Computing Unit Groups of Orders

Gabriele Nebe, Oliver Braun, Sebastian Schönnenbeck

Lehrstuhl D für Mathematik

Bad Boll, March 5, 2014

The classical Voronoi Algorithm

- Around 1900 Korkine, Zolotareff, and Voronoi developed a reduction theory for quadratic forms.
- The aim was to classify the densest lattice sphere packings in n-dimensional Euclidean space.
- ▶ lattice $L = \mathbb{Z}^{1 \times n}$, Euclidean structure on L given by some some positive definite $F \in \mathbb{R}^{n \times n}_{sym}$, $(x, y) = xFy^{tr}$.
- ▶ Voronoi described an algorithm to find all local maxima of the density function on the space of all *n*-dimensional positive definite *F*.
- They are perfect forms (as will be defined below).
- ► There are only finitely many perfect forms up to the action of GL_n(ℤ), the unit group of the order ℤ^{n×n}.
- Later, Voronoi's algorithm has been used to compute generators and relations for $GL_n(\mathbb{Z})$ but also its integral homology groups.
- It has been generalised to other situations: compute integral normalizer, the automorphism group of hyperbolic lattices and
- more general unit groups of orders.

Unit groups of orders

- ▶ A separable \mathbb{Q} -algebra, so $A \cong \bigoplus_{i=1}^{s} D_i^{n_i \times n_i}$, is a direct sum of matrix rings over division algebras.
- An order Λ in A is a subring that is finitely generated as a \mathbb{Z} -module and such that $\langle \Lambda \rangle_{\mathbb{Q}} = A$.
- Its unit group is $\Lambda^* := \{ u \in \Lambda \mid \exists v \in \Lambda, uv = 1 \}.$
- Know in general: Λ^* is finitely generated.
- Example: A = K a number field, Λ = O_K, its ring of integers. Then Dirichlet's unit theorem says that Λ^{*} ≃ μ_K × Z^{r+s-1}.
- Example: $\Lambda = \langle 1, i, j, ij \rangle_{\mathbb{Z}}$ with $i^2 = j^2 = (ij)^2 = -1$. Then $\Lambda^* = \langle i, j \rangle$ the quaternion group of order 8.
- Example: $A = \mathbb{Q}G$ for some finite group G, $\Lambda = \mathbb{Z}G$.
- Example: A a division algebra with dim_{Z(A)}(A) = d² > 4. Not much known about the structure of Λ^{*}.
- \blacktriangleright Voronoi's algorithm may be used to compute generators and relations for Λ^* and to solve the word problem.

• Seems to be practical for "small" A and for d = 3.

The classical Voronoi Algorithm

Korkine, Zolotareff, Voronoi, \sim 1900.

Definition

- $\mathcal{V} := \{X \in \mathbb{R}^{n \times n} \mid X = X^{tr}\}$ space of symmetric matrices
- ▶ $\sigma : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, $\sigma(A, B) := trace(AB)$ Euclidean inner product on \mathcal{V} .
- for $F \in \mathcal{V}$, $x \in \mathbb{R}^{1 \times n}$ define $F[x] := xFx^{tr} = \sigma(F, x^{tr}x)$
- $\mathcal{V}^{>0} := \{F \in \mathcal{V} \mid F \text{ positive definite } \}$
- ▶ for $F \in \mathcal{V}^{>0}$ define the minimum $\mu(F) := \min\{F[x] : 0 \neq x \in \mathbb{Z}^{1 \times n}\}$ and $\mathcal{M}(F) := \{x \in \mathbb{Z}^{1 \times n} \mid F[x] = \mu(F)\}$
- ▶ $Vor(F) := \{\sum_{x \in \mathcal{M}(F)} a_x x^{tr} x \mid a_x \ge 0\}$ the Voronoi domain
- F is called perfect $\Leftrightarrow \dim(\operatorname{Vor}(F)) = \dim(\mathcal{V}) = \frac{n(n+1)}{2}$.

Remark

 $\operatorname{GL}_n(\mathbb{Z})$ acts on $\mathcal{V}^{>0}$ by $(F,g) \mapsto g^{-1}Fg^{-tr}$. Then

$$\mathcal{M}(g^{-1}Fg^{-tr}) = \{xg \mid x \in \mathcal{M}(F)\}$$

$$\operatorname{Vor}(g^{-1}Fg^{-tr}) = g^{tr}\operatorname{Vor}(F)g$$

The classical Voronoi Algorithm

Korkine, Zolotareff, Voronoi, \sim 1900.

Definition

- $\mathcal{V} := \{X \in \mathbb{R}^{n \times n} \mid X = X^{tr}\}$ space of symmetric matrices
- $\sigma: \mathcal{V} \times \mathcal{V} \to \mathbb{R}, \ \sigma(A, B) := \operatorname{trace}(AB)$ Euclidean inner product on \mathcal{V} .
- ▶ for $F \in \mathcal{V}$, $x \in \mathbb{R}^{1 \times n}$ define $F[x] := xFx^{tr} = \sigma(F, x^{tr}x)$

•
$$\mathcal{V}^{>0} := \{F \in \mathcal{V} \mid F \text{ positive definite } \}$$

- ▶ for $F \in \mathcal{V}^{>0}$ define the minimum $\mu(F) := \min\{F[x] : 0 \neq x \in \mathbb{Z}^{1 \times n}\}$ and $\mathcal{M}(F) := \{x \in \mathbb{Z}^{1 \times n} \mid F[x] = \mu(F)\}$
- ► $Vor(F) := \{\sum_{x \in \mathcal{M}(F)} a_x x^{tr} x \mid a_x \ge 0\}$ the Voronoi domain
- F is called perfect $\Leftrightarrow \dim(\operatorname{Vor}(F)) = \dim(\mathcal{V}) = \frac{n(n+1)}{2}$.

Theorem (Voronoi)

(a) $\mathcal{T} := \{ \operatorname{Vor}(F) \mid F \in \mathcal{V}^{>0}, \text{ perfect } \}$ forms a face to face tesselation of $\mathcal{V}^{\geq 0}$. (b) $\operatorname{GL}_n(\mathbb{Z})$ acts on \mathcal{T} with finitely many orbits that may be computed algorithmically.

•
$$n = 2$$
, dim $(\mathcal{V}) = 3$, dim $(\mathcal{V}^{>0}/\mathbb{R}_{>0}) = 2$

compute in affine section of the projective space

$$\mathcal{A}^{\geq 0} = \{F \in \mathcal{V}^{\geq 0} \mid \text{trace}(F) = 1\}$$

$$\mathcal{F}_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ \mu(F_0) = 2, \ \mathcal{M}(F_0) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$$

•
$$\mathcal{A}^{\geq 0} \cap \operatorname{Vor}(F_0) = \operatorname{conv}(a = \begin{pmatrix} 10\\00 \end{pmatrix}, b = \begin{pmatrix} 00\\01 \end{pmatrix}, c = \frac{1}{2} \begin{pmatrix} 11\\11 \end{pmatrix})$$

•
$$n = 2$$
, dim $(\mathcal{V}) = 3$, dim $(\mathcal{V}^{>0}/\mathbb{R}_{>0}) = 2$

compute in affine section of the projective space

$$\mathcal{A}^{\geq 0} = \{F \in \mathcal{V}^{\geq 0} \mid \text{trace}(F) = 1\}$$

$$\mathcal{F}_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ \mu(F_0) = 2, \ \mathcal{M}(F_0) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$A^{\geq 0} \cap \operatorname{Vor}(F_0) = \operatorname{conv}(a = \begin{pmatrix} 10\\00 \end{pmatrix}, b = \begin{pmatrix} 00\\01 \end{pmatrix}, c = \frac{1}{2} \begin{pmatrix} 11\\11 \end{pmatrix})$$

- Compute neighbor: $F_1 \in \mathcal{V}^{>0}$ so that $\operatorname{Vor}(F_1) = \operatorname{conv}(a, b, c')$.
- ▶ linear equation on F_1 : trace (F_1a) = trace (F_1b) = 2 and trace (F_1c) > 2,

- ▶ so $F_1 = F_0 + sX$ where $X = \begin{pmatrix} 01\\ 10 \end{pmatrix}$ generates $\langle a, b \rangle^{\perp}$.
- For s = 2 the matrix $F_1 = \begin{pmatrix} 21 \\ 12 \end{pmatrix}$ has again 6 minimal vectors
- $\mathcal{M}(F_1) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$
- $\mathcal{A}^{\geq 0} \cap \operatorname{Vor}(F_1) = \operatorname{conv}(a, b, c' := \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix})$

- ► Stab_{GL₂(Z)}(F₀) = $\langle g = \begin{pmatrix} 0 1 \\ 1 & 1 \end{pmatrix}, h = \begin{pmatrix} 0 1 \\ 10 \end{pmatrix} \rangle$
- $(a,b) \cdot g = (b,c), (b,c) \cdot g = (c,a)$
- Compute isometry $t = \operatorname{diag}(1, -1) \in \operatorname{GL}_2(\mathbb{Z})$, so $t^{-1}F_0t^{-tr} = F_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Then $\operatorname{GL}_2(\mathbb{Z}) = \langle g, h, t \rangle$.

 $\operatorname{GL}_2(\mathbb{Z}) = \langle g, h, t \rangle.$

- ► Stab_{GL₂(Z)}(F₀) = $\langle g = \begin{pmatrix} 0 1 \\ 1 & 1 \end{pmatrix}, h = \begin{pmatrix} 0 1 \\ 10 \end{pmatrix} \rangle$
- $(a,b) \cdot g = (b,c), (b,c) \cdot g = (c,a)$
- Compute isometry $t = \operatorname{diag}(1, -1) \in \operatorname{GL}_2(\mathbb{Z})$, so $t^{-1}F_0t^{-tr} = F_1$.

Variations of Voronoi's algorithm

- ▶ Many authors used this algorithm to compute integral homology groups of SL_n(ℤ) and related groups, as developed C. Soulé in 1978.
- Max Köcher developed a general Voronoi Theory for pairs of dual cones in the 1950s.

$$\begin{split} &\sigma:\mathcal{V}_1\times\mathcal{V}_2\to\mathbb{R} \text{ non degenerate and positive on the cones } \mathcal{V}_1^{>0}\times\mathcal{V}_2^{>0}.\\ &\text{discrete admissible set } D\subset\mathcal{V}_2^{>0} \text{ used to define minimal vectors and}\\ &\text{perfection for } F\in\mathcal{V}_1^{>0} \text{ and } \mathrm{Vor}_D(F)\subset\mathcal{V}_2^{>0}. \end{split}$$

- ► J. Opgenorth (2001) used Köcher's theory to compute the integral normalizer N_{GL_n(ℤ)}(G) for a finite unimodular group G.
- M. Mertens (Masterthesis, 2012) applied Köcher's theory to compute automorphism groups of hyperbolic lattices.
- This talk will explain how to apply it to obtain generators and relations for unit group of orders in semi-simple rational algebras and an algorithm to solve the word problem in these generators.

Orders in semi-simple rational algebras.

The positive cone

- K some rational division algebra, $A = K^{n \times n}$
- $A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R}$ semi-simple real algebra
- ▶ so $A_{\mathbb{R}}$ is isomorphic to a direct sum of matrix rings over of \mathbb{H} , \mathbb{R} or \mathbb{C} .
- ► A_R carries a "canonical" involution [†] (depending on the choice of the isomorphism) that we use to define symmetric elements:

$$\blacktriangleright \mathcal{V} := \operatorname{Sym}(A_{\mathbb{R}}) := \left\{ F \in A_{\mathbb{R}} \mid F^{\dagger} = F \right\}$$

- $\sigma(F_1, F_2) := \operatorname{trace}(F_1F_2)$ defines a Euclidean inner product on \mathcal{V} .
- In general the involution \dagger will not fix the set A.

The simple A-module.

- Let $V = K^{1 \times n}$ denote the simple right A-module, $V_{\mathbb{R}} = V \otimes_{\mathbb{Q}} \mathbb{R}$.
- For $x \in V$ we have $x^{\dagger}x \in \mathcal{V}$.
- $F \in \mathcal{V}$ is called positive if

$$F[x] := \sigma(F, x^{\dagger}x) > 0 \text{ for all } 0 \neq x \in V_{\mathbb{R}}.$$

Minimal vectors.

The discrete admissible set

 \blacktriangleright ${\mathcal O}$ maximal order in $K,\,L$ some ${\mathcal O}\text{-lattice}$ in the simple $A\text{-module}\,V$

•
$$\Lambda := \operatorname{End}_{\mathcal{O}}(L)$$
 is a maximal order in A with unit group
 $\Lambda^* := \operatorname{GL}(L) = \{a \in A \mid aL = L\}.$

L-minimal vectors

Let $F \in \mathcal{V}^{>0}$.

- $\mu(F) := \mu_L(F) = \min\{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F.
- $\mathcal{M}_L(F) := \{\ell \in L \mid F[\ell] = \mu_L(F)\}$ the finite set of *L*-minimal vectors.
- $\operatorname{Vor}_{L}(F) := \{\sum_{x \in \mathcal{M}_{L}(F)} a_{x} x^{\dagger} x \mid a_{x} \geq 0\} \subset \mathcal{V}^{\geq 0}$ Voronoi domain of F.
- F is called L-perfect $\Leftrightarrow \dim(\operatorname{Vor}_L(F)) = \dim(\mathcal{V}).$

Theorem

 $\mathcal{T} := \{ \operatorname{Vor}_L(F) \mid F \in \mathcal{V}^{>0}, \text{ L-perfect } \} \text{ forms a face to face tesselation of } \mathcal{V}^{\geq 0}.$ $\Lambda^* \text{ acts on } \mathcal{T} \text{ with finitely many orbits.}$

Generators for Λ^*

- Compute $\mathcal{R} := \{F_1, \ldots, F_s\}$ set of representatives of Λ^* -orbits on the *L*-perfect forms, such that their Voronoi-graph is connected.
- For all neighbors F of one of these F_i (so $Vor(F) \cap Vor(F_i)$ has codimension 1) compute some $g_F \in \Lambda^*$ such that $g_F \cdot F \in \mathcal{R}$.
- Then $\Lambda^* = \langle \operatorname{Aut}(F_i), g_F \mid F_i \in \mathcal{R}, F \text{ neighbor of some } F_j \in \mathcal{R} \rangle$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

so here $\Lambda^* = \langle \operatorname{Aut}(F_1), \operatorname{Aut}(F_2), \operatorname{Aut}(F_3), a, b, c, d, e, f \rangle$.

Example $Q_{2,3}$.

Take the rational quaternion algebra ramified at 2 and 3,

$$Q_{2,3} = \langle i, j \mid i^2 = 2, j^2 = 3, ij = -ji \rangle = \langle \operatorname{diag}(\sqrt{2}, -\sqrt{2}), \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Maximal order $\Lambda = \langle 1, i, \frac{1}{2}(1+i+ij), \frac{1}{2}(j+ij) \rangle$ $\blacktriangleright V = A = Q_{2,3}, A_{\mathbb{R}} = \mathbb{R}^{2 \times 2}, L = \Lambda$

- Embed A into $A_{\mathbb{R}}$ using the maximal subfield $\mathbb{Q}[\sqrt{2}]$.
- Get three perfect forms:

►
$$F_1 = \begin{pmatrix} 1 & 2 - \sqrt{2} \\ 2 - \sqrt{2} & 1 \end{pmatrix}, F_2 = \begin{pmatrix} 6 - 3\sqrt{2} & 2 \\ 2 & 2 + \sqrt{2} \end{pmatrix}$$

•
$$F_3 = \text{diag}(-3\sqrt{2} + 9, 3\sqrt{2} + 5)$$

The tesselation for $\mathcal{Q}_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{2}]^{2 \times 2}$.

くしゃ (中)・(中)・(中)・(日)

 $\Lambda^*/\langle \pm 1\rangle = \langle a,b,t \mid a^3,b^2,atbt\rangle$

ଚବଙ

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The tesselation for $\mathcal{Q}_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{3}]^{2 \times 2}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Conclusion

- Algorithm works quite well for indefinite quaternion algebras over the rationals
- Obtain presentation and algorithm to solve the word problem
- ▶ For Q_{19,37} our algorithm computes the presentation within 5 minutes (288 perfect forms, 88 generators) whereas the MAGMA implementation "FuchsianGroup" does not return a result after four hours
- Reasonably fast for quaternion algebras with imaginary quadratic center or matrix rings of degree 2 over imaginary quadratic fields
- For the rational division algebra of degree 3 ramified at 2 and 3 compute presentation of Λ*, 431 perfect forms, 50 generators in about 10 minutes.
- Quaternion algebra with center $\mathbb{Q}[\zeta_5]$: > 40.000 perfect forms.
- Masterthesis by Oliver Braun: The tesselation \mathcal{T} can be used to compute the maximal finite subgroups of Λ^* .
- \blacktriangleright Masterthesis by Sebastian Schönnenbeck: Compute integral homology of $\Lambda^*.$

Calculating maximal finite subgroups Minimal classes

Definition

Let $A, B \in \mathcal{V}^{>0}$. A and B are minimally equivalent if $\mathcal{M}_L(A) = \mathcal{M}_L(B)$. $C := \operatorname{Cl}_L(A) = \{X \in \mathcal{V}^{>0} \mid \mathcal{M}_L(X) = \mathcal{M}_L(A)\}$ is the minimal class of A. In this case $\mathcal{M}_L(C) := \mathcal{M}_L(A)$. Call C well-rounded if $\mathcal{M}_L(C)$ contains a K-basis of $V = K^{1 \times n}$.

Remark

 $A \in \mathcal{V}^{>0}$ is *L*-perfect if and only if $\operatorname{Cl}_L(A) = \{ \alpha A \mid \alpha \in \mathbb{R}_{>0} \}.$

Calculating maximal finite subgroups Minimal classes

Definition

Let $A, B \in \mathcal{V}^{>0}$. A and B are minimally equivalent if $\mathcal{M}_L(A) = \mathcal{M}_L(B)$. $C := \operatorname{Cl}_L(A) = \{X \in \mathcal{V}^{>0} \mid \mathcal{M}_L(X) = \mathcal{M}_L(A)\}$ is the minimal class of A. In this case $\mathcal{M}_L(C) := \mathcal{M}_L(A)$. Call C well-rounded if $\mathcal{M}_L(C)$ contains a K-basis of $V = K^{1 \times n}$.

Remark

 $A \in \mathcal{V}^{>0}$ is L-perfect if and only if $\operatorname{Cl}_L(A) = \{ \alpha A \mid \alpha \in \mathbb{R}_{>0} \}.$

Remark

 $\dim_{\mathbb{R}}(\mathcal{V}) - \dim_{\mathbb{R}}(\langle x^{\dagger}x \mid x \in \mathcal{M}_{L}(A) \rangle)$, the **perfection corank**, is constant on $\operatorname{Cl}_{L}(A)$.

Calculating minimal classes

Theorem

Let $A \in \mathcal{V}^{>0}$ be *L*-perfect. Any codimension-*k*-face of $Vor_L(A)$ corresponds to a minimal class of perfection corank *k*, represented by

$$A + \frac{1}{2k} \sum_{i=1}^{k} \rho_i R_i = \frac{1}{k} \sum_{i=1}^{k} \left(A + \frac{\rho_i}{2} R_i \right) \in \mathcal{V}^{>0}$$

with facet vectors R_i and $\rho_i \in \mathbb{R}_{>0}$ such that $A + \rho_i R_i$ is a perfect neighbour of A (and the codimension-k-face in question is the intersection is the intersection of the facets with facet vectors R_i).

Calculating minimal classes

Theorem

Let $A \in \mathcal{V}^{>0}$ be *L*-perfect. Any codimension-*k*-face of $Vor_L(A)$ corresponds to a minimal class of perfection corank *k*, represented by

$$A + \frac{1}{2k} \sum_{i=1}^{k} \rho_i R_i = \frac{1}{k} \sum_{i=1}^{k} \left(A + \frac{\rho_i}{2} R_i \right) \in \mathcal{V}^{>0}$$

with facet vectors R_i and $\rho_i \in \mathbb{R}_{>0}$ such that $A + \rho_i R_i$ is a perfect neighbour of A (and the codimension-k-face in question is the intersection is the intersection of the facets with facet vectors R_i).

Example: The minimal classes in dimension 2 over \mathbb{Z} $F_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $\mathcal{M}(F_0) = \{\pm (1,0), \pm (0,1), \pm (1,1)\}$ $\mathcal{A}^{\geq 0} \cap \operatorname{Vor}(F_0) = \operatorname{conv} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right)$ Facet vectors $R_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $R_2 = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$, $R_3 = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix}$ All perfect neighbours of F_0 are given by $F_0 + 2R_i$, so $\rho_i = 2$ for all $1 \leq i \leq 3$. Now consider the dual of the tesselation of $\mathcal{T} = \{ \operatorname{Vor}(F) \mid F \in \mathcal{V}^{>0} \text{ perfect} \}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Now consider the dual of the tesselation of $\mathcal{T} = \{ \operatorname{Vor}(F) \mid F \in \mathcal{V}^{>0} \text{ perfect} \}.$

Now consider the dual of the tesselation of $\mathcal{T} = \{ \operatorname{Vor}(F) \mid F \in \mathcal{V}^{>0} \text{ perfect} \}.$

$$F_{0} + R_{1} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$F_{0} + R_{2} = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix}$$
$$F_{0} + R_{3} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$$

► The minimal classes represented by these three matrices are in the same orbit under GL₂(ℤ). This is easily checked for well-rounded minimal classes using a theorem by A.-M. Bergé.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

-

► The corank 2 class is represented by $\frac{1}{2}(2F_0 + R_1 + R_2) = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$.

Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

 $G \leq \operatorname{GL}(L)$ maximal finite $\Longrightarrow G = \operatorname{Aut}_L(C)$, where C is a well-rounded minimal class, such that $\dim(C \cap \mathcal{F}(G)) = 1$. $\mathcal{F}(G) := \{A \in \mathcal{V} \mid A[g] = A \ \forall \ g \in G\}$

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set of representatives of conjugacy classes of maximal finite subgroups of GL(L).

Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

 $G \leq \operatorname{GL}(L)$ maximal finite $\Longrightarrow G = \operatorname{Aut}_L(C)$, where C is a well-rounded minimal class, such that $\dim(C \cap \mathcal{F}(G)) = 1$. $\mathcal{F}(G) := \{A \in \mathcal{V} \mid A[g] = A \ \forall \ g \in G\}$

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set of representatives of conjugacy classes of maximal finite subgroups of GL(L).

There are algorithmic methods to check if a finite subgroup is maximal finite and whether two maximal finite subgroups are conjugate.

Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

 $G \leq \operatorname{GL}(L)$ maximal finite $\Longrightarrow G = \operatorname{Aut}_L(C)$, where C is a well-rounded minimal class, such that $\dim(C \cap \mathcal{F}(G)) = 1$. $\mathcal{F}(G) := \{A \in \mathcal{V} \mid A[g] = A \ \forall \ g \in G\}$

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set of representatives of conjugacy classes of maximal finite subgroups of GL(L).

- There are algorithmic methods to check if a finite subgroup is maximal finite and whether two maximal finite subgroups are conjugate.
- Therefore in the previous example, we obtain two conjugacy classes of maximal finite subgroups:
 The stabilizer of the perfect form F₀, which is isomorphic to D₁₂.
 The stabilizer of the corank 1 class, which is isomorphic to D₈.
- These groups are indeed maximal finite.

Example: $\mathbb{Q}(\sqrt{-6})$

$$\mathcal{O} = \mathbb{Z}[\sqrt{-6}], L_0 = \mathcal{O} \oplus \mathcal{O}, L_1 = \mathcal{O} \oplus \mathfrak{p}, \text{ where } \mathfrak{p} \mid (2).$$

Wen-rounded minimal classes for $\mathcal{Q}(\sqrt{-0})$					
$L = L_0$			$L = L_1$		
C	$G = \operatorname{Aut}_L(C)$	max.	C	$G = \operatorname{Aut}_L(C)$	max.
P_1	SL(2,3)	yes	P_1	Q_8	yes
C_1	D_{12}	yes	P_2	$C_3 \rtimes C_4$	yes
C_2	D_{12}	yes	C_1	D_8	yes
C_3	C_4	no	C_2	C_4	no
C_4	D_8	yes	C_3	C_4	no
D_1	D_8	yes	C_4	D_{12}	yes
D_2	D_8	yes	D_1	$C_2 \times C_2$	yes
D_3	$C_2 \times C_2$	yes	D_2	$C_2 \times C_2$	yes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Well-rounded minimal classes for $\mathbb{Q}(\sqrt{-6})$

 $\Longrightarrow \operatorname{GL}(L_0) \cong \operatorname{GL}(L_1)$

Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \operatorname{End}_{\mathcal{O}}(L)$ for some \mathcal{O} -lattice L.

Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \operatorname{End}_{\mathcal{O}}(L)$ for some \mathcal{O} -lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$ -free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).
Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \operatorname{End}_{\mathcal{O}}(L)$ for some \mathcal{O} -lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$ -free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea

Find a cell complex with a suitable $\Lambda^*\mbox{-}{\rm action}$ and employ its cellular chain complex.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \operatorname{End}_{\mathcal{O}}(L)$ for some \mathcal{O} -lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$ -free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea

Find a cell complex with a suitable $\Lambda^*\mbox{-}{\rm action}$ and employ its cellular chain complex.

Reminder

$$A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R}$$
 carries a "canonical" involution [†], $\mathcal{V} := \{F \in A_{\mathbb{R}} \mid F^{\dagger} = F\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \operatorname{End}_{\mathcal{O}}(L)$ for some \mathcal{O} -lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$ -free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea

Find a cell complex with a suitable $\Lambda^*\mbox{-}{\rm action}$ and employ its cellular chain complex.

Reminder

$$\begin{split} A_{\mathbb{R}} &:= A \otimes_{\mathbb{Q}} \mathbb{R} \text{ carries a "canonical" involution} \quad ^{\dagger} \text{, } \mathcal{V} := \left\{ F \in A_{\mathbb{R}} \mid F^{\dagger} = F \right\} \text{.} \\ \Lambda^{*} \text{ acts on } \mathcal{V}^{>0} \text{ via } (g,F) \mapsto gFg^{\dagger} \text{.} \end{split}$$

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F.

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

▶ Partial ordering on the minimal classes: $C \preceq C' \Leftrightarrow \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

▶ Partial ordering on the minimal classes: $C \preceq C' \Leftrightarrow \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Each minimal class is a convex set in V.

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- ▶ Partial ordering on the minimal classes: $C \preceq C' \Leftrightarrow \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.
- Each minimal class is a convex set in V.
- \blacktriangleright The decomposition as well as the partial ordering are compatible with the $\Lambda^*\text{-}action.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- ▶ Partial ordering on the minimal classes: $C \preceq C' \Leftrightarrow \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.
- Each minimal class is a convex set in V.
- \blacktriangleright The decomposition as well as the partial ordering are compatible with the $\Lambda^*\text{-}\mathsf{action}.$

• We have $\overline{C} = \bigcup_{C \preceq C'} C'$.

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\operatorname{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)\}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- ▶ Partial ordering on the minimal classes: $C \preceq C' \Leftrightarrow \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.
- Each minimal class is a convex set in V.
- \blacktriangleright The decomposition as well as the partial ordering are compatible with the $\Lambda^*\text{-}\mathsf{action}.$
- We have $\overline{C} = \bigcup_{C \preceq C'} C'$.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C_n is the free Abelian group on the minimal classes in dimension n. C_n becomes a Λ^* -module by means of the Λ^* -action on \mathcal{V} .

Problem 1: The modules C_n are not necessarily free.

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of $\mathbb Z$ for the occuring stabilizers of cells and outputs a free resolution of $\mathbb Z$ for $\Lambda^*.$

Problem 1: The modules C_n are not necessarily free.

```
Perturbations - C.T.C. Wall (1961)
```

There is an algorithm which takes as input the cellular chain complex and free resolutions of $\mathbb Z$ for the occuring stabilizers of cells and outputs a free resolution of $\mathbb Z$ for $\Lambda^*.$

Problem 2: Some cells have infinite stabilisers.

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of $\mathbb Z$ for the occuring stabilizers of cells and outputs a free resolution of $\mathbb Z$ for $\Lambda^*.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem 2: Some cells have infinite stabilisers. Solution: Consider only a certain retract of $\mathcal{V}^{>0}$.

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of $\mathbb Z$ for the occuring stabilizers of cells and outputs a free resolution of $\mathbb Z$ for $\Lambda^*.$

Problem 2: Some cells have infinite stabilisers. Solution: Consider only a certain retract of $\mathcal{V}^{>0}$.

The well-rounded retract

• $F \in \mathcal{V}^{>0}$ is called *well-rounded*, if $\mathcal{M}_L(F)$ contains a K-Basis of K^n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of $\mathbb Z$ for the occuring stabilizers of cells and outputs a free resolution of $\mathbb Z$ for $\Lambda^*.$

Problem 2: Some cells have infinite stabilisers. Solution: Consider only a certain retract of $\mathcal{V}^{>0}$.

The well-rounded retract

• $F \in \mathcal{V}^{>0}$ is called *well-rounded*, if $\mathcal{M}_L(F)$ contains a K-Basis of K^n .

• $\mathcal{V}_{=1}^{>0,wr} := \{ F \in \mathcal{V}^{>0} \mid F \text{ well-rounded}, \mu_L(F) = 1 \}.$

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0, wr}$ we have:

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

 \blacktriangleright There are only finitely many $\Lambda^*\mbox{-orbits}$ in any dimension and every occuring stabiliser is finite.

(ロ)、(型)、(E)、(E)、 E) の(の)

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

• There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ The topological closure of each cell is a polytope.

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0, wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0, wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

 \blacktriangleright The group Λ^* acts on the space of positive definite forms.

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- \blacktriangleright The group Λ^* acts on the space of positive definite forms.
- \blacktriangleright This space decomposes into cells in a $\Lambda^*\text{-compatible way.}$

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- \blacktriangleright The group Λ^* acts on the space of positive definite forms.
- \blacktriangleright This space decomposes into cells in a $\Lambda^*\text{-compatible}$ way.
- There is a subspace such that each cell in it is a polytope and has finite stabiliser in Λ^* .

Properties of the well-rounded retract In $\mathcal{V}_{=1}^{>0,wr}$ we have:

- There are only finitely many Λ^* -orbits in any dimension and every occuring stabiliser is finite.
- ▶ The topological closure of each cell is a polytope.
- ▶ $\mathcal{V}_{=1}^{>0,wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- \blacktriangleright The group Λ^* acts on the space of positive definite forms.
- \blacktriangleright This space decomposes into cells in a $\Lambda^*\text{-compatible}$ way.
- There is a subspace such that each cell in it is a polytope and has finite stabiliser in Λ^* .

• We may use this cellular decomposition and the *finite* stabilisers to construct a free $\mathbb{Z}\Lambda^*$ -resolution of \mathbb{Z} .

 $\mathbb{Q}(\sqrt{-5})$

<□ > < @ > < E > < E > E のQ @

```
\mathbb{Q}(\sqrt{-5})
```

<□ > < @ > < E > < E > E のQ @

$$\begin{split} &K := \mathbb{Q}(\sqrt{-5}), \, A := K^{2 \times 2}, \, \mathcal{O} := \mathbb{Z}\left[\sqrt{-5}\right]. \\ &\Lambda_i := \operatorname{End}_{\mathcal{O}}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2). \end{split}$$

 $\mathbb{Q}(\sqrt{-5})$

$$\begin{split} &K := \mathbb{Q}(\sqrt{-5}), A := K^{2 \times 2}, \mathcal{O} := \mathbb{Z}\left[\sqrt{-5}\right].\\ &\Lambda_i := \operatorname{End}_{\mathcal{O}}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2).\\ &1. \quad G_1 := \operatorname{GL}(L_1):\\ & \begin{pmatrix} C_2^5 & n = 1\\ C_2^2 & \dots & C \end{pmatrix} \\ & \begin{pmatrix} C_2^5 & n = 1\\ C_2^2 & \dots & C \end{pmatrix} \end{split}$$

$$\mathbf{H}_{n}(G_{1},\mathbb{Z}) = \begin{cases} C_{4}^{2} \times C_{12} \times \mathbb{Z} & n = 2\\ C_{2}^{8} \times C_{24} & n = 3\\ C_{2}^{7} & n = 4 \end{cases}$$

(ロ)、

 $\mathbb{Q}(\sqrt{-5})$

$$\begin{split} K &:= \mathbb{Q}(\sqrt{-5}), A := K^{2 \times 2}, \mathcal{O} := \mathbb{Z}\left[\sqrt{-5}\right].\\ \Lambda_i &:= \operatorname{End}_{\mathcal{O}}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2).\\ 1. \quad G_1 &:= \operatorname{GL}(L_1):\\ \begin{cases} C_2^5 & n = 1\\ C_2^2 \times C_{12} \times \mathbb{Z}, & n = 2 \end{cases} \end{split}$$

$$\mathbf{H}_{n}(G_{1},\mathbb{Z}) = \begin{cases} C_{4}^{2} \times C_{12} \times \mathbb{Z} & n = 2\\ C_{2}^{8} \times C_{24} & n = 3\\ C_{2}^{7} & n = 4 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2.
$$G_2 := \operatorname{GL}(L_2)$$
:

$$\operatorname{H}_n(G_2, \mathbb{Z}) = \begin{cases} C_2^3 & n = 1\\ C_2^2 \times C_{12} \times \mathbb{Z} & n = 2\\ C_2^8 \times C_{24} & n = 3\\ C_2^7 & n = 4 \end{cases}$$

 $\mathbb{Q}(\sqrt{-5})$

$$K := \mathbb{Q}(\sqrt{-5}), A := K^{2 \times 2}, \mathcal{O} := \mathbb{Z}\left[\sqrt{-5}\right].$$

$$\Lambda_i := \operatorname{End}_{\mathcal{O}}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2).$$

1.
$$G_1 := \operatorname{GL}(L_1):$$

$$\begin{pmatrix} C_2^5 & n = 1 \\ C_1^2 \times C_{12} \times \mathbb{Z} & n = 2 \end{pmatrix}$$

$$\mathbf{H}_{n}(G_{1},\mathbb{Z}) = \begin{cases} C_{4}^{2} \times C_{12} \times \mathbb{Z} & n=2\\ C_{2}^{8} \times C_{24} & n=3\\ C_{2}^{7} & n=4 \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

2.
$$G_2 := \operatorname{GL}(L_2)$$
:

$$H_n(G_2, \mathbb{Z}) = \begin{cases} C_2^3 & n = 1\\ C_2^2 \times C_{12} \times \mathbb{Z} & n = 2\\ C_2^8 \times C_{24} & n = 3\\ C_2^7 & n = 4 \end{cases}$$

Especially: $G_1 \ncong G_2$.

$$A = K = \left(\frac{2,3}{\mathbb{Q}}\right), \ \mathcal{O} = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}}$$

(ロ)、

(ロ)、(型)、(E)、(E)、(E)、(O)()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(ロ)、(型)、(E)、(E)、 E) の(の)

References

A. Ash

Small-dimensional classifying spaces for arithmetic subgroups of general linear groups

Duke Mathematical Journal, 51, 1984.

Renaud Coulangeon, Gabriele Nebe Maximal finite subgroups and minimal classes arXiv:1304.2597[math.NT], to appear in l'Ens. Math.

C.T.C. Wall

Resolutions for extensions of groups Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge Univ. Press, vol. 57, 1961