
Solution to Exercise 2.7.6

In the exercise we add the assumption G = G′. Otherwise G = A4 would
be the smallest counterexample.

(a) A direct application of Exercise 2.3.3 (with p = 3) gives |CG(P3)| = 3
for P3 ∈ Syl3(G). Hence P3 = 〈g3〉 has order three and |CG(g3)| = 3.

If η ∈ Irr(G) with η(1) = 2 the congruence relations of Lemma 2.2.2 imply
η(g3) ∈ {2,−1} and the orthogonality relations (Theorem 2.1.15, (2.5)) applied
to (g3, g3) and (1, g3) show that η(g3) = −1 and that there must be a linear
character 1G 6= λ with λ(g3) = 1, which contradicts G = G′. Hence G has no
irreducible character η of degree two.

If we were assuming that G is simple, the last paragraph could be replaced
by a reference to Exercise 2.2.4 or to Exercise 2.3.3.

(b) Note that χ[12](1) = 3 and χ[2](1) = 6. From χ = χ it follows that

(χ2,1G)G = (χ, χ)G = 1.

Since G has no non-trivial irreducible character of degree ≤ 2 we conclude that

χ[12] ∈ Irr(G) and χ[2] = 1G + ψ

with ψ(1) = 5 and ψ ∈ Irr(G) because ψ cannot have a constituent of degree
≤ 5/2. If x ∈ G\{1} and ψ(x) = ψ(1) = 5 then 6 = χ[2](x) = 1

2 (χ(x)2+χ(x2)) <
1
2 (9+3) = 6, a contradiction. Hence ψ is faithful. We will prove χ[12] = χ in (e).

(c) Since χ(g3) = χ(g2
3) = 0 by Theorem 2.3.7, we have χ[2](g3) = 0,

hence ψ(g3) = −1. (This also follows from the congruence relations.) Since
|CG(g3)| = 3 there is a unique ϕ ∈ Irr(G) with ϕ(1) = 4 (and ϕ(g3) = 1),
because of the orthogonality relations. These also show that for any g ∈ G \ gG
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we have 1 + ϕ(g)− ψ(g) = 0. Furthermore it follows that ϕ and ψ are the only
irreducible characters of degree four and five, respectively

(d), (e) Let g5 ∈ G be an element of order five. Since χ is real and faithful
χ(g5) ∈ {1 + ζ2

5 + ζ3
5, 1 + ζ5 + ζ4

5} = { 1−
√

5
2 , 1+

√
5

2 }. Hence gG
5 is a real (but

not rational) conjugacy class and there is χ′ ∈ Irr(G), algebraically conjugate
to χ. Exercise 2.3.3 (with p = 5) shows that 〈g5〉 = CG(g5) ∈ Syl5(G). The
congruence relations give ϕ(g5) = −ϕ(g2

5) = −1. Since

5 = |CG(g5)| = 1 + χ(g5)2 + χ′(g5)2 + ϕ(g5)2

any η ∈ Irr(G) \ {1G, χ, χ
′, ϕ, ψ} must vanish on all elements of order five; in

particular χ, χ′ are the only irreducible characters of degree three. Replacing
g5 by g2

5 if need be we may assume that χ(g5) = 1−
√

5
2 . Then

χ[12](g5) =
1
2
(
3−

√
5

2
− 1 +

√
5

2
) =

1−
√

5
2

= χ(g5)
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and hence χ[12] = χ. If g ∈ G has order two then χ(g) = ±1 and thus
χ(g) = χ[12](g) = χ(g)2−χ(1)

2 = −1. If p > 5 is a prime and g ∈ G has or-
der p then χ(g) = 1 + ζ + ζ−1 with a primitive p-th root of unity ζ. Hence
there must be p−1

2 > 2 characters of G algebraically conjugate to χ, which is a
contradiction. As a consequence we see that |G| = 2k · 3 · 5 for some k ≥ 2.

(f) Applying a Galois automorphism to (χχ′, χ)G = (χ2, χ′)G = 0 we get
(χχ′, χ′)G = 0. Since also (χχ′,1G)G = (χχ′)G = 0, the only possible irre-
ducible constituents of χχ′ are ϕ and ψ. Hence

χχ′ = ϕ+ ψ.

If g ∈ G has order four then χ(g) = χ′(g) = ±1. Hence χ[2](g) = 1−1
2 = 1+ψ(g)

so ψ(g) = −1 and ϕ(g) = −2 (by (c)). We get 1 = (χχ′)(g) 6= ϕ(g)+ψ(g) = −3,
a contradiction.

(g) A simple computation shows:

χ2 = 1G + χ+ ψ χχ′ = ϕ+ ψ χϕ = χ′ + ϕ+ ψ χψ = χ+ χ′ + ϕ+ ψ

χ′
2 = 1G + χ′ + ψ χ′ ϕ = χ+ ϕ+ ψ χ′ ψ = χ+ χ′ + ϕ+ ψ

ϕ2 = 1 + χ+ χ′ + ϕ+ ψ ϕψ = χ+ χ′ + ψ + 2 · ψ
ψ2 = 1 + χ+ χ′ + 2 · ϕ+ 2 · ψ

(h) From (g) and Theorem 2.7.3 we conclude that G has exactly five conju-
gacy classes: {1}, gG

2 , g
G
3 , g

G
5 , g

2
5

G where g2 is an involution. Thus the character
table of G is

|CG(g)| 60 4 3 5 5
g 1 g2 g3 g5 g2

5

1G 1 1 1 1 1
χ 3 −1 0 ε ε′

χ′ 3 −1 0 ε′ ε
ϕ 4 0 1 −1 −1
ψ 5 1 −1 0 0

with (ε, ε′) := ( 1−
√

5
2 , 1+

√
5

2 ). From this it is apparent that G ∼= A5.

2


