0 such that for all k ∈ Z, we have β + kα ∈ 8 if and only if
−r ≤ k ≤ q . Moreover, r − q = hαβ.

(iii) β − (hαβ) · α = β − 〈β|α〉α = βsα ∈ 8.

(iv) Span(8) = H ∗.

Lemma 15.9
If α and β are roots, then κ(hα, hβ) ∈ Z and (α|β) = κ(tα, tβ) ∈ Q.
It follows, that if {α1, . . . , αn} ⊆ 8 is a basis of H ∗ and β ∈ 8, then β is a linear combination of
the αi with coefficients in Q.

Proposition 15.10
The bilinear form defined by (α|β) := κ(tα, tβ) is a positive definite symmetric bilinear form on the
real span E of 8.

16 Dynkin diagrams

In this section we will classify all possible root systems, we will only use the axioms in Defini-
tion 15.2.

Lemma 16.1 (Finiteness Lemma)
Let R be a root system in a finite-dimensional real vector space E equipped with a positive-definite
symmetric bilinear form (−|−) : E × E → R. Let α, β ∈ R with β /∈ {α,−α}. Then

〈α|β〉 · 〈β|α〉 ∈ {0, 1, 2, 3}.

Proof. By (R4), the product is an integer. We have

(x |y)2 = (x |x) · (y|y) · cos2(θ)

if θ is the angle between two non-zero vectors x, y ∈ E . Thus 〈x |y〉 · 〈y|x〉 = 4 cos2 θ and this must
be an integer. If cos2 θ = 1, then θ is an integer multiple of π and so α and β are linearly dependent
which is impossible because of our assumptions and (R2). �
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We immediately conclude that there are only very few possibilities for 〈α|β〉, 〈β|α〉, the angle θ and
the ratio (β|β)/(α|α) (without loss of generality we assume (β|β) ≥ (α|α)):

〈α|β〉 〈β|α〉 θ
(β|β)

(α|α)
0 0 π/2 −

1 1 π/3 1
−1 −1 2π/3 1
1 2 π/4 2
−1 −2 3π/4 2
1 3 π/6 3
−1 −3 5π/6 3

Lemma 16.2
Let R be a root system with E as in Lemma 16.1 and let α, β ∈ R with (α|α) ≤ (β|β). If the angle
between α is strictly obtuse, then α + β ∈ R. If the angle between α and β is strictly acute, then
α − β ∈ R.

Proof. Use (R3) saying that αsβ = α − 〈α|β〉β ∈ R together with the above table. �

Example 16.3 (Examples of root systems)
The following are two different root systems in R2:

β

α−α

α+β

−β−(α+β)

α+β 2α+β

−β

−(α+β)

−(2α+β)

−α α

β

Check the axioms yourself. You find examples for most but not all cases in the above table.

Definition 16.4 (Bases for root systems)
Let R be a root system in a real vector space E . A subset B ⊆ R is called a base of R, if

(B1) B is a vector space basis of E , and

(B2) every α ∈ R can be written as α =
∑

β∈B kββ with kβ ∈ Z, such that all the non-zero
coefficients kβ are either all positive or all negative.

For a fixed base B, we call α positive if all its non-zero coefficients with respect to B are positive
and negative otherwise. We denote the subset of R of positive roots by R+ and the subset of
negative roots R−.

Note that some coefficients can be equal to zero, only the non-zero ones need to have the same
sign! Note furthermore that the definition of R+ and R− actually depends on B and that there are
different choices for B possible! For example, for any base B, the set −B is also a base!

Theorem 16.5 (Existence of bases for root systems)
Let R be a root system in the real vector space E . Then R has a base B.
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Proof. Omitted here. �

Example 16.6 (Example of a root system)
In the following two diagrams we have coloured a base of the root system in blue and one in red:

−α

−(α+β)

α

β

−β

α+β
2α+β

−β

−(α+β)

−α α

β α+β

−(2α+β)

So in the first diagram, both (α, β) and (α + β,−β) are bases. In the second diagram, both (β, α)
and (α + β,−(2α + β)) are bases. These are not all possible choices!

Definition 16.7 (Isomorphism of root systems)
Let R1 ⊆ E1 and R2 ⊆ E2 be two root systems. An isomorphism between the two root systems R1

and R2 is a bijective R-linear map ψ : E1 → E2 such that

(i) R1ψ = R2, and

(ii) for any α, β ∈ R1 we have 〈α|β〉 = 〈αψ |βψ〉.

Note that condition (ii) basically ensures that the angle θ between αψ and βψ is the same as the
angle between α and β since 4 cos2 θ = 〈α|β〉 · 〈β|α〉.
We can now come up with a graphical way to describe root systems. At first however, it seems that
we describe a basis of a root system!

Definition 16.8 (Coxeter graphs and Dynkin diagrams)
Let R be a root system in a real vector space E and let B = (b1, . . . , bn) be a base of R. The
Coxeter graph of B is an undirected graph with n vertices, one for every element bi and with〈
bi |bj

〉
·
〈
bj |bi

〉
edges between vertex bi and bj for all 1 ≤ i < j ≤ n. In the Dynkin diagram,

we add for any pair of vertices bi 6= bj for which (bi |bi ) 6= (bj |bj ) (which are then necessarily
connected) an arrow from the vertex corresponding to the longer root to the one corresponding to
the longer root.

Example 16.9 (Dynkin diagrams)
Here are the two Dynkin diagrams for the base (α, β) in each of the two root systems in Ex-
ample 16.6:

βα βα

Surprisingly, the information in the Dynkin diagram is sufficient to describe the isomorphism type
of the root system:

Proposition 16.10 (Dynkin diagram decides isomorphism type)
Let R1 ⊆ E1 and R2 ⊆ E2 be two root systems and let B1 be a base of R1 and B2 one of R2. If
there is a bijection ψ : B1 → B2 such that ψ maps the Dynkin diagram of B1 to the one of B2,
then R1 and R2 are isomorphic in the sense of Definition 16.7.
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More formally, if
〈α|β〉 · 〈β|α〉 = 〈αψ |βψ〉 · 〈βψ |αψ〉

and (α|α) < (β|β) if and only if (αψ |αψ) < (βψ |βψ) for all α, β ∈ B1, then the R-linear
extension of ψ to an R-linear map from E1 → E2 is an isomorphism between the root systems R1

and R2.

Proof. Omitted. �

Proposition 16.11 (Dynkin diagram is property of isomorphism type)
If two root systems are isomorphic then they have the same Dynkin diagram. In particular, the
Dynkin diagram does not depend on the choice of base.

Proof. Omitted. �

So Dynkin diagrams are the same as isomorphism types of root systems.

17 How everything fits together
Definition 17.1 (Irreducible root systems)
A root system R is called irreducible, if it cannot be written as the disjoint union R1 ∪ R2 such that
(α|β) = 0 whenever α ∈ R1 and β ∈ R2.

Lemma 17.2 (Root systems can be decomposed into irreducible ones)
Let R be a root system in the real vector space E . Then R is the disjoint union R = R1 ∪ · · · ∪ Rk

of subsets R1, . . . , Rk where each Ri is an irreducible root system in Ei := Span(Ri ) and E is an
orthogonal direct sum of the subspaces E1, . . . , Ek .

Proof. Omitted here. �

Note that both root systems in Example 16.3 are irreducible.

Proposition 17.3 (Irreducibility in the Dynkin diagram)
A root system is irreducible if and only if its Dynkin diagram is connected.

Proof. Follows immediately from the definitions of “irreducible” for root systems and of Dynkin
diagrams. �
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Theorem 17.4 (Classification of irreducible root systems)
Every irreducible root system has one of the following Dynkin diagrams and these diagrams all
occur as Dynkin diagrams of a root system:

An(n ≥ 1):

Bn(n ≥ 2):

Cn(n ≥ 3):

Dn(n ≥ 4):

E6:

E7:

E8:

F4:

G2:

The first four types An to Dn cover each infinitely many cases. Each diagram has n vertices. The
restrictions on n are there to avoid duplicates.

Proof. Very nice, but omitted here, unfortunately. �
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We have now done the following:

F.d. semisimple Lie algebra L over C

we choose
��

Cartan subalgebra H

which gives
��

Root space decomposition L = H ⊕
⊕

α∈8
Lα

which defines
��

Root system 8 ⊆ H ∗

we choose
��

Base B of root system 8

which defines
��

Dynkin diagram

The big plan is:

• We know all resulting diagrams that can possibly occur.
• The result does not depend on our choices (we need to show this!).
• Two isomorphic Lie algebras give the same Dynkin diagram.
• Two non-isomorphic Lie algebras give different Dynkin diagrams.
• All Dynkin diagrams actually occur.
• L is simple if and only if the Dynkin diagram is irreducible.

To this end, we would need to prove the following results:

Theorem 17.5
Let L be a finite dimensional semisimple Lie algebra over C and let H1 and H2 be two Cartan
subalgebras with associated root systems 81 and 82. Then 81 and 82 are isomorphic as root
systems.

Theorem 17.6 (Serre)
Let8 be an irreducible root system with n vertices and base B = (b1, . . . , bn) and let ci, j :=

〈
bi |bj

〉
for 1 ≤ i, j ≤ n (the so-called Cartan matrix).
Let L be the Lie algebra over C generated by generators ei , fi and hi for 1 ≤ i ≤ n subject to the
relations

(S1) [hi , h j ] = 0 for all 1 ≤ i, j ≤ n,
(S2) [ei , h j ] = ci, j ei and [ fi , h j ] = −ci, j fi ,
(S3) [ei , fi ] = hi for all 1 ≤ i ≤ n and [ei , f j ] = 0 for all i 6= j ,
(S4) (ei )(ead

j )
1−ci, j = 0 and ( fi )( f ad

j )
1−ci, j = 0 if i 6= j .

Then L is finite dimensional and semisimple, H := Span(h1, . . . , hn) is a Cartan subalgebra and its
root system is isomorphic to 8.

Theorem 17.7
Let L be a finite dimensional simple Lie algebra over C with root system 8. Then 8 is irreducible.
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