Solution to Exercise 1.2.4

We put $\Omega := \{1, \ldots, n\}$ and assume $G \leq S_n$ acts transitively on Ω .

(1) Let $U \leq_{KG} V$ and $U \not\leq \operatorname{Inv}_G(V)$. Choose $0 \neq v \in U$ with l(v) minimal. We may assume that $v \notin \operatorname{Inv}_G(V)$. We choose the notation so that $\Omega = \{\omega_1, \ldots, \omega_n\}$ and $v = \sum_{i=1}^r \alpha_i \omega_i$, hence $\alpha_i \neq 0$ for $i = 1, \ldots, r$. If r = 1 then $\omega_1 \in U$ and U = V, because G acts transitively on Ω . So let r > 1. Replacing v by $\alpha_1^{-1}v$ if need be, we may also assume that $\alpha_1 = 1$.

(a) If $G = S_n$ we put $g_j := (\omega_1 \ \omega_j) \in G$ and get for $j = 2, \ldots, r$

$$v_j := v - \alpha_j^{-1} g_j v = (\alpha_j - \alpha_j^{-1}) \omega_j + \sum_{\substack{i=2\\i \neq j}}^r \alpha_i (1 - \alpha_j^{-1}) \omega_i \in U.$$

Then $l(v_j) < r$ and from the minimality of r = l(v) we conclude that $v_j = 0$ for j = 2, ..., r. It follows that $\alpha_j = 1$ for j = 1, ..., r or r = 2 and $v = \omega_1 - \omega_2$. Assume that $\alpha_j = 1$ for j = 1, ..., r. Since $v \notin Inv_G(V)$ we have r < n. Then $v'' := v - (\omega_1, \omega_n) v = \omega_1 - \omega_n \in U$ and l(v'') = 2.

Thus we have r = 2 and $\omega_1 - \omega \in U$ for all $\omega \in \Omega$, since G acts doubly transitively on Ω and so $U \geq \text{Inv}^G(V)$.

(b) Now let $G := A_n$. If $r \le n-2$ we may argue exactly as in (a) replacing the transposition $(\omega_1 \ \omega_j)$ by $(\omega_1 \ \omega_j)(\omega_{n-1} \ \omega_n)$ and $(\omega_1 \ \omega_n)$ by $(\omega_1 \ \omega_n \ \omega_{n-1})$ to show that $U \ge \text{Inv}^G(V)$.

So we may assume that $r \ge n-1$, hence $r \ge 3$ (and $r \ge 4$ if $n \ge 5$). For $3 \le j \le r$ we put $g'_j := (\omega_1 \ \omega_2 \ \omega_j) \in \mathcal{A}_n$ and

$$v'_{j} := v - \alpha_{j}^{-1} g'_{j} v = (\alpha_{2} - \alpha_{j}^{-1}) \omega_{2} + (\alpha_{j} - \alpha_{2} \alpha_{j}^{-1}) \omega_{j} + \sum_{\substack{i=3\\i \neq j}}^{r} \alpha_{i} (1 - \alpha_{j}^{-1}) \omega_{i} \in U.$$

Then $v'_j = 0$ because $l(v'_j) < r$. If $r \ge 4$ the last sum is not empty and we conclude that $\alpha_j = 1$ for $j = 2, \ldots, r$. Replacing $(\omega \ \omega_1)$ by $(\omega \ \omega_1)(\omega_3 \ \omega_4)$ in the argument of (a) we obtain $U \ge \text{Inv}^G(V)$. In particular (i) is proved.

So it remains to consider the case r = 3 and, consequently n = 4. Here $v'_3 = 0$ means

$$\alpha_2 = \alpha_3^{-1}, \qquad \alpha_3 = \alpha_2 \alpha_3^{-1} \qquad \text{hence} \qquad \alpha_3^3 = 1, \qquad \alpha_2 = \alpha_3^2.$$

If $X^2 + X + 1 \in K[X]$ is irreducible then $\alpha_2 = \alpha_3 = 1$ and $v' - (\omega_1 \omega_4)(\omega_2 \omega_3) v' = \omega_1 - \omega_4 \in U$, a contradiction. In particular (iii) is proved.

Now let $\alpha := \alpha_2$ be a primitve third root of unity in K and $\alpha_3 = \alpha^2$. Put

$$v' := (\omega_1 \ \omega_4)(\omega_2 \ \omega_3) \ v = \alpha^2 \ \omega_2 + \alpha \ \omega_3 + \omega_4$$
$$v'' := (\omega_1 \ \omega_4 \ \omega_2) \ v = \alpha \ \omega_1 + \alpha^2 \ \omega_3 + \omega_4$$

Then

$$w := v'' - \alpha \, v + v' = -2 \, \omega_3 + 2 \, \omega_4 \in U$$

and l(w) = 2 if char $K \neq 2$, a contradiction, which proves (ii).

Note: If char K = 2 then $W := \langle v, v' \rangle_K \leq_{KG} V$ and affords (with respect to the basis (v, v')) the matrix representation

$$(\omega_1 \ \omega_2 \ \omega_3) \mapsto \begin{bmatrix} \alpha & \alpha \\ 0 & 1 \end{bmatrix}, (\omega_1 \ \omega_4)(\omega_2 \ \omega_3) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

With respect to the basis $(\sum_{i=1}^{4} \omega_i, v)$ the module W affords the matrix representation

$$(\omega_1 \ \omega_2 \ \omega_3) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}, (\omega_1 \ \omega_4)(\omega_2 \ \omega_3) \mapsto \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$