Solution to Exercise 2.1.5

(a) Let $\delta: G \to \operatorname{GL}(V)$ be the representation corresponding to the KGmodule V. Then $\operatorname{Fix}_V(g) = \ker(\delta(g) - \operatorname{id}_V)$. Since $\ker \varphi^{\mathrm{T}} = (\ker \varphi)^o$ for any $\varphi \in \operatorname{End}_K V$ and hence (by Theorem 1.1.34) dim $\ker \varphi = \dim \ker \varphi^{\mathrm{T}}$ we get $|\operatorname{Fix}_V(g)| = |\operatorname{Fix}_{V^*}(g^{-1})|$. By (2.3) on page 93 G has the same number of orbits on V and V^{*}.

(b) Let $V_4 \cong G = \langle g_1, g_2 \rangle$ and define the matrix representation

$\boldsymbol{\delta} \colon G \to \mathbb{F}_2^3,$	$g_1 \mapsto$	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	0 1	0	,	$g_1 \mapsto$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0 1	0	
		0	0	1			1	0	1.	

Then clearly the orbits of $\boldsymbol{\delta}$ on \mathbb{F}_2^3 have lengths 1, 1, 1, 1, 4, whereas the orbits of $\boldsymbol{\delta}^*$ have lengths 1, 2, 2, 2, 1.

One way to find such examples is to look at the groups G of order 32 having an elementary abelian normal subgroup N of order 8 with elementary abelian factor group and compare the orbits of G on the subgroups of N of order two and on those of order four.