Errors

- p. ix. 2nd paragraph: replace [68] by [69] and [57] by [56]. $^{2)}$
- p. 3. line 6: delete first \sum .
- p. 10. in (1.6) replace $p_i(a)$ by p(a).
- p. 11. **Example 1.1.26**, line 4: exchange a and b (twice). ²⁾
- p. 19. line -3 and last line: replace "() " by "() $^{o"}$. ⁵⁾
- p. 23. **Exercise 1.1.11**, line 4: replace " $v_i := X \cdot v_{i-1}$ if $s \nmid i$ and $v_{js} := p^j + (q)$ " by " $v_i := X \cdot v_{i-1}$ if $s \nmid (i-1)$ and $v_{js+1} := p^j + (q)$ ".
- p. 31. In Corollary 1.2.22 line 1: replace " $|\Omega| 1_K$ is invertible" by " $|\mathcal{O}_1| 1_K, \ldots, |\mathcal{O}_r| 1_K$ are invertible".⁶⁾
- p. 35. **Exercise 1.2.5**: replace $K[X]/(X \cdot (X n + 1))$ by $K[X]/(X \cdot (X n))$.⁵⁾
- p. 35. **Exercise 1.2.7**: replace "Show that G has five orbits on $\Omega \times \Omega$ of lengths", by "Show that the subdegrees of Ω are". ⁵⁾
- p. 38. in (1.12) replace im(φ) by Im(φ). ²⁾ **Proof of Theorem 1.3.3**, line 6: replace ker_{V*}(c) by ker_{V*}(c). ²⁾
- p. 39. line 5: replace V^* by V^* . ²⁾ line 6 of the paragraph before **Lemma 1.3.6**: replace $c \in V$ by $c \in A$. ²⁾
- p. 43. line -12: replace ker_V(f(a) by ker_V(f(a)).²⁾
- p. 45. line -2: delete "w.r.t. increasing dimensions". ⁵⁾
- p. 48. **Exercise 1.3.1**: replace: Let q be a prime power and

$$G := \{ [\alpha_{i,j}] \in \mathrm{SL}_n(\mathbb{F}_q) \mid \alpha_{ij} = \delta_{i,j} \text{ for } i \ge j \}.$$

by: Let q > 2 be a prime power and

$$G := \{ [\alpha_{i,j}] \in \operatorname{GL}_n(\mathbb{F}_q) \mid \alpha_{ij} = 0 \text{ for } i > j \}.$$

5)

- p. 49. in **Hint** to Exercise 1.3.3 replace $m_0(\varphi)$ by $m_0(\varphi) = 1$.
- p. 55. last line of the proof of **Corollary 1.5.3**: replace " V/M_m " by " A/M_m ".⁶⁾
- p. 62. in **Exercise 1.5.2**, line 1: Replace first sentence by "Let V be a semisimple A-module with all composition factors being absolutely simple." $^{4)}$
- p. 120. line 18: replace -1 by -2 (i.e. $\chi_7(2a) = -2$). ¹⁾

- p. 149. **Exercise 2.7.6**, line 1: Replace $\mathbf{Z}(G) = \{1\}$ by "G = G' and $\mathbf{Z}(G) = \{1\}$ ".
- p. 210. **Exercise 3.4.2**, line 2: replace ψ by χ (twice).
- p. 236. Remark 3.6.24: Delete the third sentence and replace "example" by "non-abelian example" in the last line. Or better: Replace Remark 3.6.24 by
 Remark 3.6.24: (a) Let N ≤ G with [G : N] = 2 and suppose that there are no conjugacy classes of N which fuse in G. Unlike in the above example one cannot conclude from this in general that G ≈ N × C₂. The smallest non-abelian example can be found in Exercise 3.7.3.
 (b) Similar examples can be constructed taking a finite group N having an outer automorphism α leaving invariant all conjugacy classes of N and putting G := N × (α). See also Exercise 3.6.12 (Additional Material).
- p. 251. line 2: replace "exactly" by "at most". ¹⁾
- p. 290. **Definition 4.1.2**, line 1: replace "domain" by "domain R". ²⁾ Proof of **Lemma 4.1.3** line 4: replace α^{j-n} by α^{j-n+1} . ²⁾
- p. 297. line 3: add "If A is an R-order, then (K, R, F, η) is called a p-modular splitting system for A, if K is a splitting field for $K \otimes_R A$ and F is a splitting field for $F \otimes_R A$."²⁾
- p. 300. lines 3 and 4: replace by "Of course, if KA is semisimple as it will be in our applications, then (4.4) and (4.5) are given by". line 9 of Proof: replace "p. 76" by "p. 74".
- p. 301. **Exercise 4.1.4** (b), line 1: replace $\operatorname{Hom}_{RG}(R\Omega)$ by $\operatorname{End}_{RG}(R\Omega)$.
- p. 302. 3rd line of the proof of **Lemma 4.2.2**: replace " $\delta(g_{p'}) \ \delta(g_p)$ " by " $\delta(g_{p'}), \ \delta(g_p)$ ".
- p. 307. line -3: replace W^* by W^* . ²⁾
- p. 313. **Example 2.1.24**, line 10: replace φ_i by φ_1 .²⁾
- p. 315. in line 2 after **Definition 4.3.1** replace Φ by Φ_{φ} .²⁾
- p. 324. in line 12: replace "and hence $\alpha_g \in \mathbb{Z}[\zeta_m]$ " by "and hence $\alpha_g \in p\mathbb{Z}[\zeta_m]$ "¹⁾
- p. 330. 2nd paragraph, first line: replace "was" by "were".¹⁾
- p. 356. Corollary 4.7.12: replace

$$\nu_p((\theta^G)_B(1)) > \nu_p(\theta^G(1)) \quad \text{if } B \neq b^G, \\ = \nu_p(\theta^G(1)) \quad \text{if } B = b^G.$$

by

$$\nu_p((\theta^G)_B(1)) \begin{cases} > \nu_p(\theta^G(1)) & \text{if } B \neq b^G, \\ = \nu_p(\theta^G(1)) & \text{if } B = b^G. \end{cases}$$

- p. 395. line 2: replace "of trivial" by "of the trivial".
- p. 406. last line: delete "if V is a simple FG-module belonging to B".
- p. 428. last line of the paragraph following Conjecture 4.14.4. Replace the sentence: "In particular they give a proof that the McKay conjecture holds for groups with an abelian Sylow *p*-subgroup." by the following sentence: "In particular they give a proof that the McKay conjecture holds for all primes for groups with an abelian Sylow 2-subgroup."
- p. 429. line -4: replace the reference [117] by a reference to [D. Gluck, T.R. Wolf. Brauer's height conjecture for *p*-solvable groups, *Trans. Amer. Math.* Soc., 282(1): 137–152 (1984)].¹⁾
- p. 431. line -2: replace the reference [71] by a reference to [I.M. Isaacs, G. Navarro, Weights and Vertices for Characters of π -Separable Groups, J. Algebra, 177(2): 339–366 (1995)]. ³⁾
- p. 453. in [158] replace Soloman by Solomon.
 - ¹⁾ Thanks to Thomas Breuer (Aachen).
 - ²⁾ Thanks to Lukas Maas (Duisburg-Essen).
 - ³⁾ See the review MR2680716 (2011j:20016) by Shigeo Koshitani.
 - ⁴⁾ Thanks to Joseph Thomas (University of Arizona, Tucson).
 - ⁵⁾ Thanks to Andrea Previtali (University of Insubria, Italy).
 - ⁶⁾ Thanks to Nathalie Naehrig (Aachen).