
OKUSON Manual

Frank Lübeck
Max Neunhöffer

Version 1.4.3

April 25, 2017

Contents

1 Overview 7
1.1 Contents of the OKUSON Package . 8

1.2 How to Use this Manual . 8

1.3 Feedback . 9

1.4 Acknowledgements . 9

2 Installation 10
2.1 Quick Installation Overview . 10

2.2 Prerequisites . 11

2.3 Download . 14

2.4 Compilation . 14

2.5 Configuration . 15

2.6 Getting started . 15

2.7 Starting and Stopping the Server . 16

2.8 Tips and Tricks: Security, Backup, etc. 17

3 Schedule of Events for One Course 21
3.1 Before the Semester . 21

3.2 At the Beginning of the Semester . 22

3.3 During the Semester . 22

3.4 After the Semester . 23

3.5 At all Times . 23

4 Short Introduction to XML 24
4.1 An Example XML Document . 24

4.2 Parsing and Validating XML Documents . 26

2

CONTENTS 3

5 Creating Exercises and Sheets 28
5.1 Scoring the solutions . 28

5.2 Generalities on the Exercise and Sheet Files . 29

5.3 Writing Exercises . 31

5.4 Specifying Sheets . 35

6 The Web Pages 39
6.1 General Format of the Web Pages . 39

6.2 Delivering Static Files . 40

6.3 How to Customize the Web Pages . 41

6.3.1 What You Can Change Without Problems 41

6.3.2 What You Should Not Change . 41

6.3.3 Globally Defined Elements for Use in All Web Pages 42

6.3.4 Special Elements in Pages Containing Personal Data 43

6.3.5 Special Elements for Sheet Specific Data 46

6.3.6 Special Elements for Tutoring Group Specific Pages 46

6.3.7 Special Elements for Administration Pages 47

6.4 MathJax support . 47

7 Administration via the Web Interface 48
7.1 Administrative Tasks in the Administrator Menu 49

7.1.1 Restart server . 49

7.1.2 Shutdown server . 49

7.1.3 Display available and future sheets . 49

7.1.4 Send message . 49

7.1.5 Delete messages of . 50

7.1.6 Reevaluate participants’ answers for sheet 50

7.1.7 Show Exercise Statistics for sheet . 50

7.1.8 Show Global Statistics . 50

7.1.9 Show Global Statistics, separated per Group, for sheet 50

7.1.10 Show Cumulated Score Statistics . 51

7.1.11 Show Detailed Score Table . 51

7.1.12 Format string . 51

7.1.13 Export people for tutoring group distribution 51

7.1.14 Export people . 52

4 CONTENTS

7.1.15 Export participants of exam . 52

7.1.16 Export results . 53

8 Managing Participants 54

8.1 Registration of Participants . 54

8.2 Distributing Participants into Tutoring Groups 56

8.2.1 Usage of distribute.py . 57

8.2.2 Usage of numbergroups.py . 58

8.2.3 Strategies for Distribution . 58

8.3 Importing Information About the Tutoring Groups 59

8.4 Input of Homework Results by Tutors . 60

9 Managing Exams 61

9.1 Registration for Exams . 61

9.2 Importing Exam Results into the Server . 62

9.3 Displaying Results of Exams automatically . 62

10 Automatic Grading 64

11 File Formats 66

11.1 data/people.txt . 67

11.2 data/groups.txt . 68

11.3 data/groupinfo.txt . 68

11.4 data/exams.txt . 69

11.5 data/messages.txt . 70

11.6 data/generalmessage.txt . 70

12 Internal Data Structures 71

12.1 Overview and Introduction . 71

12.2 Data of Participants . 72

12.3 Data of Groups . 72

12.4 Data of Exercises and Sheets . 72

CONTENTS 5

A Customization Examples 74
A.1 Using IDs of Different Type . 74

A.2 A Course Without Non-Interactive Homework Exercises 74

A.3 A Course Without Interactive Exercises . 75

A.4 Managing Additional Personal Registration Data 75

A.5 Customizing the Look and Feel of the Web Pages 78

A.6 Using OKUSON with Another Language . 79

B Differences Between XHTML and Other Variants of HTML 80

C GPL 81

Copyright and License

This software package may be freely distributed under the terms of the GNU Public License, see
chapter C for the details of that license.
c© (2003,2004) Frank Lübeck and Max Neunhöffer

6

Chapter 1

Overview

The OKUSON package provides tools for offering exercise sheets via the web. It grew out
of programs written and used by the authors since several semesters, when we had to organize
exercise sessions accompanying beginners courses in mathematics. Some of these courses had
more than 1000 students.

The main purposes of this package are

• to enable the use of exercises which allow a mechanical check (multiple choice, yes-no
questions, questions with easy to parse answers like numbers).

• to allow giving individual exercise sheets to participants by providing variants of questions
and letting the system choose an individual selection depending on the participant by a
pseudo-random process.

• to automatize the management of the participants: registration for the exercise course and
exams, delivery of the exercise sheets via the web, collecting the solutions of exercises as
mentioned above via the web, grading of these solutions, etc.

A more detailed account of our motivation and the description of some experiences can be found
in the article:

Frank Lübeck und Max Neunhöffer, Übungsbetrieb über Webservice, Computer
Algebra Rundbrief 31, Oktober 2002

Our technical goal was to provide a system which is based on reliable and easy to install software
on the server side and which only assumes any computer with internet access, any web browser
and any program for printing PDF-files on the side of the participating students.

7

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/preprints/AufgServCARweb.pdf
http://www.fachgruppe-computeralgebra.de/CAR
http://www.fachgruppe-computeralgebra.de/CAR

8 CHAPTER 1. OVERVIEW

1.1 Contents of the OKUSON Package

In the archive of this package you find:

• A collection of program modules for the scripting language Python; some are generic tools,
for example for reading and writing certain kinds of data files, handling of different types
of template files, a built-in web server, etc., and some specialized code for this package.

• A copy of the XML parser RXP by Richard Tobin at the Language Technology Group,
Edinburgh and its wrapper pyRXP for use with Python.

• A complete set of sample web pages (in German and in English) which are probably not
difficult to customize for other courses in other places. (The text on these pages is the only
language dependent part, such that an adjustment of this package to other languages would
be straightforward.)

• A detailed documentation and user guide.

• Example exercises and exercise sheets.

• Checking utilities for OKUSON exercises and sheets.

1.2 How to Use this Manual

• Get started by reading and following chapter 2, then you already have a running server.

• Look at some of the examples of exercises and browse chapters 4 and 5 to learn how to
create the exercises and sheets for the service.

• Chapter 6 describes the customization of the web pages, so read this if you need to adjust
some details.

• Consider some of the remarks in 2.8 to make your installation more secure and robust.
Then you are ready to publish the web site for your course.

• The next few chapters describe some administrative tasks and the corresponding tools in
OKUSON when the course is running.

• In the end there are some chapters on more techical aspects of the package. These are
mainly interesting if you want to add some functionality to the package.

http://www.python.org
http://www.reportlab.org/pyrxp.html

1.3. FEEDBACK 9

1.3 Feedback

We are interested in all comments, suggestions, extensions concerning this package. Please, tell
us if you are using the package for some course. If you create exercises and sheets in OKUSON
format we would be grateful if we could get a copy.

1.4 Acknowledgements

The authors of OKUSON want to thank the following people and organizations, because they
have helped to make OKUSON possible:

• Guido van Rossum, his coworkers, and the Python Software Foundation for creating
Python.

• Donald E. Knuth for creating TEX and lots of others who have helped to build the whole
TEX/LATEX/PdfLATEX system.

• The World Wide Web Consortium (W3C) for standardizing the web, XML, CSS, and lots
of other technologies.

• All the people who have contributed to ghostscript.

• All the people who have contributed to the netpbm tools.

• Richard Tobin for implementing RXP, a validating XML parser.

• Robin Becker and his colleagues at ReportLab Inc. for providing Python bindings for RXP
in form of the Python extension module pyRXP.

• Thorsten Heck from Lehrstuhl A für Mathematik (RWTH Aachen) for contributing statis-
tic functions for the administrator menu.

• Ingo Klöcker from Lehrstuhl A für Mathematik (RWTH Aachen) for contributing patches
and bugfixes.

• Volker Dietrich, Thorsten Heck, Ingo Klöcker, and Axel Marschner for using (and testing)
OKUSON even before the first official release and for the valuable hints and suggestions
during Wintersemester 2003/04.

• Marc Ensenbach from Lehrstuhl A für Mathematik (RWTH Aachen) for contributing the
code for the free form homework input page.

• Ingo Klöcker for contributing the extension framework plus the first few plugins.

• All the others who have been forgotten in this list.

Chapter 2

Installation

2.1 Quick Installation Overview

The following describes briefly how to get the OKUSON package installed on your system.
Probably you want to use this section only to get an overview or as a reminder for later installa-
tions when you already know the process.

All steps are explained in more detail in the next few sections. When you are actually using
OKUSON for a course, you may also want to consider the tips and tricks in 2.8.

1. Make sure you have Python version 2.3 or later installed.
(WARNING for Suse Linux 9.0 users: Some users experienced that OKUSON has
problems with the non-official version of Python, called ’2.3+’, which is shipped with
Suse 9.0. If you have Suse 9.0 we suggest to get python directly from the web site
http://www.python.org; after unpacking the archive python is easily installed
by a standard configure; make; make install sequence.)

2. Download okuson-XXX.tar.gz from:
http://www.math.rwth-aachen.de/˜OKUSON

3. Extract archive with:
gzip -dc okuson-XXX.tar.gz | tar xvf -

4. Compile pyRXP with:
cd okuson/server ; ./makepyRXP

5. Leave the server directory with:
cd ..

6. Copy Config.xml.sample to Config.xml by doing
cp Config.xml.sample Config.xml

and edit it to adjust at least the AdministratorPassword (use cryptpasswd to
encrypt your password) and maybe some other obvious entries in the course section of this
configuration file.

10

http://www.python.org
http://www.math.rwth-aachen.de/~OKUSON

2.2. PREREQUISITES 11

7. Copy the sample web pages to the document root:
cp -r html.sample/* html

(or use html.english/* for the english version)

8. Copy empty data files to places where they belong:
cd data ; cp empty/* . ; cd ..

9. Start server with:
start

(If you get a message about ’port in use’: another progamm is using that port (e.g., another
OKUSON server), change the Port entry of the Config.xml file and try again.)

10. Test server by pointing your browser to
http://localhost:8000/index.html

(substitute the 8000 if you have chosen another number in the Port entry of the
Config.xml file).

11. If things look alright, start customizing for your application: have another look in the
course section of the Config.xml file, adjust details of the web pages (see 6), add infor-
mation on tutoring groups (if applicable, see 8.2), prepare the first exercise sheets (see 5).
A more detailed account of tasks occurring during a semester is given in chapter 3.

12. Note, that during the semester the OKUSON server collects and stores personal data of
the participating students. So you must be careful with the access to these data.

2.2 Prerequisites

Personal

To use the OKUSON package as an administrator you need a working knowledge of the follow-
ing things:

• Editing ASCII files with a text editor.

• Installing and starting programs under UNIX.

• Writing HTML.

• Writing LATEX code for exercises.

In addition you should be willing to learn a few facts about XML (see chapter 4) and XHTML
1.0. And, if you want to know in some detail how things work or if you want to add some
functionality to the package, you need knowledge about the programming language Python.

http://localhost:8000/index.html

12 CHAPTER 2. INSTALLATION

Technical

To run the OKUSON server you need a UNIX system that is accessible from the internet (so,
you may need help from an administrator if you are behind a firewall). The following software
must be installed:

• Python version 2.3 or later. You can test your Python installation by just typing python
in your shell. If it is installed, a short banner with the version appears. You can leave the
interpreter again by typing Control-D.

If you are using Linux, there are probably packages available for your distribution. How-
ever, you can also download the source from http://www.python.org and install it
without having root privileges.

• A C-compiler. OKUSON uses an XML parser coming as a Python extension module,
which is implemented in C. We include this module in the OKUSON distribution. How-
ever, it has to be built with your version of Python being available. Note that your Python
installation must be fairly complete, in some Linux distributions you must install a package
with a name like python-dev or similar.

• LATEX. The texts for questions are processed by TEX, therefore one does need a full featured
installation of TEX/LATEX with PDF support. For example the teTeX-distribution provides
everything necessary.

• ghostscript. Exercise texts are translated to images for use on the web pages delivered by
OKUSON.

• netpbm. A package for image conversions and manipulations, the program pnmtopng
leads to particularly small files for the exercise text images. All Linux distributions proba-
bly have a netpbm package, for other systems see http://netpbm.sourceforge.net.

• A text editor. Input for exercises, sheets and web pages is generated with an ASCII text
editor, which is also used to edit the configuration.

• iconv and pandoc are needed if you want to provide the MathJax version of the exercise
sheets. This option is available since version 1.4, see 6.4.

If you want to use all features of OKUSON, the following additional software packages are
needed:

• A web browser. Not only the user access but also a great deal of administrative tasks are
done via the web interface, using OKUSON’s built-in web server. OKUSON is tested
with a wide range of web browsers, including Mozilla and friends, Opera, Netscape, Lynx,
w3m, and even Internet Explorer.

http://www.python.org
http://netpbm.sourceforge.net

2.2. PREREQUISITES 13

• A PDF viewer like xpdf or acroread. Previews of exercise sheets are generated as
PDF files.

• xloadimage (or some other viewer for images in PNG format) is needed to display test
versions of exercises.

• less is used to conveniently browse log files.

The students participating in the courses organized with OKUSON only need a web browser on
any operating system and a PDF viewer to print out their exercise sheets.

The following is not needed to run an OKUSON server:

• Root privileges. A normal user can install and run an OKUSON server.

• Web server. No web server apart from the one built into OKUSON is needed.

• Data base. OKUSON uses a simple and efficient way of storing data in and reading from
human legible files. No external data base system is needed.

Needed Resources

As an example, we give here some facts and numbers on our use of the OKUSON system for a
big course during one semester (these are estimates, based on experience with previous versions
of the OKUSON programs):

Server Hardware: We use a PC with two Pentium III (1GHz) processors, 2 GB of memory, 40
GB IDE hard disc. However, any recent PC with say at least 256 MB of memory and 100
MB of free disc space and a reasonable connection to the internet could do the job as well.
The workload of the OKUSON server, even for a course with many participants, does not
have a detectable impact on other work done on our machine. This holds as well for CPU
time as for memory usage.

Number of participants: 1200.

Number of submissions of solutions: more than 20000 (this leads to the by far largest file in
the data subdirectory, we expect a file of about 3 megabyte, where our sheets contain 20
interactive questions each. Restarting the server with rereading all these data takes about 5
seconds.

Memory needed by the server process to hold all data in memory: a few hundred kilobytes,
hence neglectible.

Number of page/file accesses: a few million, even with (artificially caused) several thousand
accesses per minute, the machine is still usable for other tasks as well.

14 CHAPTER 2. INSTALLATION

Size of log/server.log file: could grow to a few hundred megabytes. If you are short of
disc space, you can compress the files (with bzip2 they can be shrinked to 3–4% of their
original size), or even throw away older entries.

Number of PDF sheets produced on the fly: in average each sheet is requested between one
and two times in PDF format. That means that during the semester up to 30000 PDF
sheets are requested. The server machine needs about 4 to 5 hours of CPU time for the
corresponding calls to pdflatex — distributed over the whole semester.

2.3 Download

You can download the OKUSON distribution from the following web address:

http://www.math.rwth-aachen.de/˜OKUSON

There you find this manual as a PDF file and a gzip’ed tar archive containing the source code.
You can extract the contents in any place in the filesystem that is convenient by the following
command:

gzip -dc okuson-XXX.tar.gz | tar xvf -

This command creates a directory okuson in the current working directory, under which the
full distribution resides. This directory will be called “the OKUSON home directory” or short
“$OKUSONHOME” in the sequel.

The next step is to compile the pyRXP extension module.

2.4 Compilation

As OKUSON uses the Python extension module pyRXP which builts on the XML parser RXP
written in C, some compilation is necessary. Note that we have patched the parser code in one
small place to allow compilation with the GNU gcc compiler versions 4.0 and above. Assuming
that you have extracted the distribution as described in the previous section, you can compile
pyRXP with the following commands:

cd okuson/server ; ./makepyRXP

After the compilation you should find two files pyRXP.so and pyRXPU.so in this directory.
Otherwise, please look for error messages in the output.

You can now leave the server directory again with

cd ..

The next step is to edit the configuration.

http://www.math.rwth-aachen.de/~OKUSON/

2.5. CONFIGURATION 15

2.5 Configuration

In the OKUSON home directory (the directory okuson which was created during extraction
of the archive) there is a file named Config.xml.sample. It is a sample file for the file
Config.xml, which is the central place for configuration of the OKUSON server. In the
beginning, you should copy the sample file to the real one with the command:

cp Config.xml.sample Config.xml

This file is an XML file (see section 4 for a short introduction) that can be edited conveniently
with an ASCII text editor. The entries of this file are explained in detail via embedded comments.

For a start and to get an impression adjust the first few entries in this file, say CourseName,
AdministratorPassword, Semester, Lecturer, Feedback and maybe Port.

Note that if you have several courses running at the same time and want to use the same machine
for all those OKUSON servers, you need a different port for each instance of the server.

Note that the administrator password is stored encrypted, use the script cryptpasswd in the
OKUSON home directory to find an encryption of your password.

2.6 Getting started

OKUSON has a built-in web server and does nearly all its user interaction via a web interface.

The package contains a set of sample web pages (in German and in English) and to get started just
copy them into the subdirectory html (which is the document root of the built-in web server in
the default configuration). This is done with the following command, issued from the OKUSON
home directory:

cp -r html.sample/* html

(or cp -r html.english/* html)

The stuff that is copied with the abovementioned command consists of

• Style sheets with the extension .css.

• Web page templates with the extension .tpl. These are processed by the OKUSON web
server during startup and then delivered to the web browser.

• A few images with the extension .png.

• A default address line icon favicon.ico.

Note that most of the functionality of the OKUSON server is driven by these web pages. Their
structure and content lead the user through the menu system, organizes input and output from the
server and is therefore essential.

In chapter 6 we explain how to customize these web pages for your course.

16 CHAPTER 2. INSTALLATION

An OKUSON server collects data about participants of your course, submitted solutions of ex-
ercises, tutoring groups, etc. Such data are stored in the subdirectory data. For a start you need
empty versions of the data files. This can be achieved by the following commands:

cd data ; cp empty/* . ; cd ..

This copies the empty versions of the data files to the real versions. Please do not do this later
when your server already has accumulated data!

2.7 Starting and Stopping the Server

You can now try out the OKUSON server by typing

start

in the OKUSON home directory. (Be patient, the first time you call this some images of exercise
texts are generated before the server can start serving.) If everything went well, you see some
log messages, concluding with

[TIMESTAMP] Ready to start service ...

Otherwise, you have to read through the log messages and identify error messages, which start
with “Error:”. You also find the complete log file under log/server.log in the OKUSON
home directory.

If the server was started up successfully, you can test it by pointing your browser to the following
URL:

http://localhost:8000/index.html

where the main menu for students should appear. Note that the “:8000” in this URL tells the
browser to contact the OKUSON server on port 8000. Therefore this of course has to be changed
according to the network port you chose during configuration.

If you want to stop the server, you can issue the command

stop

in the OKUSON home directory. The server finishes the ongoing requests and then terminates
showing a few log messages.

There is also a script

restart

that stops the server and restarts it.

In general, whenever you change something in the servers setup (say, you add or change exercises
or sheets or add some data in the data directory, change the Config.xml file, . . .) you must
restart the server. The advantage of this approach is that you can play around with your changes
before they are published to the outside world by the server (and the server is more efficient,
because it caches and preparses everything it needs during startup).

http://localhost:8000/index.html

2.8. TIPS AND TRICKS: SECURITY, BACKUP, ETC. 17

2.8 Tips and Tricks: Security, Backup, etc.

In this section we mention some details of our own use of this package. Maybe you find some of
these remarks useful.

Setting the Locale

We set the locale for the server correctly, such that date and time strings are displayed according
to the local standards. This is achieved by setting the LC_ALL environment variable to appro-
priately (for example de_DE for German, see the man page of locale on your system, usually
“locale -a” lists the available settings).

Using a Pseudo User

We always create a pseudo user as administrator of the package. This makes it easy to share the
administration between several people without fiddling around with strange file access settings
in private directories.

We close completely (chmod 700 ˜) the access to the pseudo users home directory. Note that
during the semester the OKUSON server collects and stores personal data of the participating
students. So, you must be careful with the access to this data.

Securing the Administrator Access

We always choose a very restricted setting for the machines from which administrator access to
an OKUSON server is allowed, see the entry AdministrationAccessList in the config-
uration file Config.xml.

Note that the administrator of an OKUSON server is quite powerful: in all web forms of the
system where a password (of a participant, a tutor or the administrator) is required, the ad-
ministrator password is considered valid provided the request is coming from a machine with
administrator access. As administrator you can see sheets which are not yet open, submit so-
lutions to closed sheets, change a user password, get any user’s sheets and results and use the
/adminmenu.html functions.

Make Sure Your Server Uses the Correct Time

Since an OKUSON server is very strict about accepting submitted solutions as long as a sheet is
open and showing the grading after a sheet is closed, it is very important that the server uses the
correct local time. Otherwise expect unpleasant discussions with your students, some of them
tend to hand in their solutions in the last minute.

We use the network time protocol (NTP) service on our machines, using the ntpdate program.

18 CHAPTER 2. INSTALLATION

Encrypted access via https

We have not built the https-access into OKUSON because that would mean that you have to
generate new SSL-certificates for every course. Instead we use nginx as a https-proxy server.
With such a proxy server you can either still allow the http-access with the configured port
number, or you can restrict the access to the OKUSON server to the machine running the proxy
server (and maybe some local machines), see <AccessList> in the config file Config.xml.

Backup

Since the data collected by an OKUSON server can be relevant for grades it is important to have
a good backup system for them.

We use a machine different from the one running the OKUSON server for this. It has Paul
Vixie’s version of the cron program installed and we define (as the OKUSON pseudo user)
crontab entries like:

MAILTO=""

*/5 * * * * ˜/okusonsync
10 * * * * ˜/okusonarchive

Here, the scripts okusonsync and okusonarchive are in the pseudo users home directory
and look as in the following examples (using the rsync, tar, gzip and ssh programs, as-
suming that the pseudo user can login from the backup machine to the server machine with ssh
without password).

#!/bin/sh
okusonsync syncronizes an OKUSON inst. using rsync

BACKUPDIR="..."
ORIGSERVER="..."
ORIGDIR="..." # no final ’/’

cd $BACKUPDIR
rsync -a --delete -e ssh $ORIGSERVER:$ORIGDIR .

and

#!/bin/sh
okusonarchive packs whole backup into an archive

BACKUPDIR="..."
DIRNAME="..."

2.8. TIPS AND TRICKS: SECURITY, BACKUP, ETC. 19

cd $BACKUPDIR
fname=‘date +"BACKUP-%Y-%m-%d_%H_%M_%S.tgz"‘
tar czf $fname $DIRNAME

In this setup, every five minutes all files of an OKUSON installation are synchronised to the
backup machine (this takes a split second after the first time). And once an hour all files are
packed and compressed, archiving the precise status of the whole system.

(Furthermore we have a daily backup of all data on all machines in our institute.)

These precautions allow a quick recovery of most or all data after a possible crash or data cor-
ruption of the original server.

Restarting Server after Reboot

Usually, our server machines are never rebooted. But in case that happens for some reason (e.g.,
a power failure) it is desirable that the downtime of the OKUSON service is as short as possible.
For this we use an entry in the crontab of the pseudo user on the server machine like

@reboot /MYOKUSONDIR/server/Server.py &

where MYOKUSONDIR has to be replaced by the full absolute path to the OKUSON home di-
rectory.

Alias for Server Machine

We create an alias for the machine running the OKUSON server. This means putting an extra en-
try with an additional name in the domain name server (DNS). One usually needs root privileges
to do this.

The advantage of the alias name is that it allows a quick move of the whole service to another
machine, in case the server crashes for some reason.

Paperless Courses

With the exception of exam exercise sheets we do not print any paper for courses with OKUSON
exercises. Registration, exercise sheets, announcements, exam results, final grades are only avail-
able via the OKUSON server web interface. Our experience was that no students complain about
this approach.

20 CHAPTER 2. INSTALLATION

Keeping the log file data small

During a course the log file log/server.log grows substantially. Therefore we provide a
small script, which automatically keeps some older versions of the log file and deletes very old
ones. It is called logrotate.py and resides in the scripts directory of the OKUSON
distribution. Usually one will copy it to the log file directory and install it in a crontab like

PATH=$HOME/bin:/usr/local/bin:/usr/bin:/bin
17 3 * * * $HOME/okuson/log/logrotate.py $HOME/okuson/log/server.log

You can configure the number of versions to be kept and the number of uncompressed versions
at the top of the script. It will shift the log files up and delete the oldest.

Chapter 3

Schedule of Events for One Course

In this chapter we go through the complete schedule for one course as we imagine it and describe
the actions one has to perform during the various stages with respect to OKUSON. Of course,
you will have to adapt this to your specific situation. We hope however, that this chapter also
gives a good overview over and a reference for the facilities of the OKUSON system, because it
also contains a lot of references to various sections of this manual.

We proceed chronologically and divide roughly into the following stages: before the semester, at
the begin of the semester, during the semester and after the semester.

3.1 Before the Semester

• Installing OKUSON. See chapter 2. Here one typically adjusts the configuration options
for the course. After this step, the pages are ready for registration. One can already create
the pages with bibliography and general information about the course.

• Creating exercises. It can be reasonable to prepare some exercises already in this early
stage. One should not underestimate the time that is needed to invent decent multiple
choice exercises and enough variants. If no exercises are available from earlier courses we
calculate one day per week for two people to create the exercises for one sheet.

It also cannot hurt to get used to the way exercises and sheets are entered into OKUSON.

It has proven sensible to have a sheet number 0 which does not count in the end for the
grade and which is available already at registration time, such that the participants can
practice to use the system before the actual exercises begin.

21

22 CHAPTER 3. SCHEDULE OF EVENTS FOR ONE COURSE

3.2 At the Beginning of the Semester

• Registration of participants. Once you tell the students the URL of the OKUSON server,
they can register. Obviously, you want to give them a few days for this purpose, before
you distribute the registered participants into small tutoring groups.

• Distribution of participants into tutoring groups. See chapter 8.

• Setup of group information. About at the same time than the previous step you want to
edit data/groupinfo.txt to set up the information about your small tutoring groups.
You can enter the names of the tutors and the time and place of their sessions. Also every
tutor gets a password at this stage.

• Publishing of distribution into tutoring groups. From the moment you enter the distri-
bution data into data/groups.txt and restart the OKUSON server, the distribution is
automatically published via the web pages. Note that the information you entered in the
previous step is shown on the automatically generated pages.

3.3 During the Semester

• Distribute late-comers into groups. Especially in big courses with hundreds of partici-
pants, there always will be some sleepers who only register late. These people automati-
cally appear in group number 0. One has to distribute them by hand into tutoring groups
by appending lines to the file data/groups.txt.

• Create new exercise sheets. Of course, you will create further exercise sheets during the
semester. Note that you can use the attributes openfrom and opento to prepare the
sheets beforehand and let them appear automatically at a given time on the web pages and
let them be closed at another time.

• Let participants query their results. The participants will query their results on a regular
basis. Please note that there is the possibility to put up individual messages on the result
pages via the administrator menu (see section 7.1.4) and to delete them later.

• Tutors enter homework results. There is a page especially for the tutors to type in the
results of the participants in their tutoring group, such that they appear on the result page.
See section 8.4.

• Exams during the course. Especially for beginner’s courses it seems to be a good practice
to organize a written exam at some stage during the semester. The OKUSON server can
help you to organize this by handling the registration of participants for such exams and
by producing the messages for the exams on the result page automatically, once the result
of the exam is imported into the server (see 9).

3.4. AFTER THE SEMESTER 23

3.4 After the Semester

• Exam at the end of the semester. The OKUSON server can help to organize the regis-
tration of participants of exams at the end of the semester, see 9.

• Automatic grading. At this stage one can activate the automatic grading function to pro-
duce output for the result pages of the participants, for example stating whether they get a
certificate about successful participation in the course or not. Note that to use this one has
to learn a little bit of Python programming to customize the automatic grading function to
your needs. One also has to learn a little bit about the internal data structures of OKUSON,
see chapter 12. You can also choose not to use this feature, see the next step.

• Export of results for further processing. Now that all data about results is collected one
can export these via the administrator menu (see 7.1.16). The idea of this step is to be
able to do statistical evaluations on this data. However, it is also possible to use external
tools or scripts on this exported data for example to decide about grading by your own
criteria. You can then import the result of these external tools in form of private messages
to participants via the file data/messages.txt (see 11.5).

• Producing certificates. One can use the export of results to produce certificates of suc-
cessful participation. We use a script called schein.py which can be found in the
scripts directory of the OKUSON distribution to produce certificates. The script is
quite self-explanatory (just start it up without arguments).

3.5 At all Times

• You can at all times use the OKUSON system to publish current information about the
course. Our experience shows that usually no other means of publishing such information
is needed any more.

Chapter 4

Short Introduction to XML

XML is a standard by the W3C consortium (http://www.w3c.org) that allows to define
markup languages for text documents and data such that documents using such a language can
be checked and processed systematically with generic tools.

The OKUSON package uses XML in several places:

• its configuration file Config.xml

• the files specifying exercise sheets (xxx.bla)

• the files containing the interactive exercises (yyy.auf) - but the exercise texts are written
in LATEX, a much more complicated markup language

• the delivered web pages are written with XHTML markup and the templates for these
pages are written with an XML markup

The markup languages in each of these cases are different, but they are almost self explaining
and we provide sample files for all of them.

In this chapter we give a basic introduction to the XML concept. This knowledge may be useful
to avoid syntax errors and to understand the messages of programs parsing an XML file contain-
ing errors and to correct such errors.

4.1 An Example XML Document

Here is a complete XML document. Below we give a short glossary and explain the main con-
cepts of the markup.

24

http://www.w3c.org

4.1. AN EXAMPLE XML DOCUMENT 25

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE MainElt SYSTEM "nowhere.dtd">

<!-- This is a comment. -->

<MainElt>

abc<B yattr=’contains " quotes’>

<EmptyElt />

<Long><![CDATA[
Protected <A> XXX
]]></Long>

<Short>With < entities > and ampersand & </Short>

</MainElt>

An XML document usually starts with some meta-information.

The first line <?xml ... just tells that this is a document with an XML defined markup.

The <!DOCTYPE MainElt SYSTEM "nowhere.dtd"> line specifies the language to
which the markup belongs by pointing to the file name of a so called document type definition
(DTD). It also tells that the actual content of the document is enclosed by <MainElt ...>
and </MainElt>.

The actual content of an XML document is structured by so called elements. They basically have
the form <A>something. Here <A> is called the begin tag and the end tag of the
element and something is the content of the element.

The name of an element, here A, is case sensitive, that is <A> and <a> are different
elements.

There always must be a begin and end tag. A begin tag can contain further information as in
 above. This extra information is called an attribute, where
xattr is the name of the attribute and “val of xattr” is the value of the attribute. An
attribute must always have a value and the specification of the value must be enclosed either in
double quotes (") or in single quotes (’). The enclosing quotes are not allowed within the value.

Contents of elements can themselves contain strings and/or other elements. But elements must
always be properly nested, as in the line <A xattr=... above, for example <A> XXX
 is not allowed.

26 CHAPTER 4. SHORT INTRODUCTION TO XML

Anywhere before or after all elements or in the content of an element there can be a comment.
This is specified by enclosing it in <!-- and -->, the only character sequence not allowed in a
comment is --. A comment is not part of the content of an element.

There can be elements whose content is always empty and which can be written with a combined
begin and end tag as in <EmptyElt />, these are called empty elements.

Sometimes the content of an element is a string which looks like containing XML markup. There
are two possibilities to avoid an interpretation as markup.

The first is demonstrated in the Long element above, its content is enclosed in <![CDATA[
and]]>. Everything between these markers is considered as content as it is. The only string
not allowed within such a CDATA section is]]>. (Note that the line Protected... is just
element content and that there is no syntax error.)

The other possibility are so called entities. They are demonstrated in the Short element of our
example. They start with an ampersand & and close with a semicolon ;. Entities are placeholders
for which a substitution text is somewhere defined. For example, the given entities <, >
and & specify the special characters <>& used for XML markup.

A document type definition (DTD) defines a markup language in the sense that it says which
elements are allowed in a document, which attributes are allowed for each element and how
elements can or must be nested. We don’t explain this in more detail here. The OKUSON
package has a directory dtd containing the definitions of the markup used in this package.

Summary

XML documents contain elements which must be empty or have begin and end tag and which
must be properly nested. Element names are case sensitive. Elements can have attributes which
must have a value and the value must be enclosed in double or single quotes. There are CDATA
sections and entities for specifying content containing the special characters used for XML
markup.

Reference

A detailed specification of the XML standard with useful annotations is given in
http://www.xml.com/axml/axml.html.

4.2 Parsing and Validating XML Documents

The main advantage of using XML for new document formats (like the exercise sheets and
exercises in OKUSON) is that one can use standard tools to read in and process the content
of such documents. Programs which read XML documents and translate it to some internal data
structure are called XML-parser.

4.2. PARSING AND VALIDATING XML DOCUMENTS 27

XML documents that follow the formal rules explained in 4.1 are called well-formed XML doc-
uments. This means, that they can be parsed successfully, however, this does not imply that they
make any sense.

As mentioned above the DOCTYPE entry of an XML file can point to a document type definition.
This defines element names and gives restrictions how elements can or must be nested, gives
some information on the type of content of certain elements, and it defines for each element
which attributes are allowed and maybe some restriction on their values.

An XML document which is consistent with the definitions in its document type is called a valid
XML document. Some XML parsers, like the one we use in the OKUSON programs, can check
if an XML document is valid. Such a parser is called a validating parser. It is useful for the user
who wants to check if a newly created document has the correct XML structure, and it is useful
for the programmer as a general tool for checking the formal correctness of XML input.

As administrative user of OKUSON you can come across the parsing of XML files when you
use the testscripts for exercise and exercise sheet documents (see 5.3 and 5.4) and during startup
of the OKUSON server when the template files for the web pages are cached.

Validating and Checking Well Formedness

In the OKUSON home directory, there is a script xmlvalidate which can be used to validate
XML documents. (With -w argument it is only checked if a document is well-formed.) In case
of an error, a sensible message for removing the problem is printed.

Chapter 5

Creating Exercises and Sheets

The OKUSON package delivers exercises via the web. There are two types of exercises, text
exercises for which written solutions are necessary and interactive exercises whose solutions
are submitted via a web interface and which are automatically graded by the OKUSON server.
The interactive exercises depend on the participant, they consist of a (pseudo-)random ordering
and choice of variants of some questions. Such exercises cannot be specified in a single static
LATEX-file, but some additional information is needed.

While the actual exercise texts must be written in LATEX, the additional structure is added via
some simple XML markup, see 4. We provide for both types of documents templates which you
can just copy and fill in. Although these are almost self explaining we describe the details in this
chapter.

5.1 Scoring the solutions

The scores for the interactive exercises which are graded by the OKUSON server, are by default
computed as follows:

• each correct answer gives +1 point

• no answer to a question gives 0 points

• each wrong answer gives −1 points

• each exercise gives at least 0 points (in particular, negative points are not merged with
positive points from other exercises)

(With these rules participants are encouraged to give no answer instead of a wrong one whenever
they are not sure.)

28

5.2. GENERALITIES ON THE EXERCISE AND SHEET FILES 29

If you combine interactive exercise with other homework exercises, then adjust the scores for the
latter such that you get the intended relation between the two types of exercises. Partial points
(in decimal notation for OKUSON) can be given.

The scores for a correct or wrong answer respectively can be configured by using the
scorecorrect and scorewrong attributes of the QUESTION element, see 5.3, and by
using the configuration options MCScoreCorrectDefault and MCScoreWrongDefault
in the Config.xml file. The minimal score for a complete exercise can be configured using
the mcscorelowerlimit attribute of the EXERCISE element and the configuration option
MCScoreExerciseLowerLimitDefault.

Note however, that it is the responsibility of the user that in the case that the nrquestions
attribute in the EXERCISE element of a sheet file is used and makes OKUSON choose a subset
of questions every possible such subset has the same maximal score!

5.2 Generalities on the Exercise and Sheet Files

The directories containing exercises and sheets for an OKUSON server must be given in the
configuration file $OKUSONHOME/Config.xml, see the <ExerciseDirectories> and
<SheetDirectories> elements. Each directory is given as a DIR element whose content
has the form path/to/dir or path/to/dir|prefix, the prefix is used to distinguish
exercises with the same name from different directories, see 5.4.

The default directories are $OKUSONHOME/exercises and $OKUSONHOME/sheets, but
you can change these and also use several directories for each or merge them into a single direc-
tory.

There are three types of files recognized by OKUSON which are distinguished by their file
extensions as follows:

.tex this is for text exercises, such a file contains just the text of the exercise in LATEX-format.

.auf this is for files containing one or several interactive exercises, these are XML files with
the actual exercise texts written in LATEX.

.bla this if for files which specify one or several exercise sheets. They contain some meta
information like sheet number or submission date and refer to the exercises to include,
some intermediate texts can also be given (in LATEX-format).

Publishing and Changing Sheets

Whenever you have added (or changed) an exercise sheet you must restart the server. (There is
no automatism for this to avoid that participants get incomplete or messed up sheets.)

30 CHAPTER 5. CREATING EXERCISES AND SHEETS

After a sheet is published only small changes are allowed: Do not add or remove exercises, ques-
tions or variants of questions. Whenever you change an exercise text be aware that participants
may have already downloaded the old version.

Whenever you need to correct the given solutions of interactive exercises (see 5.3) you must
reevaluate the solutions submitted so far, see 7.1.6.

Which LATEX Macros?

In the standard setup of OKUSON the following packages and macros are loaded when latex
is called:

• inputenc, with parameter latin1which allows to use German umlauts and other west-
ern European accented characters in the LATEX code

• graphicx for including images in exercises

• amssymb which provides many mathematical symbols, and finally

• macros \Z, \N, \Q, \R, \C, \F as abbreviations for \mathbb{Z}, and so on.

The LATEX templates used for producing the images of exercise texts for the web pages and for
producing the exercise sheets in PDF-format can be found (and adjusted, if you know what you
are doing) in the OKUSON configuration file $OKUSONHOME/Config.xml, see the elements
<LaTeXTemplate> and <PDFTemplate> (or <PDFTemplateNoTable> without inter-
active exercises).

If you just want to add the loading of some further packages or to read in some of your favourite
personal macros, use the <ExtraLaTeXHeader> element of the configuration file.

Note that if the LATEX runs need further input files like for example images, you have to make
sure that LATEX finds them in your filesystem. This can for example be achieved by setting the
environment variable TEXINPUTS. Note that with the standard UNIX version of LATEX you have
to append a colon to the value of TEXINPUTS such that the usual files for LATEX are still be found,
i.e. one has to use a command like this before starting the server:

export TEXINPUTS=’/path/to/additional/TeX/files:’ (for bash)

or

setenv TEXINPUTS ’/path/to/additional/TeX/files:’ (for tcsh)

5.3. WRITING EXERCISES 31

Comments in LATEX-Code

The LATEX-code for exercises is used in the alt-attributes of the images in the HTML version
of the exercise sheets. More precisely, a simple striping of comments is applied: lines starting
with a %-character are deleted, and in other lines everything after the first %-character which is
not preceded by a backslash is removed. The images are generated with the non-striped input.

This behaviour allows to include references for solutions or solutions in comments to the exer-
cise.

Remark on the PDF-version of the Exercise Sheets

The PDF-version of an exercise sheet shows exercises and questions in a table with border lines
between the entries. This should make it look similar to the HTML-version of the sheet, such
that the transfer of the solutions of interactive exercises from the printed version to the web form
is easier.

This LATEX-input for the PDF-version uses the longtable environment and the table entries
are packed in minipages. This seems to be quite robust with the setup mentioned above. We
had reports that sheets could not be compiled by LATEX with exercises using certain environments
from additionally loaded packages. While these are probably bugs in one or some of the involved
packages, it is difficult to find a general strategy to avoid them. As a general rule, when something
goes wrong, try to enclose critical blocks by additional markup, e.g., enclose with {...} or put
text in some boxes.

5.3 Writing Exercises

A text exercise used by OKUSON is written in a separate file with the extension .tex. Put only
the LATEX-code of the exercise text itself in that file.

If the file contains a line that consists exactly of the string “% SOLUTION”, then everything after
that is considered to be a solution to the exercise. Before the closure time of the sheet, only the
part before the SOLUTION line is displayed, after the closure time of the sheet, the full text is
shown. This is a mechanism to publish example solutions to written exercises.

We explain the format of an .auf file by an example that contains all possible constructs. In
practice one may copy the template file

$OKUSONHOME/exercises/empty.auf.template

and fill in the exercise texts.

32 CHAPTER 5. CREATING EXERCISES AND SHEETS

An Example File example.auf

This example demonstrates all types of questions which can be posed in interactive OKUSON
exercises. The example probably almost explains itself, but read the comments below on the
types of questions and how the possible answers are specified.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE EXERCISE SYSTEM "exercise.dtd">

<EXERCISE key="Example1" keywords="">

<ANSWERS type="r">Yes | No</ANSWERS>

<TEXT>
Let $a = \frac{2}{3}$ and $b = \frac{14}{7} \in \Q$ and
set $c = 3a + 5$ and $d = a + 7b$.
</TEXT>

<QUESTION>
<VARIANT solution="Yes">
The numerator of a is 2.
</VARIANT>
<VARIANT solution="No">
The denominator of a is 2.
</VARIANT>
</QUESTION>

<QUESTION>
<ANSWERS type="c">b | c | d </ANSWERS>
<VARIANT solution="b|c">
Mark the number(s) which are integers.
</VARIANT>
<VARIANT solution=" d">
Mark the number(s) which are not integers.
</VARIANT>
</QUESTION>

<QUESTION>
<ANSWERS type="s"></ANSWERS>
<VARIANT solution="30">
What is $3d+c$ (canceled down)?
</VARIANT>
<VARIANT solutionregexp="ˆ4$|ˆ9$|ˆ14$">

5.3. WRITING EXERCISES 33

Give an integer which is the sum of two of the
numbers a, b, c, d.
</VARIANT>
</QUESTION>

</EXERCISE>

As usual for XML documents the first two lines say that this is an XML encoded document
whose document type is described in a file exercise.dtd and whose content consists of an
EXERCISE element.

The document type definition is contained in OKUSONs dtd subdirectory. We now explain
all elements in this example, these explanations include the rules given in the document type
definition.

The EXERCISE element marks one exercise. Its content is a sequence of ANSWERS, TEXT and
QUESTION elements.

An EXERCISE element can have the optional attribute mcscorelowerlimit which changes
the minimal score a participant can get (default is 0, this default can be overwritten with the
configuration option MCScoreExerciseLowerLimitDefault).

TEXT elements are used for text appearing before the actual questions of the exercise. Their
content consists of LATEX code. TEXT elements are considered only, if they are in the first or
last position within the EXERCISE element. A possible first TEXT element is used as prefix
before all questions of this exercise and a possible last TEXT element is used as a postfix after all
questions of this exercise. All other TEXT elements are silently ignored. This behaviour might
be changed in future versions.

There can be at most one ANSWERS element. If it is there it describes a default for the answers
to all questions of this exercise. This element has the form <ANSWERS type="?">? | ?
</ANSWERS> with three possibilities for the type attribute:

"r" (radio button) this is for questions where several possible answers are given and exactly one
of them is correct. In this case the content of the ANSWERS element is a list of strings for
the possible answers which are separated by |-characters. Leading and trailing whitespace
in each possibility is removed (so that >Yes|No< and > Yes | No < are interpreted
the same).

"c" (multiple choice) this is for questions where several possible answers are given, and some
subset of them is correct. This means that one has to select exactly the right subset to score
a point. The syntax for the content in this case is the same as for "r".

"s" (string) this is for questions where the answer is expected as a string (that has to be typed
into an input field). In this case the content of the ANSWERS element should be empty.

34 CHAPTER 5. CREATING EXERCISES AND SHEETS

The QUESTION elements are for the actual questions. Such an element can have the two
optional attributes scorecorrect and scorewrong determining the score for a cor-
rect answer (default is +1, this default can be overwritten using the configuration option
MCScoreCorrectDefault) and a wrong answer (default is−1, this default can be overwrit-
ten using the configuration option MCScoreWrongDefault) respectively. The content of a
QUESTION element is a sequence of at most one ANSWERS element and at least one VARIANT
element. In case there is an ANSWERS element, this must have the same syntax as just described
and it is taken as description of the answers to all variants of the current question. If there is no
ANSWERS element, the default given in the content of the EXERCISE element is taken.

The content of each VARIANTS element is the LATEX code of a question. The correct solution
to this question is specified in one of the attributes solution or solutionregexp, more
precisely the syntax depends on the answer type of the question:

"r" the solution must be given in the solution attribute and be exactly one of the answers
given in the relevant ANSWERS element (again, up to leading or trailing whitespace).

"c" the solution must be given in the solution attribute and be a subset of the answers given
in the relevant ANSWERS element, separated by |-characters.

"s" the solution can be given either in the solution attribute as list of possible answer
strings separated by |-characters (usually just one string), or it can be given in the
solutionregexp attribute as a regular expression such that an answer is correct if
and only if it matches this regular expression. To be precise: the given expression must
follow the syntax documented in the re-module of python, the matching is done with
the search method of regular expression objects in that module. In any case in the
solutions and submitted answers leading and trailing whitespace will be deleted before the
comparison.

Several Exercises in One Document

It is possible to put several exercises as above into one document. In that case the document
should look like

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE EXERCISES SYSTEM "exercise.dtd">

<EXERCISES>

<EXERCISE>
...

</EXERCISE>

...

5.4. SPECIFYING SHEETS 35

</EXERCISES>

(note the entry EXERCISES in the DOCTYPE declaration). There can be an arbitrary number of
EXERCISE elements as explained above.

Checking Exercises

The OKUSON package contains a utility script for checking files with interactive exercises as
well as text exercises. The script assumes that you have the pager program less and the image
viewer program xloadimage (or some other image viewer which you specify with an optional
argument) installed on your computer. The script is called as follows:

$OKUSONHOME/testexercise [-v viewer] file1 file2 ...

where file1, file2 are exercise files with either .tex or .auf extension.

For each .tex file the LATEX code is processed as configured in your OKUSON installation and
the result is converted to an image. If there was a problem with the call of latex, the pager
program less is called with the log file describing the error.

Otherwise, if an image could be successfully generated, this image is shown with the help of the
image viewer xloadimage. Except for the pixel resolution this is the image used to display
the corresponding exercise text to the course participants in the HTML version of the exercise
sheets.

For each given name of an .auf file this utility first parses the file and checks if it is a valid
document. If not, some error message is printed giving the exact position in the file where a
problem occured.

After a successful parsing of the file the utility considers each piece of LATEX code given in
some TEXT or VARIANT element. Each such piece of text is checked as described above for an
exercise text from a .tex file.

5.4 Specifying Sheets

For exercise sheets in OKUSON there is another XML document type definition which we will
also explain by looking at an example. Files of this type must have .bla as their extension.
In these files, interactive exercises are referred to by the value of their key attribute, and text
exercises are identified by their file names.

36 CHAPTER 5. CREATING EXERCISES AND SHEETS

Example of an Exercise Sheet document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE SHEET SYSTEM "sheet.dtd">

<SHEET counts="1"
magic="2003"
nr="0"
name="0"
first="1"
openfrom="12:00_01.09.2003"
opento="14:00_20.10.2003">

<TEXT>The first exercise is interactive. You must send the
solution via the web interface.</TEXT>

<EXERCISE key="Example1" prefix="" nrquestions="2" order="p" />

<TEXT>For the next exercise hand in a written
solution to your tutor. </TEXT>

<INCLUDE file="fractions.tex"/>

<TEXT>Solutions for this sheet are accepted until
Monday, Oct. 20, 2 pm.</TEXT>

</SHEET>

The first two lines tell that the document is an XML document with a document type specified in
a file sheet.dtd. The content of the file consists of a SHEET element.

A SHEET element has several attributes:

nr must be the string of a non-negative integer. All sheets must have different values for this
attribute, which is used to order all sheets numerically.

name (optional, default value is value of nr attribute) this is used as a name of the sheet that
appears for example in the header of the sheet, for example, it could be name="Test
1".

first (optional, default value is 1) fixes the number of the first exercise on this sheet.

counts (optional, default value is 1) determines if this sheet is relevant for the grading of the
course, value 1 means yes and value 0 means no.

5.4. SPECIFYING SHEETS 37

magic string of some positive integer number smaller than 232. This is used in the pseudo-
random choice of questions and variants in the exercise sheets. Vary this value if you reuse
a sheet or exercise to avoid that people with the same identity get the same choices again.

opento this entry determines how long solutions for this sheet are accepted. The value must
be in the format hh:mm_dd.MM.yyyy, with hh the hour in the range 00..23, mm the
minutes in the range 00..23, dd the day of the month in the range 1..31, MM the month in
the range 1..12 and yyyy the year. This time is interpreted as local time on the machine
running the OKUSON server.

openfrom (optional, default is that the sheet is open immediately) entry with the same syntax
as opento. If it is set to a time in the future then participants of the course cannot get
the sheet or submit solutions for it (But the administrator can, so you can check and test a
sheet before the course participants can see it.)

maxhomescore (optional, default empty) entry specifying the maximal number of points a
participant can achieve in his written homework exercises on this sheet. This is used only
for statistical purposes.

starhomescore (optional, default empty) entry specifying the number of optional points
among all points (see maxhomescore). “Optional” points are not considered not manda-
tory and might be given for particularly difficult exercises. This is used only for statistical
purposes.

starmcscore (optional, default empty) same as starhomescore, but for online exercises.

The content of a SHEET element is a sequence of any number of TEXT, EXERCISE and
INCLUDE elements.

The EXERCISE elements are empty elements with some attributes:

key the value must be the same as for a key attribute of some exercise read before by the
OKUSON server.

prefix (optional, default value is the empty string) only matches an exercise with the correct
key which was loaded with the given prefix. (This allows the use of several exercise
directories, which may contain exercises with the same keys.)

nrquestions (optional, the default is the number of questions available in the exercise) the
number of questions from this exercise which should be pseudo-randomly chosen for each
sheet (there can be more questions in the exercise).

order (optional, default value is "p") the value can be either "p" which means that the
pseudo-random choice for the exercise sheets will permute the given questions; or the
value can be "f" which means that the ordering of questions is fixed such that the ques-
tions will appear in the given order on each sheet.

38 CHAPTER 5. CREATING EXERCISES AND SHEETS

The INCLUDE elements are also empty and have an attribute file whose value is interpreted
as name of a file containing a text exercise. There is also the optional attribute prefix with the
same meaning and default as for EXERCISE elements.

The TEXT elements contain LATEX code of text which is included in the exercise sheets before,
between or after the specified exercises.

In rare cases a page break for sheets with several pages occurs in an ugly looking position. Then
you can use a

<TEXT>\mbox{}\newpage</TEXT>

to force a page break between certain exercises.

Specifying Several Sheets in one File

On can put several SHEET elements in one .bla file, but these must be enclosed in a SHEETS
begin and end tag, and the DOCTYPE declaration must specify that a SHEETS element is the top
level element in the document.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE SHEETS SYSTEM "sheet.dtd">

<SHEETS>

<SHEET>
...

</SHEET>
...

</SHEETS>

Checking Sheets

The OKUSON package contains a utility script testsheet for checking sheet files. It pro-
duces a LATEX file and a PDF file of the given sheets containing all questions in all variants, and
containing a list of solutions of all interactive exercises. The layout of the exercises is exactly as
it should look in the PDF versions of the exercise sheets of the course participants.

It may be useful to check the individual exercises first with testexercise, see 5.3.

The syntax for this utility is

$OKUSONHOME/testsheet file1.bla file2.bla ...

For a sheet in <file>.bla with name <name> a LATEX file <file>_<name>.tex and a
PDF file <file>_<name>.pdf are generated, if no error occurs. These contain all variants
of all questions and on an extra page the solutions for the interactive exercises.

Chapter 6

The Web Pages

We hope that the customization of the OKUSON package for your application is possible by
changing the basic entries in the Config.xml file and by adjusting the template files for the
web pages delivered by the OKUSON server. In this chapter we describe how the web pages
work. If you need further changes, please tell the OKUSON authors - maybe there are sensible
generic extensions of the package which fulfill your wishes.

6.1 General Format of the Web Pages

The web pages delivered by the OKUSON server should be valid with respect to a specifica-
tion from the W3C consortium which is called XHTML 1.0 Strict. These are combined
with CSS 2.0 style sheets which are also specified by that consortium, details can be found
in http://www.w3c.org.

Furthermore, we avoid the use of client side programs like java or javascript, plugins or
other features of web browsers which some people tend to switch off.

This may sound quite tedious and restrictive on a first glance, but we see several advantages:

• Participants of the course need very little prerequisites, which are nowadays available on
essentially any computer.

• Strictly following some official standard should guarantee a predictable and good appear-
ance of the pages on all current web browsers and all operating systems.

• Having the page layout information (fonts, font-sizes, colors, border sizes, . . .) in style
sheet files makes it easy to give all pages a uniform appearance and to change this appear-
ance for all pages at once.

• Using the XML variant of the released HTML specifications allows to use standard tools
for processing and checking such files (see chapter 4). Actually, most pages delivered by

39

http://www.w3c.org

40 CHAPTER 6. THE WEB PAGES

an OKUSON server are dynamically created from templates on demand. The templates
are also well-formed XML documents, which allow an efficient preparsing and processing.

• There are developments like MathML which will allow in the future to include mathemat-
ical formulae directly in web pages (currently, we use images for that). Also, a systematic
processing of XML documents on the client side is already possible in new web browsers.
Such extensions will only work in combination with HTML pages which strictly conform
to some official specification.

• We can include in our built-in web server an automatic check of the validity of all delivered
web pages. (Non valid pages are still delivered, but they are saved in temporary files for
debugging and the validator icon is removed.)

The OKUSON package comes with a complete set of sample web pages, they are in the subdi-
rectory html.sample (German) and html.english (English). Of course, the text of web
pages is language dependent. It should be straightforward to produce versions in other languages.

If you want German or English pages for your course, just copy all the sample pages to the web
directory given in your configuration file. Probably only minor adjustments will be needed for
your course, see the next section for more details.

All sample pages are provided as template files with extension .tpl. These are well-formed
XML documents and almost XHTML, except for some extra tags.

The interface between the web pages and the OKUSON server is described by the meaning of
these extra tags and by the names and meaning of input fields which are used in input forms for
the course participants and for the administrator.

6.2 Delivering Static Files

You can deliver other types of files via the OKUSON server, for example PDF- or postscript-
files, static HTML-files and so on. To achieve this just copy them somewhere below your
web page directory (the subdirectory html of your OKUSON directory in the standard con-
figuration). The only condition is that the OKUSON server knows the document type cor-
responding to the extension of the file name. (You can find the predefined file extensions in
server/fmTools/BuiltinWebServer.py, search for TypeDict.)

Example: If you use the standard configuration and have a PDF-file html/Solutions1.pdf
then OKUSON will deliver this file under the address

http://my.computer.org:8000/Solutions1.pdf and tell the browser

that this is a PDF-file.

6.3. HOW TO CUSTOMIZE THE WEB PAGES 41

6.3 How to Customize the Web Pages

All web pages delivered by the OKUSON server are created by filling in template files (with
extension .tpl) dynamically.

The placeholders in the .tpl-files are easy to detect: While all element names in XHTML are
written with lower case letters, the OKUSON placeholders are XML elements whose names start
with capital letters.

There are placeholder elements with a simple global substitution text, and others which denote
some text that depends on a sheet number or on personal data of a course participant. If you
browse through the template files distributed with OKUSON you can probably often guess the
meaning of such an element from its name and location. So, we are not going to describe ev-
erything in too much detail here, but try to give hints how to achieve likely adjustments of the
pages.

6.3.1 What You Can Change Without Problems

• The style sheet files with .css extension to change colors, fonts, font sizes, margins, . . .

• All texts in the pages.

• In particular the top page index.html could be redesigned, but you clearly want to
include links to the main functions of the server: registration, change of registration data,
getting the exercise sheets and result information.

• The favicon.ico icon can be substituted by another one.

6.3.2 What You Should Not Change

• The component names in the HTML forms, these names explain the meaning of the input
data to the OKUSON server. But you can take out or add some components in these forms
as explained below.

• The names of many template files. In particular those in the errors and messages
directories, these files are used by the OKUSON server for error and success messages,
as well as some others which are used for the output of internal functions in the server
(sheet, result, reg..., group..., admin..., exquery). If you change other
file names make sure that you change links to these pages accordingly.

42 CHAPTER 6. THE WEB PAGES

6.3.3 Globally Defined Elements for Use in All Web Pages

The following elements appear in almost all .tpl template files. They are substituted by the
content of the elements of the same name in your configuration file:

<CourseName/>, <Semester/>, <Lecturer/>, and <Feedback/>.

For customization you can use elements of form <ConfigData key="...">, in the config-
uration file $OKUSONHOME/Config.xml and include their content in the web pages via tags
<ConfigData key="..." />.

Furthermore the following elements are generally useful:

<ValidatorIcon/> which includes an image in the images directory with a link to the
validating service of the W3C consortium (it is only included if a page is actually valid).

<CurrentTime/> which is substituted by a string describing the local time of the delivery of
a page. To get this string in a local layout set the environment variable LC_ALL of the user
starting the OKUSON server appropriately (say de_DE for German, see the man page
of locale on your system, often locale -a lists the available settings). It is possible
to further customize the printing format via the element <DateTimeFormat> in your
configuration file (by specifying an argument for the Python function time.strftime).

A few other elements are available on all pages, but they are only sensible in a special context,
we list them shortly, see the sample web pages how they are used. The elements with Group as
part of their name correspond to a distribution of the course participants into smaller groups for
tutoring. If you do not have such groups, ignore these elements. See 8.2 for more details.

<GroupSize number="??"/> number of participants in group with given number.

<GroupDistribution/> sequence of HTML table rows (ID, number of group), sorted nu-
merically or alphabetically by IDs.

<GroupsOverview components="..." nodisplay="..."/> sequence of HTML
table rows, one for each group.

See the comment in the sample file groupoverview.tpl and 8.2 for possible
components. The optional attribute nodisplay must be a comma separated
list of group numbers. The given groups are left out of the display. For examples
nodisplay="0" can be used to suppress the default group 0 in the overview.

<MembersOfGroup number="??"/> comma separated list of IDs of participants in group
with given number.

<AvailableSheetsAsButtons/> row of buttons for all available sheets, for use on query
page for sheets.

6.3. HOW TO CUSTOMIZE THE WEB PAGES 43

<AvailableResolutions/> a select environment showing the resolutions configured
in entry <Resolutions> of the Config.xml file.

<IfIndividualSheets>...</IfIndividualSheets> content is only typeset if the
option <IndividualSheets> in the Config.xml file is set to 1.

<IfNoIndividualSheets>...</IfNoIndividualSheets> content is only typeset
if the option <IndividualSheets> in the Config.xml file is set to 0.

<IfExamRegistered nr="X">...</IfExamRegistered> content is only typeset if
the participant has registered for the exam with number X .

<IfNotExamRegistered nr="X">...</IfNotExamRegistered> content is only
typeset if the participant has not registered for the exam with number X .

<IfHTML>...</IfHTML> and

<IfMathJax>...</IfMathJax> only useful in html/sheet.tpl; the first is for the
display of sheets with images for the exercise texts and the second for sheets with exercises
in HTML coding with MathJax.

6.3.4 Special Elements in Pages Containing Personal Data

There are two pages for registration, one for the actual registration and one for changing the
personal data, see the sample pages registration.tpl and regchange2.tpl. Another
page with personal data is the results page, see the sample page results.tpl.

Registration and Change of Data

The following registration data for each participant are stored by the OKUSON server: a user id,
last name, first name, the number of semesters the participant has studied, (main) topic of studies,
password (has to be given two times when it is first specified or changed), email address, wishlist
of other ids for distribution into tutoring groups and a collection of further data for customization.

Each of these fields is connected with three names used in the web pages. The first is a name of
the input field in the registration form, the second is an XML element name of a placeholder for
the input field code with the known value as default (for changing the registration data) and the
third is an XML element name of a placeholder for the value itself.

Here is a table giving these names.

44 CHAPTER 6. THE WEB PAGES

description form input name input element placeholder value placeholder
user id id <HiddenIdField/> <IdOfPerson/>
last name lname <LastNameField/> <LastName/>
first name fname <FirstNameField/> <FirstName/>
semester sem <SemesterField/> <Sem/>
group number groupnr <GroupField/> <Group/>
group number groupnr <GroupSelection/> <Group/>
main topic stud <TopicField/> <Topic/>
password passwd and passwd2 - -
email email <EmailField/> <Email/>
wishlist wishes <WishesField/> <Wishes/>

custom data persondata.xxx <PersonDataField
key="xxx"/>

<PersonData
key="xxx"/>

In the last row the xxx can be substituted by any string. If a web request contains several values
of a key persondata.xxx then these values will be collected as semicolon separated strings.

Concerning the main topic of studies, one can suggest some common entries which are specified
in the configuration file, see the element PossibleStudies in the config file and the sample
registration web pages.

There are further elements which can be used with the customization data components in case
these should take only a fixed set of values:

<PersonDataRadioButton name="persondata.xxx" value="myvalue" />,
<PersonDataCheckBox name="persondata.xxx" value="myvalue" /> and
<PersonDataSelectOption name="persondata.xxx" value="myvalue"

content="mycontent"/>,

The first two produce an HTML <input> field of type radio button or check box, respectively,
which has the checked attribute set if the currently stored value of persondata.xxx is
myvalue. Note that OKUSON stores only one value for each component name. Instead of
using a component with several input elements use several components which can be switched
on and off independently.

Similarly, PersonDataSelectOption produces an <option> element for use with
<select>. Its content is mycontent, its value attribute is myvalue and its selected
attribute is set if the currently stored value is myvalue. In this case the content attribute is
optional and defaults to being the same as value.

Results Page

On the results page with template html/results.tpl there are also the following elements
which produce personal data:

<Results/> this is substituted by a sequence of HTML table rows, one for each exercise
sheet. The default entries of each row are the sheet name, the number of points in the

6.3. HOW TO CUSTOMIZE THE WEB PAGES 45

interactive exercises and the number of points in the homework exercises. This can be cus-
tomized by an attribute components, for example if you don’t have one of the exercise
types on your sheets. The default corresponds to

<Results components="interactive,homework" />,

the order of results points could be exchanged, or one of the exercise types can be left out.
(Adjust the table header in the template appropriately.)

There are two more options withMaxMCScore and withMaxHomeScore which lead
to the display of the maximal possible score after the score in brackets.

<TotalScore/> the total sum of all points in the interactive and homework exercises.

<MaxTotalScore/> the total sum of all maximal possible points in the interactive and home-
work exercises.

<TotalMCScore/> the total sum of all points in the interactive exercises.

<MaxTotalMCScore/> the total sum of all maximal possible points in the interactive exer-
cises.

<TotalHomeScore/> the total sum of all points in the homework exercises.

<MaxTotalHomeScore/> the total sum of all maximal possible points in the homework
exercises.

<ExamRegStatus nr="??"/> the information, whether a participant has registered for
exam number ??.

<ExamGrade nr="??"/>, <ExamGrades/> the first is substituted by a result string
of a function given in the entry ExamGradingFunction, which is activated by
ExamGradingActive, in Config.xml, the function is called with the given exam
number as argument. The second element is equivalent to a sequence of ExamGrade
elements for all exams. See chapter 9 for more details.

<Grade/> this works similar to ExamGrade but is for the final grading of the course. See the
configuration entries GradingFunction and GradingActive in the Config.xml
file and chapter 10 for more details.

<GeneralMessages/> this is substituted by the content of the file configured in the entry
<GeneralMessageFile> of Config.xml (data/generalmessage.txt by
default).

<PrivateMessages/> this is substituted by message lines collected for the specific par-
ticipant in the file given by the entry MessageFile in Config.xml (default is
data/messages.txt). The format of this file is described in 11.5. You can add and
remove individual messages via the administrator menu, see 7.1.4.

46 CHAPTER 6. THE WEB PAGES

6.3.5 Special Elements for Sheet Specific Data

There are some special elements used with the sheets in HTML format.

<SheetNumber/> number of sheet.

<SheetName/> name of sheet.

<IfOpen>...</IfOpen> content only included if sheet is still open (or if the administrator
overruled with his password).

<IfClosed>...</IfClosed> content only included if sheet is no longer open (and ad-
ministrator did not overrule).

<HiddenIdOfPerson/> and <HiddenNameOfSheet/> hidden input fields for submis-
sion form.

<WebSheetTable/> the actual table rows for the sheet, entries are images with exercise
texts, includes input fields for submission of interactive exercises.

<OpenTo/> and <OpenFrom/> closing and opening times of sheet in readable format (same
format as explained for <CurrentTime/>).

6.3.6 Special Elements for Tutoring Group Specific Pages

All information about tutoring groups is also exported for use on web pages related to one such
group. In 8.3 it is explained how this information can be given to the OKUSON server.

<GroupNumber/> the number of the group.

<GroupTutor/> the name of the tutor of the group.

<GroupPlace/> place where the group meets.

<GroupTime/> time when the group meets.

<GroupEmailTutor/> the email address of the tutor of the group.

<GroupIDs/> a comma separated sorted list (numerically or alphabetically) of the IDs of the
participants.

<GroupData key="..."/> further unspecified data for customization.

6.4. MATHJAX SUPPORT 47

6.3.7 Special Elements for Administration Pages

The administration and tutor pages use templates similar to the other pages described so far. But
since there is little need to adjust the administration pages (explained in chapter 7), we do not
document the helper elements here. They are almost self explaining or else look in the code.
If you want more functions in the admin menu, please, tell us about them. Maybe they are of
general interest and we want to add them to the OKUSON package.

6.4 MathJax support

It is possible to deliver exercise sheets where the exercise texts are encoded in HTML and such
that the formulae are rendered by MathJax (https://www.mathjax.org/). To enable this
feature you just need to offer it to the participants in the file html/exquery.tpl, search for
the string ”MathJax” and uncomment as you wish.

This feature can only be used with graphical browsers with JavaScript enabled.

To make it work you need the programs iconv and pandoc on the machine that runs the
OKUSON server. (The first is probably there, the second can probably be installed via the
package manager of your linux distribution.)

The advantage of this alternative to display the exercise sheets is that the exercise texts can flow
according to the current display, in particular this is a first step to make the sheet pages more
readable on mobile devices with small screen.

The disadvantage is that you can no longer use almost arbitrary LATEX in your exercise texts. You
need to check carefully for all exercises if pandoc translates it to sensible HTML code, and if
not you need to change your exercise texts.

For the OKUSON author’s exercises this doesn’t seem difficult because except for maths formu-
lae only a few LATEX constructs are used (simple itemize, enumerate and description
environment, simple macros like \emph, \textrm, umlauts are written in latin1 encoding).

You can use your own macros, but have to define them in the html/sheet.tpl template,
there are some examples given.

Feedback on this feature is welcome, also hints to a more flexible LATEX to HTML converter
program.

Chapter 7

Administration via the Web Interface

The configuration of the OKUSON system and the creation of exercises and sheets works with
an ASCII text editor. For some other administrative tasks however, the OKUSON server offers
a convenient web interface. You can reach this by pointing your browser to the following URL,
when the OKUSON server is running:

http://localhost:8000/adminmenu.html

This assumes, that the OKUSON server is running on the same machine than your web browser.
If this is not the case, you have to substitute the name of the server machine for “localhost”.
The same applies for the port number 8000, if you have configured your OKUSON server to
listen to another port.

Note that there is an extra configuration option AdministrationAccessList to limit the
IP range of machines, from where the administration pages can be accessed (see the comment in
the Config.xml sample file). The default setting is to allow administrator access only from
the local machine (localhost).

In addition you have to authenticate yourself to the OKUSON server for every administrator
operation. You can do this by entering the administrator password every time you start an opera-
tion. To make live a bit easier we offer a cookie-based login procedure for this purpose to avoid
repeated password input. This works as follows:

To log in you have to visit the URL

http://localhost:8000/adminlogin.html

and type the administrator password. After login you are led to the administrator menu, however,
a secret number for this login session is stored in your browser in a cookie. As long as the
OKUSON server is not terminated and your browser still has this cookie value and you do not
login anew, you can perform administrative tasks without further authentication. There is an
option at the top of the administrator menu to log out again.

Note that the communication between your browser and the OKUSON server is not encrypted,
such that everybody listening along the way could possibly get administrator access. Therefore

48

http://localhost:8000/adminmenu.html
http://localhost:8000/adminlogin.html

7.1. ADMINISTRATIVE TASKS IN THE ADMINISTRATOR MENU 49

you should limit the administrator access via the abovementioned IP ranges and log out after you
are done with administrative tasks.

7.1 Administrative Tasks in the Administrator Menu

You have the following options in the administrator menu:

7.1.1 Restart server

This stops the OKUSON server gracefully and restarts it immediately. This is the same as
launching the restart script in the OKUSON home directory. Note that you have to log in
again for further administrative tasks, as the login session is terminated automatically.

7.1.2 Shutdown server

This stops the OKUSON server gracefully. This is the same as launching the stop script in the
OKUSON home directory.

7.1.3 Display available and future sheets

This option gives the administrator access to a page to display sheets exactly as the page for
regular participants, except, that also future sheets (which have not yet reached their openfrom
date) are accessible.

7.1.4 Send message

With this option one can send an individual message to a certain participant. This message will
appear on the page where the participant queries his results. More than one message is possible.
All messages are stored in the file data/messages.txt. The format of this file is described
in section 11.5.

This messaging system can also be used to automatically produce individual messages for all
participants. In this case it is probably better not to type in the messages via the web interface,
but to append the messages directly to the file data/messages.txt.

Remember the possibility to display a general message on the result pages of all participants via
the file data/generalmessage.txt (see section 11.6).

50 CHAPTER 7. ADMINISTRATION VIA THE WEB INTERFACE

7.1.5 Delete messages of

With this option you can delete a subset of the private messages of one participant. To this
purpose one gets a display of all messages and can choose the subset to delete. Note that this
deletion is not really a deletion but more a “revocation”. A “deleted” message is just repeated
as a new message with a dollar sign $ prepended in the internal data format. The participant of
course does no longer see revocated messages. In this way, no message is ever lost.

7.1.6 Reevaluate participants’ answers for sheet

This options comes in handy if the unfortunate case happens (and it will happen eventually,
believe it or not!) that a “correct” solution was entered incorrectly in the exercise description.
One has to know that the evaluation of the submission of a participant happens at the time of
submission and is then cached in memory (and on disk). Therefore later changes in the correct
solutions in the exercise source files are not considered without manual intervention!

To this end, one can select this option and reevaluate all submissions of all participants for a
certain sheet.

7.1.7 Show Exercise Statistics for sheet

The code for this and the following four statistic functions was kindly contributed by
Thorsten Heck and Ingo Klöcker from Lehrstuhl A für Mathematik, RWTH Aachen.

With this option you can display statistics about numbers of participants. For every variant of
questions the number of participants who have got this variant, the number of participants who
answered the question, and the number of participants who answered the question correctly is
shown with a nice graphical display. Color coding is used to mark extreme cases.

7.1.8 Show Global Statistics

With this option and the next one you can display statistics about the distribution of scores,
separated by tutoring group and sheet, and by homework and multiple choice. The distributions
are shown as total numbers, as percentages, and as histograms.

7.1.9 Show Global Statistics, separated per Group, for sheet

See above.

7.1. ADMINISTRATIVE TASKS IN THE ADMINISTRATOR MENU 51

7.1.10 Show Cumulated Score Statistics

With this option one can display statistics about cumulated scores of participants. This is inter-
esting to track the success of participants during the semester. It can be restricted to one tutoring
group or not. The distributions are shown as total numbers, as percentages, and as histograms.

7.1.11 Show Detailed Score Table

With this option one can display an overview over all participants in a tutoring group with all
their scores.

Comment: The following options are for data exports. They all send a file with content type
“text/okuson” and your browser probably will ask you to save the file, because it does not
know what to do with this content type. In all cases we send sensible default names along.

Attention: If you choose in your browser some helper application to view these exports, it may
very well be that the exported files are written into some global temporary directory like /tmp.
It is of course your responsibility to ensure proper data protection for this at least potentially
critical personal data!

7.1.12 Format string

This is a generic export function. Above this input field there is a description of what can be
exported. Basically the format string is a prototype of the lines to be exported (one line for each
participant) and percentage signs followed by single letters indicate data fields to be exported.
Between these percentage expressions arbitrary text can be entered and will be exported exactly
as entered.

This new generic export function probably makes all the following ones unnecessary.

Note that there is a generic sorting and selecting script (sortselect.py) in the scripts
directory of the OKUSON distribution. It explains itself if it is called without arguments. To-
gether with the UNIX standard utility uniq the generic export function and that script it should
be possible to conduct nearly every statistical analysis necessary.

7.1.13 Export people for tutoring group distribution

With this option you can export data about all registered participants for the purpose of dis-
tributing them into smaller tutoring groups. Usually this will be a semi-automatic process that is
described in chapter 8 below.

52 CHAPTER 7. ADMINISTRATION VIA THE WEB INTERFACE

7.1.14 Export people

With this option you can export the personal data of all registered participants into a single ASCII
file.

In the file exported there is — after some comment lines beginning with a #-character — one
line for every participant. This line comes in the same format as the file data/people.txt
(see 11.1), except that there is an additional field, namely the number of the group in which the
person is.

This means, that there are three reasons, why you should not copy the output of this export
directly to the file data/people.txt. Apart from making no sense at all, you have to remove
the last data field with the group, and, what is probably worse, all colons and newlines that may
be contained in personal data fields are deleted or replaced by a space respectively, whereas in
data/people.txt special precautions are taken to store such data (see chapter 11).

So the fields in peoplelist.txt are separated by colons and arranged in the following order:

ID
last name
first name
semester number
studiengang
encrypted password
email address (possibly empty)
wishlist as typed in
custom personal data
group number (0 if not in any group)

You can choose among a number of orderings. There seems to be no immediate application of
this export facility, but it offers easy access to the available personal data for private scripts and
standard UNIX text tools.

Our intention for this export is to be able to access the current data in the server easily with
private scripts.

7.1.15 Export participants of exam

This export facility is to get information about the registration situation for exams. Therefore
the exported data is restricted to ID, name, first name and the time stamp of the registration.
The file format is as follows: For every participant there is one line that contains the abovemen-
tioned fields, separated by colons. See chapter 9 for a description of how to organize exams
conveniently.

7.1. ADMINISTRATIVE TASKS IN THE ADMINISTRATOR MENU 53

7.1.16 Export results

This export facility produces information about all the results of the participants, including mul-
tiple choice exercises, homework exercises, and exams. The data format is as follows: There is
one line for each participants with fields separated by colons. The fields and their order can be
read off the following table:

id
last name
first name
group number
total score in multiple choice exercises
total score in written homework exercises
total score
generated message from automatic grading function
grade from automatic grading function
a string of all exam results and grades, separated by semicolons
for every sheet one more field, see below

Note that the fields generated by automatic grading are there but empty, if automatic grading is
switched off. For each exam the participant has a data field, there are two parts of information
exported (separated by semicolons): the score in the exam and the grade, as calculated by the
automatic grading function for exams. If a participant has a data field for some exam (for example
if he has registered for this exam), but did not take part, the string “-;0” is exported as his result
for that exam. If automatic grading of exams is switched off, the grade exported is always 0. So
the exams data field is an alternating list of entries, all separated by semicolons, for each exam
an entry for the score, followed by an entry for the grade. At the end of the line, there is for
every closed sheet a field with sheetname, multiple choice score and homework score, separated
by semicolons.

The obvious application of this export is at the end of the semester to produce certificates for
successful participants.

Chapter 8

Managing Participants

8.1 Registration of Participants

With respect to registration there are two entries in the Config.xml configuration file. If the
content of <RegistrationPossible> is 1 then participants can register themselves. If it
is 0 further participants can only be registered by the administrator. By default, participants
can later change all the data given during registration (except for their ID). Using the element
<KeptData> the change of certain data can be disallowed, see the comments in Config.xml
for details. This can be useful if data were imported from other source (e.g., the university
administration).

Once you start the server and registration is allowed, participants can register via the OKUSON
web interface without any further administrational interaction.

Among the sample web pages coming with OKUSON the template files registration.tpl
and regchange2.tpl are used for the initial registration and change of personal data, respec-
tively.

Before you start the service check if the personal data collected on these pages are what you
need in case of your course. It is advisable to ask for all data you may need later, e.g., for the
grading and a possible certificate in the end of the course. In chapter 6 we have explained the
customization of the web pages, in particular in section 6.3.4 we mentioned some customization
variables you can use for additional data. On the other hand you can just delete input fields in
the registration pages which you do not need.

The most important datum of a registration is the ID of the participant, which cannot be changed
later. All data concerning a specific course participant are stored by OKUSON together with the
corresponding ID.

54

8.1. REGISTRATION OF PARTICIPANTS 55

IDs of Participants

In our university there is a natural ID for each student (the ”Matrikel” number) which is often
used. If you want to use other types of IDs, e.g., login names of the students choice, you can
customize the configuration option IdCheckRegExp in Config.xml.

Visitor IDs

Sometimes it is useful to have some visitor IDs which can be used with arbitrary password and
which do not appear in the export of user data or result statistics. OKUSON has the configuration
option GuestIdRegExp for specifying such IDs.

Registration using external data

The scripts subdirectory of OKUSON contains a script RWTHCampus2people.py. This
does the registration of participants using data which come from the university administration
(the Bachelor students have to officially sign in for all their courses, we want to use the data and
avoid a double registration). We use the <KeptData> entry in Config.xml to disallow the
change of imported data.

While this is a specific script for usage at RWTH Aachen slight variations of it may be useful in
other places.

Registration with validation

If you have problems with spam registrations there is a possibility to add a validation step to
the registration. In that case users have to submit a valid email address during registration. To
activate this

• change the value of the <ValidateRegistration> element in the Config.xml file
to 1,

• adjust the value of the <ValidateRegistrationMail> element in Config.xml
(name of lecture and URL to the OKUSON server),

• change the text in html/registration.tpl to make clear that a valid email-address
is needed for validation of the registration.

• maybe further restrict the email addresses allowed for validated registration by specifying
a regular expression in the <ValidEmailAddresses> element of Config.xml.

56 CHAPTER 8. MANAGING PARTICIPANTS

After restart of the server, users can only pre-register via the registration form. They then get an
email with a validation link. If they click that link or copy it to their browser, the registration will
be finished.

A corresponding temporary file (by default data/people.txt.tmp) can be removed from
time to time if it was not accessed for a while.

8.2 Distributing Participants into Tutoring Groups

We always accompany our exercises with regular meetings in a number of smaller groups with
an assigned tutor. (The tutors check and grade the written solutions of non-interactive exercises,
and they discuss all exercises with their group.)

You can tell the OKUSON server about the membership of a course participant in a tutoring
group by numbering the groups (starting from 1, the number 0 is a default number for people not
(yet) put in one of those groups), and by appending a line of the form

someid:groupnumber

to the file data/groups.txt (more precisely, the file configured by GroupFile).

But, as you may know, for bigger courses, this distribution of the participants into tutoring groups
is not easy, at least if you want to fulfill wishes of participants to be together with some others.
OKUSON helps you to complete this task in the following ways:

First (already at registration time), participants can enter a wishlist of other students’ IDs with
whom they want to be in the same group. OKUSON offers one input field, where participants
can basically type in IDs of other participants, usually separated by commas or whitespace.

Secondly you can export all registered people via the administrator pages (see 7) using the button
“Export people for tutoring group distribution”. You have the choice of exporting all participants
together (option “all together”) or separated by their course of studies. Also you can choose
the data fields by which the output is sorted. The result of this export is an ASCII file in a
certain format (see 8.2.1), that contains basically the IDs, the first and last names, the semester
number, the course of studies, the wishlist and possible additional data you may collect of each
participant.

This file is sent to your web browser with the content type text/okuson. This usually means
that your browser — not knowing this type — asks you, where it should store this file. It should
offer the default file name peoplelistforgroups.txt. Once you have saved this file
on your hard disk, you can use the following two scripts in the scripts directory of your
OKUSON home directory: distribute.py and numbergroups.py. The first does a dis-
tribution of participants into groups thereby fulfilling the wishes of participants as far as possible
and forming as many groups as you order. The second script just takes the result and brings it
in a format suitable to reimport it into OKUSON. The result of numbergroups.py can be
appended to data/groups.txt. After the next server restart the new information is available
to the OKUSON server.

8.2. DISTRIBUTING PARTICIPANTS INTO TUTORING GROUPS 57

8.2.1 Usage of distribute.py

The input to distribute.py is an ASCII file with one line for each participant (plus extra
lines, see below). Each such line has to be in the following format:

id:last name:first name:semester:studiengang:wishlist:persondata

where wishlist is a comma separated list of valid IDs and the persondata in the end means
a string describing the customization data (as comma separated strings of concatenated key-value
pairs xxx,xxxval). Lines beginning with a hash # character are ignored as comments. Empty
lines play a special role, they separate so called “parts” of the input. If for example you want
to form groups for participants of some course of studies separately, you can just separate the
lists of participants by empty lines, which is also done by the OKUSON server, if you select the
option “by course of studies” during export. Via the sorting options it is also easy to split into
parts by other criteria.

The output of distribute.py has the same format, except that empty lines now separate the
groups into which the script has divided the participants. Some comment lines have been added.

What does distribute.py do?

First it calculates for each part the finest equivalence relation with the property, that all wishes
(within the part) are fulfilled in the sense, that any two participants where one had the other on
his wishlist, are in the same equivalence class.

Then it distributes these equivalence classes into a number of groups you have specified on the
command line (see below). To this end it uses the following simple algorithm: It always puts the
biggest equivalence class left into the smallest group available. This algorithm works amazingly
well, because usually you will have lots of people without wishes, which help to fill the groups
in the end. Occasionally there will be one equivalence class which is too big, thereby making
one exercises class which is bigger than all the others. See below how to overcome this problem.

distribute.py is called with the following command line arguments:

scripts/distribute.py INPUTFILE OUTPUTFILE GROUPS {GROUPS}

where INPUTFILE is replaced with the name of the input file, OUTPUTFILE is replaced by
the name of the output file and these two file names are followed by as many numbers as there
are parts (separated by empty lines, see above) in the input. Each number specifies, how many
groups should be formed out of the corresponding part.

Note that the output file is overwritten and therefore should be different from the input file.

The information about the equivalence classes is preserved in the following way: between any
two equivalence classes within the same group a comment line is added, indicating the delimiter
between equivalence classes.

58 CHAPTER 8. MANAGING PARTICIPANTS

8.2.2 Usage of numbergroups.py

The usage of numbergroups.py is even simpler. It is called in the following way:

scripts/numbergroups.py INPUTFILE OUTPUTFILE [FIRSTGROUP]

where INPUTFILE is replaced with the name of the input file, OUTPUTFILE is replaced by the
name of the output file, and FIRSTGROUP is an optional argument which selects the number of
the first group and defaults to 1.

The script numbergroups.py just reads in the input file, reads empty lines as group delim-
iters, ignores comments and writes out the group distribution in the format the OKUSON server
needs it in the file data/groups.txt. The import works just by appending the result of
numbergroups.py to the file data/groups.txt and restarting the server.

8.2.3 Strategies for Distribution

We found that often the following strategy was good enough:

1. Export people “all together”.

2. Run distribute.py once with the number of groups you want to have.

3. Look at the output on the screen and decide whether the group sizes are suitable.

4. Run numbergroups.py to prepare the input for OKUSON.

5. Append it to data/groups.txt and restart the server.

Because of the nature of this procedure with many intermediate steps you can do manual inter-
ventions at all stages. For example you can divide the output of the OKUSON server by hand
in a number of parts which are handled separatedly. Or you can play around with the number
of groups (note that using 1 for the number of groups basically gives you statistics about the
equivalence classes). In this way, you can overcome problems with too big equivalence classes
by manually separating them into different parts. At last you also can look at the output of
distribute.py and change the distribution before importing it into the OKUSON server via
numbergroups.py.

Note finally that you can also separate different parts of the input into different files manually and
run the scripts on these files separately. In the end you can put everything together by choosing
the FIRSTGROUP argument of numbergroups.py accordingly.

We hope that this whole procedure is flexible enough for all situations.

8.3. IMPORTING INFORMATION ABOUT THE TUTORING GROUPS 59

8.3 Importing Information About the Tutoring Groups

If you are using the distribution of the course participants into tutoring groups, there are pages
among the OKUSON sample web pages for publishing information on each group: number,
meeting place and time, tutor, contact address and also further infos that can be freely cus-
tomized, see the templates groupoverview.tpl and groupinfo.tpl. There is also an
encrypted password for each group. This can be used (and changed) by the groups tutor for send-
ing grading results of non-interactive homework exercises to the OKUSON server, see below.
The placeholder elements in these template files are described in 6.3.6.

The import of these data for the existing groups is by appending one line per group to the text
file data/groupinfo.txt (more precisely, the file configured in entry GroupInfoFile).
Each such line is a sequence of entries separated by colons :. The entries are interpreted in the
following ordering:

number number of the group, a positive number.

passwd encrypted password for the tutors input access.

tutor name of tutor.

place place of group meeting.

time time of group meeting.

emailtutor email address of tutor.

maxsize maximal number of participants in group.

groupdata additional entries for customization.

Note that you could give pieces of HTML code containing appropriate links as some of these
entries. Note also that entries are separated by colons, within the entries you can encode a colon
by typing \d instead.

The second last entry comes into play, if one uses the feature, that participants can choose the
number of their tutoring group during registration (see the explanations in the Config.xml
file).

The last entry groupdata must be specified as comma separated list of concatenated key-value
pairs. Example: you can store that the lecture hall for a group has a blackboard and no beamer
by an entry like:

...:blackboard,yes (2 big ones),beamer,no

Such information can be used in the template web pages via tags

<GroupData key="blackboard"/> and <GroupData key="beamer"/>.

60 CHAPTER 8. MANAGING PARTICIPANTS

8.4 Input of Homework Results by Tutors

There is a web page /tutors.html where tutors can request input forms for homework ex-
ercise results, either for a particular member of the group and all sheets, or for a particular sheet
and all members of the group. The group’s password is needed for accessing these forms. This
password can also be changed via this request page.

Each result must be given in form of a total score and (maybe optionally) a comma separated
list of partial results. You may specify the optional maxhomescore attribute for your exercise
sheets for later use with grading or statistics.

The above mentioned input page allows tutors only to enter points for participants in their own
group. If this is too hard a restriction for your purposes, you should consider using the free input
form which is available under /HomeworkFree. It allows not only a less redundant input in
case you have several participants handing in one sheet as teamwork but may also be configured
such that every tutor is able to enter points for any participant of the course. In order to keep the
system ”safe”, this feature is not enabled by default; if you want to use it, be sure to change the
RestrictToOwnGroup value to no in the main configuration file.

The free input form presents several rows of input fields. The fields in the first column accept
comma-separated lists of ID’s (in case one sheet has been handed in as teamwork) or one single
ID, the following two columns for entering points are the same as in all other such input forms.

After submitting the form, the entered data is checked. If any error occurs (unknown sheet
number, ID, etc.), the wrong entry is marked by a red star and the tutor is asked to correct it.
Otherwise, the form is displayed once again (without any editing possibilities) and the tutor is
asked to confirm the data. Following the confirmation, the data is stored in the system.

Chapter 9

Managing Exams

Unfortunately, we have no idea how OKUSON can help with checking and grading written exam
exercises.

Nevertheless, there is functionality for the administrational aspect of exams, this is explained in
this chapter: Registration for exams, importing exam results in the OKUSON server, displaying
the results.

OKUSON handles some information about exams for each participant. Exams are numbered
from 0 to a certain limit, which is 23 at the moment. The information stored is basically the
fact, whether a certain person wants to take part in the exam, and if so, the result in the form of
one non-negative integer score as the final result and an additional string, which can be anything,
for example intermediate results. The OKUSON system will only store this string and will not
further process it, except the user supplies functions to do so (see below).

The result of exams can enter the automatic grading decision at the end of the course (see 10).

9.1 Registration for Exams

There is already a web page prepared to organize the registration of participants for exercises. It
is stored in the template “examregistration.tpl” in the root directory of the web pages
(usually “html” in the OKUSON home directory).

In the default setting this page is not linked from anywhere else, such that participants will not
visit this site accidentally. Note however, that one can reach this page by typing in the correct
URL right from the beginning of the course. Therefore the form for submission of the registration
is commented out, such that it does not appear on the page. Of course, a participant knowing the
details can submit registrations “by hand” anyway.

To activate the registration, one has to do the following:

• “Comment in” the form in examregistration.tpl.

61

62 CHAPTER 9. MANAGING EXAMS

• Edit the attribute value for “nr” in the input field in the line marked “***please
edit***” to the exam number, for which you want registration.

• Delete the string “***please edit***” in the same line.

• Edit the text around this to your needs.

• Activate the menu entry “Klausuranmeldung” in the main menu in the file index.tpl.

• Restart the server.

From the moment you do the last step, participants can register (and deregister) for the exam in
question.

The collected information is stored in the file examregistrations.txt in the data direc-
tory. However, you do not need to know its format, because there is export functionality for these
registration information via the administrator menu (see section 7.1.15).

Please note again that even if you take the registration page from the web pages, people knowing
the details can still submit registrations and deregistrations “by hand”.

9.2 Importing Exam Results into the Server

The results of exams are put directly into the data file exams.txt in the data directory. See
section 11.4 for the file format. This file will never be written by the OKUSON server. Therefore
it is save to append data while the server is running. After a restart, everything is available within
the OKUSON system.

Note that without further intervention, no result is displayed publicly. However, in the export
option for results (see 7.1.16) the data appears.

9.3 Displaying Results of Exams automatically

To display the exam results on the usual result pages, there are two special configuration options.
The basic idea is, that the administrator of the OKUSON server supplies a function that produces
the output that should appear on the web page.

This works as follows: There is a configuration option ExamGradingActive. The automatic
exam grading is active if and only if the value of this integer is non-zero. For this case, there
is the configuration option ExamGradingFunction, which contains a Python function with
the name “Grade” that is called with two arguments, the first being an object of type Person
(see chapter 12), containing all the personal data of one participant, including information about
exams (in the exams entry). The second argument is the number of the exam in question. This
function is called when the result page for a participant is generated for all exams that participant
took part in.

9.3. DISPLAYING RESULTS OF EXAMS AUTOMATICALLY 63

The Grade function has read access to the personal and exam data and has to return a pair. The
first entry of this pair has to be a string, which is put in a “<p> </p>” environment on the web
page, if you use the <ExamGrades/> element. The second entry is a grade, which is later
exported in the result export. This grade has to be a number (int or float) and is converted into a
string during export.

Note that of course you can refrain from using this feature altogether, produce the output for the
results display externally with your own tools and import this into standard private messages in
the file message.txt (compare sections 7.1.4 and 11.5).

Chapter 10

Automatic Grading

At the end of the semester there will usually be some kind of grading procedure. This can be
as simple as deciding which participant passes the course and gets a certificate of participation
(“Schein”) or can be more involved like coming up with a “grade” of some sort.

Usually the data going into such decisions is known to the OKUSON system (scores from mul-
tiple choice exercises, scores in non-interactive exercises, results of exams). Therefore it seems
natural to give the task of grading to the OKUSON system as well as giving out the information
about their results to the participants.

There are two ways to do this: The first is using the automatic grading facilities of OKUSON
described in this chapter and the second works by exporting all the result data as described in
section 7.1.16, using external tools for the decision and reimporting the information back into
the OKUSON system as private messages (see sections 7.1.4 and 11.5).

Due to the big variety of possible grading algorithms, one has to learn to write a little Python
function to use automatic grading.

There are two configuration options for automatic grading: GradingActive and Grading-
Function. The first is integer valued and the automatic grading functionality is switched on if
and only if its integer value is non-zero.

Once automatic grading is switched on, the entry GradingFunction is used (the sample con-
figuration file Config.xml.sample in the OKUSON distribution has an example function,
which is shown below at the end of the chapter). It has to contain a Python function Grade,
which takes 5 arguments: An object of type Person (see 12), then a list sl for the available
sheets, the total score of the person in all multiple choice exercises, the total score in all written
homework exercises, and finally a list of integers of length 24, where each number corresponds
to one exam, numbered from 0 to 23. A value of 0 stands for either 0 points or for the fact, that
this person did not take part in the exam. This list is for programmer’s convenience only, as this
information is contained in the personal data of the person anyway. There one can also read off,
whether the person actually did take part in a certain exam or not.

The function has to return a pair, where the first entry is a string which is put between a “<p>
</p>” on the results page, if the element <Grade /> is present in the template file. The second

64

65

entry is a number (float or integer), that is stored as the grade. It is later exported along with the
other results. You can for example use the grade as a flag, whether somebody passed the course
or not.

With the automatic grading facility you can devise nearly arbitarily complicated conditions for
the grading decision. You have read access to all personal data and the whole OKUSON system.

Note however that it is strictly forbidden to change any global data in the OKUSON server.
The reason for this is that the server is multi-threaded, every web access has its own thread and
any change in global data has to be protected by certain locking mechanisms to avoid possible
internal data corruption. Bugs coming from such misuse will show up only occasionally and will
be extremely hard to find!

Here is the example function from the example configuration file:

def Grade(p,sl,mcscore,homescore,exams):
’’’This function decides about the grade of person p.

sl is a list of sheets as returned by the function
SheetList in the Exercises module. mcscore is the
total sum of points in all closed sheets with counts
value equal to 1. homescore is the total sum of
points in the homework and exams is a list of length
at least 24 with one score corresponding to each of
24 exams (indexed from 0 to 23). If the participant
did not take part in an exam, there is a zero in the
corresponding position.’’’

if (mcscore+homescore >= 240 and
(exams[0]+exams[1] >= 50 or
exams[2] >= 50 or
exams[0]+exams[2] >= 50 or
exams[1]+exams[2] >= 50)):
return (’Sie bekommen den Schein.’,1)

else:
return (’Sie bekommen leider keinen Schein.’,0)

Chapter 11

File Formats

The data files of the OKUSON system all reside in the data directory in the standard configu-
ration. They are all extended ASCII files (usually with the ISO-8859-1 8 bit encoding) and have
the following standard format:

• Lines are separated by newline characters (ASCII code 10), i.e. UNIX line ends.

• Empty lines are ignored.

• Lines where the first non-whitespace character is a hash character “#” are treated as com-
ments and are ignored.

• Every line that is not ignored stands for a data record.

• For each file there is a field separating character (usually a colon “:”) and one can access all
the fields in a line simply by splitting the line at all occurances of the separating character.
If the value of a data field actually contains the separating character it is protected as
described below.

• After reading an input line, the following procedure is applied to every data field (after the
split):

replace \d by the delimiter
replace \n by a newline
replace \r by a carriage return
replace \c by a hash mark #
replace \e by a backslash

• Before writing an output line, the following procedure is applied to every data field (before
joining fields with the separator in between):

66

11.1. DATA/PEOPLE.TXT 67

replace every backslash by \e
replace every delimiter by \d
replace every newline by \n
replace every hash character # by \c
replace every carriage return by \r

• The last two points ensure that data lines contain delimiter characters only between fields
and that backslashes are followed only by one of the characters “cdenr”. Therefore, arbi-
trary string values can be put into data fields within one line.

• There is one exception for the empty list: It is stored as the special value “\0” (a backslash
followed by a zero) to distinguish it from the list containing exactly one empty string.

• In every file one of the fields is the ID that identifies the person to which the data belongs.

• There is the following principle: New data is always appended to the file and never
deleted. Therefore, at any given time, the last value with a certain ID is the one that
counts. The reason for this is that appending is more efficient than writing the file anew
and that it is guaranteed, that every piece of information in the memory of the server is
also saved to disc at all times.

Whereas the format of the file makes it easy to use external standard UNIX tools to access all
the information, the last principle somehow ruins this, because one always has to sort out the last
valid value. We strongly recommend to use the export facilities described in sections 7.1.13 to
7.1.16 to access data, because they do not impose this difficulty.

However, we see certain applications (mainly data import) to access the files described in this
chapter, therefore it is worthwhile to document the format.

Note that the fundamental idea of data management in the OKUSON system is, that data is read
in at server startup from the files in the data directory. The data is then stored in internal data
structures. As mentioned above, when more than one line in a file corresponds to the same ID,
the last one counts. During the runtime of the server the data is kept in memory and on disc.
Every single change is first appended to the data files on disc and then entered into the data
structures in memory, such that consistency even after a server breakdown is guaranteed.

11.1 data/people.txt

The general comments about file formats at the beginning of this chapter apply also to
data/people.txt. The delimiter character for this file is a colon “:”.

Each line of the file corresponds to the personal data of one participant and contains the following
data fields (in the third column some comments about the data type are displayed):

68 CHAPTER 11. FILE FORMATS

Name of field Description Data type
id Identification string
lname Last name string
fname First name string
semester Number of semester non-negative integer
studies Studiengang string
passwd encrypted password string as from crypt
email email address string
wishlist ids of other people string
persondata custom personal data string

11.2 data/groups.txt

The general comments about file formats at the beginning of this chapter apply also to
data/groups.txt. The delimiter character for this file is a colon “:”.

Each line of the file corresponds to the group membership data of one participant and contains
the following data fields (in the third column some comments about the data type are displayed):

Name of field Description Data type
id Identification string
nr Number of group the person is in non-negative integer

11.3 data/groupinfo.txt

Note that usually you will have to edit this file by hand at the beginning of your course to set up
the information about your tutoring groups. Therefore it is particularly important to document
the format of this file.

The general comments about file formats at the beginning of this chapter apply also to
data/groupinfo.txt. The delimiter character for this file is a colon “:”. Remember to
quote possible colons “:” by “\d” for example in time values like “17:30”!

Each line of the file corresponds to the group data of one tutoring group and contains the follow-
ing data fields (in the third column some comments about the data type are displayed):

11.4. DATA/EXAMS.TXT 69

Name of field Description Data type
nr Number of group non-negative integer
passwd Password for this group string
tutor Name of tutor string
place Place of group session string
time Time of group session (remember “\d” for “:”!) string
email Email address of tutor string
maxsize Maximal number of participants non-negative integer
groupdata Additional customization data string

The format of the groupdata entry which encodes key-value pairs is explained in 8.3.

Note that in the case of this file the group number is the identifying field such that if more than
one line with the same group number appears, only the latest counts.

11.4 data/exams.txt

Note that after an exam you will have to supply the content of this file from outside the OKUSON
system. Usually you will have to type in the data from the external grading procedure of the
exam. Therefore it is particularly important to document the format of this file.

The general comments about file formats at the beginning of this chapter apply also to
data/exams.txt. The delimiter character for this file is a colon “:”.

Each line of the file corresponds to the exam information of one participant for one exam and
contains the following data fields (in the third column some comments about the data type are
displayed):

Name of field Description Data type
id Identification string
examnr Number of exam (zero based) non-negative integer
totalscore Total score of participant non-negative integer
maxscore Maximal score in this exam non-negative integer
separatescore A string to store scores from parts of the exam string

The last field can be used for arbitrary purposes. Especially the automatic grading facilities of
course have access to this information. The second last field is not used within the OKUSON
system as of this writing.

70 CHAPTER 11. FILE FORMATS

11.5 data/messages.txt

The general comments about file formats at the beginning of this chapter apply also to
data/messages.txt. There is however one exception, namely that all lines corresponding
to a certain ID count, not only the last. Messages are therefore never deleted but only “revoked”:
If a message is repeated with a dollar sign “$” prepended, it will no longer be displayed on the
result page of the participant.

The delimiter character for this file is a colon “:”.

Each line of the file corresponds to one personal message for one participant and contains the
following data fields (in the third column some comments about the data type are displayed):

Name of field Description Data type
id Identification string
msg Personal message string

11.6 data/generalmessage.txt

The format of this file is an exception. Its content is put into the result page instead of a
<GeneralMessages /> element in the template for the result page. The content of this
file is copied one to one without any change. Therefore you have to put a valid XHTML 1.0
subtree into this file using the standard ISO-8859-1 ASCII encoding.

Chapter 12

Internal Data Structures

12.1 Overview and Introduction

This chapter is written to be read along with the files Data.py and Exercises.py of the
OKUSON server’s source code. Knowing the internal data structures of the OKUSON server
requires a certain knowledge of the Python language, which we will assume throughout this
chapter.

Having said this, we no longer have to explain certain things: For example, the names and
types of components of objects in a certain class can readily be read off the well-documented
source code. Also the behaviour and syntax for the basic Python objects like strings, integers,
floats, lists, and dictionaries will not be explained here. Therefore we concentrate on the general
structure and on the questions like “What is where in the source code?”.

All data structures regarding people and tutoring groups are collected in the server’s Data mod-
ule and reside therefore in the file server/Data.py. In this file one also finds the imple-
mentation of the reading process from files into the memory data structures. This process will
not be explained here, as it uses a very generic tool from the fmTools library, which will be
documented elsewhere.

All data structures regarding exercises and sheets are collected in the Exercises module and
reside therefore in the file server/Exercises.py. In this file one also finds the implemen-
tation of the reading and parsing process from files into the memory data structures. This process
will also not be explained here, as it basically boils down to using the XML parser pyRXP to
get a memory representation of the XML tree, which is then recursively translated into the in-
memory structures described here. Additionally, the file server/Exercises.py contains
methods for Exercise and Sheet objects to offer services via the web.

For this chapter here, we will not describe the latter processes but only document the data struc-
tures. The main idea of this chapter is to help the user to write the automatic grading functions
he has to supply, because they need conventient read access to the internal data structures.

71

72 CHAPTER 12. INTERNAL DATA STRUCTURES

12.2 Data of Participants

The data structures for the personal data of participants are organized as follows: Every partici-
pant has an ID, which can be an arbitrary string. There is a dictionary “people” in the Data
module, which stores for any known participant under his ID one object from the class Person.

Every Person object has an entry mcresults, which is a dictionary where under each sheet
name (see section 12.4) there can be stored an object from the class MCResult. Note that it
is not an inconsistency, if there is nothing bound in mcresults under a valid sheet name!
Therefore one always has to check whether there is some data before accessing it!

Further, every Person object has an entry homework, which is a dictionary where for each
sheet name (see section 12.4) there can be stored an object from the class Homework. Note
that also here it is not an inconsistency, if there is nothing bound in homework for a valid sheet
name!

Every Person object has an entry exams, which is a list. This list has a certain length and at
each position (zero based!) there may either be the value None or an object from the class Exam.
Note that lists in Python must not have holes, such that it is necessary to have the possibility of
the value None. Also the length of the list is variable, therefore one cannot be sure that it always
has the same length for all participants, so please check in your code!

Note that the object of type Exam is created at the time the participant registers for the first time
for the exam in question and is never destroyed afterwards. Even if the participant deregisters,
this only means that the registration component of the Exam object is set to zero. A
totalscore of −1 indicates, that the participant did not (yet) participate in the exam.

The personal messages of a person are just stored as a list of strings in the messages component
of the Person object. Revoked messages are no longer stored in memory.

12.3 Data of Groups

The identification of groups works via their number. There is a global dictionary groups in the
Data module, where for each group there is stored an object from the class GroupInfo under
the (string) value of its number. Numbers are non-negative integers.

The group number 0 plays a special rôle, because it is the group where people show up automat-
ically, if the administrator does not distribute them explicitly. This can be handy, if there is only
one group for a small course. The component people of the GroupsInfo object is updated
automatically, when a person registers with the system for the first time.

12.4 Data of Exercises and Sheets

All data for exercises and sheets is collected in the Exercises module in the OKUSON server
and resides therefore in the file server/Exercises.py.

12.4. DATA OF EXERCISES AND SHEETS 73

There are the classes Sheet, Exercise, Question, and TeXText. A sheet consists of
exercises, an exercises of questions, and the “innermost” parts of the whole system are simple
strings and TEX-texts, which are texts or formulae, which are typed in TEX input and can be
rendered into a PDF file or as image in a web page.

There is a global list AllSheets where all known sheet objects are stored in some random
order. One should not access this list directly, but use instead the function SheetList in the
same module, which returns a properly sorted list of triples, where each triple corresponds to one
sheet and consists of the sheet number, the sheet name, and the sheet object itself.

The basic incredients of a sheet are stored in the list component, which is a list containing
TeXTexts for the texts between exercises and for non-interactive exercises, and Exercise
objects for the multiple choice exercises.

All exercises (multiple choice and non-interactive ones) are stored under their name in the global
dictionary AllExercises. Usually one will not have to access this variable, as one usually
will access the exercises via the sheets they are contained in.

The basic incredients of an interactive exercise are objects of type Question, which in turn
contain probably several variants with possibly different correct solutions.

The fundamental method for the personalization of sheets is the method ChooserFunction
of the class Sheet. It uses a numerical seed as seed for a pseudo random process and returns the
choice of actual variants the corresponding participant gets. Note that the submissions and marks
stored in the Data module only make sense together with this information and the information
about the available sheets.

Appendix A

Customization Examples

A.1 Using IDs of Different Type

In Aachen all students have an associated unique 6-digit number (the Matrikelnummer) which is
used all over the place. Therefore, we use it for registrations and as ID’s within an OKUSON
server.

If you want to use other types of IDs, do the following:

• Adjust the two entries <IdCheckRegExp> and <GuestIdRegExp> in your configu-
ration file Config.xml.

• Adjust all places where the word Matrikelnummer appears in templates. There is one such
line in the <PDFTemplate> entry of Config.xml. And there are quite a few files in
html/*.tpl. Here, change the word Matrikelnummer to something more appropriate
and maybe increase the values of the size and maxlength attributes of corresponding
input elements.

That’s it.

A.2 A Course Without Non-Interactive Homework Exercises

If you are not going to give non-interactive exercises which are not graded automatically by
OKUSON, do the following:

• Just ignore all remarks about homework points in this manual and in input forms.

• Adjust the <Results> tag in the template file html/results.tpl to exclude the
homework points.

74

A.3. A COURSE WITHOUT INTERACTIVE EXERCISES 75

A.3 A Course Without Interactive Exercises

We also use OKUSON for courses without interactive exercises, just to take advantage of the
other utilities: registration, tutoring- and exam- management, HTML versions of exercise sheets,
etc.

This can be achieved by setting the option <IndividualSheets> of the configuration file
Config.xml to 0.

By this switch certain things vanish for the participants, for example it is no longer necessary to
type ID and password to get the exercise sheets, on the results page the interactive exercises are
not mentioned, and the PDF-sheets don’t use a table for the exercises.

The two cases are handled by the same template files, via the tags <IfIndividualSheets>
and <IfNoIndividualSheets>.

The different templates for the TEX-files of the PDF-sheets are marked by <PDFTemplate>
and <PDFTemplateNoTable> in the Config.xml file.

A.4 Managing Additional Personal Registration Data

In this section we give a few examples of using the special tags explained in section 6.3.4. The
first shows the use of a free-form string, the next three are about asking for additional information
concerning tutoring groups using radio buttons, check boxes or select options, respectively.

Example: Birthplace

There are universities which use the place of birth as part of the identification of a person in
course certificates. To get and store that information you can use the persondata field. In the
template html/registration.tpl you could add a block:

<tr>
<td>Place of Birth:</td>
<td> <input size="30" maxlength="30"

name="persondata.birthplace" value="" /> </td>
</tr>

And in the template html/regchange2.tpl you could add the following block, in which
the value from the registration (or last change) is preset:

<tr>
<td>Place of Birth</td>
<td> <PersonDataField key="birthplace" /> </td>

</tr>

76 APPENDIX A. CUSTOMIZATION EXAMPLES

Example: Group Choice with Radio Buttons

Say, you have three different tutoring groups, on Monday, Tuesday and Wednesday. Here is a
way to let the participant choose exactly one of these.

In html/registration.tpl:

<tr>
<td>Preferred Tutoring Group:</td>
<td>
<input type="radio" name="persondata.prefgroup"

value="Mon" checked="checked" />Monday,
<input type="radio" name="persondata.prefgroup"

value="Tue" />Tuesday,
<input type="radio" name="persondata.prefgroup"

value="Wed" />Wednesday
</td>

</tr>

To get an appropriate block in the html/regchange2.tpl page with the stored choice pre-
selected use:

<tr>
<td>Preferred Tutoring Group:</td>
<td>

<PersonDataRadioButton name="persondata.prefgroup"
value="Mon" />Monday,

<PersonDataRadioButton name="persondata.prefgroup"
value="Tue" />Tuesday,

<PersonDataRadioButton name="persondata.prefgroup"
value="Wed" />Wednesday

</td>
</tr>

Example: Group Choice with Select Options

An alternative for the last example is to use the select element, in particular if there are much
more than three choices.

You could use the following in html/registration.tpl:

<tr>
<td>Preferred Tutoring Group:</td>
<td> <select name="persondata.prefgroup">

A.4. MANAGING ADDITIONAL PERSONAL REGISTRATION DATA 77

<option value="Mon" selected="selected">Monday</option>
<option value="Tue">Tuesday</option>
<option value="Wed">Wednesday</option>

</select>
</td>

</tr>

Getting this with the stored value pre-selected in html/regchange2.tpl you could use:

<tr>
<td>Preferred Tutoring Group:</td>
<td> <select name="persondata.prefgroup">
<PersonDataSelectOption name="persondata.prefgroup"

value="Mon" content="Monday" />
<PersonDataSelectOption name="persondata.prefgroup"

value="Tue" content="Tuesday" />
<PersonDataSelectOption name="persondata.prefgroup"

value="Wed" content="Wednesday" />
</select>
</td>

</tr>

Example: Group Choice with Check Boxes

As a third variant of the previous two examples, assume you want to allow several choices by
each participant. This could be done with check box input elements. You can use the following
code snippet in both files, html/registration.tpl and html/regchange2.tpl:

<tr>
<td>Possible Tutoring Groups:</td>
<td>
<input type="hidden" value="None"

name="persondata.prefgroups" />
<label><PersonDataCheckBox value="Mo"

name="persondata.prefgroups" /> Monday</label>
<label><PersonDataCheckBox value="Tu"

name="persondata.prefgroups" /> Tuesday</label>
<label><PersonDataCheckBox value="We"

name="persondata.prefgroups" /> Wednesday</label>
</td>

</tr>

78 APPENDIX A. CUSTOMIZATION EXAMPLES

Then OKUSON stores under the key persondata.prefgroups the value None and all
values of checked variants. separated by semicolons. The hidden element is needed such that
every request contains at least one value for this key (otherwise one could not deselect all choices
from a previous submission).

A.5 Customizing the Look and Feel of the Web Pages

The most obvious thing to play around with may be the setting of colors or a background image.

You may try the effect of changing the following line in html/OKUSON.css:

background-color:#B0E0E6;

to

background-color:#FF0000;
color:#00FF00;

You can be sure that some people cannot read anything on pages with this setting, so this demon-
strates that you should be quite careful with choosing sensible colors.

Or you can add a background image with a setting like:

background-color:#CCCCCC;
background-image:
url(http://www.math.rwth-aachen.de/˜OKUSON/badback.gif);

Of course, as you can see here: Only use background images which don’t disturb the legibility
of the pages!

More subtle changes would affect table layout, fonts, relative font sizes and many more details.
See the http://www.w3c.org pages or some book on CSS if you do not know how to do
this. The W3C pages also have an online validation service for CSS style sheets.

As a general rule: Use only basic CSS features which are reasonably well implemented in essen-
tially all current browsers (some CSS settings may shorten the list of successful browser tests, as
given in html/techinfo.tpl).

There are two CSS style sheet files in the OKUSON sample pages, OKUSON.css and
OKUSONSheet.css. You must be more careful with changes to the latter one. In particular,
the background of the table with the exercise texts as images should be white or very bright for
good legibility.

If you want to add some icon or some standard information on all course web pages, you
must edit all template files accordingly. You can use the customization entries <ConfigData
key="..."> in the Config.xml file together with the tags <ConfigData key="..."

http://www.w3c.org

A.6. USING OKUSON WITH ANOTHER LANGUAGE 79

/> in the template .tpl files. You can include HTML markup in the content of these elements,
but note that you must use a CDATA environment or escape the markup with entities in your
Config.xml (see 4).

A.6 Using OKUSON with Another Language

As mentioned in the web page chapter 6 the OKUSON system can be adjusted to another lan-
guage by translating the visible texts in all sample web pages (the html.sample/...tpl
files).

If you intend to do this, please contact us. Of course, we would be happy to distribute OKUSON
with sets of sample pages in several languages.

Appendix B

Differences Between XHTML and Other
Variants of HTML

If you know some HTML and compare it with the basics on XML as explained in 4 you see
that the syntax rules for XHTML must be more restrictive than for other (non-XML) variants of
HTML. In particular note the following details of XHTML:

• All tags must be written with lower case letters in the element names.

• All non-empty elements must have a start- and end-tag, in particular enclose paragraphs in
<p> and </p> or list entries in and .

• Attributes always must have an assigned value and the value must be enclosed by either
double or single quotes.

• Write empty elements like
, the space before the /> is not necessary according to
the specification but it helps some old browsers to interpret it correctly.

• Do not put information on colors or fonts in the XHTML file. Instead use the .css style
sheet file. (For complicated cases use the class attribute to mark elements for which you
want to give special formating rules in the style sheet.

Using the W3C HTML 4.01 specification (http://www.w3.org/TR/html401/) – this
includes a nice elements overview – together with the above rules and the general rule to avoid
complicated looking constructs when possible, we found it not too difficult to produce sets of
valid web pages.

In the OKUSON home directory you find the tool xmlvalidate, which can be used for val-
idating (or finding problems with) XHTML documents. But actually, all of our OKUSON web
pages are generated dynamically from .tpl template files, which cannot be validated directly.
Therefore, we have included an on-the-fly XHTML-validation of HTML pages in the OKUSON
built-in web server. It does not refuse the delivery of non-valid pages, but removes in that case
the validator icon which may have been put in the document via the <ValidatorIcon/> tag.

80

http://www.w3.org/TR/html401/

Appendix C

GPL

Here is the text of the license under which the OKUSON package is distributed. Instead of this
you may also take any newer version as published in
http://www.gnu.org/licenses/gpl.html.

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

81

http://www.gnu.org/licenses/gpl.html

82 APPENDIX C. GPL

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for
a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access
to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

83

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and
“any later version”, you have the option of following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABIL-
ITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Overview
	Contents of the OKUSON Package
	How to Use this Manual
	Feedback
	Acknowledgements

	Installation
	Quick Installation Overview
	Prerequisites
	Download
	Compilation
	Configuration
	Getting started
	Starting and Stopping the Server
	Tips and Tricks: Security, Backup, etc.

	Schedule of Events for One Course
	Before the Semester
	At the Beginning of the Semester
	During the Semester
	After the Semester
	At all Times

	Short Introduction to XML
	An Example XML Document
	Parsing and Validating XML Documents

	Creating Exercises and Sheets
	Scoring the solutions
	Generalities on the Exercise and Sheet Files
	Writing Exercises
	Specifying Sheets

	The Web Pages
	General Format of the Web Pages
	Delivering Static Files
	How to Customize the Web Pages
	What You Can Change Without Problems
	What You Should Not Change
	Globally Defined Elements for Use in All Web Pages
	Special Elements in Pages Containing Personal Data
	Special Elements for Sheet Specific Data
	Special Elements for Tutoring Group Specific Pages
	Special Elements for Administration Pages

	MathJax support

	Administration via the Web Interface
	Administrative Tasks in the Administrator Menu
	Restart server
	Shutdown server
	Display available and future sheets
	Send message
	Delete messages of
	Reevaluate participants' answers for sheet
	Show Exercise Statistics for sheet
	Show Global Statistics
	Show Global Statistics, separated per Group, for sheet
	Show Cumulated Score Statistics
	Show Detailed Score Table
	Format string
	Export people for tutoring group distribution
	Export people
	Export participants of exam
	Export results

	Managing Participants
	Registration of Participants
	Distributing Participants into Tutoring Groups
	Usage of distribute.py
	Usage of numbergroups.py
	Strategies for Distribution

	Importing Information About the Tutoring Groups
	Input of Homework Results by Tutors

	Managing Exams
	Registration for Exams
	Importing Exam Results into the Server
	Displaying Results of Exams automatically

	Automatic Grading
	File Formats
	data/people.txt
	data/groups.txt
	data/groupinfo.txt
	data/exams.txt
	data/messages.txt
	data/generalmessage.txt

	Internal Data Structures
	Overview and Introduction
	Data of Participants
	Data of Groups
	Data of Exercises and Sheets

	Customization Examples
	Using IDs of Different Type
	A Course Without Non-Interactive Homework Exercises
	A Course Without Interactive Exercises
	Managing Additional Personal Registration Data
	Customizing the Look and Feel of the Web Pages
	Using OKUSON with Another Language

	Differences Between XHTML and Other Variants of HTML
	GPL

