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Introduction

1 How to calculate in homotopy categories?

Homotopy categories

Homotopical algebra may be thought of as the study of homotopy categories in the following sense. We consider
a category C that is equipped with a set () of morphisms that we want to call weak equivalences. We would like
to consider the objects in C that are connected by weak equivalences as essentially equal, although a given weak
equivalence in C is not an isomorphism in general. To make this mathematically precise, we have to pass to the
homotopy category HoC of C, which is defined to be the localisation of C with respect to the weak equivalences.
Here localisation is a purely category theoretical device that produces the universal category in which the weak
equivalences become isomorphisms — the idea being borrowed from localisation of rings.

The archetypical example is given by the category of topological spaces, with the weak equivalences being
continuous maps that induce isomorphisms on all homotopy groups. Similarly, we may consider the category
of simplicial sets, with the weak equivalences being simplicial maps that induce, after topological realisation,
isomorphisms on all homotopy groups. An additive example is given by the category of complexes with entries
in an abelian category, with weak equivalences being the quasi-isomorphisms, that is, the complex morphisms
that induce isomorphisms on all (co)homology objects. A further example, which is somehow degenerate from
our point of view, is given by an abelian category, with the weak equivalences being those morphisms having
kernel and cokernel in a chosen thick subcategory.

The homotopy category of topological spaces is then equivalent to the homotopy category of simplicial sets, and
also equivalent to the category comnsisting of CW-spaces and homotopy classes of continuous maps.

Gabriel-Zisman localisation

By a theorem of GABRIEL and ZISMAN [12, sec. 1.1], a localisation of a category with respect to an arbitrary set
of weak equivalences exists, the Gabriel-Zisman localisation (?); and as a localisation is defined via a universal
property, it is unique up to a unique isomorphism of categories. While the objects in the Gabriel-Zisman
localisation are the same as in C, the morphisms are equivalence classes of zigzags

X — e Y

of finite but arbitrary length, where the “backward” arrows (labeled by “~”) are supposed to be weak equiva-
lences. So roughly said, the morphisms in the Gabriel-Zisman localisation consist of arbitrarily many numerators
and denominators. To decide whether two such zigzags represent the same morphism, the definition provides
an equivalence relation generated by certain elementary relations — which leads to a word problem.

Brown’s homotopy 2-arrow calculus

Since our four examples share more structure, we can do better in our situation. A Brown cofibration category is
a category C that is not only equipped with a set of weak equivalences, leading via localisation to its homotopy
category, but moreover with a set of morphisms called cofibrations, fulfilling a short list of axioms, see section 3

1For the purpose of this introduction, we ignore set-theoretical difficulties.

2To the author’s knowledge, this general construction first explicitly appeared in the monograph of GABRIEL and Zisman [12,
sec. 1.1]. One can find earlier mentions, for example in [15, ch. I, §3, rem., p. 29| and in [37, ch. I, §2, n. 3, p. 17|. In the latter
source, one finds moreover a citation “[C.G.G.]”, which might be the unpublished manuscript Catégories et foncteurs of CHEVALLEY,
GaBRIEL and GROTHENDIECK occurring in the bibliography of [32].
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below or definition (3.52)(a). For example, the category of simplicial sets or the category of complexes in an
abelian category, with weak equivalences as described above, become Brown cofibration categories if we equip
these categories with monomorphisms as cofibrations. The category of topological spaces together with the
weak equivalences as above and with the Serre fibrations becomes a Brown fibration category, that is, it fulfils
axioms dual to that of a Brown cofibration category. Finally, in the example of an abelian category we may
add all morphisms as cofibrations to the data to obtain a Brown cofibration category.

By Browns homotopy 2-arrow calculus |7, dual of th. 1 and proof], the morphisms in the homotopy category
of a Brown cofibration category C may be described as follows. Every morphism in HoC is represented by a
diagram

X—»)}TY,

called a 2-arrow (3). Two such 2-arrows represent the same morphism in HoC if and only if they can be
embedded as the top and the bottom row in a diagram of the form

X4>§'1<—Y

X —Y «—Y

~

|

X—>Y2<TY

that is commutative up to a suitable notion of homotopy.

Z-2-arrow calculus

In the example of an abelian category, one even has a strict 2-arrow calculus, that is, one gets a strictly
commutative 2-by-2 diagram as above for two 2-arrows representing the same morphism. This, however, does
not hold in an arbitrary Brown cofibration category C. If we want to work with a strictly commutative diagram,
we have to pick certain 2-arrows: Every morphism in HoC is represented by a so-called Z-2-arrow, that is, a
2-arrow

X%?TY

such that the induced morphism X IIY — Y is a cofibration. Two such Z-2-arrows represent the same
morphism in HoC if and only if they can be embedded as the top and the bottom row in a strictly commutative
2-by-2 diagram of the above form. Since in the example of an abelian category all morphisms are cofibrations,
all 2-arrows are Z-2-arrows; and so the calculus with Z-2-arrows may be seen as a generalisation of the strict
calculus in the example of an abelian category to arbitrary Brown cofibration categories.

It is not hard to derive Brown’s homotopy 2-arrow calculus from the Z-2-arrow calculus, see theorem (3.132).
It is possible, but more complicated, to derive the Z-2-arrow calculus from Brown’s homotopy 2-arrow calculus.
We will, however, develop the Z-2-arrow calculus ab ovo.

The Z-2-arrow calculus will be applied to construct an unstable variant of a higher triangulated structure on
the homotopy category of a Brown cofibration category; cf. section 2 for details.

A comparison: How to calculate in derived categories

We reconsider our example of the category of complexes C(A) with entries in an abelian category A, equipped
with the quasi-isomorphisms as weak equivalences and with the monomorphisms as cofibrations. In this case,
the homotopy category Ho C(.A) is the derived category D(A). Beside this, there is also the so-called homotopy

3In the main text, this will be called an S-2-arrow to distinguish it from the dual situation. We will omit the “S” for the purpose
of this introduction.
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category of complexes K(A) () that has the same objects as C(.A), but as morphisms the homotopy classes of
complex morphisms.

VERDIER has shown that the derived category D(.A) may be constructed as the Verdier quotient of K(.A) modulo
the thick subcategory of acyclic complexes. As a strict 2-arrow calculus is valid for every Verdier quotient and as
every morphism in K(A) is a homotopy class of morphisms in C(A), this leads to a homotopy 2-arrow calculus
for the derived category in the following sense. Every morphism in D(A) is represented by a 2-arrow, and two
2-arrows represent the same morphism in D(A) if and only if they can be embedded as the top and the bottom
row in a 2-by-2 diagram of the above form that is commutative up to complex homotopy.

Brown’s homotopy 2-arrow calculus is a generalisation of this example to arbitrary Brown cofibration cate-
gories. In contrast, the Z-2-arrow calculus yields a possible way to calculate in the derived category D(A) as a
localisation of C(.A), which is more handy than Gabriel-Zisman and which circumvents the homotopy category
of complexes K(A).

Related concepts

There are several concepts related to that of a Brown cofibration category, the most popular one being that of
a Quillen model category [28, ch. I, sec. 1, def. 1]. An overview can be found in [30, ch. 2]. Every Quillen model
category has a Brown cofibration category as a subcategory, namely the full subcategory of cofibrant objects.
The homotopy categories of a Quillen model category and its full subcategory of cofibrant objects are equivalent
by Quillen’s homotopy category theorem [28, ch. I, sec. 1, th. 1].

In many examples of Quillen model categories, all objects are either cofibrant or fibrant, that is, they are either
Brown cofibration categories or Brown fibration categories, whence Brown’s homotopy 2-arrow calculus as well
as the Z-2-arrow calculus (resp. its dual) apply. In the general case, one obtains a (strict) 3-arrow calculus,
as was proven by DWYER, HIRSCHHORN, KAN and SMITH [11, sec. 10, sec. 36|, provided the Quillen model
category at hand admits functorial factorisations in the sense of [11, sec. 9.1, ax. MC5]. The requirement of
functorial factorisations was shown to be redundant by the author [36].

In that work, a 3-arrow calculus has been developed in the context of wuni-fractionable categories, which is
applicable to Quillen model categories as well as to their subcategories of cofibrant, fibrant and bifibrant objects,
see [36, def. 3.1, th. 5.13, ex. 6.1]. Although it has been announced that the results developed in loc. cit. would
play a role in this thesis, the author decided not to use them, as the Z-2-arrow calculus seems to be more
practicable. However, some of the methods survived and are used in chapter II, see in particular section 6.

2 An unstable higher triangulated structure on the homotopy cate-
gory

In the following, we will illustrate what we mean by a higher triangulated structure. Although we work unstably
in the main text, we begin our explanation with the stable situation (in the sense below) as this is the classical
case.

The shift on the homotopy category

We suppose given a zero-pointed Brown cofibration category C (°), that is, a Brown cofibration category together
with a distinguished zero object. As K. BROWN has shown [7, dual of th. 3], the homotopy category HoC has
a canonical endofunctor T: HoC — HoC, called the shift of HoC.

For example, on the derived category we get the usual shift of complexes. On the homotopy category of pointed
topological spaces, using the dual notion of a zero-pointed Brown fibration category, we get the loop space
functor.

A stable Brown cofibration category is a zero-pointed Brown cofibration category C such that the shift on HoC
is invertible. SCHWEDE [33, th. A.12| has shown that the homotopy category of a stable Brown cofibration
category carries the structure of a triangulated category in the sense of VERDIER [37, ch. I, §1, n° 1, sec. 1-1].
Precursors and variants of this result are reported in [33, rem. A.13].

4The clash of notation “homotopy category of complexes” vs. “homotopy category in the sense of homotopical algebra” may
be explained as follows. There is another Brown cofibration structure on C(.A) where the cofibrations are given by the pointwise
split monomorphisms and where the weak equivalences are given by the homotopy equivalences of complexes. With respect to this
structure, the homotopy category Ho C(A) is K(A).

5In the literature, a zero-pointed category is often just called a pointed category.
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Higher triangles

A Verdier triangulated category consists of an additive category T, equipped with an autofunctor T: 7 — T,
called shift, and a set of diagrams in T of the form
u

X y Y5O - TX

called Verdier triangles, such that certain axioms are fulfilled. Such a Verdier triangle in 7 is sometimes depicted
as

C
v o

X"y,

where the double-arrow notation indicates that w is in fact a morphism C' — TX.
One of the axioms of a Verdier triangulated category 7T is the so-called octahedral axiom, which states the
following. For all morphisms u1: X — Y, ug: Y — Z in T there exists a diagram in T of the form

c /Y'\ A
N\ N/
X —7
B
such that (X,Y,C, TX), (Y,Z,A,TY), (X,Z,B,TX), (C,B, A, TC) are Verdier triangles, and such that the
triangles (X,Y, Z), (C, B, TX), (A,TY,TC), (Z, B, A) and the quadrangles (Y, Z,C, B), (B,TX, A, TY) com-

mute. Such a diagram is called a Verdier octahedron.
In every Verdier triangle

C
v o

X"y,

the composites X — C, Y — TX, C — TY are zero morphisms. So, a bit redundantly, this Verdier triangle
may be also depicted as a commutative diagram of the form

0

0 —— TY

‘ r

0——C 2 TX

L)

0 Xty 0

On the other hand, in a Verdier octahedron

s
N\ \e )/

X—7

\ /

C A
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the morphisms X — Z, C — TX, A —» TC, Z — A are uniquely determined as composites of two other mor-
phisms. Moreover, as such a Verdier octahedron consists of Verdier triangles, several composites of morphisms
in it are zero morphisms. So this Verdier octahedron may be depicted as a commutative diagram of the form

0
00— TZ
Tuz
0—— A—TY
T Tuq
0 C B TX
0 X2y -2,z 0

If we prolongate this diagram periodically (up to shift), we may read off the four contained Verdier triangles
(also periodically prolongated), cf. figure 1.

In fact, writing Verdier triangles and Verdier octahedra in this way corresponds to their usual construction
when 7 = HoC, the homotopy category of a stable Brown cofibration category: Verdier triangles arise from
certain diagrams of the form

Mo

N24>Ty

T

Ny — C— Tk

]

MO X Y Ml

in C such that My = My & My =2 Ny & Ny 20 and Tx = TX, Ty &2 TY in HoC. Likewise, the Verdier
octahedra that are usually constructed to verify the octahedral axiom arise from certain diagrams of the form

My

N34>TZ

Ny —— A — Ty

Ny C B Tx
MO X Y Z Ml

in C such that Mo & My 2 My =2 N1 2 NoZ N3 =0and Tx 2TX, Ty 2TY, Ty, 2TZ in HoC.
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o s T 0T o o T o D,
<TC Ll NP o '
I T e (O
s =11 o | @(LI e LY o1 T
(R 3V (= RN

Figure 1: The four Verdier triangles in a Verdier octahedron.

In the same style, one may construct certain diagrams of the form

My

n

N24’~--*>C2,n4’TX2
N1 01’2 e Cl,n — TX1
M, X, X, X, M,

in C that yield diagrams of the form

0
0— TX,
0 C2,n TX2
0 Ci2 Cin TX,
0 X1 X5 o X, 0

in HoC. These diagrams in HoC (periodically prolonged) are called n-triangles. For m < n, an n-triangle
contains several m-triangles, cf. figure 2.

By definition, a Verdier triangle in HoC is obtained from a diagram in the Brown cofibration category C as
indicated above, so the Verdier triangles in HoC are precisely the 2-triangles. In contrast, the definition of
a Verdier octahedron is only requiring a diagram (of the form as described above) that contains four Verdier
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Figure 2: A 3-triangle in a 5-triangle.

triangles, as stated in the octahedral axiom. As 3-triangles fulfil this property, they are particular Verdier
octahedra. In general, there are Verdier octahedra in HoC that are not isomorphic to a 3-triangle in HoC [24,
lem. 3, lem. 7].

Moreover, since an n-triangle for n > 2 contains several Verdier triangles, a kind of a higher octahedral axiom
is fulfilled, cf. [5, rem. 1.1.14(d)].

Basic properties of n-triangles

In this thesis, we show that some of the properties of Verdier triangles in the homotopy category HoC of a
stable Brown cofibration category C generalise to n-triangles (and therefore may be asked as axioms in a suitable
notion of triangulated category with n-triangles at disposal, see KUNZER [22, def. 2.1.2] and, independently,
MALTSINIOTIS [25, sec. 1.4]). We will explain these basic properties of n-triangles and describe their relationship
to the corresponding axioms of a Verdier triangulated category in the following. In doing so, by a morphism of
n-triangles we mean a diagram morphism that is periodic up to shift.

Closed under isomorphisms. Like Verdier triangles, general n-triangles are closed under isomorphisms already
by definition.

Prolongation on the objects. In every Verdier triangulated category, and therefore in particular in HoC, one has
the following two properties. First, one has prolongation of morphisms to Verdier triangles: Every morphism
u: X — Y may be prolonged to a Verdier triangle.

v w

X2y » C » TX
Second, one has the octahedral axiom, that is, prolongation of pairs of composable morphisms to Verdier octa-

hedra: All morphisms u1: X — Y, us: Y — Z may be prolonged to a Verdier octahedron. ()

o L oy

i .< < L
X —Z

. Vgt

6This is equivalent to (TR4) in [37, ch. I, §1, n° 1, sec. 1-1] in view of (TR3) in loc. cit.
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So summarised, these two properties state that every sequence of 1 resp. 2 composable morphisms may be
prolonged to a Verdier triangle resp. to a Verdier octahedron.

0
0 0—— TZ
|
0 ——TY O*mil » TY
| |
O%q » TX O%q >? » TX
| |
0 X Y 0 0 X Y A 0

As explained above, the Verdier octahedra constructed in the verification of the octahedral axiom arise from
certain diagrams in C, and so they are in fact 3-triangles. We show that an analogous prolongation property
holds for n-triangles in HoC, see theorem (5.55)(a): Every sequence of n — 1 composable morphisms in HoC
may be prolonged to an n-triangle.

0
00— TX,
00— ... > Ca » TXo
0 —— Ci2 > > Chn » TXq
0 X X5 X, 0

We call the lowest row of an n-triangle its base. With this terminology, the stated property may be reformulated
as follows: The restriction functor that assigns to an n-triangle its base (from the category of n-triangles in
HoC to the diagram category whose objects are n — 1 composable morphisms in HoC) is (strictly) surjective on
the objects.

Prolongation on the morphisms. In every Verdier triangulated category, and therefore in particular in HoC, one
has prolongation of morphisms of morphisms to morphisms of Verdier triangles: Given a commutative diagram

X5y "0, TX

) Nye N \) ¢

whose rows are supposed to be Verdier triangles, there exists a morphism v: C' — C’ such that the following
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diagram commutes.

w

Xy —"25C TX

Joé JB ol JTa

X Ly L0 27X

So with the notion of a base as just introduced, this property states that every morphism of bases of Verdier

triangles may be prolonged to a morphism of Verdier triangles.

0
/
0 TY
/| S
0 c TX
d A
0 X Y 0
| ;
S
0 TY’
s e
0 — ) — |- TX’
% / s

0 X' Y’ 0

We show that an analogous prolongation property holds for n-triangles in HoC, see theorem (5.55)(b): Every

morphism of bases of n-triangles in HoC may be prolonged to a morphism of n-triangles.
0

e
0 TX,
e e
e e
0 Cap TX,
d s | -
0 Ci2 Ciy TX;
. e R - | 7
1 n
0
e
0—|———|—— TX],
/ S
e e
/0 . 74’(%,71 — | — TX}
L e e
0 4’0{,2 —C1, — TX]
7 S
0 X X} X! 0

In other words: The restriction functor that assigns to an n-triangle its base is full.
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Stability under generalised simplicial operations. Every 3-triangle in HoC, being a Verdier octahedron, contains
four 2-triangles (in the notation above, they have the bases X — Y resp. Y — Z resp. X — Z resp. C — B).
Every 2-triangle contains three 1-triangles (in the notation above, they have the bases X resp. Y resp. C).
Conversely, every 1-triangle may be considered as a degenerate 2-triangle in two ways (the existence of one of
these 2-triangles is an axiom of a Verdier triangulated category).

0 0

0 0 —— TX 0 —— TX
| T

00— TX 0 0—— TX 00— X —0
] ]

00— X —0 0 X X 0 0 0 X 0

These relationships between n-triangles can be shortly expressed by the statement that n-triangles are stable
under simplicial operations. In other words, n-triangles may be organised in a simplicial set that has as
n-simplices precisely the n-triangles.

Moreover, given a Verdier triangle

0
0—— TY
\ ”
0—— C ——TX
]
0 X =y 0

in HoC, applying the rotation aziom of a Verdier triangulated category twice shows that

0
0— T2X
[ T
0 TY —Y TC
T
0 C—-TX 0

is also a Verdier triangle in HoC. The stability under such an operation can also be generalised to arbitrary
n-triangles: Given an n-triangle, the diagram obtained by taking as new base the second lowest row (in the
periodic prolongation) is again an n-triangle. One says that n-triangles are stable under translation.

The unstable case

To state and prove the properties of n-triangles described above, one never uses the invertibility of the shift.
In other words, “unstable n-triangles” may be defined in the homotopy category of every zero-pointed Brown
cofibration category and then have the asserted properties.
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However, there are some differences to the stable case: As the homotopy category of a stable Brown cofibration
category is a Verdier triangulated category, it is in particular an additive category [33, prop. A.8(iii)]. This
additivity does no longer hold in the general unstable case. Moreover, in the stable case, Verdier triangles
may be periodically prolonged in two directions, using also the negative powers of the shift functor, and as a
consequence of the rotation axiom, they are also “stable under translation in the negative direction”. In the
unstable case, the considered diagrams, which we then call n-cosemitriangles, are only stable under periodic
prolongations in one direction, for lack of negative powers of the shift.

Combinatorics

Since n-cosemitriangles are quite large diagrams, the bookkeeping of the occurring data is a non-trivial task.
To manage this, an underlying combinatorics for cosemitriangles is developed, as an unstable analogon to the
combinatorics for Heller triangulated categories [23, sec. 1.1].

This combinatorics consists of two parts: First, we obtain for every n € Ny a diagram category in which
our n-cosemitriangles live, the category of n-cosemistrips. Second, these diagram categories in turn may be
organised using a combinatorics that is a generalisation of the well-known combinatorics for simplicial sets:
they form a so-called semiquasicyclic category. The stability of cosemitriangles under simplicial operations and
translation may be shortly expressed as the fact that cosemitriangles form a semiquasicyclic subcategory of the
semiquasicyclic category of n-cosemistrips, cf. proposition (5.50).

3 The main results

In this section, we state our main results, partly in informal terms and not necessarily in full generality.

Z-fractionable categories and the Z-2-arrow calculus
To prove the Z-2-arrow calculus, we work axiomatically and introduce the following notion.

Definition (Z-fractionable category, see (2.81)(a), (2.80)(a), (2.1)(a), (1.1)(a), (2.10), (1.35), (1.37), (2.65),
(2.62), (2.68), (2.56), (2.70), (2.72), (2.75)). A Z-fractionable category consists of a category C together with
the following data that is subject to the axioms listed below.

e Distinguished morphisms in C, called denominators, which will in diagrams be depicted as
XLy,

e Distinguished denominators in C, called S-denominators, which will in diagrams be depicted as
X 45V,

e Distinguished diagrams of the form

f i

X —5Yes—Y

in C (7), called Z-2-arrows.

A general diagram of the form

XL»)}HZ—Y

in C will be called an S-2-arrow in C, often denoted by (f,a).
The following axioms are supposed to hold.

(Cat) Multiplicativity. The denominators and the S-denominators are closed under composition in C and contain
all identities in C.

7In general, we do not take all diagrams of this form.
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(20f3g) S-part of 2 out of 3 axiom. For all morphisms f and g in C such that f and fg are denominators, it follows
that g is also a denominator.

(Ored™) Weakly universal S-Ore completion axiom. For every morphism f and every S-denominator i in C with
Source f = Sources there exists an S-2-arrow (f’,i’) in C such that ¢’ is an S-denominator with fi’ =if’,
and such that for every S-2-arrow (g,a) in C with fa = ig there exists a morphism ¢ in C with a = i'c
and g = f'c.

(Rplz) Z-replacement aziom. For every S-2-arrow (f,a) in C there exists a Z-2-arrow (f,a) and a morphism s
in C with f = fs and a = as.

(Rplge™) Z-replacement axiom for denominators. For every S-2-arrow (d, a) in C with denominator d there exists a
Z-2-arrow (d, ) in C with denominator d and a morphism s in C with d = ds and a = as.

(Rply") Relative Z-replacement aziom. We suppose given a Z-2-arrow (fi,41), an S-2-arrow (f2,a2) and mor-
phisms g1, g2, g2 in C such that the diagram

—o—
ng ng ng
f2 as
—

commutes. Then there exist a Z-2-arrow (fa, @2) and morphisms s, g in C such that the following diagram

commutes.
f1 i1
/ f1 / i1 /
O— g2
ng g J§2 g2
f2 az
_— R |

> X

Moreover, we suppose to have the following additional assertions, respectively.
If g1 and g5 are denominators, then we suppose that g may be chosen to be a denominator.

If g1 and g5 are S-denominators, then we suppose that g may be chosen to be an S-denominator.
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Rplrel’Z Relative Z-replacement axiom for Z-2-arrows. We suppose given Z-2-arrows (f1,%1), (f2,%2), (91,71),
VA
(g2, j2) and S-2-arrows (f3},ah), (g5,b5) in C such that the diagram

commutes. Then there exist Z-2-arrows (f5,ab), (¢4, b5) and a morphism s in C such that the following
diagram commutes.

.
[y

f1
/ f1 / i1 /
o— g2
g1 go
g g2
o aj
g1 4: —r— | —
i aj
> < ‘ o J2
%jl Ob/2 e b/z 1]'2
. f2 ‘ i2
J1 —_— —O— | ———
/ 2 /i2 /

(Cprz) Z-comparison axiom. We suppose given an S-2-arrow (f, a), Z-2-arrows (fl, ay), (fQ, a2) and morphisms sy,
sg in C such that the diagram

LN
[82
f2 a2

—o—

—

commutes. Then there exist a Z-2-arrow (f, ), a normal S-2-arrow (¢, j) and a morphism s in C such that
the following diagram commutes.

i
/ f :._f”

N

N

a
> < O
. S
Y 2
f2 ao
—_—

N

e
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(Cctz) Z-concatenation aziom. For all Z-2-arrows (f1,41), (fz,i2) in C with Target (f1,41) = Source (f2,i2) there
exists a weakly universal S-Ore completion (f3,4}) for fo and i1 such that (f1f5,427}) is a Z-2-arrow in C.

f1 13
—_— >
. r .
i fy 0d)
_—

R
(Invy) Z-inversion aziom. Given a Z-2-arrow (f,4) in C such that f is a denominator, then (4, f) is a Z-2-arrow
in C.

(Numy) Z-numerator axiom. For every Z-2-arrow (f,4) and every denominator d in C with Source (f,7) = Source d
there exists an S-2-arrow (f’,d’) in C with fd' = df’.

(Expz) Z-expansion aziom Given a Z-2-arrow (f,7) and an S-denominator j in C with Target f = Targeti =
Source j, then (fj,ij) is a Z-2-arrow in C.

f i
1Lj
fi ij

Theorem (construction of the S-Ore localisation, Z-2-arrow calculus, see (2.85), (2.93)). We suppose given a
Z-fractionable category C.

(a) There is a localisation Oreg(C) of C, called the S-Ore localisation of C, whose objects are the same as the
objects in C and whose morphisms are represented by S-2-arrows in C.

(b) Every morphism in Oreg(C) is actually represented by a Z-2-arrow in C.

(¢) Z-2-arrows (f,4), (f',%) in C represent the same morphism in Oreg(C) if and only if they fit in a commu-
tative diagram in C as follows.

f i
«—o—
:
s <
'
I’ i’

(d) We suppose given morphisms @1, @2, 1, ¥ in Oreg(C). Moreover, we suppose given Z-2-arrows (f1,11),
(f2,i2) and S-2-arrows (g1,b1), (g2,b2) in C, representing @1, @2, w1, 9, respectively. We have
©12 = P12 in Oreg(C) if and only if the given S-2-arrows fit in a commutative diagram in C as fol-
lows.

J!Jl~ g2 Jg2
2 o 2
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There is also the notion of a Z-prefractionable category, see definition (2.80)(a). Such a Z-prefractionable
category has the same data as a Z-fractionable category, but only the axioms (Cat), (20f3g), (Ored™), (Rplz),
(Rpl¥!), (Cprz) from the definition above are supposed to hold. Much of the theory for Z-fractionable categories
developed in this thesis already holds for Z-prefractionable categories, for example, parts (a) to (c¢) and a weaker
form of part (d) of the preceding theorem, see theorem (2.93)(c).

Cylinders in Brown cofibration categories

To make the results obtained for Z-fractionable categories available in the context of Brown cofibration cate-
gories, we have to show that a Brown cofibration category gives rise to a Z-fractionable category. For convenience,
we recall the definition of a Brown cofibration category. The axioms listed here are equivalent to the dual axioms
in 7, sec. 1, p. 421].

Definition (Brown cofibration category, see (3.52)(a), (3.51)(a), (3.30)(a), (3.1)(a), (3.14)(a), (1.35), (1.37),
(1.36), (3.29), (3.40), (3.43)(c)). A Brown cofibration category consists of a category C together with the following
data that is subject to the axioms listed below.

e Distinguished morphisms in C, called weak equivalences, which will in diagrams be depicted as

X —2-Y.

e Distinguished morphisms in C, called cofibrations, which will in diagrams be depicted as
X —esY.

The following axioms are supposed to hold.

(Cat) Multiplicativity. The weak equivalences and the cofibrations are closed under composition in C and contain
all identities in C.

(20f3) 2 out of & axiom. If two out of the three morphisms in a commutative triangle are weak equivalences,
then so is the third.

(Iso) Isosaturatedness. Every isomorphism in C is a weak equivalence and a cofibration.
(Ini.) Emistence of an initial object. There exists an initial object in C.

(Push.) Pushout axiom for cofibrations. Given a morphism f: X — Y and a cofibration i: X — X’ in C, there
exists a pushout rectangle

X/L)Y/

X —Y

in C such that 4’ is a cofibration.

(Cof) Cofibrancy axiom. For every object X in C there exists an initial object I in C such that the unique
morphism I — X is a cofibration.

(Fac.) Factorisation axziom for cofibrations. For every morphism f: X — Y in C there exist a cofibration
i: X - Y and a weak equivalence w: Y — Y in C such that f = jw.

=N
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(Inc.) Incision axiom. Given a pushout rectangle

X/L)Y/

z%ZZ ]i’
f

X —Y

in C such that 7 is a cofibration and a weak equivalence, then i’ is a weak equivalence.

From the existence of an initial object, the cofibrancy axiom and the pushout axiom for cofibrations, it follows
that every Brown cofibration category has finite coproducts.

Theorem (Brown cofibration categories as Z-fractionable categories, see (3.127), (3.124), (3.39), (3.7)). Every
Brown cofibration category becomes a Z-fractionable category, where the denominators are the weak equiva-
lences, the S-denominators are the weak equivalences that are cofibrations, and the Z-2-arrows are the S-2-arrows

X —-Y % Y
such that the induced morphism X I1Y — Y is a cofibration.

We conclude that the homotopy category of every Brown cofibration category admits a Z-2-arrow calculus as
explained above.

The structure of a Z-fractionable category on a Brown cofibration category is based on the properties of cylinders
in the following sense, which is a generalisation of QUILLEN’s cylinder notion in [28, ch. I, sec. 1, def. 4].

Definition (cylinder, see (3.108)(a)). We suppose given a Brown cofibration category C and an S-2-arrow

XL>Y/<%Y

in C. A cylinder of (f,u) consists of

e an object Z,
e a morphism insy: X — Z, called start insertion,
e a weak equivalence insy: Y — Z, called end insertion, and

e a weak equivalence s: Z — Y, called cylinder equivalence,
such that igs = f, 7115 = u, and such that the induced morphism X I1Y — Z is a cofibration.

insg insy
X =,z 2y

f

X—Y+—Y

u
The absolute version in part (a) of the following lemma, which is central to our approach via Z-fractionable
categories, is a generalisation of K. BROWN’s factorisation lemma in [7, sec. 1, p. 421] to S-2-arrows.
Lemma (Brown factorisation lemma, see (3.113)). We suppose given a Brown cofibration category C.
(a) There exists a cylinder of every S-2-arrow in C.

(b) We suppose given a commutative diagram

f1

X14>?1<1:;Y1

J 91 l g2 J g2
f/ u/

2 C 2
Xy —— Y5 ——Y;

zﬁvl 22%2 zz]vz

XQL’E#Yz
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in C. For every cylinder Z; of (f1,u1) and every cylinder Zy of (f2,us) there exists a cylinder Z} of
(f4,uh), fitting into a commutative diagram as follows.

f1 o ul
X1 Y P Y
z
/ 2 R /
insg! 1nslz1
X4 . 1 * Y g2
g g2
f3 ~ ug
/ / /
9 X5 2 <~ X
»7(
§Z5 . -~
Rilvr _, e Wlve
ins22 M insZ2
/ 0 / 1 /
X2 ° > Z2 ¢ . Y2 2| v
Qv Q| v2
f2 ~ U
T & s e
/ sZ2 2 /
ins§2 inle2
Xo . Zo e Yo

~

Cosemitriangles on the homotopy category

From now on, we suppose given a zero-pointed Brown cofibration category, that is, a Brown cofibration category
that is equipped with a (distinguished) zero object. The homotopy category of a Brown cofibration category
carries a shift functor, as shown by K. BROWN [7, dual of th. 3]. We give an isomorphic construction of this
shift functor in chapter V, section 2, suitable to our needs.

In the following, we deal with diagrams on the semistrip type # for some n € Ny, a combinatorial construct
introduced in definition (4.42). It may be depicted as follows.

ol ol — . — [ 2l Rl /o0 —
1[1]/1[1] N 2[1]/1[1] — = n[ll/l[l] N 0[2];1[1] — .
ol /ol — 101 /0t — 201 o) — | — nl /00 — 0[2&0[1]
n/n — O[J/n — 1[1]T/n — 2[1]T/n —_— . — n[J/n
! ! ! !
2/2 — ... — n;2 — 0[J/2 — 1[11/2 — 2[11/2

I ! | |

1/1—2/1— ... —n/1l — 0M/1 — 1l /1

[ I

0/0 — 1/0 —2/0 — ... — n/0 — 01 /0
The n-cosemitriangles in HoC are defined in three steps as follows.

Definition (Heller n-cosemistrip, see (5.33)). A Heller n-cosemistrip is a #'y-commutative diagram X in C
such that the entries on the “boundaries” are coacyclic, that is, the morphism from 0 to such an entry is a weak
equivalence, and such that the “visible” quadrangles as depicted above are pushout rectangles with “vertical”
cofibrations.
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Definition (standard n-cosemitriangle, see (5.45)). A standard n-cosemitriangle in HoC is a diagram Y in
HoC that is obtained from a Heller n-cosemistrip by “canonical isomorphic replacements”.

Standard n-cosemitriangles have zeros at the “boundaries” by construction. Moreover, they turn out to be
periodic diagrams in the sense of definition (4.55)(b).

Definition (n-cosemitriangle, see (5.51)). An n-cosemitriangle in HoC is a diagram Y in Ho C that is isomorphic
(in the category of periodic diagrams with zeros at the “boundaries”) to a standard n-cosemitriangle.

The following theorem should be seen in analogy to some of the axioms of a triangulated category in the sense
of VERDIER, as explained in section 2.

Theorem (prolongation theorem, see (5.55)).

(a) Every diagram of n — 1 composable morphisms in HoC may be prolonged to an n-cosemitriangle that has
these n — 1 composable morphisms in its lowest row, its base.

(b) Given n-cosemitriangles X and Y, then every morphism between its bases may be prolonged to a morphism
in the category of such periodic diagrams.

Outline

We give a brief chapter-wise summary of the contents of this thesis. More details can be found in the introduc-
tions to each chapter.

In chapter I, we define localisations of categories, fix notations and terminology and recall some basic results.
Then in chapter II, we develop our localisation theory leading to the Z-2-arrow calculus: We postulate the
axioms of a Z-fractionable category, construct the S-Ore localisation of such a structure and show that this
localisation admits a Z-2-arrow calculus in the sense of theorem (2.93). The results are applied to Brown
cofibration categories in chapter III, where we show that the latter fit into the framework of Z-fractionable
categories. In chapter IV, we study the combinatorics for an unstable higher triangulation on the homotopy
category of a Brown cofibration category, which is finally introduced in chapter V by means of the Z-2-arrow
calculus.
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Conventions and notations

We use the following conventions and notations.

The composite of morphisms f: X — Y and g: Y — Z is usually denoted by fg: X — Z. The composite
of functors F: C — D and G: D — £ is usually denoted by Go F': C — £.

Given objects X and Y in a category C, we denote the set of morphisms from X to Y by ¢(X,Y).
Given a category C, we denote by IsoC the set of isomorphisms in C.
If X is isomorphic to Y, we write X =2 Y.

We suppose given categories C and D. A functor F': C — D is said to be an isofunctor if there exists
a functor G: D — C such that Go F = id¢ and F o G = idp. The categories C and D are said to be
isomorphic, written C 2 D, if an isofunctor F': C — D exists.

A functor F: C — D is said to be an equivalence (of categories) if there exists a functor G: D — C such
that Go F 2 id¢ and F o G = idp. Such a functor G is then called an isomorphism inverse of F'. The
categories C and D are said to be equivalent, written C ~ D, if an equivalence of categories F': C — D
exists.

Given a category C and a graph S, a diagram in C over S is a graph morphism X : S — C. The category
of diagrams in C over S is denoted by C% = Cérph. Given a diagram X in C over S, we usually denote the
image of a morphism a: i — j in S by X,: X; — Xj.

Given categories C and S, an S-commutative diagram in C is a functor X: S — C. The category of
S-commutative diagrams in C is denoted by C° = Cgat. Given an S-commutative diagram X in C, we
usually denote the image of a morphism a: ¢ — j in S by X,: X; — X;. In particular contexts, we also
use the notation X: X — X7,

The opposite category of a category C is denoted by C°P.

We usually identify a poset X and its associated category that has as set of objects the underlying set
of X and precisely one morphism x — y for x,y € Ob P = P if and only if z < y. A full subposet is a
subposet that is full as a subcategory.

Given a subobject U of an object X, we denote by inc = inc’: U — X the inclusion. Dually, given a
quotient object Q of an object X, we denote by quo = quo®: X — @ the quotient morphism.

Given a coproduct C of X; and Xj, the embedding X; — C' is denoted by emby, = emb$ for k € {1,2}.

c
Given morphisms fi: X — Y for k € {1, 2}, the induced morphism C — Y is denoted by (}2) = (g) .
Given an initial object I, the unique morphism I — X to an object X will be denoted by ini = inixy = ini&.
Dually, given a terminal object T', the unique morphism X — T from an object T" will be denoted by
ter = tery = terk. Given a zero object N, the unique morphism X — Y that factors over N will be
denoted by 0.

Given a category that has an initial object, we denote by | a chosen initial object. Given a category that
has binary coproducts and objects X1, X5, we denote by X7 II X5 a chosen coproduct. Analogously, given
morphisms fj: Xy — Y} for k € {1,2}, the coproduct of f; and f5 is denoted by fi II fs.

xxiii
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CONVENTIONS AND NOTATIONS

Given a category that has a zero object, we denote by 0 a chosen zero object.

A zero-pointed category is a category together with a (distinguished) zero object. A morphism of zero-
pointed categories is a functor that preserves the zero-objects.

Arrows a and b in an (oriented) graph are called parallel if Source a = Source b and Target a = Target b.
We use the notations N = {1,2,3,...} and Ny = NU {0}.

Given integers a,b € Z, we write [a,b] := {z € Z | a < z < b} for the set of integers lying between a and b.

Sometimes (for example in composites), we need some specified orientation, then we write [a,b] :=
(z €Z|a<z<b) for the ascending interval and |a,b] = (z € Z | a > z > b) for the descending interval.

Given a map f: X — Y and subsets X’ C X, Y’ C Y with X'f C Y’, we denote by f|§l, the map
X" =Y’ 2’ — 2'f. In the special cases, where Y’ =Y resp. X' = X, we also write f|x/ := f|%, resp.
fIY" = f% . Likewise for functors.

When defining a category via its hom-sets, these are considered to be formally disjoint. In other words, a
morphism between two given objects is formally seen a triple consisting of an underlying morphism and
its source and target object. Cf. appendix A, section 1.

In a poset, an expression like “¢ < k, 7 < I” has to be read as i < k and j <[ (and not as i < k <[ and
i<j<l).

If unambigous, we denote a twoangle, a triangle, a quadrangle occurring in a diagram as the tuple of its
corners.

Given a quadrangle X in a category C, that is, a (-commutative diagram in C, where 0 = Al x Al, we
write X (0,0),(1,0),(0,1),(1,1) = (Xo0,0, X1,0, X0,1, X1,1) = X.

For n € Ny, we denote by A" = A¢, the n-th simplex type, that is, the poset given by the underlying
set [0, n] together with the natural order.

A remark on Grothendieck universes To avoid set-theoretical difficulties, we work with Grothendieck
universes [1, exp. I, sec. 0] in this thesis. In particular, every category has a set of objects and a set of
morphisms. Given a Grothendieck universe i, we say that a set X is a il-set if it is an element of 4. We say
that a category C is a U-category if ObC and Mor C are elements of . The category of -categories, whose set
of objects consists of all {-categories and whose set of morphisms consists of all functors between i-categories
(and source, target, composition and identities given by ordinary source, target, composition of functors and
the identity functors, respectively), will be denoted Cat = Cat .



Chapter I

Localisations of categories

A localisation of a category C with respect to a subset D of its set of morphisms Mor C is the universal category
where the morphisms in D become invertible. Such a localisation always exists by a theorem of GABRIEL and
ZISMAN [12, sec. 1.1], cf. theorem (1.24). We will not make use of this result in this and the following chapter.
In this chapter, we will recall the precise definition of a localisation, see definition (1.11)(a), and deduce some
standard properties. The obtained results are not very difficult to prove and are folklore. In particular, the
author does not claim any originality for the content of this chapter.

The main purpose of this chapter is to fix notation and to prepare the language for chapter II, where a localisation
for a so-called Z-fractionable category, see definition (2.81)(a), and so in particular for a Brown cofibration
category, cf. theorem (3.127), is constructed and several properties in that context, in particular the Z-2-arrow
calculus (2.93), are proven.

The chapter is organised as follows. In section 1, we introduce the structure of a category with denominators,
which allows us to define localisation as a categorical concept. The notion of a localisation is studied in
section 2, together with some general consequences that can be deduced from the universal property. At the
end of section 2, we briefly recall the Gabriel-Zisman localisation. Finally, we consider the saturation and some
notions of saturatedness in section 3, that is, various closure properties of the set of denominators, the strongest
one demanding that all morphisms that become isomorphisms in the localisation are already denominators.

1 Categories with denominators

A localisation of a given category C can be defined with respect to every subset D of MorC, see defini-
tion (1.11)(a). We may consider C together with such a distinguished subset as a structure, called a category
with denominators, see definition (1.1)(a). This allows us to embed localisation theory of categories in a cat-
egorical setup. For example, as localisations are defined via a universal property, we will get some general
properties of localisations from the general theory on couniversal objects, cf. appendix B, remark (1.13) and
corollary (1.14). In particular, we may construct a functor that maps categories with denominators to (a choice
of) respective localisations, see corollary (1.14)(d).

Definition of a category with denominators

(1.1) Definition (category with denominators).

(a) A category with denominators consists of a category C together with a subset D C MorC. By abuse of
notation, we refer to the said category with denominators as well as to its underlying category just by C.
The elements of D are called denominators in C.

Given a category with denominators C with set of denominators D, we write DenC := D. In diagrams, a
denominator d: X — Y in C will usually be depicted as

x <oy,
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(b) We suppose given categories with denominators C and D. A morphism of categories with denominators
from C to D is a functor F': C — D that preserves denominators, that is, such that F'd is a denominator
in D for every denominator d in C.

(1.2) Example.
(a) Every category C carries the structure of a category with denominators having

DenC ={1x | X € Ob(C}.

(b) Every category C carries the structure of a category with denominators having

DenC = IsoC.

The notion of a category with denominators is self-dual:

(1.3) Remark. Given a category with denominators C, its opposite category C°P becomes a category with
denominators with Den(C°P) = DenC.

The category of categories with denominators

(1.4) Definition (category with denominators with respect to a Grothendieck universe). We suppose given a
Grothendieck universe 4. A category with denominators C is called a category with denominators with respect
to 84 (or a i-category with denominators) if its underlying category is a iI-category.

(1.5) Remark.

(a) We suppose given a Grothendieck universe 4. A category with denominators C is a $l-category with
denominators if and only if it is an element of £l

(b) For every category with denominators C there exists a Grothendieck universe 4 such that C is a $l-category
with denominators.

(1.6) Remark. For every Grothendieck universe 4 we have a category CatDy, given as follows. The set of
objects of CatD ) is given by

ObCatD ) = {C | C is a U-category with denominators}.
For objects C and D in CatD g, we have the hom-set
CatD y, (C, D) = {F | F' is a morphism of categories with denominators from C to D}.

For morphisms F: C — D, G: D — & in CatDy,, the composite of F' and G' in CatDy is given by the
composite of the underlying functors G o F': C — &£. For an object C in CatDy(), the identity morphism on C
in CatD g, is given by the underlying identity functor id¢: C — C.

(1.7) Definition (category of categories with denominators). We suppose given a Grothendieck universe 4. The
category CatD = CatD g as considered in remark (1.6) is called the category of categories with denominators
(more precisely, the category of il-categories with denominators).

The discrete structure and the isomorphism structure

In example (1.2)(b), we have seen that every category can be equipped with the structure of a category with
denominators, where the set of denominators is given by the subset of its isomorphisms. Since we will need this
canonical structure in section 2 to embed localisation theory of categories in a categorical setup, we assign a
name to it.
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(1.8) Definition (discrete structure, isomorphism structure). We suppose given a category C.

(a) We denote by Cqgisc the category with denominators whose underlying category is C and whose set of
denominators is

Den Cgisc = {]-X | X e ObC}

The structure of a category with denominators of Cyjs. is called the discrete structure (of a category with
denominators) on C.

(b) We denote by Cis the category with denominators whose underlying category is C and whose set of
denominators is

Den Cis, = IsoC.

The structure of a category with denominators of Cqjsc is called the isomorphism structure (of a category
with denominators) on C.

(1.9) Remark. We suppose given a Grothendieck universe il.

(a) We have a functor
—disc - Cat(u) — CatD(u)7

given on the morphisms by Fyise = F for F' € Mor Cat ), which is full, faithful and injective on the
objects.

(b) We have a functor
—iso - Cat(u) — CatD(u),

given on the morphisms by Fis, = F' for F' € Mor Cat g, which is full, faithful and injective on the
objects.

Diagram categories

Given a category with denominators C and a category S, we denote by C° = C(Sjat the category of S-commutative
diagrams in C (that is, the category of functors from S to C). If unambiguous, we will consider C° as a category
with denominators in the following way, without further comment.

(1.10) Remark. Given a category with denominators C and a category S, then C° becomes a category with
denominators having

DenC® = {d € MorC® | d; is a denominator in C for every i € Ob S}.

2 Localisations

In this section, we introduce localisations of categories with denominators, see definition (1.11), and deduce
some general properties. The developed facts are direct consequences of the universal property that defines a
localisation, see in particular remark (1.13) and corollary (1.14). At the end of the section, we will briefly recall
the Gabriel-Zisman localisation, but we will not make use of it in the rest of this chapter I and in chapter II.
We will use the Gabriel-Zisman localisation in the definition of the homotopy category for an arbitrary category
with weak equivalences, see definition (3.8).

The existence of a localisation for a so-called Z-prefractionable category, see definition (2.80)(a), will be shown
in theorem (2.85).
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Definition of a localisation
For the definition of a category with denominators, see definition (1.1).
(1.11) Definition (localisation).

(a) We suppose given a category C and a subset D of MorC. A localisation of C with respect to D consists
of a category £ and a functor L: C — £ with Ld invertible in £ for every d € D, and such that for every
category D and every functor F': C — D with Fd invertible in D for every d € D, there exists a unique
functor F': £ — D with F = Fo L.

CLD

v"\
LJ N

L

By abuse of notation, we refer to the said localisation as well as to its underlying category by L. The
functor L is said to be the localisation functor of L.

Given a localisation £ of C with localisation functor L: C — £, we write loc = loc® := L.

(b) Given a category with denominators C, a localisation of C is a localisation of the underlying category of C
with respect to its set of denominators DenC.

The definition (1.11)(a) of a localisation of a category with respect to a given subset of morphisms and the
definition (1.11)(b) of a localisation of a category with denominators describe almost the same issue, but from
different point of views. While it is more convenient to speak of localisations with respect to a subset when
such a subset is varied, we very often deal with fixed subsets and therefore prefer to work with categories with
denominators.

GABRIEL and ZI1SMAN have shown in [12, sec. 1.1] that there exists a localisation of every category C with respect
to an arbitrary subset D of MorC, see theorem (1.24). We will not make use of this result in the construction
in chapter II. Rather, given a Z-prefractionable category, see definition (2.80)(a), we construct a localisation
directly, see theorem (2.85), generalising the construction of the well-known Ore localisation, cf. chapter II,
section 3.

(1.12) Example. We suppose given a category C.

(a) The category C becomes a localisation of the discrete structure Cgisc, where the localisation functor
loc: Cqisc — C is given by loc = ide¢.

(b) The category C becomes a localisation of the isomorphism structure Cis,, where the localisation func-
tor loc: Cis, — C is given by loc = id¢.

Proof.

(a) The identity 1x of every object X in C is invertible, that is, id¢(d) = d is invertible in C for every
denominator d in C4isc. To show that C becomes a localisation of Cgis. with loc = id¢, we suppose given
a category D and a functor F': C — D such that F'd is invertible for every denominator d in C. Since the
image of an identity under an arbitrary functor is an identity and hence invertible, this just means that F’
is an arbitrary functor. Now F=F:C—Dis the unique functor with F' = Foide.

(b) Similarly to (a). O

Consequences of the universal property

Localisations are defined by a universal property and can therefore be interpreted as couniversal objects, see
definition (B.2):

(1.13) Remark. We suppose given a category with denominators C. Given a localisation £ of C, then £ becomes
a couniversal object under C along the functor —is,: Catyy — CatDy) for every Grothendieck universe {4 with

C € ObCatDyy), £ € ObCaty, where the universal morphism is given by uni® = loc®. Conversely, given
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a category L and a functor L: C — L such that £ becomes a couniversal object under C along the functor

~iso -

that uni® = L, then £ becomes a localisation of C with localisation functor loct = uni®.

Cat(y) — CatD(y for every Grothendieck universe {4 with C € Ob CatD(y), £ € Ob Cat ) and such
L

(1.14) Corollary.

(a)

We suppose given a category with denominators C and localisations £, £ of C. We let L.t - ¢
denote the unique functor with loc® = L oloc”, and we let L': £ — £’ denote the unique functor
with loc® = L’ oloc*. Then L and L’ are mutually inverse isofunctors.

El
C loc L,

L
loc® %

L

i//

We suppose given a morphism of categories with denominators F': C; — Cs, a localisation £; of C; and a
localisation Lo of C5. There exists a unique functor F': £; — Lo with loc“? o F = F oloct.

o —Lt-e

loc*1 J J loc*2

Ly,

We suppose given a category with denominators C and a localisation £ of C. Moreover, we suppose given
an isomorphism of categories with denominators F': C — C’ and an isofunctor G: £L — L’. Then L’
becomes a localisation of €’ with localisation functor loc® = G oloc* o F~1.

F

C——C(C

o

loc” J Jlocﬁl

LS.

R

Given a category D and a functor H': C’ — D such that H'd’ is invertible for every denominator d’' in C’,
the unique functor H': £/ — D with H' = H’ oloc“ is given by

H =HoF,
where H: £ — D is the unique functor with H' o F = H o loc*.

We suppose given a Grothendieck universe { and a subcategory U of CatD . Moreover, we suppose
given a family (Lc¢)ceobw such that L is a localisation of C and such that the underlying category of L¢ is
a U-category for every C € ObU. Then we have a functor L£: U — Cat g, given as follows. For C € Obl,
we have

LC = Le.

For every morphism F: C — C’ in U, the morphism LF: LC — LC'" in Cat g is the unique morphism
in Caty) with loc’C o F = LF oloc™C.

We suppose given a Grothendieck universe 4, a $l-category with denominators C and a localisation £ of C
such that the underlying category of L is a il-category. The maps

Caty (‘Ca D) - CatD g, (Cv Diso)a G—Go IOCE
for D € Ob Cat(y define an isotransformation

Cat(u) (‘C7 _) — CatD(u) (C7 _iSO)'
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(f) We suppose given a Grothendieck universe U, a family (Lc)ceobcatb,y, such that L¢ is a localisation
of C and such that the underlying category of L¢ is a U-category for every C € Ob CatDy). Moreover we
let £: CatD ) — Cat(y) be the functor with LC = L¢ for C € Ob CatDyy and where LF: LC — LC'

for a morphism F': C — C" in CatD ) is the unique morphism in Cat ) with locke’ o F = LF oloc*e
Then L is left adjoint to the functor —j,: Cat(y) — CatD(yy. An adjunction ®: £ + —j, is given by

De.p: cat (LC, D) = catby, (C, D), G+ G oloc™®
for C € Ob CatD(u), D e Ob Cat(u)
(g) Given a category with denominators C and a localisation £ of C, the following assertions are equivalent.

(i) Every denominator in C is invertible in C.

(ii) The localisation functor loc: C — L is an isofunctor.

(a) This follows from remark (1.13) and remark (B.4).
This follows from remark (1.13) and remark (B.5).

This follows from remark (1.13) and corollary (B.7).

(
(
(
(
This follows from remark (1.13) and remark (B.3)(a).

(

)

()

(d) This follows from remark
)
)

)

)

)

1.13) and remark (B.19).

)

This follows from remark (1.13) and theorem (B.21).
)

(g) This follows from remark (1.13) and proposition (B.8). O

(1.15) Proposition. We suppose given a category with denominators C and a localisation £ of C. The
localisation functor loc: C — L is surjective on the objects.

Proof. We let U be the full subcategory of £ with Obl/ = Im(Obloc). By the universal property of L, there
exists a unique functor L: £ — U with loc|¥ = L oloc. Thus we have loc = inc” o loc|¥ = inc“ o Loloc and
therefore id; = inc” o L.

loc|¥

C—U——L

L

Hence Obinc¥ is surjective, and so we have U = £. In particular, we have Im(Obloc) = ObU = Ob L, that is,
loc is surjective on the objects. O

The following proposition states that localisations also fulfil a universal property with respect to transformations.
This 2-universality is a consequence of the l-universality that holds by definition. The trick is to rewrite
transformations as functors. The author learned this trick from DENIS-CHARLES CISINSKI.

(1.16) Proposition. We suppose given a category with denominators C and a localisation £ of C. For every
category D, all functors G,G’: L — D and every transformation a: G o loc — G’ o loc there exists a unique
transformation &: G — G’ with a = & * loc.
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Proof. We suppose given a Clategory D, functors G,G’: L — D and a transformation a: G oloc — G’ oloc. We
obtain a functor H: C — D? with Sourceo H = Goloc and Targeto H = G’oloc, given as follows. For X € ObC(,
we have (HX)o = G(loc(X)), (HX)1 = G'(loc(X)) and (HX)o,1 = ax. For a morphism f: X — Y in C, the
morphism Hf: HX — HY in DA" is given by (Hf)o = G(loc(f)) and (H f)1 = G'(loc(f)).
G(loc(X)) = G’ (loc(X))
G(IOC(f))J JG’(IOC(f))
G(loc(Y)) — G/ (loc(Y))

Since G(loc(d)) and G'(loc(d)) are isomorphisms in D for every denominator d in C, it follows that Hd

is an isomorphism in DA So by the universal property of £, there exists a unique functor H: £ — DA
with H = H oloc.

CL>DAl

."'
1OCJ B

L

Source o H o loc = Source o H = G o loc,

Target o H o loc = Target o H = G’ o loc,

the universal property of £ yields Sourceo H = G and Targeto H = . We obtain a transformation é&: G — &,
given by d ¢ = (HX)o,1 for X € Ob L. In particular, we have

Anoc(x) = (H(loc(X)))o1 = (HX )1 = ax

for X € ObC, that is, & x loc = a.
Conversely, given an arbitrary transformation 3: G — G’ with a = 8 * loc, we have fioc(x) = ax = Qoc(x)
for X € ObC. But this already implies that 5 = & as loc is surjective on the objects by proposition (1.15). O

(1.17) Corollary. We suppose given a category with denominators C and a functor L: C — L. The following
conditions are equivalent.

(a) The category £ becomes a localisation of C with localisation functor loc* = L.
(b) For every category D, the induced map
cat(£,D) = catp(C, Diso), G Go L
is invertible.
(¢) For every category D, the induced functor
cat(L£,D) = cat(C,D), G+ GoL, B+ B*L

is full, faithful and injective on the objects, and its image is the full subcategory of cat(C, D) with set of
objects catD (C, Diso)-

(1.18) Corollary. We suppose given a category with denominators C and a localisation £ of C. Moreover, we
suppose given a category D, functors G,G’: L — D. A transformation 8: G — G’ is an isotransformation if
and only if 8 % loc is an isotransformation.
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Adjunctions on localisation level

(1.19) Proposition. We suppose given morphisms of categories with denominators F': C = D and G: D — C,
a localisation £ of C and a localisation M of D. Moreover, we let F': L — M be the unique functor with
loc™ o F = F oloc®, and we let G: M — £ be the unique functor with loc“ o G = G o loc™

For every adjunction ®: F 4 G, we Aobtain an adjunction d: F —| G' whose unit n® ¢, ids — G o Fis the unique
transformation with loc® *n® = n® % loc and whose counit ¢®: F o G — id, is the unique transformation
with loc™ x €2 = ¢® % loc™

Proof. We suppose given an adjunction ®: F' 4 G. Moreover, we let 7: idz — GoF be the unique transformation
with loc” * n® =h=x loc” and we let é: F'o G — ida be the unique transformation with loc™ % e® = £ x loc™
Then we have

((F % 7)(& % F)) xloc® = (F % 7% loc“) (€ % F % loc®) = (F % loc® +n®) (& x loc™  F)
= (loc™ % F xn®)(loc™ % £® « F) = loc™ # (F xn®)(e® % F)) = loc™ % 15
= 110CM0F = 1I:_'oloc£ = 1F * 1OC£

and therefore (F' % 7)(é x F) = 1, by proposition (1. 16) Dually, we have (7 % G)(G % &) = 1. Thus we obtain
an adjunction &: F 4 @ with unit n® = =7 and counit £® = &. O

(1.20) Corollary. We suppose given a category with denominators C and a localisation £ of C.
(a) Given an initial object I in C, then loc([) is an initial object in L.
(b) Given a terminal object T in C, then loc(T) is a terminal object in L.

Proof.

(a) The 0-th simplex type A°, considered as a category having Ob A® = {0} and Mor A® = {1}, is terminal.
The defining universal property of an initial object says that I becomes a couniversal object under 0 along
the unique functor terc: C — A®, where the universal morphism uni: 0 — terc([) is given by uni = 1.

0o tere(X)
10‘[ = - .t;rc(inig()
tere(I)

So by remark (B.19), we get a functor F': A — C, given on the objects by F0 = I, and this functor is
left adjoint to terc by theorem (B.21).

We consider A? as a category with denominators having Den AY = Mor A = {15}, so that F: A® — C

and terc: C — A® becomes a morphism of categories with denominators. As this structure of a category
0

with denominators is the isomorphism structure, A? becomes a localisation of A? with loc® = idao.

terc
AT o L A0

AO

By proposition (1.19), it follows that loc o F': A° is left adjoint to the unique functor tery: £ — A°, so
that loc(F'(0)) = loc(I) is an initial object in L. O

AO loc o F tere

(Co)retractions in the localisation

(1.21) Remark. We suppose given a category with denominators C and a localisation £ of C. Moreover, we
suppose given a morphism f in C.
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(a) If there exists a morphism h in C such that fh is a denominator in C, then loc(f) is a coretraction in £,
and a retraction of loc(f) is given by loc(h)loc(fh)1.

(b) If there exists a morphism g in C such that gf is a denominator in C, then loc(f) is a retraction in £, and
a coretraction of loc(f) is given by loc(gf)~*loc(g).

Proof.

(a) We suppose that there exists a morphism h in C such that fh is a denominator. As L is a localisation
of C, the morphism loc(fh) is invertible in £, and we have

loc(f)loc(h)loc(fh)™! =loc(fh)loc(fh)~! = 1.
Thus loc(f) is a coretraction in £, and a retraction of loc(f) is given by loc(h)loc(fh)~? . O

(1.22) Corollary. We suppose given a category with denominators C and a localisation £ of C. Moreover, we
suppose given a morphism f in C.

(a) If there exist morphisms h and A’ in C such that fh and hh' are denominators in C, then loc(f) is an
isomorphism in £ with

loc(f)~' =loc(h)loc(fh)~".

(b) If there exist morphisms g and ¢’ in C such that ¢gf and ¢’g are denominators in C, then loc(f) is an
isomorphism in £ with

loc(f)™" =loc(gf) ™" loc(g).

(c) If there exist morphisms g and h in C such that gf and fh are denominators in C, then loc(f) is an
isomorphism in £ with

loc(f)~* =loc(gf) 'loc(g) = loc(h)loc(fh)™* .

Proof.
(¢) We suppose that there exist morphisms g and h in C such that gf and fh are denominators in C.
By remark (1.21)(a), the morphism loc(f) is a coretraction in £, and a retraction of loc(f) is given

by loc(h)loc(fh)~t. Moreover, by remark (1.21)(b), the morphism loc(f) is also a retraction in £, and a
coretraction of loc(f) is given by loc(gf) tloc(g). But then loc(f) is an isomorphism in £ with inverse

loc(f)~! =loc(gf) 'loc(g) = loc(h)loc(fh)~* .

(a) We suppose that there exist morphisms h and h’ in C such that fh and hh' are denominators in C.
By remark (1.21)(a), the morphism loc(f) is a coretraction in £, and a retraction of loc(f) is given
by loc(h)loc(fh)~t. Moreover, loc(h) is an isomorphism in £ with

loc(h) ™! =loc(fh) loc(f)
by (c). But this implies that loc(h)loc(fh)~1loc(f) = 1, and so loc(f) is an isomorphism in £ with

loc(f)~* = loc(h)loc(fh)~".

(b) This is dual to (a). O
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The Gabriel-Zisman localisation

GABRIEL and Z1sMAN showed in [12, sec. 1.1] that there exists a localisation of a category C with respect to
an arbitrary subset of MorC. They gave a concrete construction of such a localisation using presentations of
categories, which we restate in theorem (1.24).

The Gabriel-Zisman localisation will only be used in the definition of the homotopy category of an arbitrary
category with weak equivalences, see definition (3.8). It will not be used in section 3 of the current chapter I or
in the following chapter II.

Given sets X and Y, we denote by X UY their disjoint union and by emby: X — X UY, emby: Y - X UUY
the embeddings.

(1.23) Definition (Gabriel-Zisman graph). We suppose given a category with denominators C. The Gabriel-
Zisman graph is defined to be the graph GZ(C) with set of objects Ob GZ(C) := ObC and set of arrows
Arr GZ(C) := MorC U DenC, and where source and target are given by

for some f € MorC,

SourceC©) 4 . Source® f if a =
for some d € DenC,

bi(f
Targetc d ifa= 2(
(f
(d

)

)

) for some f € MorC,
) for some d € DenC

TargetS4€) g — Targetz f ifa=-emb;
Source” d if a = emby

for a € Arr GZ(C).

(1.24) Theorem (GABRIEL, ZISMAN [12, sec. 1.1, lem. 1.2]). We suppose given a category with denominators C.
Moreover, we let GZ(C) be the category that is given by the following presentation. The Gabriel-Zisman
graph GZ(C) generates GZ(C), and the generators are subject to the following relations. For f,g € MorC
with Target f = Source g, we have emb; (f) emb;(g) = emb;(fg); for X € ObC, we have emb;(1x) = 1x; and
for d € DenC, we have emb (d) emba(d) = lsourced annd embs(d) embs (d) = Lrarget d-

Then GZ(C) becomes a localisation of C, where the localisation functor loc: C — GZ(C) is given on the objects
by

loc(X)=X
for X € ObC and on the morphisms by

loc(f) = emby (f)

for f € MorC.
For every denominator d in C, the inverse of loc(d) is given by

loc(d)™! = emby(d).
Without proof. O

(1.25) Definition (Gabriel-Zisman localisation). We suppose given a category with denominators C. The
localisation GZ(C) as constructed in theorem (1.24) is called the Gabriel-Zisman localisation of C.

Next, we turn the Gabriel-Zisman localisation into a functor.

(1.26) Remark. We suppose given a Grothendieck universe 4. If C is a $l-category with denominators,
then GZ(C) is a 4-category.

(1.27) Corollary. We suppose given a Grothendieck universe il.
(a) We have a functor
GZ: CatDyy — Caty,

given on the morphisms as follows. For every morphism F': C — C’ in CatDy, the morphism GZ(F'):
GZ(C) — GZ(C') in Cat g, is the unique morphism in Cat g with 10c%%(€) o F = GZ(F) 01oc®#(©),
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(b) The functor GZ is left adjoint to the functor —is,: Cat(yy — CatD(g). An adjunction ®: GZ 4 —i, is
given by

Dep Catiy) (GZ(C), D) = catDyy, (C, D), G+ G 0loc®)
for C € Ob CatD(u), D e Ob Cat(u).
Proof. This follows from remark (1.26) and corollary (1.14)(d), (f). O

3 Saturatedness

We suppose given a category C, a subset D of MorC and a localisation £ of C with respect to D. By definition
of a localisation, see definition (1.11)(a), every element of D is made invertible in £, or, said more precisely,
loc(d) is invertible for every d € D. But in general, not every morphism f in C that is invertible in £ has to be
an element of D. This gives rise to the definition of the saturation, see definition (1.28)(a), that is, the subset
of precisely those morphisms that become invertible in the localisation L.

If every morphism that becomes invertible in £ actually lies in D, this subset is called saturated, see defini-
tion (1.39)(a). This property has several weaker variants, which we introduce from definition (1.35) on and
which we relate to each other in proposition (1.43).

The saturation
(1.28) Definition (saturation).

(a) We suppose given a subset D of MorC such that a localisation of C with respect to D exists (). The
saturation of D in C is defined to be the set

Sat D = Sat¢ D := {f € MorC | loc(f) is invertible in L}
for a (and hence any) localisation £ of C with respect to D.

(b) We suppose given a category with denominators C such that a localisation of C exists. The saturation of C
is defined to be the category with denominators Sat C whose underlying category is given by C and whose
set of denominators is given by

Den Sat C := Sat¢(DenC).

(1.29) Example. We suppose given a category C.

(a) The saturation of the discrete structure Cg;sc is the isomorphism structure Cigo.

(b) The saturation of the isomorphism structure Cis, is the isomorphism structure Ciso.
Proof.

(a) By example (1.12)(a), the category C becomes a localisation of Cgisc, where the localisation functor is
given by loc = id¢. Hence we have

Den Sat Cgise = {f € MorC | f is invertible in C} = Den Ciso

and therefore Sat Cgisc = Ciso-
(b) This is proven analogously to (a). O

(1.30) Remark. Given a category C and a subset D of MorC such that a localisation of C with respect to D
exists, then we have D C Sat D.

(1.31) Proposition. We suppose given a category C and subsets D, D" of MorC such that a localisation of C
with respect to D and with respect to D’ exists. If D C D’, then we also have

Sat D C Sat D'.

1We do not want to use the Gabriel-Zisman localisation in the following.
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Proof. We let L be a localisation of C with respect to D and we let £’ be a localisation of C with respect to D’.
As D C D', the identity functor ide¢: C — C maps elements of D to elements of D’. So by corollary (1.14)(b),

there exists a unique functor E: £ — £/ with loc?” = E oloct.

C——°C
IOCCJ JlocL/
cEor

As every functor preserves isomorphisms, we obtain

Sat D = {f € MorC | loc*(f) is invertible in £} = {f € MorC | E(loc“(f)) is invertible in £’}
= {f € MorC | loc” (f) is invertible in £'} = Sat D' O

(1.32) Proposition. We suppose given a category C and a subset D of Mor C such that a localisation of C with
respect to D exists. Moreover, we suppose given a subset D’ of Mor C with D C D’ C Sat D. Every localisation
of C with respect to D is also a localisation of C with respect to D’ and every localisation of C with respect
to D’ is also a localisation of C with respect to D. In particular, there exists a localisation of C with respect
to D’.

Proof. We let L be a localisation of C with respect to D. Then loc(d’) is invertible in L for every d' € D’
since D' C Sat D. Moreover, given a category D and a functor F: C — D such that Fd’ is invertible in D
for every d’ € D', then in particular F'd is invertible in D for every d € D and hence there exists a unique
functor F': £ — D with F' = Foloc. So £ is also a localisation of C with respect to D’.

Conversely, we suppose given a localisation £’ of C with respect to D’. Then loc(d’) is invertible in £ for
every d’ € D', and so in particular loc® l(d) is invertible in £ for every d € D. To show that £’ is a localisation
of C with respect to D, we suppose given a category D and a functor F': C — D such that F'd is invertible in D
for every d € D. Since L is a localisation of C with respect to D, there exists a unique functor F:L =D
with F = Foloc®. Moreover, D’ C Sat D implies that loc® (d’) is invertible in D and hence that Fd' = F'loc“(d')

is invertible for every @’ € D'. Thus there exists a unique functor £': £’ — D with F = F” o loc”

c—t-p c—-.p
1oc£J » F locLIJ _ F’
c r
Thus £’ is also a localisation of C with respect to D. O

(1.33) Corollary. We suppose given a category C, a subset D of MorC and a localisation £ of C with respect
to D. Then L is also a localisation of C with respect to Sat D, and we have

Sat Sat D = Sat D.

Proof. By proposition (1.32), we know that £ is a localisation of C with respect to Sat D. In particular, we have
Sat Sat D = {f € MorC | loc®(f) is invertible in £} = Sat D

by definition of the saturation. O

The preceding proposition states that when we study localisations of a category C with respect to a subset D
of Mor C, we can replace D without loss of generality by a subset D’ of MorC with D C D’ C Sat D and study
localisations of C with respect to D’ instead. We will study some examples for such a denominator set D’ in
proposition (1.45) below.

(1.34) Proposition. We suppose given an isomorphism of categories with denominators F': C — C'. If a
localisation of C or C’ exists, then there exists a localisation of both C and C’, and we have

Den SatC’ = F(Den Sat ().
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Proof. By corollary (1.14)(c), there exists a localisation of C if and only if there exists a localisation of C’.
We suppose that a localisation £ of C exists. By corollary (1.14)(c), the underlying category of £ becomes a

localisation £’ of C’ with localisation functor loc® = loc* o F~1, and we get
DenSatC’' = {f' € MorC’ | loc® (f') is invertible in £’}
= {f" € MorC' | loc“(F~1f') is invertible in £}
= {Ff | f € MorC and loc*(f) is invertible in £}
= F({f € MorC | loc®(f) is invertible in £}) = F(Den SatC). O

Levels of saturatedness
(1.35) Definition (multiplicativity).
(a) We suppose given a category C. A subset D of MorC is said to be multiplicative (in C) if it fulfils:

(Cat) Multiplicativity. For all d,e € D with Target d = Sourcee, we have de € D, and for every object X
in C, we have 1x € D.

(b) (1) A category with denominators C is said to be multiplicative if its set of denominators DenC is a
multiplicative subset of C.

(i) We suppose given a Grothendieck universe 4. The full subcategory CatDyu = CatD,. )
of CatD(u) with

Ob CatD,,,(s) = {C € ObCatDy | C is multiplicative}

is called the category of multiplicative categories with denominators (more precisely, the category of
multiplicative U-categories with denominators).

(1.36) Definition (isosaturatedness).

(a) We suppose given a category C. A subset D of MorC is said to contain all isomorphisms (or to be
isosaturated) in C if it fulfils:

(Iso) Isosaturatedness. For every isomorphism f in C, we have f € D.

(b) A category with denominators C is said to be isosaturated if its set of denominators Den C is an isosaturated
subset of C.

(1.37) Definition (semisaturatedness).
(a) We suppose given a category C.
(i) A subset D of MorC is said to be S-semisaturated (in C) if it is multiplicative and fulfils:
(20f3g) S-part of 2 out of 3 axiom. For all morphisms f and g in C with f, fg € D, we also have g € D.
(ii) A subset D of MorC is said to be T-semisaturated (in C) if it is multiplicative and fulfils:
(20f31) T-part of 2 out of 3 axiom. For all morphisms f and g in C with g, fg € D, we also have f € D.

(iii) A subset D of Mor C is said to be semisaturated (in C) (?) if it is S-semisaturated and T-semisaturated.

(b) A category with denominators C is said to be S-semisaturated resp. T-semisaturated resp. semisaturated if
its set of denominators DenC is an S-semisaturated resp. a T-semisaturated resp. a semisaturated subset

of C.
(1.38) Definition (weak saturatedness).

(a) We suppose given a category C. A subset D of MorC is said to be weakly saturated (in C) if it is
multiplicative and fulfils:

2In the literature, semisaturatedness is sometimes called saturatedness; and saturatedness in our sense, see definition (1.39), is
sometimes called strong saturatedness.
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(20f6) 2 out of 6 axiom. For all morphisms f, g, h in C with fg,gh € D, we also have f,g,h, fgh € D.

(b) A category with denominators C is said to be weakly saturated if its set of denominators DenC is a weakly
saturated subset of C.

(1.39) Definition (saturatedness).
(a) We suppose given a category C. A subset D of MorC is said to be saturated (in C) if it fulfils:
(Sat) Saturatedness. There exists a localisation of C with respect to D and we have Sat D = D.

(b) A category with denominators C is said to be saturated if its set of denominators DenC is a saturated
subset of C.

(1.40) Example. We suppose given a category C.
(a) The discrete structure Cqjsc is semisaturated.
(b) The isomorphism structure Cis, is saturated.

Proof.

(a) We suppose given morphisms f and ¢ in C with Target f = Sourceg such that two out of the three
morphisms f, g, fg are denominators in Cqijsc. Then these two are equal to an identity morphism and
therefore all three are equal to an identity morphism in C. But this means that all three are denominators
in Cgjsc. Moreover, 1x is a denominator in Cqjsc for every object X in C, and so Cyjsc is semisaturated.

(b) This follows from example (1.29)(b). O
(1.41) Proposition. We suppose given an isomorphism of categories with denominators F': C — D.

(a) The category with denominators C is multiplicative if and only if D is multiplicative.

(b) The category with denominators C is isosaturated if and only if D is isosaturated.

(c) The category with denominators C is S-semisaturated if and only if D is S-semisaturated. The category
with denominators C is T-semisaturated if and only if D is T-semisaturated.

(d) The category with denominators C is weakly saturated if and only if D is weakly saturated.

(e) The category with denominators C is saturated if and only if D is saturated.
Proof.

(a) We suppose that C is multiplicative, and we suppose given denominators e and e in D with
Targete = Sourcee’. Then F~'e and F~'e’ are denominators in C, and since C is multiplicative, it
follows that (F~le)(F~t¢') is a denominator in C. But this implies that ee’ = F((F~te)(F~te)) is a
denominator in D. Moreover, given an object Y in D, we have 1y = F(lp-1y), and as 1p-1y is a
denominator in C, it follows that 1y is a denominator in D. Altogether, D is multiplicative.

The other implication follows by symmetry.
e suppose tha is isosaturated, and we suppose given an isomorphism g in D. en F7g is an
(b) We suppose that C is isosaturated, and ppose gi i phism ¢ in D. Then F~lg i

isomorphism in C, and since C is isosaturated, it follows that F~'g is an isomorphism in C. But this
implies that ¢ = FF~'g is a denominator in D.

The other implication follows by symmetry.
¢) We suppose that C is S-semisaturated, and we suppose given morphisms g and ¢’ in D with Target g =
g
Source g’ such that g and gg’ are denominators in D. Then F~lg and (F~'g)(F~l¢') = F~'(gg') are
denominators in C. Since C is S-semisaturated, it follows that (F~1g’) is a denominator in C. But then

g = F(F~l¢') is a denominator in D. Thus D fulfils the S-part of the 2 out of 3 axiom. As D is
multiplicative by (a), we conclude that D is semisaturated.

By duality, we obtain: If C is T-semisaturated, then D is T-semisaturated.

The other implications follow by symmetry.
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1

(d) We suppose that C is weakly saturated, and we suppose given morphisms g, ¢’, ¢” in D such that gg’
and ¢'¢g"” are denominators in D. Then (F~'g)(F~l¢’) = F~1(gg¢") and (F~1¢')(F~1¢") = F~1(¢'g")
are denominators in C, and since C is weakly saturated, it follows that F~lg, F~l¢/, F~lg",
(F~19)(F~tg")(F~1g") are denominators in C. But this implies that ¢ = F(F~1g), ¢ = F(F~l¢),
g" = F(F~tg"), g¢'g" = F(F19)(F~'¢')(F~1¢")) are denominators in D. As D is multiplicative
by (a), we conclude that D is weakly saturated.

The other implication follows by symmetry.

(e) If C is saturated, that is, if there exists a localisation of C and we have Sat C = C, then by proposition (1.34)
there exists a localisation of D and we have

DenSat D = F(DenSatC) = F(DenC) = Den D,

that is, D is saturated.
The other implication follows by symmetry. O

We suppose given a category with denominators C and a category S. By remark (1.10), we may consider C*,
the category of S-commutative diagrams in C, as a category with denominators, having pointwise denominators.
The following proposition states that various notions of saturatedness are enherited to the diagram category.

(1.42) Proposition. We suppose given a category with denominators C and a category S.

(a) If C is multiplicative, then C* is multiplicative.
(

)

b) If C is isosaturated, then C* is isosaturated.

(c) If C is S-semisaturated, then C* is S-semisaturated. If C is T-semisaturated, then C* is T-semisaturated.
)

(d) If C is weakly saturated, then C° is weakly saturated.
Proof.

(a) We suppose that C is multiplicative. Moreover, we suppose given denominators d, e in C° with
Target d = Sourcee. Then d; and e; are denominators in C for every i € Ob S. It follows that (de); = d;e;
is a denominator in C for every i € Ob S, that is, de is a denominator in C°. Moreover, given an object X
in C%, then (1x); = lx, is a denominator in C for every i € ObS, whence 1x is a denominator in C°.
Altogether, C¥ is multiplicative.

(b) We suppose that C is isosaturated. Moreover, we suppose given an isomorphism f in C®. Then f; is an
isomorphism in C for every i € Ob S. The isosaturatedness of C implies that f; is a denominator in C for
every i € Ob S, that is, f is a denominator in C°. Thus C° is isosaturated.

(c) We suppose that C is S-semisaturated. Moreover, we suppose given morphisms f, g in C¥ such that f
and fg are denominators in C%. Then f; and fig; = (fg); are denominators in C for every i € Ob S. It
follows that g; is a denominator in C for every i € Ob S, that is, g is a denominator in C°. Thus C® fulfils
the S-part of the 2 out of 3 axiom. As C*® is multiplicative by (a), we conclude that C° is S-semisaturated.

The other implication follows by duality.

(d) We suppose that C is weakly saturated. Moreover, we suppose given morphisms f, g, h in C° such
that fg and gh are denominators in C°. Then fig; = (fg); and g;h; = (gh); are denominators in C for
every ¢ € Ob S. It follows that f;, gi, hi, (fgh); = figih; are denominators in C for every i € Ob .S, that

is, f, g, h, fgh are denominators in C°. Thus C° fulfils the 2 out of 6 axiom. As C° is multiplicative
by (a), we conclude that C¥ is weakly saturated. O

The following proposition states how the different variations of the notion of saturatedness introduced in defi-
nition (1.35) to definition (1.39) are related. Cf. figure 1.

(1.43) Proposition. We suppose given a category with denominators C.

(a) If C is saturated, then C is weakly saturated.
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(Cat) &—— (Cat), (20f3g), (20f31) &—= (Cat), (20f6) &— (Sat)

l

(Iso)

Figure 1: Levels of saturatedness.

If C is weakly saturated, then C is semisaturated and isosaturated.

If C is semisaturated, then C is multiplicative.

Proof.

(a)

(c)

We suppose that C is saturated and we let £ be a localisation of C. Moreover, we suppose given mor-
phisms f, g, h in C such that fg and gh are denominators in C. By corollary (1.22), it follows that loc(f),
loc(g), loc(h) are invertible in £, that is, f, g, h are denominators in the saturation SatC. Moreover,
loc(fgh) =loc(f)loc(g)loc(h) is invertible in £ as a composite of invertible morphisms, that is, fgh is a
denominator in the saturation SatC. But as C is saturated, we have SatC = C, and so f, g, h, fgh are in
fact denominators in C. So we have shown that C fulfils the 2 out of 6 axiom.

In particular, given denominators f, g in C, then f1 and 1g are denominators in C and hence fg = f1lg
is a denominator in C. Moreover, given an object X in C, the morphism loc(1x) = ljoc(x) is invertible
in £ and hence 1x is a denominator in SatC = C. Hence C is also multiplicative and therefore is weakly
saturated.

We suppose that C is weakly saturated. Then C is in particular multiplicative.

To show that C is semisaturated, we suppose given morphisms f and g in C with Target f = Sourceg. If f
and fg are denominators in C, then 1 f and fg are denominators in C and hence ¢ is a denominator in C
by the 2 out of 6 axiom. Dually, if g and fg are denominators in C, then fg and g1 are denominators
in C and hence f is a denominator in C by the 2 out of 6 axiom. Thus C is semisaturated.

To show that C is isosaturated, we suppose given an isomorphism f in C, so that there exists a morphism g
in C with fg =1 and ¢gf = 1. Since in particular identities are denominators in C, it follows that f is a
denominator in C by the 2 out of 6 axiom.

This holds by definition. O

Now we may give an example of a semisaturated category with denominators that is not weakly saturated.

(1.44) Example. We suppose given a category C that contains a non-identical isomorphism. Then the discrete
structure Cgisc is semisaturated, but not weakly saturated.

Proof. The discrete structure Cajsc is always semisaturated by example (1.40)(a), but if there exists a non-
identical isomorphism f in C, then f is not a denominator in Cgjsc, and so Cgjsc iS not weakly saturated by
proposition (1.43)(b). O

(1.45) Proposition. We suppose given a category C, a subset D of Mor C and a localisation £ of C with respect
to D. Moreover, we let

Dol = ﬂ {U CMorC | D CU and U is multiplicative},
Dot i= ﬂ {U CMorC | D CU and U is semisaturated},

Dyysat 1= ﬂ {U CMorC | D CU and U is weakly saturated},
Dygpt := ﬂ {U CMorC | D CU and U is saturated}.
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(a)

(i)
(i)
(ii)

iv)

(iv

The subset D,y is the smallest multiplicative subset of Mor C that contains D.
The subset Dy, is the smallest semisaturated subset of Mor C that contains D.
The subset Dygat is the smallest weakly saturated subset of MorC that contains D.
The subset Dy, is the smallest saturated subset of MorC that contains D.

(b> We have D C Dy € Dggat € Dysat € Dgsat = Sat D.

(¢) The category L is a localisation of C with respect to D, to Dyul, t0 Dggat, 10 Dysat and to Dgyy = Sat D.

Proof. We set

U:={UCMorC|DCU},
Ut := {U C MorC | D C U and U is multiplicative},
Ussat := {U C MorC | D C U and U is semisaturated},
Usysat := {U C MorC | D C U and U is weakly saturated},
Usat :={U CMorC | D C U and U is saturated},

so that D = ﬂua Dmul = ﬂumulv Dssat = mussata Dwsat = muwsata Dsat - ﬂusat~

(a)

(i)

We suppose given d, e € Dy, with Target d = Sourcee. For U € Uy, we have Dy = (U C U,
so it follows that d,e € U and therefore de € U by the multiplicativity of U. Thus we have
de € ﬂumul = Dmul-

Moreover, we suppose given X € ObC. Then for all U € Uy, we have 1x € U by the multiplicativity
of U, and therefore 1x € (\Umu = Dmul-

Altogether, Dy, is a multiplicative subset of MorC.

Moreover, given an arbitrary multiplicative subset U of MorC, we have Dy, C U by definition
of D, 80 Dy is in fact the smallest multiplicative subset of MorC.

This is proven analogously to (i).

This is proven analogously to (i).

As Sat D € Usat, we have Dgyy = (Usar € Sat D. Moreover, for all U € Us,g, we have D C U and
therefore Sat D C Sat U = U by proposition (1.31) and the saturatedness of U. Thus we also have
Sat D C nusat = Dsat-

Altogether, we have Dy, = Sat D. In particular, Dg,; is a saturated subset of MorC by corol-
lary (1.33).

Moreover, given an arbitrary saturated subset U of MorC, we have Dg,y C U by definition of Dgat,
S0 Dg,t is in fact the smallest saturated subset of MorC.

(b) By proposition (1.43), we have

u 2 Z/[mul ;) Z/{ssat ;) uwsat ;) Z/{sat

and therefore

mu g ﬂumul g mussat g ﬂuwsat g musat

that is,

D C Dmul - Dssat c Dwsat c Dsat = Sat D.

(¢) This follows from (b) and proposition (1.32). O
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Chapter 11

Z-2-arrow calculus

By a theorem of GABRIEL and ZISMAN [12, sec. 1.1], we know that there exists a localisation of every category C
with respect to every subset D of its set of morphisms MorC, cf. theorem (1.24). The objects in the Gabriel-
Zisman localisation of C are precisely the objects in C; and the morphisms are equivalence classes of zigzags

of finite but arbitrary length, where the “backward” arrows are in D and where the defining equivalence relation
is generated by certain elementary relations. As a consequence, the question of equality of representatives leads
to a word problem. In this generality, however, there does not seem to exist a more convenient calculus.
There are other constructions for localisations in particular cases. For example, the classical construction of
the derived category of an abelian category by VERDIER [37, ch. II, §1, not. 1.1] is done in two steps: First,
one starts with the category of complexes in the given abelian category and passes to the homotopy category
of complexes, a quotient of additive categories. Second, one localises this homotopy category of complexes at
the (homotopy classes of) quasi-isomorphisms using a procedure called Ore localisation (more precisely, S-Ore
localisation in our terminology), which has its historical origins in ring theory, cf. the works of ORE [27, sec. 2]
and ASANO [2, Satz 1]. We recall this classical construction briefly in section 3.

For the S-Ore localisation, one has more convenient results that answer the question about representatives and
equality of representatives: Every morphism in this localisation is represented by a diagram

which we call an S-2-arrow (1). The first arrow we consider as its numerator, the second as its denominator —
like in rational numbers, but with a directed numerator and a directed denominator. Moreover, already from
the construction of the S-Ore localisation it follows that two of these diagrams represent the same morphism if
and only if they can be embedded as the top and the bottom row in a commutative diagram of the following
form.

—_—

So roughly said, two numerator-denominator pairs represent the same morphism if and only if they have a
common expansion, again like in rational numbers. We say that the S-Ore localisation admits a (strict) S-2-arrow
calculus.

In our example of the derived category, one has S-2-arrows as representatives, and two such S-2-arrows represent
the same morphism in the derived category if and only if they can be embedded in a 2-by-2 diagram as above
that is commutative in the homotopy category of complexes. In other words: The equality of S-2-arrows is
characterised by such a 2-by-2 diagram in the category of complexes that is commutative up to homotopy. We say

1The prefix “S-” is used to distinguish our situation from the dual case, here and in several other notions below.
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Brown cofibration
category (3.52)

J'(?)JQ?)

Z-fractionable

- category (2.81)
S-selillrnsatt.lratedl (Cat), (20f3g),
weakly universa (2.82) (Oreg™), (Rplz), (2.93) Z-2-arrow calculus
S-fractionable $===% (Rplge™), (RpLE) with extra properties
category (2.27), (2.24) A e prep
(Cat), (2of3s), (Orel™) (Rply ), (Cprz),
(Cctz), (Invz),

(Numgz), (Expz)

l

Z-prefractionable
category (2.80) (2.93)

(Cat), (20f3g), :> Z-2-arrow calculus
(Oreg™), (Rplz),

(Rplz"), (Cprz)

I

category with
Z-2-arrows (2.38)
(Cat), (Rplz)

l

category with D-S-
denominators (2.1)

l

category with
denominators (1.1)

S-Ore localisation

Figure 1: Z-fractionable categories: a localisation theory for Brown cofibration categories.

that the derived category admits a homotopy S-2-arrow calculus. The idea of such a two-step construction was
taken up by BROWN in the more general framework of a Brown cofibration category (?), see definition (3.52)(a);
he developed a 2-arrow calculus up to homotopy in this context |7, dual of th. 1 and proof], cf. theorem (3.132).
In this chapter, we develop an axiomatic approach for a kind of strict 2-arrow calculus for so-called Z-fractionable
categories, see definition (2.81)(a): Instead of working with all S-2-arrows as representatives, we restrict our
attention to particular S-2-arrows, the so-called Z-2-arrows, which still represent all morphisms in the locali-
sation, see theorem (2.93)(a). The question of the equality of morphisms represented by given Z-2-arrows is
then answered by a strict 2-by-2 diagram, see theorem (2.93)(b). The axioms of a Z-fractionable category are
fulfilled by a Brown cofibration category, see theorem (3.127).

In fact, most results developed in this chapter still hold if we forget about half of the axioms of a Z-fractionable
category, and so we often work with so-called Z-prefractionable categories, see definition (2.80)(a). For Z-frac-
tionable categories, the Z-2-arrow calculus is more flexible, see theorem (2.93)(d), (e), and the composition
rule is simpler, see remark (2.103)(a). The author does not know of a Z-prefractionable category that is not a
Z-fractionable category.

The chapter is organised as follows. In section 1, we introduce categories with denominators and S-denominators,
which is an expansion of the notion of a category with denominators, see definition (1.1)(a), where several
denominators are distinguished. Thereafter, we study the S-2-arrow graph of a category with denominators
in section 2, a graph having a quotient that becomes a localisation of the category with denominators we
started with. In section 3, we generalise the classical notion of an S-Ore completion to S-denominators, and,
moreover, we briefly recall the classical S-Ore construction. Then in section 4, Z-2-arrows are introduced and
first properties are collected that follow from the fact that S-2-arrows may be replaced by Z-2-arrows in the sense
of definition (2.38)(a). After that, we introduce the axioms of a Z-fractionable category in section 5 and deduce

2In fact, he studied the dual notion of a Brown fibration category and used the terminology category of fibrant objects [7, sec. 1].
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some facts from these axioms. Moreover, we compare the classical approach of an S-fractionable category with
that of a Z-fractionable category. The construction of the S-Ore localisation is then generalised to the framework
of a Z-prefractionable category in section 6. In particular, theorem (2.93) yields a generalisation for the classical
S-2-arrow calculus. Although Z-2-arrows play a prominent role, we still also work with arbitrary S-2-arrows
in section 6 to gain more flexibility. However, it is possible to work only with Z-2-arrows as representatives,
and this approach will be indicated in section 7. Finally, in section 8, we compare our approach to the 3-arrow
approach for Brown cofibration categories of MALTSINIOTIS [26].

1 Categories with denominators and S-denominators

Categories with denominators, see definition (1.1)(a), provide the categorical concept for localisation, see chap-
ter I, sections 1 and 2, in particular definition (1.11)(b) and corollary (1.14)(d). In this section, we introduce
the concept of a category with denominators and S-denominators, that is, a structure where particular denomi-
nators are distinguished. These so-called S-denominators may fulfil certain properties that need not necessarily
hold for all denominators, see for example definition (2.23).

Definition of a category with D-S-denominators

For the definition of a category with denominators and of a morphism of categories with denominators, see
definition (1.1).

(2.1) Definition (category with D-S-denominators).

(a) A category with denominators and S-denominators (or category with D-S-denominators, for short) consists
of a category with denominators C together with a multiplicative subset S of DenC. By abuse of notation,
we refer to the said category with D-S-denominators as well as to its underlying category with denominators
just by C. The elements of S are called S-denominators in C.

Given a category with D-S-denominators C with set of S-denominators S, we write SDenC := S. In
diagrams, an S-denominator : X — Y in C will usually be depicted as

i

X —o—Y.

(b) We suppose given categories with D-S-denominators C and D. A morphism of categories with denominators
and S-denominators (or morphism of categories with D-S-denominators, for short) from C to D is a
morphism of categories with denominators F': C — D that preserves S-denominators, that is, such that F'i
is an S-denominator in D for every S-denominator 4 in C.

Although the following example is quite obvious, it will give us a canonical connection between categories with
denominators and categories with D-S-denominators.

(2.2) Example. Every multiplicative category with denominators C carries the structure of a category with
D-S-denominators having

SDenC = DenC.

The category of categories with D-S-denominators

(2.3) Definition (category with D-S-denominators with respect to a Grothendieck universe). We suppose given
a Grothendieck universe 4. A category with D-S-denominators C is called a category with D-S-denominators
with respect to 4 (or a U-category with D-S-denominators) if its underlying category with denominators is a
$l-category with denominators.

(2.4) Remark.

(a) We suppose given a Grothendieck universe 4. A category with D-S-denominators C is a {-category with
D-S-denominators if and only if it is an element of l.
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(b) For every category with D-S-denominators C there exists a Grothendieck universe i such that C is a
$l-category with D-S-denominators.

(2.5) Remark. For every Grothendieck universe {4 we have a category CatDS ), given as follows. The set of
objects of CatDS g is given by

ObCatDS ) = {C | C is a U-category with D-S-denominators}.
For objects C and D in CatDS g, we have the hom-set
catDsy, (C, D) = {F' | F is a morphism of categories with D-S-denominators from C to D}.

For morphisms F': C — D, G: D — &£ in CatDSy), the composite of I’ and GG in CatDSy is given by
the composite of the underlying morphisms of categories with denominators G o F': C — £. For an object C
in CatDS ), the identity morphism on C in CatDSy) is given by the underlying identity morphism of
categories with denominators id¢: C — C.

(2.6) Definition (category of categories with D-S-denominators). We suppose given a Grothendieck universe 1.
The category CatDS = CatDS(y as considered in remark (2.5) is called the category of categories with
D-S-denominators (more precisely, the category of U-categories with D-S-denominators).

The S-structure

In example (2.2), we have seen that there can be defined a structure of a category with D-S-denominators on
every multiplicative category with denominators. Since we will need this structure later, we assign a name to
it.

(2.7) Definition (S-structure). Given a multiplicative category with denominators C, we denote by Cg the cate-
gory with D-S-denominators whose underlying category with denominators is C and whose set of S-denominators
is given by

SDenCs = DenC.

The structure of a category with D-S-denominators of Cg is called the S-structure (of a category with D-S-de-
nominators) on C.

(2.8) Remark. We suppose given a Grothendieck universe 4. We have a functor
—s: CatDmul’(u) — CatDS(u),

given on the morphisms by Fs = F for F' € Mor CatD,, (51, which is full, faithful and injective on the objects.

2 S-2-arrows

Like the ordinary S-Ore localisation, the S-Ore localisation of a Z-prefractionable category fulfils some kind
of 2-arrow calculus, cf. theorem (2.35) and theorem (2.93). In particular, the morphisms in the localisation
are represented by so-called S-2-arrows, that is, diagrams consisting of two arrows, where one of them is
formally inverted. Moreover, in both cases, the S-Ore localisation is constructed ab ovo using S-2-arrows, see
definition (2.30) and definition (2.86).

In this section, we introduce the S-2-arrow graph for a given category with denominators, whose objects are
the same objects as in our given category and whose arrows are precisely the S-2-arrows. When the category
with denominators at hand is moreover equipped with a subset of S-denominators, one has in addition a variant
of the S-2-arrow graph involving only those S-2-arrows whose denominator is actually an S-denominator. This
variant allows to generalise the classical notion of an S-Ore completion, see definition (2.23)(a). Finally, we
consider a congruence called S-fraction equality on the S-2-arrow graph. Later, the S-Ore localisation will have
as underlying graph precisely the quotient graph obtained from the S-2-arrow graph modulo S-fraction equality,
see definition (2.30) and definition (2.86).
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The (normal) S-2-arrow graph
(2.9) Definition (S-2-arrow shape). The S-2-arrow shape is defined to be the graph ®g given by

Ob®g = {1,2,3},
Arr®g ={(1,2),(3,2)},

and where Source (1,2) = 1, Target (1, 2) = 3, Source (3,2) = 3, Target (3,2) = 2.
l1—2«—3

A diagram of shape Og in C is just a graph morphism X: @g — C. Given a diagram X of shape Og in C, we
write X; = X (i) for i € Ob ®g and X, = X (a) for a € Arr Og. Given diagrams X and Y, a diagram morphism
from X to Y is a family f = (fi)icobes in MorC with X, f; = f;Y, for all arrows a: i — j in ®g. The
category consisting of diagrams of shape ®g in C as objects and diagram morphisms between those diagrams
as morphisms will be denoted by C®s. (3)

Given a graph G, a subgraph U of G is said to be wide if Oblf = ObgG.

For the definition of a category with denominators, see definition (1.1)(a). For the definition of a category with
D-S-denominators, see definition (2.1)(a).

(2.10) Definition ((normal) S-2-arrow graph).

(a) We suppose given a category with denominators C. The S-2-arrow graph of C is defined to be the
graph AGgC given by

ObAGgC = ObC,
Arr AGsC = {A € Ob(C®s | A3, is a denominator in C},

and where Source A = Ay and Target A = A3 for A € Arr AGs C.

An arrow A in AGgC is called an S-2-arrow in C. Given a morphism f: X — Y and a denominator
a: Y — Y in C, we abuse notation and denote the unique S-2-arrow A with A; 2 = f and As» = a by
(f,a) := A. Moreover, we use the notation (f,a): X =Y « Y.

X—Y «—=—Y

(b) We suppose given a category with D-S-denominators C. The wide subgraph AGg , C of AGgC with
Arr AGs,, C = {(f,i) € Arr AGgC | i is an S-denominator}

is called the normal S-2-arrow graph of C. An S-2-arrow in C that is an arrow in AGg, C is said to be
normal.

So if we consider in an S-2-arrow (f, a) the first morphism f as the “numerator part” and the second morphism a
as the “denominator part” of (f,a), then an S-2-arrow may have an arbitrary denominator as the denominator
part, whereas the denominator part of a normal S-2-arrow is an S-denominator.

The next remark shows that the S-2-arrow graph may be seen as a particular case of the normal S-2-arrow
graph.

(2.11) Remark. For every category with denominators C, we have

AGs., Cs = AGsC.

3By the adjunction “free category on a graph — underlying graph of a category”, diagrams of shape ®g in C correspond in a
unique way to functors from the free category on ®g to C, and diagram morphisms correspond to transformations.
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(2.12) Remark. We suppose given a Grothendieck universe 4 such that g is in il

(a) We suppose given a category with denominators C. If C is a il-category with denominators, then AGgC
is a {-graph.

(b) We suppose given a category with D-S-denominators C. If C is a $-category with D-S-denominators,
then AGg  C is a $l-graph.

(2.13) Proposition. We suppose given a Grothendieck universe $ such that g is in 4L

(a) We have a functor
AGsl CatD(u) — G‘rI‘ph(u)7

given on the morphisms as follows. For every morphism F:C — D in CatDy), the morphism
AGg F: AGsC — AGgD is given on the objects by

(AGs F)X =FX
for X € Ob AGgC and on the arrows by
(AGs F)(f,a) = (Ff,Fa)
for (f,a) € Arr AGgC.
(b) We have a functor
AGgn: CatDS(y) — Grphy,,

given on the morphisms as follows. For every morphism F': C — D in CatDSy), the morphism
AGgpy F': AGg,C — AGg, D is given on the objects by

(AGsn F)X = FX
for X € Ob AGg ,, C and on the arrows by
(AGsn F)(f,i) = (Ff, Fi)
for (f,i) € Arr AGg , C.
Proof.
(a) This follows from remark (2.11) and (b).

(b) We suppose given C,D € ObCatDS. For every morphism F:C — D in CatDS and for (f,i) €
Arr AGs ,, C, we have (Ff,Fi) € Arr AGg,, D as F preserves S-denominators and

Source (F'f, Fi) = Source F'f = F(Source f) = F'(Source (f,1)),
Target (F' f, Fi) = Source Fi = F(Sourcei) = F(Target (f,1)).

Hence we obtain a well-defined map
Acp: catps(C,D) = grph(AGs . C,AGg , D),

where A¢ p(F) for F € catps(C, D) is given by A¢ p(F)X = FX for X € ObAGg,,C and Ac p(F)(f,1)
= (Ff, Fi) for (f,i) € Arr AGgsC.

For morphisms F: C — D and G: D — £ in CatDS, we get
Ace(GoF)X = (Go F)X = Ap ¢(G)Ac p(F)X
for X € ObAGs ,C and
Ace(GoF)(f,1) = ((Go F)f,(Go F)i) = (GFf,GFi) = Ap ¢(G)Ac,p(F)(f,1)
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for (f,i) € Arr AGg , C, that is, A¢ ¢ (GoF) = Ap ¢(G)oAc p(F'). Moreover, for every object C in CatDS,
we get
Ace(ide)X =ideX = X = idacs, c X

for X € Ob AGg, C and
Acc(ide)(f, i) = (ide f,ided) = (f, 1) = idags,, c(f,9)

for (f,i) € Arr AGg ,, C, that is, Ac c(ide) = idags, c. Thus we have a functor
AGgn: CatDS — Grph

that is given on the morphisms by AGg , F' = A¢ p(F) for F € catps(C, D). O

(Normal) S-fraction equality

Our next step will be the introduction of equivalence relations on the sets of arrows of the S-2-arrow graph resp.
the normal S-2-arrow graph.

(2.14) Definition ((normal) S-fraction equality).

(a) We suppose given a category with denominators C. The equivalence relation =g on Arr AGg C is defined
to be generated by the following relation on Arr AGg C: Given (f,a) € Arr AGg C and a morphism ¢ in C
such that ac is a denominator in C, then (f,a) is in relation to (fe, ac).

! a_

—_— —=
JC
fe ac

RN

Given (f,a), (f,a) € Arr AGg C with (f,a) =g (f,a), we say that (f,a) and (f,a) are S-fraction equal.

(b) We suppose given a category with D-S-denominators C. The equivalence relation =g, on Arr AGg,C
is defined to be generated by the following relation on Arr AGg, C: Given (f,7) € ArrAGg,,C and a
morphism ¢ in C such that ic is an S-denominator in C, then (f, ) is in relation to (fe,ic).

f i

JC
fe ic

Given (f,1), (f,1) € Arr AGg , C with (f,4) =s., (f,7), we say that (f, i) and (f,4) are normally S-fraction
equal.

If the category with denominators C in definition (2.14)(a) resp. the category with D-S-denominators C in defini-
tion (2.14)(b) is S-semisaturated, then the morphism c in loc. cit. is automatically a denominator, respectively.

(2.15) Remark. We suppose given a category with denominators C. For S-2-arrows (f, a), (f,a) in C, we have
(f,a) =sn (f,a) in Arr AGg , Cs if and only if (f,a) =s (f,a) in Arr AGgC.

(2.16) Remark. We suppose given a category with D-S-denominators C and normal S-2-arrows (f,i), ( 1, 7)
in C. If (f,1) =sn (f,1), then (f.1) =s (f,).

Proof. This holds as every normal S-2-arrow is in particular an S-2-arrow. O

(2.17) Remark. We suppose given a category with denominators C and a localisation £ of C. Moreover, we
suppose given S-2-arrows (f,a), (f,a) in C. If (f,a) =5 (f,a), then

loc(f)loc(a)™ =loc(f)loc(a) !
in L.



26 CHAPTER II. Z-2-ARROW CALCULUS

Proof. For every morphism c in C such that ac is a denominators in C, we have
loc(f)loc(a)™loc(ac) = loc(f)loc(a) * loc(a)loc(c) = loc(f)loc(c) = loc(fc)
and therefore
loc(f)loc(a)™* =loc(fc)loc(ac)™t. O

(2.18) Remark. We suppose given a semisaturated category with denominators C and S-2-arrows (f,a), ( f ,a)
in C. If (f,a) =s (f,a), then f is a denominator in C if and only if f is a denominator in C.

Proof. This follows by the definition of S-fraction equality (2.14)(a) and by the semisaturatedness of C. O
(2.19) Remark.

(a) We suppose given a multiplicative category with denominators C and S-2-arrows (f,a), ( f,a) in C. If
(f,a) =s (f,a), then (gf,da) =s (g9f,da) for every morphism g in C with Targetg = Source (f,a) =
Source (f,a) and for every denominator d in C with Target d = Target (f,a) = Target (f, a).

(b) We suppose given a multiplicative category with D-S-denominators C and normal S-2-arrows (f,1), ( 1, 5)
inC. If (f,4) =sn (f,4), then (gf,ji) =sn (9f, i) for every morphism g in C with Target g = Source (f, 1)
= Source (f,4) and for every S-denominator j in C with Target j = Target (f,i) = Target (f,1).

Proof.
(a) This follows from remark (2.15) and (b).
(b) This follows by the definition of normal S-fraction equality (2.14)(b). O

In the next remark, we will show that (normal) S-fraction equality respects the graph structure on the (normal)
S-2-arrow graph, and so we may pass to quotient graphs.

(2.20) Remark.

(a) We suppose given a category with denominators C. The S-fraction equality relation =g is a graph con-
gruence on AGgC.

(b) We suppose given a category with D-S-denominators C. The normal S-fraction equality relation =g, is a
graph congruence on AGg,, C.

Proof.
(a) This follows from remark (2.15) and (b).
(b) For (f,i) € Arr AGs , C, ¢ € MorC with ic € SDenC, we have
Source (fe,ic) = Source(fc) = Source f = Source (f, 1),
Target (fe,ic) = Source(ic) = Sourcei = Target (f,1). O
(2.21) Definition ((normal) S-fraction).

(a) We suppose given a category with denominators C. Given an S-2-arrow (f,a) in C, its equivalence class in
the quotient graph (AGgC)/=s is denoted by f/a :=[(f,a)]=s and is said to be the S-fraction of (f,a).

(b) We suppose given a category with D-S-denominators C. Given a normal S-2-arrow (f,4) in C, its equivalence
class in the quotient graph (AGs ., C)/=s, is said to be the normal S-fraction of (f,7). If no confusion
arises, we abuse notation and also write f/i := [(f,1)]=; . (*).

(2.22) Remark. We suppose given a category with D-S-denominators C. The inclusion inc: AGg, C — AGsC
induces a well-defined graph morphism

(AGS>H C)/Es,n — (AGS C)/ES,

which is identical on the objects and maps the normal S-fraction f/i = [(f,4)]=
to the S-fraction f/i = [(f,1)]=-

Proof. This follows from remark (2.16). O

4This abuse will be justified for the case where C is a Z-prefractionable category in corollary (2.61).

of some (f,i) € Arr AGg,,C

S,n
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3 S-Ore completions and the classical S-Ore localisation

This section has two aims: First, we will introduce S-Ore completions, that is, certain S-2-arrows that make
two given morphisms with the same source object into a commutative quadrangle, see definition (2.23)(a) and
definition (2.24). Second, we will recall the ordinary S-Ore completion for so-called S-fractionable categories,
see definition (2.30), and the S-2-arrow calculus, see theorem (2.35). S-fractionable categories are categories
with denominators that admit S-Ore completions and fulfil an extra condition, see definition (2.27)(a). This
second part is well-known — except possibly theorem (2.37), which states that S-fractionable categories are the
only multiplicative categories with denominators that admit an S-2-arrow calculus. We include it to be able to
conveniently compare our approach for Z-(pre)fractionable categories, see section 6, and the classical one. In
contrast to the S-Ore completions, the second part of this section will not be used elsewhere in this thesis.
The basic ideas of the classical S-Ore localisation have their historical origin in ring theory, in particular in the
works of ORE [27, sec. 2] and ASANO [2, Satz 1|. The categorical version comes from the Grothendieck school,
see VERDIER [37, ch. I, §2, sec. 3.2] and GROTHENDIECK and HARTSHORNE [15, ch. I, §3, prop. 3.1], inspired
by the work of SERRE [34, ch. I, sec. 2].

S-Ore completions

We start with the definition of S-Ore completions. As already mentioned above, we think of S-2-arrows as
representatives for fractions, like the rational numbers, but with directed numerator and directed denominator.
Having this image in mind, an S-Ore completion is then, roughly said, a method to replace a diagram, where
numerator and denominator are in a wrong order, by an actual S-2-arrow.

While classical Ore completions are defined via arbitrary denominators, they will be introduced here using
S-denominators, as this is the form in which we use them later. However, the classical definition is reobtained if
we interpret a category with denominators canonically as a category with D-S-denominators, see definition (2.7)
and definition (2.24)(b).

For the structure of a category with D-S-denominators, see definition (2.1)(a).

(2.23) Definition (S-Ore completion). We suppose given a category with D-S-denominators C, a morphism f
and an S-denominator ¢ in C with Source f = Sourcez.

(a) An S-Ore completion for f and i is a normal S-2-arrow (f’,4') in C with fi' =if’.

(b) An S-Ore completion (f’,4') for f and i is said to be weakly universal if for every S-2-arrow (g,a) in C
with fa = ig there exists a morphism c in C with a = i'c and g = f’c.

(2.24) Definition (S-Ore completion axiom).
(a) (i) A category with D-S-denominators C is said to fulfil the S-Ore completion axiom if the following
holds.

(Oreg) S-Ore completion axiom. There exists an S-Ore completion for every morphism f and every
S-denominator ¢ in C with Source f = Sourcei.

(ii) A category with D-S-denominators C is said to fulfil the weakly universal S-Ore completion axiom if
the following holds.

Ored") Weakly universal S-Ore completion axiom. There exists a weakly universal S-Ore completion for
S
every morphism f and every S-denominator ¢ in C with Source f = Source?.
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(b) A category with denominators C is said to fulfil the S-Ore completion aziom resp. the weakly universal
S-Ore completion axziom if the S-structure Cg fulfils the S-Ore completion axiom resp. the weakly universal
S-Ore completion axiom.

The S-Ore completion axiom yields the following technical lemma, which will be used several times throughout
this chapter.

(2.25) Lemma (flipping lemma for S-2-arrows). We suppose given a category with D-S-denominators C that
fulfils the S-Ore completion axiom, and we suppose given a commutative diagram

f1 ay
—_—
1 % 1
2 by ~ J 2 ba
| A a |
—_— R
J/gl J§2 J/92
f2 as
—_—

in C with S-2-arrows (f1,a1), (f2,az2), (fi,a), denominators by, by and S-denominator j. For k € {1,2}, we
suppose that g = 1 or by = 1, and we set

1) ifb =1
/,b/ — (gka )
(k- Br) {(Lbk) if g = 1.

Then there exist morphisms f% @9 and a normal S-2-arrow (g5, j’) in C such that the diagram

comiutes.

Proof. By the S-Ore completion axiom, there exists an S-Ore completion (g5, j') for g2 and j.

are pushout rectangles in C by definition of (¢}, ;) and (g4, by), we get induced morphisms f, and @, in C such
that the following diagram commutes.

b H// y/ bl /a/
/ f2 az / 0

If the category with D-S-denominators C in the flipping lemma (2.25) is S-semisaturated, then the morphism as
in loc. cit. is automatically a denominator, so we have an S-2-arrow (fa, @2).
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S-fractionable categories

Next, we will introduce S-fractionable categories: categories with denominators that fulfil the S-Ore completion
axiom and the so-called S-Ore expansibility axiom.

(2.26) Definition (S-Ore expansibility axiom).
(a) A category with D-S-denominators C is said to fulfil the S-Ore expansibility axiom if the following holds.

(Oreg™) S-Ore expansibility axiom. We suppose given parallel morphisms fi, fo in C. If there exists an
S-denominator 4 in C with if; = i fs, then there exists an S-denominator ¢’ in C such that f1i’ = fa7'.

f1 -/
f2

(b) A category with denominators C is said to fulfil the S-Ore expansibility axiom if the S-structure Cg fulfils
the S-Ore expansibility axiom.

(2.27) Definition (S-fractionable category).

(a) An S-fractionable category is a multiplicative category with denominators C that fulfils the S-Ore comple-
tion axiom and the S-Ore expansibility axiom.

(b) We suppose given S-fractionable categories C and D. A morphism of S-fractionable categories from C to D
is a morphism of categories with denominators from C to D.

(c) We suppose given a Grothendieck universe 4. The full subcategory SFrCat = SFrCat g of CatDy,
with

ObSFrCat gy = {C € ObCatDy | C is an S-fractionable category}

is called the category of S-fractionable categories (more precisely, the category of S-fractionable U-cate-
gories). An object in SFrCat ) is called an S-fractionable U-category, and a morphism in SFrCat g is
called a $U-morphism of S-fractionable categories.

If the S-Ore completions that an S-fractionable category admits may be chosen weakly universally and the
S-fractionable category is S-semisaturated, see definition (1.37)(b), then the S-Ore expansibility axiom turns
out to be redundant:

(2.28) Proposition. We suppose given an S-semisaturated category with denominators C. If C fulfils the
weakly universal S-Ore completion axiom, then C is an S-fractionable category.

Proof. We suppose that C fulfils the weakly universal S-Ore completion axiom. To show that C is an S-frac-
tionable category, it suffices to show that it fulfils the S-Ore expansibility axiom. To this end, we suppose
given parallel morphisms f1, fo and a denominator d in C with df; = dfs. We choose a weakly universal S-Ore
completion (f’,d’) for f := df; = dfs and d, so that there exist induced morphisms dy, dy in C with f; = f'ds,
1=ddy, fo=f'ds, 1 =ddo.

By S-semisaturatedness, d; is a denominator in C. We choose an S-Ore completion (dj,d}) for de and dj.

/
d2
>

~

dy 2 wdf
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Then we get
fidy = fldidy = f'dady = fady,
dy = d'dydy = d'dod} = dj,
and so we have f1d' = fad' for d' :=d} = dj,. O

The classical S-Ore localisation
We briefly recall the classical S-Ore localisation. Cf. theorem (2.85).
(2.29) Theorem. We suppose given an S-fractionable category C.

(a) There is a category structure on (AGg C)/=s, where the composition and the identities are given as follows.
Given (f1,a1), (f2,a2) € Arr AGg C with Target (f1,a1) = Source (f2, as), we choose a morphism f} and a
denominator o} with ay fi = foa). Then (f1/a1)(f2/a2) = f1f5/a2a].

!
f1 fa
K. K.
a1 f2 N
- 3

The identity of X € Ob (AGsC)/=s is given by 1x = 1x/1x.

(b) The quotient graph (AGg C)/=s together with the category structure from (a) becomes a localisation of C,
where the localisation functor loc: C — (AGgC)/=g is given on the objects by loc(X) = X for X € ObC
and on the morphisms by loc(f) = f/1 for f € MorC.

For every denominator d in C, the inverse of loc(d) is given by loc(d)~t = 1/d.

Proof. Cf. [13, sec. I11.2, lem. §]. O

(2.30) Definition (S-Ore localisation). We suppose given an S-fractionable category C. The S-Ore localisation
of C is defined to be the localisation Oreg(C) of C, whose underlying category is the quotient graph (AGgC)/=g
together with composition and identities as in theorem (2.29)(a), and whose localisation functor is given as in
theorem (2.29)(b).

The S-2-arrow calculus

Next, we recall the S-2-arrow calculus of an S-fractionable category. Cf. theorem (2.93).

(2.31) Definition (S-2-arrow conditions). We suppose given a multiplicative category with denominators C,
a category £ and a functor L: C — L such that Ld is invertible in £ for every denominator d in C.

(a) We say that (£, L) fulfils the S-2-arrow representative condition if the following holds.
(2acg™®) S-2-arrow representative condition. We have
Mor £ = {(Lf)(La)™" | (f,a) is an S-2-arrow in C}.
(b) We say that (£, L) fulfils the S-2-arrow equality condition if the following holds.
(2acg?) S-2-arrow equality condition. Given S-2-arrows (f,a), (f’,a’) in C with
(L)(La)™ = (L") (La')

in £, there exist S-2-arrows (f’, @), (c,d) in C such that the following diagram commutes.
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(¢) We say that (£, L) fulfils the S-2-arrow composition condition if the following holds.

(2acg™P) S-2-arrow composition condition. Given S-2-arrows (f1,a1), (f2,a2), (g1,b1), (g92,b2) in C with

(Lf1)(Lay) ™" (Lg2)(Lb2) " = (Lgr)(Lb1) "' (Lf2)(Lag) ™!

in L, there exist an S-2-arrow ( fg, ds) and morphisms go, by in C such that the following diagram
commutes.

If the category with denominators C in definition (2.31) is S-semisaturated, then the morphism by in part (c) of
loc. cit. is automatically a denominator, so we have an S-2-arrow (g, bs).

(2.32) Remark. We suppose given a multiplicative category with denominators C, a category £ and a func-
tor L: C — L such that Ld is invertible in £ for every denominator d in C.

(a) If (£, L) fulfils the S-2-arrow representative condition, then L is surjective on the objects.
(b) If (L, L) fulfils the S-2-arrow equality condition, then L is injective on the objects.
Proof.

(a) We suppose that (£, L) fulfils the S-2-arrow representative condition. To show that L is surjective on the
objects, we suppose given an object X in £. By the S-2-arrow representative condition, there exists an
S-2-arrow (f,a): X - Y « Y in C with 1 = (Lf)(La)~'. We get

X = Source 1 = Source((Lf)(La)~") = Source Lf = L(Source f) = LX.

Thus L is surjective on the objects.

(b) We suppose that (£, L) fulfils the S-2-arrow equality condition. To show that L is injective on the objects,
we suppose given objects X, Y in C such that LX = LY in £. Then we have

LlX = 1LX == 1LY = Lly,
and so by the S-2-arrow equality condition we in particular have

X = Sourcelx = Sourcely =Y.

Thus L is injective on the objects. O

(2.33) Proposition. We suppose given a multiplicative category with denominators C, a category £ and a
functor £: C — L such that Ld is invertible in £ for every denominator d in C.

(a) If (£, L) fulfils the S-2-arrow equality condition, then C fulfils the S-Ore expansibility axiom.

(b) If (£, L) fulfils the S-2-arrow representative condition and the S-2-arrow equality condition, then C fulfils
the S-Ore completion axiom.

Proof.

(a) We suppose that (£, L) fulfils the S-2-arrow equality condition. To show that C fulfils the S-Ore expansi-
bility axiom, we suppose given parallel morphisms f1, fo and a denominator d in C with df; = df;. Then
we have

(Ld)(Lf1) = L(dfr) = L(df2) = (Ld)(Lf2)

and hence Lf; = Lfs since Ld is invertible in £. As (£, L) fulfils the S-2-arrow equality condition, there
exists a denominator d’ in C such that fid’ = fod’. Thus C fulfils the S-Ore expansibility axiom.
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(b) We suppose that (£, L) fulfils the S-2-arrow representative condition and the S-2-arrow equality condition.
To show that C fulfils the S-Ore completion axiom, we suppose given a morphism f and a denominator d
in C with Source f = Sourced. As (L, L) fulfils the S-2-arrow representative condition, there exists an
S-2-arrow (g,a) in C with (Ld)"Y(Lf) = (Lg)(La)~!. We get

L(fa) = (Lf)(La) = (Ld)(Lg) = L(dg),

and so as (£, L) fulfils the S-2-arrow equality condition, there exists a denominator e in C such that
fae = dge.

We set [/ := ge and d' := ae, so that fd' = df’. Moreover, d’ is a denominator in C by multiplicativity.

f/
e
LN
dd
dI l a
Y
—
Thus C fulfils the S-Ore completion axiom. O

(2.34) Proposition. We suppose given a multiplicative category with denominators C, a category £ and a
functor £: C — L such that Ld is invertible in £ for every denominator d in C.

(a) If (£, L) fulfils the S-2-arrow composite condition, then it also fulfils the S-2-arrow equality condition.

(b) If (£, L) fulfils the S-2-arrow representative condition and the S-2-arrow equality condition, then it also
fulfils the S-2-arrow composition condition.

Proof.

(b) We suppose that (£, L) fulfils the S-2-arrow representative condition and the S-2-arrow equality condition.
To show that (£, L) fulfils the S-2-arrow composition condition, we suppose given S-2-arrows (f1,a1),
(f2,a2), (91,01), (g2,b2) in C with

(Lf1)(Lay) " (Lg2)(Lby) ™" = (Lg1)(Lby) " (Lf2)(Lag) ™"

in £. By proposition (2.33)(b), we know that C fulfils the S-Ore completion axiom. In particular, there
exist an S-Ore completion (a),bs) for ap and be, an S-Ore completion (f5,b)) for fob), and by, and an
S-Ore completion (g5, a}) for geabb) and a;.

f1 ay
g1 A 92
o ,
\\,al a’2
> 2
5 )
by
bl b2
s
L
bl -
f2 N as
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We obtain
L(f195) = (Lf1)(Lgs) = (Lf1)(La1)~" (Lg2)(Lab)(Lb;)(La))
= (Lf1)(La1) " (Lgo)(Lbs) " (Las)(Lbh)(Lb;)(La))
= (Lg1)(Lf3)(Lay) = L(g1f3a1).

So as (£, L) fulfils the S-2-arrow expansibility axiom, there exists a denominator d in C with fighd =

/o
g1 fsald.

f1 ay

g1 A 92
o dgj 1yl 1
faay @ agbiay

b1 bébllall b2
f2 as

Setting fo := fhald, ay = ahbad, Go = ghd, by := byb)a}d yields
fid2 = frghd = g1 foahd = g1 fo,
a1G2 = a1g5d = gaasbiayd = gaaa,
fabs = fobybiatd = b faid = by fo,
azby = agbhbald = byabblad = byas.

Moreover, @y is a denominator in C by multiplicativity.

Thus (£, L) fulfils the S-2-arrow composition condition. O

(2.35) Theorem (S-2-arrow calculus). Given an S-fractionable category C, then Oreg(C) fulfils the S-2-arrow
representative condition and the S-2-arrow equality condition.

Proof. Cf. [13, sec. 111.2, lem. §]. O

(2.36) Proposition. We suppose given a multiplicative category with denominators C, a category £ and a
functor L: C — L such that Ld is invertible in £ for every denominator d in C. If (£, L) fulfils the S-2-arrow rep-
resentative condition and the S-2-arrow equality condition, then £ becomes a localisation of C with localisation
functor loc® = L.

Proof. By proposition (2.33), we know that C fulfils the S-Ore expansibility axiom and the S-Ore completion
axiom, that is, C is an S-fractionable category. In particular, the S-Ore localisation Oreg(C) of C is defined. By
the universal property of Oreg(C), there exists a unique functor L: Oreg(C) — £ with L = L o 1oc°™s(©),

C— L

1OCOVES(C)J L

Ores(C)
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The S-Ore localisation Oreg(C) fulfils the S-2-arrow representative condition and the S-2-arrow equality condi-
tionby theorem (2.35), so in particular, L is given by

LX =LX
for every object X in C and by
L(10c® O ()10c®* (a)71) = (Lf)(La)™*

for every S-2-arrow (f,a) in C. We want to show that L is an isofunctor. Indeed, Mor L is surjective as (L,L)
and Oreg(C) fulfil the S-2-arrow representative condition, and Mor L is injective as (£, L) and Oreg(C) fulfil the
S-2-arrow equality condition. Altogether, Mor Lisa bijection. But this already implies that L is an isofunctor.
Thus £ becomes a localisation of C with loc® = L. O

The next theorem states that the axiomatics of an S-fractionable category is, in some precise sense, the best to
obtain an S-2-arrow calculus in the sense of theorem (2.35).

(2.37) Theorem. We suppose given a multiplicative category with denominators C. The following conditions
are equivalent.

(a) The category with denominators C is an S-fractionable category.

(b) There exists a localisation of C that fulfils the S-2-arrow representative condition and the S-2-arrow equality
condition.

(c) There exists a localisation of C that fulfils the S-2-arrow composition condition.

Proof. If condition (a) holds, that is, if C is an S-fractionable category, then by theorem (2.35), the S-Ore
localisation Oreg(C) fulfils the S-2-arrow representative condition and the S-2-arrow equality condition, and so
condition (b) holds.

Moreover, if condition (b) holds, that is, if there exists a localisation £ of C that fulfils the S-2-arrow represen-
tative condition and the S-2-arrow equality condition, then this localisation also fulfils the S-2-arrow composite
condition by proposition (2.34)(Db).

Finally, we suppose that condition (c) holds, that is, we suppose that there exists a localisation £ of C that
fulfils the S-2-arrow composition condition. Then £ fulfils in particular the S-2-arrow equality condition and
therefore C fulfils the S-Ore expansibility axiom by proposition (2.33)(a). To show that C fulfils the S-Ore
completion axiom, we suppose given a morphism f and a denominator d in C with Source f = Sourced. Then
we have loc(d) ! loc(f) = loc(d)~!loc(f) in £, and so the S-2-arrow composition condition in particular yields
an S-Ore completion (f/,d") for f and d.

d
—_—
! f
e
> KL r
Qd Qd
f

Hence C is an S-fractionable category, that is, condition (a) holds.
Altogether, we have shown that condition (a), condition (b) and condition (c) are equivalent. O

4 7Z-2-arrows

As just shown in theorem (2.37), S-fractionable categories, as introduced in definition (2.27)(a), characterise
those multiplicative categories with denominators that admit an S-2-arrow calculus in the sense of theo-
rem (2.35). So by contraposition, if a multiplicative category with denominators does not fulfil the axioms
of an S-fractionable category, it cannot admit such a pure S-2-arrow calculus, even if we know that every mor-
phism in the localisation is represented by an S-2-arrow, see definition (2.31)(a). So if we still want to work
with strictly commutative diagrams as in the S-2-arrow equality condition, see definition (2.31)(b), we have to
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restrict our attention to a subset of S-2-arrows that fulfils the following two requirements simultaneously. First,
it must be small enough such that two S-2-arrows that are contained in the subset represent the same morphism
in the localisation if and only if they may be embedded in a 2-by-2 diagram as in definition (2.31)(b). Second,
it must still be large enough such that every morphism in the localisation is represented by an S-2-arrow that
lies in the subset.

In this section, we are going to introduce the notion of a category with Z-2-arrows, see definition (2.38)(a),
that is, a category with denominators and S-denominators equipped with a distinguished subset of normal
S-2-arrows, see definition (2.1)(a) and definition (2.10). Such a category with Z-2-arrows is the basic structure
for our axiomatic localisation approach, but it does not yet necessarily fulfil enough axioms to construct a
generalisation of the S-Ore localisation, cf. definition (2.30). Those axioms will be introduced in section 5.
After the definition of categories with Z-2-arrows, we develop some basic properties that follow from the Z-re-
placement axiom. Thereafter, we introduce the Z-fraction equality, see definition (2.50), a congruence on the
Z-2-arrow graph that is analogously defined to the S-fraction equality on the S-2-arrow graph resp. the normal
S-fraction equality on the normal S-2-arrow graph, cf. definition (2.14).

Categories with Z-2-arrows

For the definition of a category with D-S-denominators and of a morphism of categories with D-S-denominators,
see definition (2.1).

(2.38) Definition (category with Z-2-arrows).

(a) A category with Z-2-arrows consists of a multiplicative category with D-S-denominators C together with
a subgraph Z of AGgy, C such that the following axiom holds.

(Rplz) Z-replacement aziom. For every S-2-arrow (f,a) in C there exists an arrow (f,a) in Z and a mor-
phism s in C with (f,a) = (fs,as).

By abuse of notation, we refer to the said category with Z-2-arrows as well as to its underlying category
with D-S-denominators just by C. The subgraph Z is called the Z-2-arrow graph of C, the arrows in Z
are called Z-2-arrows in C.

Given a category with Z-2-arrows C with Z-2-arrow graph Z, we write AGyC := Z.

(b) We suppose given categories with Z-2-arrows C and D. A morphism of categories with Z-2-arrows from C
to D is a morphism of categories with D-S-denominators F': C — D that preserves Z-2-arrows, that is,
such that (Ff, Fi) is a Z-2-arrow in D for every Z-2-arrow (f,7) in C.

If a category with Z-2-arrows C is S-semisaturated, then the morphism s in the Z-replacement axiom in defini-
tion (2.38)(a) is automatically a denominator.

While S-2-arrows and normal S-2-arrows are defined via a property, see definition (2.10), the Z-2-arrows of a
category with Z-2-arrows are a distinguished part of the structure.

(2.39) Example. The S-structure of every multiplicative category with denominators C carries the structure
of a category with Z-2-arrows having

AGyzCs = AGgC.

Proof. The Z-replacement axiom is fulfilled as every identity morphism in C is a denominator in C by multi-
plicativity.
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The category of categories with Z-2-arrows

(2.40) Definition (category with Z-2-arrows with respect to a Grothendieck universe). We suppose given
a Grothendieck universe . A category with Z-2-arrows C is called a category with Z-2-arrows with respect
to 1 (or a U-category with Z-2-arrows) if its underlying category with D-S-denominators is a $i-category with
D-S-denominators.

(2.41) Remark.

(a) We suppose given a Grothendieck universe 4f. A category with Z-2-arrows C is a iI-category with Z-2-arrows
if and only if it is an element of 4.

(b) For every category with Z-2-arrows C there exists a Grothendieck universe 4 such that C is a -category
with Z-2-arrows.

(2.42) Remark. For every Grothendieck universe {l we have a category CatZ ), given as follows. The set of
objects of CatZy is given by

ObCatZ) = {C | C is a U-category with Z-2-arrows}.
For objects C and D in CatZ (), we have the hom-set
CatZy (C,D) = {F | F is a morphism of categories with Z-2-arrows from C to D}.

For morphisms F: C — D, G: D — &£ in CatZ,, the composite of F' and G in CatZy, is given by the
composite of the underlying morphisms of categories with D-S-denominators G o F': C — £. For an object C
in CatZy, the identity morphism on C in CatZ) is given by the underlying identity morphism of categories
with D-S-denominators id¢: C — C.

(2.43) Definition (category of categories with Z-2-arrows). We suppose given a Grothendieck universe . The
category CatZ = CatZ) as considered in remark (2.42) is called the category of categories with Z-2-arrows
(more precisely, the category of i-categories with Z-2-arrows).

The Z-structure

In example (2.39), we have seen that there can be defined a structure of a category with Z-2-arrows on every
multiplicative category with denominators. Since we will need this structure to compare our approach to the
classical one introduced in section 3, we assign a name to it.

(2.44) Definition (Z-structure). We suppose given a multiplicative category with denominators C. The cat-
egory with Z-2-arrows Cz whose underlying category with D-S-denominators is Cg and whose Z-2-arrow graph
is given by

AGyzCz = AGsC

is called the Z-structure of C.

(2.45) Remark. We suppose given a Grothendieck universe 4{. We have a functor
—z: CatD () — CatZyy),

given on the morphisms by Fz = F' for F' € Mor CatD,,,(s(), which is full, faithful and injective on the objects.

Properties of Z-2-arrows

We show some simple properties of Z-2-arrows.

(2.46) Remark. We suppose given a category with Z-2-arrows C. The Z-2-arrow graph AGzC is a wide
subgraph of AGg,, C.
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Proof. By the Z-replacement axiom, for every X € ObAGg,C = ObC there exists a Z-2-arrow (e,?) and a
morphism s in C with es = is = 1x, so that X = Source (e, ) = Target (e, i) € Ob AGzC.

X4>Z<—O—X

|

X—X—X O

(2.47) Remark. We suppose given a category with Z-2-arrows C. For every S-2-arrow (f,a) in C there exists
a Z-2-arrow (f,a) in C with

(f.a) =s (f,a).

Proof. This follows from the Z-replacement axiom. O

For the formulation of the S-2-arrow representative condition, see definition (2.31)(a).

(2.48) Corollary. We suppose given a category with Z-2-arrows C and a localisation £ of C. If £ fulfils the
S-2-arrow representative condition, then

Mor £ = {loc(f)loc(i)™" | (f,4) is a Z-2-arrow in C}.

Proof. This follows from remark (2.47) and remark (2.17). O

(2.49) Corollary. We suppose given a category with Z-2-arrows C that fulfils the S-Ore completion axiom,
and we suppose given S-2-arrows (f1,a1) and (f2,az2) in C with Target (f1,a1) = Target (f2,a2). Then there
exist normal S-2-arrows (f1,7) and (f2,4) in C with

S (fhi)a

s (f2,1).

(f1,a1)
(f2,a2)

Proof. By remark (2.47), there exist Z-2-arrows (fy,a) in C with (fx,ar) =s (fr,ar) for k € {1,2}. In
particular, we have Target (fr,ar) = Target (fx,ar) for k € {1,2}. Hence Target (f1,a1) = Target (f2,az)
implies that Target (fl,al) = Target (fa,as). We let (ah,a}) be an S-Ore completion of as and a; and set
f1 = f1a2, f2 = f2a1 and 7 := ala’2 = aga’l

f1 a1

— c
e
f2 % "
. al
f2 ao

By multiplicativity, ¢ = a2a} is an S-denominator in C, and we have

(f1,0) = (frdh, ah) = (f1,a1) =s (f1,a1),
(f2.1) = (fad}, G2d) =g (f2, a2) =s (f2,a2). O

Z-fraction equality

In analogy to the S-fraction equality relation =g on the S-2-arrow graph resp. to the normal S-fraction equality
relation =g, on the normal S-2-arrow graph, see definition (2.14), we may introduce an equivalence relation on
the set of arrows of the Z-2-arrow graph:
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(2.50) Definition (Z-fraction equality). We suppose given a category with Z-2-arrows C. The equivalence
relation =z on Arr AGyC is defined to be generated by the following relation on Arr AGyC: Given (f,i) €
Arr AGz C and a morphism ¢ in C such that (fc,ic) € Arr AGyC, then (f, 1) is in relation to (fc,ic).

f i

J ‘
fe ic

Given (f,1), (f, i) € Arr AGy C with (f,4) =z (f, i), we say that (f,i) and (f, i) are Z-fraction equal.

(2.51) Remark. We suppose given a multiplicative category with denominators C. For S-2-arrows (f,a), (f,a)
in C, we have (f,a) =z (f,a) in Arr AGz Cyz if and only if (f,a) =s (f,a) in Arr AGsC.

(2.52) Remark. We suppose given a category with Z-2-arrows C and Z-2-arrows (f, 1), (f,7) in C. If
(f,1) =z (f,4), then (f,i) =s.n (f,2)-

Proof. This holds as every Z-2-arrow is in particular a normal S-2-arrow. O

(2.53) Remark. We suppose given a category with Z-2-arrows C. The Z-fraction equality relation =z on
Arr AGy C defines a graph congruence on AGyC.

Proof. For (f,i) € Arr AGyC, ¢ € Mor C with (fe¢,ic) € Arr AGy C, we have

Source (fc,ic) = Source(fc) = Source f = Source (f, 1),
Target (fc,ic) = Source(ic) = Sourcei = Target (f, 7). O

(2.54) Definition (Z-fraction). We suppose given a category with Z-2-arrows C. Given a Z-2-arrow (f,) in C,
its equivalence class in the quotient graph (AGzC)/=z is said to be the Z-fraction of (f,i). If no confusion
arises, we abuse notation and also write f/i := [(f,i)]=, (°).

(2.55) Remark. We suppose given a category with Z-2-arrows C. The inclusion inc: AGzC — AGg , C induces
a well-defined graph morphism

(AGzC)/=z — (AGsnC)/=sn,

which is identical on the objects and maps the Z-fraction f/i = [(f,i)]=, of some (f,i) € Arr AGzC to the
normal S-fraction f/i = [(f,4)]=g -

Proof. This follows from remark (2.52). O

5 Z-fractionable categories

In this section, we consider several axioms that a category with Z-2-arrows, see definition (2.38)(a), may fulfil,
deduce some consequences, and define the concepts of a Z-prefractionable category and of a Z-fractionable
category, see definition (2.80)(a) and definition (2.81)(a). All these axioms are fulfilled by a Brown cofibration
category, that is, every Brown cofibration category may be seen as a Z-fractionable category, see theorem (3.127).
Moreover, we relate the concepts of a Z-(pre)fractionable category to the classical concept of an S-fractionable
category, see definition (2.27)(a).

The axioms of a Z-prefractionable category are sufficient to construct the S-Ore localisation of a category
with Z-2-arrows in analogy to the S-Ore localisation of an S-fractionable category, see definition (2.30) and
definition (2.101). However, the additional axioms of a Z-fractionable category enable us for example to calculate
composites and inverses of morphisms in the localisation in a nice way, cf. remark (2.103), and they moreover
yield some additional nice properties, such as for example (2.93)(d). While the axioms of a Z-prefractionable
category pervade (at least implicitly) the rest of this chapter, some of the additional axioms of a Z-fractionable
category will be used precisely once outside this section.

5This abuse of notation will be justified in corollary (2.61).
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The axioms of a Z-prefractionable category

We begin with the essential axioms of a Z-fractionable category, that is, the axioms of a Z-prefractionable
category, see definition (2.80)(a).

(2.56) Definition (Z-comparison axiom). A category with Z-2-arrows C is said to fulfil the Z-comparison axiom
if the following holds.

(Cprz) Z-comparison aziom. We suppose given an S-2-arrow (f,a), Z-2-arrows (fl, ay), (fg, az) and morphisms sy,

s9 in C such that (f,a) = (f1s1,a181) = (f282,d282). Then there exist a Z-2-arrow (f,a), a normal
S-2-arrow (¢, j) and a morphism s in C such that the following diagram commutes.

L0
/ / :..._S

. 0J
f2 aso

e

If a category with Z-2-arrows C is S-semisaturated, then the morphisms s1, s2, s in the Z-comparison axiom are
automatically denominators.

Q-
oy

N

N

N

. emark. Given a multiplicative category wi enominators C, the Z-structure Cy fulfils the Z-com-
2.57) R k. Gi Itiplicati t ith d inators C, the Z-struct Cy, fulfils the Z
parison axiom.

(2.58) Proposition. We suppose given a category with Z-2-arrows C that fulfils the Z-comparison axiom.
Given Z-2-arrows (f,1), (f’,4') in C, the following conditions are equivalent.

(a) We have (f,i) =s (f',4) in AGsC.
(b) We have (f,i) =sn (f,?) in AGg,, C.
(¢c) We have (f,7) =z (f',7') in AGzC.

Proof. If (f,i) =z (f’,7'), then in particular (f,7) =s, (f’,4), and if (f,i) =sn (f’,7'), then in particular
(f,i) =s (f’,4"). So condition (c¢) implies condition (b), and condition (b) implies condition (a).

Let us finally suppose that condition (a) holds, that is, we suppose that (f,i) =s (f’,4') in AGgC. Then there
exist n € Ny, S-2-arrows (f;, a;) for [ € [0,2n] and morphisms ¢, ¢} in C for | € [0,n — 1] with (fo, ao) = (f,19),
(fon, azn) = (f',7') and (farcr, azicr) = (farv1, a2i41) = (farr2¢), azigoc)) for L€ [0,n —1].

JCZ
faiy1 | az2i41
-

—r—

/[c;
f2l+2 azi+4-2

—_—

For | € [1,n — 1], we choose Z-2-arrows (fgl,am) and morphisms sy in C with (fo,aq) = (f2182[,d21821).
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Moreover, we choose (fo,ao) = (fo,a0) = (f,7), so:=1 and (fgn,dgn) = (fan, a2n) = (f',1'), son := 1.

fa az;
.?‘ ~
/ 821‘_._.’ /
fa az
y < o
e
fait1 azi+1
—_— —r— [ —
=]
faiy2 azi2
- e —
».1
/ Sa142.7 /
fait2 T aoiya
o

> <

Then for [ € [0,n— 1], the Z-comparison axiom yields a Z-2-arrow (f21+1, G21+1), a morphism $g;11 and a normal
S-2-arrow (¢, 7;) in C such that the following diagram commutes.

Nz %

fai+1 a2i+1
s

—r— || —
».1
/ Sa141 /
fary1r L7 a21+1
> < o
’
. c
O l
faiy2 azi+2

—_—

/ / /
) S2142
farq2 /G242

We have (f,i) = (fo,a0) =z (for, a21) = (f',4'), that is, condition (c) holds.
Altogether, the conditions (a), (b) and (c) are equivalent. O

(2.59) Remark (flipping lemma for Z-2-arrows). We suppose given a category with Z-2-arrows C that fulfils
the S-Ore completion axiom and the Z-comparison axiom, and we suppose given a commutative diagram

f1 i1

f %j
f1 a1

e
JC
f2 ia

in C with Z-2-arrows (f1,i1), (fa2,72), S-2-arrow (fi,a1) and S-denominator j. Then there exist a Z-2-ar-
row (fa,12) and a normal S-2-arrow (¢’,j’) in C such that the diagram

f1 i1
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comimutes.

Proof. This follows from the flipping lemma for S-2-arrows (2.25) and the Z-comparison axiom.

N7

o—

oj

f2 iz
/ 2 /iz

The following theorem gives a more concrete description of the S-fraction equality relation =g in a category
with Z-2-arrows that fulfils the S-Ore completion axiom and the Z-comparison axiom. It is one of the main
ingredients for the Z-2-arrow calculus (2.93) and corollary (2.94).

N

O

(2.60) Theorem. We suppose given a category with Z-2-arrows C that fulfils the S-Ore completion axiom and
the Z-comparison axiom.

(a) Given S-2-arrows (f,a), (f',a’) in C, the following conditions are equivalent.

(i) We have (f,a) =s (f',a’) in AGgC.

(ii) For every Z-2-arrow (f,a) and every morphism s in C with (f,a) = (fs,as) there exist an S-2-ar-
row (f’,a’) and a normal S-2-arrow (¢, j) in C such that the following diagram commutes.

(iii) There exist a Z-2-arrow (f,a), an S-2-arrow (f’,d’), a normal S-2-arrow (c, j) and a morphism s in C
such that the following diagram commutes.

&
~
o

“H
N

Q

—_— =
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(b) Given normal S-2-arrows (f,4), (f’,i') in C, the following conditions are equivalent.

(i) We have (f,4) =s (f',%) in AGgC.
(ii) We have (f,i) =sn (f',7) in AGg, C.

(i) For every Z-2-arrow (f,i) and every morphism s in C with (f,i) = (fs,is) there exist a normal

S-2-arrow (f',i') and a normal S-2-arrow (c, j) in C such that the following diagram commutes.

e
> <0
0J

I’ i’

(iv) There exist a Z-2-arrow (f, i), normal S-2-arrows (f’, i'), (¢, ) and a morphism s in C such that the
following diagram commutes.

v
N
O

(c) Given Z-2-arrows (f,4), (f',i') in C, the following conditions are equivalent.

(
(i) We have (f,4) =s (f’,7) in AGgC.
(ii) We have (f,i) =sn (f',4') in AGg, C.
) )
)

We have (f,1 (f’ i') in AGzC.

(iv) There exist a Z-2-arrow (f’,7') and a normal S-2-arrow (¢, 5) in C such that the diagram

(iii

f i
—O0—
(&

ooy
<
0j

' i’

commutes.

Proof.

(¢) The equivalence of condition (i), condition (ii) and condition (iii) follows from (2.58). The equivalence of
condition (iii) and condition (iv) follows from the flipping lemma for Z-2-arrows (2.59).

(a) First, we suppose that condition (i) holds, that is, we suppose that (f,a) =s (f’,a’), and we suppose given
a Z-2-arrow (f,a) and a morphism s in C with (f, a) = (fs,as). Moreover, we choose a Z-2-arrow (f’,a’)
and a morphism s’ in C with (f’,a’) = (f's’,d’s’). Then we have

(f7a) =s (f7 CL) =s (flva/) =s (f/ﬂdl)
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By (c), there exist a Z-2-arrow (f,a’) and a normal S-2-arrow (¢, 7) in C such that the following diagram
commutes.

and composing yields the asserted diagram of condition (ii).
Condition (ii) and the Z-replacement axiom imply condition (iii).

Finally, if condition (iii) holds, then we have in particular

(f.a) =s (f,a) =s (f.@) =s (f,a),

and so condition (i) holds.

Altogether, the three conditions (i), (ii) and (iii) are equivalent.

(b) By (a), condition (i), condition (iii) and condition (iv) are equivalent.
Moreover, if condition (iv) hold, then we have in particular

(1) =sm (f19) =sm (F,7) =50 (1),

and so condition (ii) holds.

Finally, condition (ii) implies condition (i) by remark (2.16).

Altogether, the four conditions (i), (ii), (iii) and (iv) are equivalent. O
(2.61) Corollary. We suppose given a category with Z-2-arrows C that fulfils the S-Ore completion axiom

and the Z-comparison axiom. The inclusions inc: AGzC — AGg,, C and inc: AGg, C — AGgC induce graph
isomorphisms

(AGzC)/=z — (AGs . C)/=sm — (AGsC)/=s.

Proof. The induced graph morphisms are identical on the objects and map the Z-fraction f/i = [(f,i)]=,
of (f,i) € ArrAGzC to the normal S-fraction f/i = [(f,i)]=5,, cf. remark (2.55), resp. the normal S-frac-
tion f/i = [(f,?)]=s, of (f,1) € Arr AGg 5, C to the S-fraction f/i = [(f,i)]=, cf. remark (2.22). The injectivity
of the maps on the sets of arrows follows from theorem (2.60)(c), (b), the surjectivity from remark (2.47). O
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(2.62) Definition (relative Z-replacement axiom). A category with Z-2-arrows C is said to fulfil the relative
Z-replacement axiom if the following holds.

(RpLy") Relative Z-replacement aziom. We suppose given a Z-2-arrow (fi,41), an S-2-arrow (f2,a2) and mor-
phisms g1, g2, g2 in C such that the diagram

f1 i1
—o—
ng Jf}z ng
f2 az
—_—— R

commutes. Then there exist a Z-2-arrow ( f2, a2) and morphisms s, ¢ in C such that the following diagram

commutes.
f1 i1
/ 1 / i1 /
O— g2
ng g ng g2
f2 az
—_— R |

Moreover, we suppose to have the following additional assertions, respectively.
If g1 and g5 are denominators, then we suppose that g may be chosen to be a denominator.
If g1 and g5 are S-denominators, then we suppose that g may be chosen to be an S-denominator.

If a category with Z-2-arrows C is S-semisaturated, then the morphism s in the relative Z-replacement axiom is
automatically a denominator.

(2.63) Remark. Given an S-semisaturated category with denominators C, the Z-structure Cz fulfils the relative
Z-replacement axiom.

We deduce a variant of the relative Z-replacement axiom for S-2-arrows:

(2.64) Lemma (Z-replacement lemma). We suppose given a category with Z-2-arrows C that fulfils the relative
Z-replacement axiom and the Z-comparison axiom. Moreover, we suppose given S-2-arrows (fi,a1), (f2,a2),
(f5,a%), (g1,01), (g2,b2) and morphisms §a, by in C such that the diagram

f1 ay
—
J/gl Jf]z J/92
f3 ay
—r—
2 by %}2 2 b
‘ f2 az ‘
—_— R
commutes. For all Z-2-arrows (fl,al), (fg,dg) and all morphisms s1, so in C with (f1,a1) = (flshdlsl),

2,092) = 282,09259 l ere exist a ;:—2—8 OW 2 (12 5 a —2—8] TOW 577 al a 1Mol [) 1S1mM 82 m suc [ a.[ l e
. : /A S b j ]j !/ C ]i ]j h
fC11C lllg dla’glalll COII]IIlu{:SS'
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f1 a1
f1 a1
o— g2
g1 g2 g2
f3 ay
91 —_— | —
a
/ s /
f3 v Ay
‘ > < ¢ T ba
wby b b2 by
‘ f2 as
2 by —_— —r— | —
2 az

If, in addition, (g1,b1) and (g2,bs) are normal S-2-arrows, then (g,b) may be chosen to be a normal S-2-arrow.

Proof. We suppose given Z-2-arrows (fl,dl), (fg,dg) and morphisms s;, s in C with (fi,a;) = (f1§1,d131),
(f2;a2) = (f2s2,d252). By the relative Z-replacement axiom, there exist Z-2-arrows (f3;,d51), (f2.2,055),
morphisms 5’2,1, 5'2,2, g and a denominator b in C such that the following diagrams commute.

f1 ay f3 as
~ “1 ~
/ / / / e /‘
fl a f2/,2 d/2,2
O— g2 ‘ > < o Q2 bo
ng . 3 ng , | ] 2 by 25 b2 2 b
fa ag ‘ f2 as
—_— x|

—_—

g1 Qb _—
_.W
’ N ./ .
J2,1 v a1 2 as
< o

>

The Z-comparison axiom yields a Z-2-arrow (f},a), a normal S-2-arrow (c,j) and a morphism s} in C such
that

fon aj
/ fél / ay /
o
c 5/2,1
f2 ajh

/ | . /
fi L a5

!’

o7 S2.9

% !
f2,2 as,2

Y

comimutes.
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Altogether, we obtain the commutative diagram

ARy 4D

g1

b
o
5

iy

g2

NN

15 ay

N
N

# y
o
’ 1‘7
fa as
-

N
<

74
f2,2

~ 5
=

2

/.

in C, so that setting g := gc and b := Bj yields the asserted commutative diagram, where b is a denominator by

N

multiplicativity. R
Moreover, if by,by are S-denominators, then b may be chosen to be an S-denominator, and so b will be an
S-denominator by multiplicativity. O

The additional axioms of a Z-fractionable category

Next, we introduce some minor supplemental axioms that turn a Z-prefractionable category into a Z-fractionable
category, see definition (2.81)(a).

(2.65) Definition (Z-replacement axiom for denominators). A category with Z-2-arrows C is said to fulfil the
Z-replacement axiom for denominators if the following holds.

(Rplge™) Z-replacement axiom for denominators. For every S-2-arrow (d, a) in C with denominator d there exists a
Z-2-arrow (d,a) in C with denominator d and a morphism s in C with (d, a) = (ds, as).

(2.66) Remark. Given a multiplicative category with denominators C, the Z-structure Cz fulfils the Z-replace-
ment axiom for denominators.

(2.67) Remark. Every T-semisaturated category with Z-2-arrows fulfils the Z-replacement axiom for denom-
inators.

(2.68) Definition (relative Z-replacement axiom for Z-2-arrows). A category with Z-2-arrows C is said to fulfil
the relative Z-replacement axiom for Z-2-arrows if the following holds.
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(RpereLZ) Relative Z-replacement aziom for Z-2-arrows. We suppose given Z-2-arrows (f1,41), (fa2,42), (91,J1),
(g2, j2) and S-2-arrows (f3},ah), (g5,b5) in C such that the diagram

—o0—
ng Jgé ng
£ a;
—
%jl 2 bl %jz
fo | s

commutes. Then there exist Z-2-arrows (f},a), (g5,b) and a morphism s in C such that the following
diagram commutes.

v

Oo— g2

g1
»ﬁ
2 -/
fa v as

i

[y

N

Q
=
Q
o~
Q

2

N

> < ‘ o J2
. !
%jl Ob; u b2 1]2
. f2 ‘ in
J1 —_— —O0— | —
/ 2 /iz /

(2.69) Remark. Given a multiplicative category with denominators C, the Z-structure Cz fulfils the relative
Z-replacement axiom for Z-2-arrows.

(2.70) Definition (Z-concatenation axiom). A category with Z-2-arrows C is said to fulfil the Z-concatenation
azxiom if the following holds.

(Cctz) Z-concatenation axziom. For all Z-2-arrows (f1,41), (fe,42) in C with Target (f1,41) = Source (fa,i2) there
exists a weakly universal S-Ore completion (f5,4]) for fo and 41 such that (f1f3},424)) is a Z-2-arrow in C.

fi f3

—_— >

A

_—
Qi

(2.71) Remark. We suppose given a multiplicative category with denominators C. If C fulfils the weakly
universal S-Ore completion axiom, then the Z-structure Cz fulfils the Z-concatenation axiom.

(2.72) Definition (Z-inversion axiom). A category with Z-2-arrows C is said to fulfil the Z-inversion aziom if
the following holds.

(Invgz) Z-inversion aziom. Given a Z-2-arrow (f,¢) in C such that f is a denominator, then (i, f) is a Z-2-arrow
in C.
(2.73) Remark. Given a multiplicative category with denominators C, the Z-structure Cy, fulfils the Z-inversion

axiom.

(2.74) Remark. We suppose given a category with Z-2-arrows C that fulfils the Z-inversion axiom and a
Z-2-arrow (f,i) in C. If f is a denominator in C, then f is an S-denominator in C.

Proof. If f is a denominator in C, then (i, f) is a Z-2-arrow in C by the Z-inversion axiom. So f is an S-denom-
inator in C as every Z-2-arrow is a normal S-2-arrow. O
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(2.75) Definition (Z-numerator axiom). A category with Z-2-arrows C is said to fulfil the Z-numerator aziom
if the following holds.

(Numg) Z-numerator axiom. For every Z-2-arrow (f,7) and every denominator d in C with Source (f,4) = Sourced
there exists an S-2-arrow (f',d’) in C with fd' = df’.

(2.76) Remark. We suppose given a multiplicative category with denominators C. If C fulfils the S-Ore
completion axiom, then the Z-structure Cy fulfils the Z-numerator axiom.

(2.77) Definition (Z-expansion axiom). A category with Z-2-arrows C is said to fulfil the Z-expansion aziom
if the following holds.

(Expz) Z-expansion aziom. Given a Z-2-arrow (f,i) and an S-denominator j in C with Target f = Targeti =
Source j, then (fj,ij) is a Z-2-arrow in C.

f i

%j
fi ij

(2.78) Remark. Given a multiplicative category with denominators C, the Z-structure Cz fulfils the Z-expan-
sion axiom.

(2.79) Remark. We suppose given a category with Z-2-arrows C. If C fulfils the Z-expansion axiom, then the
following conditions are equivalent.

(a) The category with Z-2-arrows C fulfils the Z-comparison axiom.

(b) We suppose given an S-2-arrow (f,a), Z-2-arrows (fl,dl), (fg,dg) and morphisms s;, sz in C such that

(f,a) = (f1s1,a151) = (f282,a282). Then there exist an S-2-arrow (f,a), a normal S-2-arrow (¢, j) and a
morphism s in C such that the following diagram commutes.

N

Y
f2 as

e

Definition of a Z-(pre)fractionable category

N

N

Finally, after collecting all the axioms and some consequences, we are able to define Z-prefractionable categories
and Z-fractionable categories.
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(2.80) Definition (Z-prefractionable category).

(a)

(b)

()

A Z-prefractionable category is an S-semisaturated category with Z-2-arrows that fulfils the weakly uni-
versal S-Ore completion axiom, the relative Z-replacement axiom and the Z-comparison axiom.

We suppose given Z-prefractionable categories C and D. A morphism of Z-prefractionable categories from C
to D is a morphism of categories with Z-2-arrows from C to D.

We suppose given a Grothendieck universe . The full subcategory ZPFrCat = ZPFrCat ) of CatZy,
with
ObZPFrCaty = {C € ObCatZy | C is a Z-prefractionable category}

is called the category of Z-prefractionable categories (more precisely, the category of Z-prefractionable
U-categories). An object in ZPFrCat gy is called a Z-prefractionable i-category, and a morphism in
ZPFrCaty, is called a U-morphism of Z-prefractionable categories.

The full subcategory CatDzpr: = CatDyzpp, 51y of CatD gy with

Ob CatDypp,, () = {C € Ob CatDy | there exist S C DenC and Z < AGgC such that C becomes
a Z-prefractionable category with SDenC = S and AGyC = Z},

is called the category of categories with denominators admitting the structure of a Z-prefractionable cate-
gory (more precisely, the category of i-categories with denominators admitting the structure of a Z-pre-
fractionable category).

(2.81) Definition (Z-fractionable category).

(a)

(b)

A Z-fractionable category is a Z-prefractionable category C that fulfils the Z-replacement axiom for de-
nominators, the relative Z-replacement axiom for Z-2-arrows, the Z-concatenation axiom, the Z-inversion
axiom, the Z-numerator axiom and the Z-expansion axiom.

We suppose given Z-fractionable categories C and D. A morphism of Z-fractionable categories from C to D
is a morphism of Z-prefractionable categories from C to D.

We suppose given a Grothendieck universe 4. The full subcategory ZFrCat = ZFrCat y) of ZPFrCat g,
with
Ob ZFrCatyy = {C € ObZPFrCaty | C is a Z-fractionable category}

is called the category of Z-fractionable categories (more precisely, the category of Z-fractionable U-cate-
gories). An object in ZFrCaty is called a Z-fractionable U-category, and a morphism in ZFrCat is
called a {-morphism of Z-fractionable categories.

The full subcategory CatDzp = CatDyp, (g) of CatD ) with

Ob CatDyzp,, ) = {C € Ob CatD | there exist S C DenC and Z < AGgC such that C becomes
a Z-fractionable category with SDenC = S and AGzC = Z},

is called the category of categories with demominators admitting the structure of a Z-fractionable category
(more precisely, the category of U-categories with denominators admitting the structure of a Z-fractionable
category).

The connection between S-fractionable categories and Z-fractionable categories is as follows.

(2.82) Remark. Given an S-semisaturated category with denominators C, the following conditions are equiv-

alent:

(a)
(b)

The category with denominators C fulfils the weakly universal S-Ore completion axiom. (%)

The Z-structure Cyz is a Z-prefractionable category.

630 in particular, C is an S-fractionable category by proposition (2.28).
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(¢) The Z-structure Cz is a Z-fractionable category.

Proof. If condition (c) holds, then in particular condition (b) holds, and if condition (b) holds, then in particular
condition (a) holds. So to show that the three conditions are equivalent, it remains to show that condition (a)
implies condition (c¢). Indeed, Cz always fulfils the Z-comparison axiom, the Z-replacement axiom for denomina-
tors, the relative Z-replacement axiom for Z-2-arrows, the Z-inversion axiom. Moreover, the S-semisaturatedness
implies implies the relative Z-replacement axiom and the weakly universal S-Ore completion axiom implies the
Z-concatenation axiom and the Z-numerator axiom. Altogether, Cz is a Z-fractionable category. O

6 The S-Ore localisation of a Z-prefractionable category

In this section, we develop the two main results of this chapter. First, we show that the quotient graph
(AGg C)/=s of a Z-prefractionable category C carries the structure of a localisation of C, as it is well-known in
the particular case of the S-Ore localisation of an S-fractionable category, see definition (2.30) and remark (2.82).
Here, the author has been guided by the interpretation of an S-2-arrow (f,a) in C as a 3-arrow (1, f,a) in the
sense of definition (2.110)(a) (7), see also [36, def. 4.2], and then to apply similar methods as in [36, sec. 5].
Second, we show that the so defined localisation admits an S-2-arrow calculus type criterion for equality of
S-fractions, but restricted to Z-2-arrows, see theorem (2.93). As a corollary, we also get a criterion for the
equality of arbitrary S-2-arrows, see corollary (2.94)(b).

The completion lemma and the comparison lemma

We begin with two technical lemmata, which will be used several times in the construction of the category
structure on (AGgC)/=s, see theorem (2.85).

For the definition of a category with Z-2-arrows, see definition (2.38)(a); and for the S-Ore completion axiom,
see definition (2.23)(a).

(2.83) Lemma (completion lemma). We suppose given a category with Z-2-arrows C that fulfils the S-Ore
completion axiom. Given morphisms f, g and a denominator d in C with Target f = Target d and Sourceg =
Sourced, there exist morphisms f’, ¢/, a morphism s and S-denominators 7, i in C with d = is, f's = f,

ig = gi'.
I g

r, r.
/ 5. "o_i o4
f v d g

Proof. This follows from the Z-replacement axiom and the S-Ore completion axiom. [
For the definition of a Z-prefractionable category, see definition (2.80)(a).

(2.84) Lemma (comparison lemma). We suppose given a Z-prefractionable category C. Given a commutative
diagram

11 91

/ by /z/ \\\11 \\\ a}
1 dy g1 e1

C

£

[y

>
=

o~
&)

in C with denominators dy, ds, €1, e, a1, a}, aa, ay, by, b2, we have

(fig1,€101) =s (f295, e205).

"In fact, this interpretation is the author’s reason for the terminology “S-2-arrow” — such an S-2-arrow may be seen as a 3-arrow
where the “T-part” is trivial.
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Moreover, if e1, es, af, aj are S-denominators, then

(f{gllv 610’,1) =S (fégév 620’/2)'

Proof. The diagram

in C commutes, and thus the Z-replacement axiom and the Z-replacement lemma (2.64) imply that there exist
Z-2-arrows (f1,a1), (f2,d2), (f},a2), an S-2-arrow (h, be) and morphisms s}, sa, s} such that

f{ ay
/ | . /
71 a1
> < o n
- bih y
f2 da
— e | ——
fa L da

VA

commutes. This yields the following commutative diagram in C.

11 9
by /// \\\ ay \\\ a)
/ 1 d1\ g1 el
51
fi
s
/
/ s1b1 &
f1 Ve dy g1 el
) h h
f2
— n c
f2 da 92 es
|
2 by
i |
_—
/
5252 [12
f2 v dy g2 ez
13 92
/ bo /// \\\ a2 \\\ ah
2 da g2 es
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By the weakly universal S-Ore completion axiom, there exist a weakly universal S-Ore completion (g1, a}) for g1
and a;, a weakly universal S-Ore completion (gz,d’z) for g, and dy, and a weakly universal S-Ore comple-
tion (g4, a5) for go and as. Moreover, the morphism c¢ is a denominator in C by S-semisaturatedness. So the
weakly universal S-Ore completions induce morphisms, yielding a commutative diagram as follows.

fi 91
by /// \\\ ai \\\ a)
/ f1 dl\ g1 e
’
S1
f a1
/
)by é a
fi 7 dy g1 el
o |h h
f2 g2
. cu
AL 1 Tl L e
f2 da g2 e
|
by
i | 3
/
5282 az aIQ
f2 / da g2 es
fz; ) M
/ bo /// \\\ asz \\\ al,
2 do g2 eo

In particular, we have

(f{g/laela/ll) =s (f{gllaela/l) =s (f2g2762d/2) =s (fégé762a/2) =s (f2/912762a12)~

Moreover, if e1, eq, a}, ay are S-denominators in C, then

(flg1, e10}) =sn (f191,€1d}) Zsn (f202, €2dh) =s.u (fo35, €adh) =sm (fogh, eaah)

as the occurring S-2-arrows are normal. O

Construction of the S-Ore localisation

With the two previous lemmata at hand, we may construct a localisation structure on the quotient graph of
the S-2-arrow graph modulo S-fraction equality, see definition (2.10)(a) and definition (2.14)(a).

(2.85) Theorem. We suppose given a Z-prefractionable category C.

(a) There is a category structure on (AGg C)/=s, where the composition and the identities are given as follows.

Given (f1,a1), (f2,a2) € Arr AGg C with Target (f1,a1) = Source (f2, az), we choose morphisms f], f4 and
denominators a, a’, b with a; = ab, f{b= f1, af} = fad'.

fi f3
/ f1 b e f2 N
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Then, for any such choice,
(fi/a1)(f2/a2) = fifs/azd’.

The identity of X € Ob (AGgC)/=s is given by
1x =1x/1x.

The quotient graph (AGg C)/=s together with the category structure from (a) becomes a localisation of C,
where the localisation functor loc: C — (AGsC)/=s is given on the objects by

loc(X) =X
for X € ObC and on the morphisms by

loc(f) = f/1
for f € MorC.

For every denominator d in C, the inverse of loc(d) is given by
loc(d)™* =1/d.

Given a category D and a functor F': C — D such that Fd is invertible for every denominator d in C, the
unique functor F': (AGgC)/=s — D with F = F oloc is given on the objects by

FX =FX

for X € Ob(AGgsC)/=s and on the morphisms by
F(f/a) = (Ff)(Fa)~

for (f,a) € Arr AGgC.

Proof.

(a) The completion lemma (2.83) and the S-semisaturatedness of C show that the construction of the com-

posites described above is feasible in C.

It is our first aim to show that this construction is independent of all choices. To this end, we suppose
given (fi,a;), (fi,a;) € Arr AGgC and ¢; € MorC with (fi,a;) = (fiei, aicp) for 1 € {1,2}, and such that
Target (f1,a1) = Source (f2, az).

f1 ai f2 a2
_— N— > N
JCl JCQ
fl 6.1 f2 &2
E— ~— R

n f3

/ h J /a 1\\\ N f2 \\\\“/
/ ™

Cc1 ~ Cc2

A 3

/ i }”/al\\d 7 A
/ ™

5
N

2
=

/

=
S

/]
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Then the comparison lemma (2.84) yields (f7 f3,az2a’) =5 (fif},a2a’) in AGg C and therefore f] f}/asa’ =
fifs/a2a’ in (AGsC)/=s.

In the special case where ¢; = 1 and ¢ = 1, we see that different choices made in the construction lead
to the same S-fraction f{f/asa’ = f{f4/a2d’. Hence we obtain a well-defined map

c: ArrAGsC Target < Source Arr AGg C — Arr (AGS C)/557 ((flv a1)7 (an a2)) = f{fé/aga’,

where f{, f4, a’ are chosen as described above. Moreover, the general case shows that ¢ is independent
of the choice of the representatives in the equivalence classes with respect to =g, whence we obtain an
induced map

¢: Arr (AGs C)/=s Target Xsource AT (AGs C)/=s — Arr (AGs C)/=s
given by
e(fi/ar, f2/as) = c((f1,a1), (fa, a2)) = fifs/azad’
for (f1,a1),(f2,a2) € Arr AGg C with Target (f1,a1) = Source (fa, az).
In addition to ¢, we define the map
e: Ob(AGg(C)/=s — Arr (AGs(C)/=s, X — 1x/1x.
To show that (AGgC)/=s is a category with composition ¢ and identity map e, it remains to verify the

category axioms. We suppose given (f1,a1), (f2,a2) € Arr AGs C with Target f1 /a1 = Source f2/as, and
we choose morphisms f], f} and denominators a, a’, b with a; = ab, f{b = f1, af} = foa’. Then we obtain

Source &(f1 /a1, f2/as) = Source f f/asa’ = Source(f] f3) = Source f; = Source f; = Source f /a1,
Target &(f1/a1, f2/az) = Target fi f5/aza’ = Source(aza’) = Source az = Target f2/as.

Moreover, for X € Ob (AGgC)/=g, we get
Source e(X) = Source 1x/1x = Sourcelx = X,

Target e(X) = Target 1x/1x = Sourcelx = X.

For the associativity of ¢, we suppose given (f1,a1), (f2, a2), (f3,a3) € Arr AGg C such that Target f1/a; =
Source f/ay and Target fo/as = Source f3/a3. We choose morphisms f{, f; and denominators a, a’, b
with a; = ab, fib = f1, afy; = fea’, and we choose morphisms f;, f; and denominators a, @', b with

ag = ab, f3b = fo, afs = fad'.
fl f2 A 4
/ b/// \\\a / \\\a’ 5/// \\\& \\\ &
f1 7 f2 7 AN f3 AN
/ \\\al / \\\ag / \

By definition of ¢, we obtain

&(fi/ax, f2/a2) = fifa/azd,
e(f2/az, fs/as) = fsf3/asd’.

2
S
w

Now ba’ is a denominator in C by multiplicativity. By the completion lemma (2.83) and S-semisaturated-
ness, there exist morphisms g, f4, and denominators a”, a’’, v/ with ba’ = a"¥', gb’ = fi f5, a" f§ = f4a'".

g f3

/ b ¢/ \\\ 4 \\\ 1"
£l £ X 74 N
/ / /
f1

/

Y
)
P

S]

SN

N\
AN
/
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Then we have asa’ = aba’ = aa”t’ and aa” f} = afja’’ = fsa’a”’, whence

c(e(fi/aq, fa/a2), f3/as) = e(f1fo/azd’, fs/as) = gf3/aza’a".

Moreover, the completion lemma (2.83) and S-semisaturatedness yield morphisms f’{, g and denominators
dl/, &///’ b/ Wlth a = a{//b/7 f{b/ — {7 a//g — fé é&///.

fi

/ b’ /z/ \x\ a’ . 5 \x\ a'
fl v f3 f AN
/ b/z/ \\\a / BHz/ \x\a \x\ a’
f1 7 AN f2 7 AN f3
/ L N
AN
Then we have a; = ab = a”b'b and f{b'b= f|b = f,, whence

e(fi/ar,e(fo)as, f3/as)) = e(fi/ar, f3f3/asd’) = f1g/asa’a”.

But as af} = foa’ = fjba’, the diagram

@

AN
AN
/

g

7
S e N
4 a N\ Bfy N\ asd’

13 £

/ , / \” \ a///
v a X
f{fé / ba’ f:; \ asa’

in C commutes. Thus we have (f/g,asd'a"”) =s (gf},asd’a”) by the comparison lemma (2.84) and

therefore

e(e(f1/ar, f2/az), f3/as) = gf/asd’a” = f1g/aza’a” = (f1/ar,e(f2/az, f3/a3))

in (AGgC)/=s. Hence ¢ is associative.

Finally, we have

e(f/a,e(Target f/a)) = &(f/a,1/1) = f1/la = f/a,
cle(Source f/a), f/a) = &(1/1, f/a) = 1f/al = f/a.

for (f,a) € Arr AGgC.

f f
ai . e / 7\ F N\
/ AN AN / N/ Taa

Altogether, (AGs C)/=s becomes a category with (f1/a1)(f2/az2) = ¢(f1/a1, f2/a2) for (f1,a1), (f2,a2) €
Arr AGg C with Target f1/a; = Source fa/as and 1x = e(X) for X € Ob (AGgC)/=s.

(b) We define a graph morphism L: C — (AGgC)/=g on the objects by LX := X for X € ObC and on the
arrows by Lf := f/1 for f € MorC. Then we get

L(fg) = fg/1 = (f/1)(g/1) = (Lf)(Lg)
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for f,g € Mor C with Target f = Source g and
L].X = 1)(/1)( = ]-LX

for X € Ob(, that is, L is a functor.

For every denominator d in C, we have

(Ld)(1/d) = (d/1)(1/d) = d/d = 1/1 =1,
(1/d)(Ld) = (/d)(d/1) = 1/1 =1,
that is, Ld is invertible in (AGgC)/=g with (Ld)~! =1/d.

CHAPTER Il

/4 7\ \ /

/ N/ d /
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/4 N

~d /S

AN

To show that (AGgC)/=s becomes a localisation of C with localisation functor L, we suppose given a
category D and a functor F': C — D such that Fd is invertible in D for every denominator d in C. Since

Source((F f)(Fa)~') = Source F f = F(Source f) = F(Source (f,a)),
Target((F f)(Fa)~!') = Target (Fa) ™ = Source Fa = F(Sourcea) = F(Target (f,a))

for (f,a) € Arr AGgC, there is a graph morphism F’: AGgC — D given on the objects by F'X = FX
for X € ObAGgC and on the arrows by F'(f,a) = (Ff)(Fa)~! for (f,a) € Arr AGsC. Moreover, for

(f,a) € Arr AGs C and ¢ € Mor C with ac € DenC, we obtain

F'(fe,ac) = F(fe)F(ac)™" = (Ff)(Fe)F(ac)™" = (Ff)(Fa)~' (Fa)(Fe)F(ac) ™" = (Ff)(Fa)™"

=F'(f,a).

Hence F’ maps S-fraction equal S-2-arrows to the same morphism and so we obtain an induced graph

morphism F: (AGgC)/=s — D with F' = F o quo, given by

FX=FX=FX
for X € Ob (AGsC)/=s and by
E(f/a) = F'(f,a) = (Ff)(Fa)™"
for (f,a) € Arr AGs C.

jnd

AGgC ¢

qqu ﬁ‘

(AGs(C)/=s

D

For (f1,a1),(f2,a2) € Arr AGg C with Target (f1,a1) = Source (f2, az), we have

F((f1/a1)(f2/az2)) = F(fi fs/azd’) = F(f{ ) F(aza’) ™" = (Ff{)(F f})(Fa') " (Faz)~*
= (Ff1)(Fb) " (Fa) " (F f2)(Faz) ™" = (F f1)(Fa1) " (F f2)(Faz) ™"

- ﬁ‘(fl/al) F(fz/@)a
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where f1, f5, a, d/, b are supposed to be chosen as in (a).

i f3
/ f 1 bk¢/ K\\\a‘
_
/ afs, /

Moreover, we have
F(lx) = F(1x/1x) = (Flx)(Flx) ' = lpxlpk = lpx = 15y
for X € Ob(AGsC)/=s. So F': (AGgC)/=s — D is a functor. As
FLf=F(f/1) = (F/)(F1)"' = (Ff)17' = Ff

for f € MorC, we have FoL =F.
Conversely, given an arbitrary functor G: (AGgC)/=s — D with F = G o L, we conclude that

G(f/a) = G((f/1)(1/a)) = G((Lf)(La)™") = (GLf)(GLa)™" = (Ff)(Fa)~"
for (f,a) € Arr AGgC.

f
i 7\ N\
/ N/ e
Altogether, (AGg C)/=s becomes a localisation of C with localisation functor locA9s€)/=s — [, O

(2.86) Definition (S-Ore localisation). We suppose given a Z-prefractionable category C. The S-Ore local-
isation of C is defined to be the localisation Oreg(C) of C, whose underlying category is the quotient graph
(AGs C)/=s together with composition and identities as in theorem (2.85)(a), and whose localisation functor is
given as in theorem (2.85)(b).

(2.87) Remark. Given Z-prefractionable categories C and C’ such that their underlying categories with de-
nominators coincide, we have Oreg(C) = Oreg(C’).

Proof. The definition of the category structure of Oreg(C) is independent of SDenC and AGzC, see theo-
rem (2.85)(a). Analogously for C’, and so we have Oreg(C) = Oreg(C’). O

(2.88) Definition (S-Ore localisation). We suppose given a category with denominators C that admits the
structure of a Z-prefractionable category. The S-Ore localisation of C is defined to be the S-Ore localisation
of C equipped with an arbitrary choice of a structure of a Z-prefractionable category on C.

Next, we turn the S-Ore localisation into a functor.

(2.89) Remark. We suppose given a Grothendieck universe {l such that ®g is in 4 and a category with
denominators C that admits the structure of a Z-prefractionable category. If C is a {-category with denominators,
then Oreg(C) is a L-category.

(2.90) Corollary. We suppose given a Grothendieck universe { such that ®g is in 4. Then we have a functor
Ores: CatDZpFr,(u) — Cat(u)7

given on the morphisms as follows. For every morphism F': C — C’ in CatDypp, (g, the morphism Oreg(F):
Ores(C) — Oreg(C’) in Cat g is the unique morphism in Cat ) with 10c%"s(€) o F = Oreg (F) o loc®res(©),

Proof. This follows from remark (2.89) and corollary (1.14)(d). O

The following remark allows us to rewrite the concrete realisation of the morphisms in the S-Ore localisation in
terms of the localisation functor.
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(2.91) Remark (splitting S-fractions). We suppose given a Z-prefractionable category C. For every S-2-ar-
row (f,a) in C, we have

f/a =1loc(f)loc(a)™*
in Oreg(C).

Proof. As Oreg(C) is a localisation of C, it follows that loc(d) is invertible for every denominator d in C.
By theorem (2.85)(b), the unique functor L: Oreg(C) — Oreg(C) with loc = L o loc is given by L(f/a) =
loc(f)loc(a)~! for (f,a) € Arr AGgC. But since loc = idores(c) © loc, we necessarily have L= idores(cy and
therefore f/a = loc(f)loc(a)~? for (f,a) € Arr AGsC.

For the definition of the S-2-arrow representative condition, see definition (2.31)(a).
(2.92) Corollary. Given a Z-prefractionable category C, the S-Ore localisation Oreg(C) fulfils the S-2-arrow

representative condition.

The Z-2-arrow calculus

Next, we will deduce an S-2-arrow calculus type criterion for the morphisms in the S-Ore localisation Oreg(C),
cf. theorem (2.35), but restricted to Z-2-arrows.
For the definition of a Z-(pre)fractionable category and of the various axioms needed, see section 5.

(2.93) Theorem (Z-2-arrow calculus). We suppose given a Z-prefractionable category C.

(a) We have

Mor Ores(C) = {loc(f)loc(i)™' | (f,i) is a Z-2-arrow in C}.
(b) Given Z-2-arrows (f,i), (f',7') in C, we have

loc(f)loc(i) ™t = loc(f)loc(i')

in Oreg(C) if and only if there exist a Z-2-arrow (f’,7'), a denominator ¢ and an S-denominator j in C
such that the following diagram commutes.

f i
N

-

oy

<
~
i
!
f i’

(¢) Given Z-2-arrows (f1,41), (f2,42), a normal S-2-arrow (g1, 1) and an S-2-arrow (gs,bs) in C, we have

loc(f1)loc(i1) ! loc(go) loc(bz)*1 = loc(g1) loc(jl)*1 loc(f2) 10C(i2)71

in Oreg(C) if and only if there exist a Z-2-arrow (fs,is) and an S-2-arrow (ja,bs) in C such that the
following diagram commutes.

f1 i1

J!Jl~ g2 J92
fa i 2

If, in addition, (g2,b2) is a normal S-2-arrow, then (gs, 132) may be chosen to be a normal S-2-arrow.
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(d) We suppose that C fulfils the relative Z-replacement axiom for Z-2-arrows. Given Z-2-arrows (f1,11),
(f2,42), (91,41), (g2, J2) in C, we have

loc(f1)loc(i1) ™' loc(g2) loc(j2) =" = loc(g1) loc(j1) ™" loc(f2) loc (iz) ™

in Oreg(C) if and only if there exist Z-2-arrows ( fz,gg), (§2,72) in C such that the following diagram
commutes.

f1 i1

J1 Oja %jz
f2 in

(e) We suppose that C fulfils the Z-numerator axiom. Given Z-2-arrows (f1,41), (f2,42) and S-2-arrows (g1, b1),
(g2,b2) in C, we have

loc(f1)loc(i1) ™! loc(ga) loc(by) ™! = loc(g1) loc(by) " loc(f2) loc(ig) !

in Oreg(C) if and only if there exist a Z-2-arrow (f,72) and an S-2-arrow (jo,b2) in C such that the
following diagram commutes.

ng~ g2 J92
2 o 2

(f) Given a category D and a functor F': C — D such that F'd is invertible in D for every denominator d in C,
the unique functor F': Ores(C) — D with F' = F oloc is given on the objects by

FX =FX
for X € ObC and on the morphisms by
F(loc(f)loc(i)™") = (Ff)(Fi)~!
for every Z-2-arrow (f,) in C.
Proof.
(a) This follows from corollary (2.92) and corollary (2.48).
(b) By remark (2.91)
it (£,1) =s (/',7)
(c¢) By remark (2.91), we have
loc(f1)loc(i1) " loc(gz) loc(by) ™' = loc(gr) loc(j1) ™! loc(f2) loc(iz)

if and only if (f1/i1)(g2/b2) = (g91/51)(f2/2).
If we have a commutative diagram as stated, then we have

(f1/i1)(g2/b2) = f12/b2iz = g1 fo/izba = (91/71)(f2/i2).

, we have loc(f)loc(i)~! =loc(f’)loc(i’)~! if and only if f/i = f’/i, that is, if and only
. So the assertion follows from theorem (2.60)(c) and S-semisaturatedness.

Conversely, we suppose that (f1/i1)(g2/b2) = (91/J1)(f2/i2). We choose a Z-2-arrow (gg,l}g_) and a mor-
phism ¢5 in C with (g2, b2) = (gata, bata), so that (g2, b2) =s (g2, b2) and therefore go /by = g2 /ba. Moreover,
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we choose an S-Ore completion (g5,4}) for g2 and i; and an S-Ore completion (f5,71) for fo and ji, so
that

Frgh/baity = (f1/i1)(g2/b2) = (f1/i1)(g2/b2) = (91/51)(f2/i2) = g1f3 /i1
by theorem (2.85)(a).

f1 g5 g1 f3
! /i g2 a /g f2
/ il%\ / %\bz / 47‘1&0\ / %\iz

By theorem (2.60)(b), there exist a Z-2-arrow (hy, k1), normal S-2-arrows (hg, k2), (¢,1) and a denomina-
tor s1 in C such that the following diagram commutes.

f195 bai}
R S1
hq k1
> -0
C
ha & k2
> <0
ol

9113 i2j]

By the Z-replacement lemma (2.64), there exist a Z-2-arrow (hs, k3), a normal S-2-arrow (g4, b,) and a
morphism s3 in C such that the following diagram commutes.

i1

f1
/ f1 / i1 /
o— g2
G a5 g
hay T
— —Oo— | ——
/ 93 /
hy L. ks .
> < ‘o bo
hy ‘ k1
—_— —O— | —
/hl /kl /

Since C is S-semisaturated, an application of the flipping lemma for S-2-arrows (2.25) to the commutative
diagram

J ’
ha ko
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yields an S-2-arrow (ha,a) and a normal S-2-arrow (e, b§) such that the diagram

hs ks
«—O0—
’
he < a
> K m

commutes. Now we have

fr95e = hge = hy = hobly = g1 f51053,
i1ghe = gokse = goa,
fogilbly = gy folbh,

Zgjilbg = kzbg = i)ga.
Moreover, 5,10} is an S-denominator by multiplicativity.

f1 i1

ngl » Jgé’e ng
f2lbs a
—_—— R

J1 GIIbY  Oby

f2 12

By the Z-replacement lemma (2.64), there exist a Z-2-arrow (fy,4) and a normal S-2-arrow (g4’, by') such
that the following diagram commutes.

vz

g1 117 gé’e
f/”')// 92
272 a
—_—

g1
/ A
2 > < c2> bo
%jl 06/2// %]ilbg :Lbz
f2 i2
J1 —_— —O0—
/ 2 /i2

An application of the flipping lemma for S-2-arrows (2.25) to the commutative diagram

<.
[y

g2

NN

N
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yields an S-2-arrow (g5, b5) and a normal S-2-arrow (t5,45’) such that the diagram

% by wbh l b
is |

commutes. So we have
J195 = f1g5 'ty = g1 f3'ts,
fably = foby'th = 1 fth.

Finally, the assertion follows by another application of the Z-replacement lemma (2.64).

f1

/ f1 / it
g2

I

91 %

/ 2 iz
WL j1 2By 0 by l

) f2 ‘ ia

J1 —_— «—O—

/ 2 /1'2

(d) This follows from (c) and the relative Z-replacement axiom for Z-2-arrows.

v

7

=

N

o
=
il
Q
o~
Q

2

N

2

2

N

i

=

N

2

Q
N
Q

N

> < ‘ O J2
%]1 0j> v :sz
) f2 ‘ ia
J1i —_— —O—
/ 2 /z'z /

(e) We suppose that loc(f1)loc(i1) ™" loc(gz) loc(bz) ™! = loc(g1)loc(by) ™! loc(f2) loc(iz) ™" in Oreg(C). More-
over, we choose a Z-2-arrow (¢1,b1) and a denominator ¢; in C with (g1,b1) = (g1t1,b1t1). By (c), there
exist a Z-2-arrow (f},45) and an S-2-arrow (gh, b5) in C such that the following diagram commutes.

f1 iy
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By the Z-numerator axiom, there exists an S-2-arrow (f4,t}) in C with fit} = ¢ f}.

£

>

~

t1 0 2ty
|5 i

So we get
fighty = g1 fsty = i fs = o1 fy,
i1gaty = gaisty,
fabipty = b fath = bita f3 = bu f3,
igbht) = boint].
The assertion follows by an application of the Z-replacement lemma (2.64).

i1

f1
/ f1 / i1 /
Oo— g2
g1 o g/Zt'1 g2
£ isty
g1 *: — | —
/ fa i ia /
> < ¢} ba
B ‘ 1oyl T
2 by 2 52 Q b2t1 2 by
‘ fo ‘ 2
2 by —_— —Oo— | —
/ 2 /1'2 /
(f) This follows from theorem (2.85)(b) and remark (2.91). O

(2.94) Corollary. We suppose given a Z-prefractionable category C.
(a) We have
Mor Oreg(C) = {loc(f)loc(a)™t | (f,a) is an S-2-arrow in C}.

(b) We suppose given S-2-arrows (f,a), (f’,a’) in C. The following conditions are equivalent.
(i) We have
loc(f)loc(a)™* = loc(f')loc(a’)™*
in Oreg(C).

(ii) For every Z-2-arrow (f,a) and every morphism s in C with (f,a) = (fs,as) there exist an S-2-ar-

row (f’,a’), a denominator ¢ and an S-denominator j in C such that the following diagram commutes.
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(iii) There exist a Z-2-arrow ( 1, a), an S-2-arrow ( fa ), denominators ¢, s and an S-denominator j in C
such that the following diagram commutes.

M
Oa-

s
<
Qs

—_— R

(c) We suppose given S-2-arrows (f1,a1), (f2,a2), (g1,b1) and a normal S-2-arrow (g, j2) in C. The following
conditions are equivalent.

(i) We have
loc(f1)loc(a1) loc(ga) loc(ja) ™t = loc(g1) loc(by) ™ loc(fa) loc(ag) ™t

in Oreg(C).

(ii) For every Z-2-arrow (fi,a1), every normal S-2-arrow (g1,b1) and all morphisms s1, ?; in C with
(f1,a1) = (f151,a181), (g1,b1) = (g1t1,b1t1) there exist an S-2-arrow (fa2,d2) and a normal S-2-ar-
row (go, j2) in C such that the following diagram commutes.

— AR
2 b1 % by 0Ja %]é
‘ fa az

(iii) There exist Z-2-arrows (fl,al), (gl,bl), an S-2-arrow (fg,dg), a normal S-2-arrow (go,j2) and de-
nominators s1, t; in C such that the following diagram commutes.

f1 a1
—_—— R

~

a1
o

f1
> <

2 by 0by 0 ja %Ji
‘ fa as

_—

(d) Given a category D and a functor F': C — D such that Fd is invertible in D for every denominator d in C,
the unique functor F': Ores(C) — D with F' = F oloc is given on the objects by

FX =FX
for X € ObC and on the morphisms by
F(loc(f) loc(a) ™) = (Ff)(Fa)~

for every S-2-arrow (f,a) in C.
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Proof.
(a) This follows from theorem (2.93)(a).
(b) This follows from remark (2.91), theorem (2.60)(a) and S-semisaturatedness.
(c) First, we suppose that condition (i) holds, that is, we suppose that
loc(f1)loc(ay) ™ loc(ga) loc(ja) ™t = loc(g1) loc(by) ™ loc(fa) loc(ag) ™"
in Oreg(C), and we suppose given a Z-2-arrow (f1 ,G1), a normal S-2-arrow (g1, b1) and morphisms s1, ¢
in C with (f1,a1) = (f151,a151), (g1,b1) = (g1t1,b1t1). Moreover, we choose a Z-2-arrow (f2,dz) and a

morphism sg in C with (f2,as) = (fas2, d2s2). By remark (2.17), we have

loc(f1)loc(ar) ™ loc(gs) loc(ja) ™ = loc(f1) loc(ar) ™ loc(gz) loc(j2)
= loc(g1) loc(b1) ' loc(f2) loc(az) ™
= loc(gy) loc(by) " loc(f2) loc(ag) ™t

As (g2, j2) is a normal S-2-arrow, by theorem (2.93)(c) there exist a Z-2-arrow (f2,d@s) and a normal
S-2-arrow (go, j2) in C such that the following diagram commutes.

J!h g2 g2
f2 & a2

by Oje J2

Applying the flipping lemma for S-2-arrows (2.25) to the rectangle

f2 az

%51 . %Jé %jz
f2 a2
JSQ
f2 as
_0 v

and composing yields the asserted diagram of condition (ii).

Condition (ii) and the Z-replacement axiom imply condition (iii).
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Finally, if condition (iii) holds, then we have

loc(f1)loc(ar) ™ loc(gz) loc(ja) ™t = loc(f1) loc(ar) ™t loc(ge) loc(j) ™

oc(f1)loc !

(f1)loc(ar) )"
(f1)loc(g2) loc(az) ™" loc(jz)
loc(gl)loc( f2)1oc(j2) " loc(ag)
(91) loc(br) ™! loc(f2) loc(az) ™
(91) loc(b1) ™" loc(f2) loc(az) ™

[y

oc oc b1

g1

g1 !

= loc oc(by oc(as

that is, condition (i) holds.
Altogether, the three conditions (i), (ii) and (iii) are equivalent.
(d) This follows from theorem (2.85)(b) and remark (2.91). O
(2.95) Corollary. We suppose given a semisaturated Z-prefractionable category C.
(a) We suppose given S-2-arrows (f1,a1), (f2,a2), (f,a) in C such that
loc(f)loc(a)™* = loc(f1)loc(ar) " loc(fs)loc(az) ™
in Oreg(C). If two out of the morphisms fi, fo, f are denominators in C, then so is the third.
(b) We suppose given S-2-arrows (f,a), (f',a’) in C such that
(loc(f)loc(a)™) ™t =loc(f")loc(a’) !
in Oreg(C). Then f is a denominator in C if and only if f’ is a denominator in C.
Proof.

(a) By corollary (2.94)(c), there exist S-2-arrows (f1,a1), (fa,@2), (f,a), (é,b) and denominators s, s; in C
such that the following diagram commutes.

f
—_— R
~
Qs
f a
—_— > KR
Jfl fi é
s1 v foo oo ao
R > KR
T ~
Qa1 Qay Xp
‘ f2 az

_—

The semisaturatedness of C implies that f; resp. fo resp. f is a denominator if and only if fl resp. fg
resp. f is a denominator. So, if two out of the morphisms fi, f2, f are denominators, then two out of the
morphisms f1, fo, f are denominators. But as fi f» = fé and € is a denominator by semisaturatedness, if
two out of the morphisms f1, fa, f are denominators, then so is the third.

(b) This follows from (a) and
loc(f)loc(a)  loc(f")loc(a’) ™! =loc(1)loc(1) 1. O

(2.96) Remark. We suppose given a Z-prefractionable category C. For all morphisms ¢; and @2 in Oreg(C)
with Target ;1 = Target @5 there exist normal S-2-arrows (f1,7) and (f2,4) in C with

g1 = loc(f1)loc(i) ™",
@2 = loc(fa)loc(i) 1.

Proof. By corollary (2.94)(a), there exist S-2-arrows (fi,a1), (f2,a2) in C with ¢; = loc(f1)loc(a;)~" and
g = loc( f2)loc(az)~t. Moreover, by corollary (2.49), there exist normal S-2-arrows (f1,4), (f2,4) in C with
(fi,a1) =s (f1,1) and (fa, as) = (fg, i). Thus remark (2.17) implies that

@1 = loc(f1)loc(ar) ™t = loc(f1)loc(i) ™1,
@ = loc(fy)loc(az) ™ = loc(fa) loc (i)™t O
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A saturatedness criterion

Our next aim is to give a sufficient (and necessary) criterion for saturatedness.

(2.97) Proposition. We suppose given a Z-prefractionable category C and a morphism f in C.

(a)

We suppose that C fulfils the Z-replacement axiom for denominators. The following two conditions are
equivalent.

(1) The morphism loc(f) is a coretraction in Oreg(C).

(ii) There exists a morphism A in C such that fh is a denominator in C.

If C is T-semisaturated or fulfils the Z-expansion axiom, then these conditions are also equivalent to the
following condition.

(i) There exists a Z-2-arrow (h, k) in C such that fh is a denominator in C.
The following conditions are equivalent.

(i) The morphism loc(f) is a retraction in Oreg(C).

(ii) There exist a morphism f and a Z-2-arrow (9,7) in C with fgf = jf and such that gf is an
S-denominator in C.

(iii) There exist morphisms f, g and denominators a, b in C with fb = af and such that gf is a denomi-
nator in C.

The following three conditions are equivalent.

(i) The morphism loc(f) is an isomorphism in Oreg(C).

(ii) There exist morphisms f, g and Z-2-arrows (g,7), (¢',5') in C with fgf = jf, 9¢'G = j'§, and such
that gf and ¢’ are S-denominators in C.
iii) There exist morphisms f §, ¢ and denominators a, b, a’, b’ in C with fb = af, gt/ = a'g, and
~ p ) g7 g, g 9 7 3 7 g g7
such that ¢gf and ¢’g are denominators in C.

If C fulfils the Z-replacement axiom for denominators, then these conditions are also equivalent to each of
the following three conditions.
(iv) There exist morphisms h and A’ in C such that fh and hh' are denominators in C.

(v) There exist morphisms f, h and a Z-2-arrow (g,7) in C with fgf = jf and such that gf is an
S-denominator and fh is a denominator in C.

(vi) There exist morphisms f, g, h and denominators a, b in C with fb = af and such that gf and fh

are denominators in C.

If C is T-semisaturated or fulfils the Z-replacement axiom for denominators and the Z-expansion axiom,
then these conditions are also equivalent to each of the following two conditions.

(vii) There exist Z-2-arrows (h, k) and (h/,k’) in C such that fh and hh' are denominators in C.

(viii) There exist a morphism f and Z-2-arrows (g, j), (h,k) in C with fgf = jf and such that gf is an
S-denominator and fh is a denominator in C.

Proof.

(a) Condition (ii) implies condition (i) by remark (1.21)(a). Moreover, condition (iii) always implies condi-

tion (ii). To show the asserted equivalence, we show that condition (i) implies condition (ii), as well as
condition (iii) under one of the additional assumptions.

So we suppose that condition (i) holds, that is, we suppose that loc(f) is a coretraction in Oreg(C). By
theorem (2.93)(a), there exist a Z-2-arrow (g,i) in C such that loc(f)loc(g)loc(i)™! = 1. We obtain
loc(i) = loc(f)loc(g) = loc(fg). By the Z-replacement axiom for denominators, there exist a Z-2-arrow
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(j,e) with denominator j and a morphism s in C with (i,1) =
normal S-2-arrow (c,!) in C such that (jc,ec) =

(fgl,1).

CHAPTER II. Z-2-ARROW CALCULUS

(js,es). Now corollary (2.94)(b) yields a

By S-semisaturatedness, ¢ is a denominator in C. But then h := gl yields fh = fgl = jc, and so fh is

a denominator in C by multiplicativity. Hence condition (ii) holds.
then setting k := il yields a Z-2-arrow (h,k) =

(gl,il), so even condition (iii) holds.

If C fulfils the Z-expansion axiom,
Finally, if C is

T-semisaturated, then fg is a denominator in C, so condition (iii) is also valid in this case.

(b) First, we suppose that condition (i) holds, that is, we suppose that loc(f) is a retraction in Oreg(C). By the-
orem (2.93)(a), there exist a Z-2-arrow (g, ) in C such that loc(g)loc(j) "' loc(f) = 1. Corollary (2.94)(c)
yields a normal S-2-arrow (f,¢) in C such that gf = and jf = fi.

We obtain fgf = fi = jf, and gf =i is an S-denominator in C. Thus condition (ii) holds.

If condition (ii) holds, then in particular condition (iii) holds.

Finally, we suppose that condition (iii) holds, that is, we suppose that there exist morphisms f , g and
denominators a,b in C with fb = af and such that ¢f is a denominator i 1n C. Then loc(f) is a retraction

in Oreg(C) by remark (1.21)(b), and therefore loc(f) =
Hence condition (i) holds.

loc(a) loc(f)loc(b) !

is also a retraction in Oreg(C).

Altogether, condition (i), condition (ii) and condition (iii) are equivalent.

(¢) First, we show that condition (i), condition (ii) and condition (iii) are equivalent.

We suppose that condition (i) holds, that is, we suppose that loc(f) is an isomorphism in Oreg(C). Then
loc(f) is in particular a retraction in Oreg(C), and so (b) implies that there exist a morphism f and a
Z-2-arrow (g,7) in C with fgf = jf and such that gf is an S-denominator in C. We obtain

loc(f)loc(gf)

=loc(fgf) =

=loc(j)loc(f).

As loc(f), loc(gf) and loc(j) are isomorphisms in Oreg(C), it follows that loc(f) is an isomorphism

in Oreg(C). But then loc(g)

=loc(gf)loc(f)~! is an isomorphism in Oreg(C), and therefore in particular

a retraction. By (b), there exist a morphism g and a Z-2-arrow (¢, j’) in C with g¢’g = j'¢ and such that
¢'g is an S-denominator in C. Thus condition (ii) holds.

If condition (ii) holds, then in particular condition (iii) holds.

We suppose that condition (iii) holds, that is, we suppose that there exist morph1sms f, g, g, ¢ and
denominators a, b, a’, b’ in C with fb = af, gb' = d'§, and such that gf and ¢’§ are denominators
in C. Then loc(g) is a retraction by (b). Moreover, loc(g) is a coretraction by remark (1.21)(a), whence
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an isomorphism. But then loc(f) = loc(g)*loc(gf) is an isomorphism in Oreg(C), and therefore also
loc(f) = loc(a)loc(f)loc(b)~t. Thus condition (i) holds.

Second, we show that condition (i) is equivalent to condition (iv), to condition (v), and to condition (vi).
So from now on, we suppose that C fulfils the Z-replacement axiom for denominators.

As condition (i) means that loc(f) is a coretraction and a retraction in Oreg(C), the equivalence of
condition (i), condition (v) and condition (vi) follows from (a) and (b). Moreover, condition (iv) implies
condition (i) by corollary (1.22)(a).

It remains to show that condition (i) implies condition (iv). So we suppose that condition (i) holds, that is,
we suppose that loc(f) is an isomorphism in Oreg(C). Then loc(f) is in particular a coretraction in Oreg(C),
and so (a) implies that there exists a morphism h in C such that fh is a denominator in C. But then
loc(h) = loc(f)~tloc(fh) is also an isomorphism in Oreg(C), and therefore in particular a coretraction.
By (a), there exist a morphism A’ in C such that hh' is a denominator in C. Thus condition (iv) holds.

Third, we suppose, in addition, that C is T-semisaturated (in this case, C automatically fulfils the Z-replace-
ment axiom for denominators) or that C fulfils the Z-expansion axiom. Then condition (iv) is equivalent
to condition (vii) by (a), and condition (i) is equivalent to condition (viii) by (a) and (b). O

(2.98) Corollary (cf. [11, sec. 36.4], [36, prop. 5.10]). A Z-prefractionable category is saturated if and only if
it is weakly saturated.

Proof. We suppose given a Z-prefractionable category C. Since saturatedness always implies weak saturatedness,
see proposition (1.43)(a), it suffices to show that if C is weakly saturated, then it is already saturated. So we
suppose that C is weakly saturated and we suppose given a morphism f in C such that loc(f) is invertible
in Oreg(C). Then C is semisaturated by proposition (1.43)(b), and so it fulfils the Z-replacement axiom for
denominators. Hence proposition (2.97)(c) implies that there exist morphisms h and A’ in C such that fh
and hh/ are denominators in C. But then the 2 out of 6 axiom implies that f is also a denominator in C. Thus C
is saturated. O

(2.99) Corollary. We suppose given a weakly saturated Z-prefractionable category C. The set of isomorphisms
in the S-Ore localisation of C is given by

Iso Ores(C) = {loc(f)loc(a)™t | (f,a) is an S-2-arrow in C with denominator f}
= {loc(f)loc(i)~* | (f,i) is a Z-2-arrow in C with denominator f}.

Proof. Given an S-2-arrow (f,a) in C with denominator f, then loc(f) and loc(a) are isomorphisms in Oreg(C)
and hence loc(f)loc(a)~! is an isomorphism in Oreg(C). Conversely, we suppose given an isomorphism ¢
in Oreg(C). We choose an S-2-arrow (f,a) in C with ¢ = loc(f)loc(a)™t. Since a is a denominator in C, the
morphism loc(a) is an isomorphism in Oreg(C) and thus loc(f) = ¢loc(a) is an isomorphism in Oreg(C). But C
is saturated by corollary (2.98), whence f is a denominator in C.

Thus we have

Iso Ores(C) = {loc(f)loc(a)™* | (f,a) is an S-2-arrow in C with denominator f}.
As C is weakly saturated, it is T-semisaturated by proposition (1.43)(b). In particular, we also have
Iso Ores(C) = {loc(f)loc(i)™' | (f,i) is a Z-2-arrow in C with denominator f}

by remark (2.67). O

7 The Z-Ore localisation

Theorem (2.93) helps us to understand the morphisms of the S-Ore localisation Oreg(C) of a Z-prefractionable
category C if we work with Z-2-arrows. Nonetheless, the S-Ore localisation is defined using arbitrary S-2-arrows
as representatives. So it seems to be a natural question whether it is possible to work solely with Z-2-arrows.
If one is willing to get S-2-arrows as intermediate steps and to replace them by Z-2-arrows, for example in the
computation of a composite, then the following proposition gives a positive answer to this. However, if C fulfils
the additional axioms of a Z-fractionable category, see definition (2.81), we can even avoid replacements and
compose Z-2-arrows directly to Z-2-arrows, cf. remark (2.103).
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Construction of the Z-Ore localisation

(2.100) Proposition. We suppose given a Z-prefractionable category C.

(a)

There is a category structure on (AGyC)/=z, where the composition and the identity morphisms are
constructed as follows.

We suppose given (f1,41), (f2,i2) € Arr AGz C with Target (f1,41) = Source (f2,42). First, we choose a
morphism f} and an S-denominator ¢§ with i;f5 = fai}. Second, we choose a Z-2-arrow (f,7) and a
morphism s in C with f; f} = fs and i) = is.

!

f2

Then
(f1/i1)(f2/i2) = f/i.

Given X € Ob (AGzC)/=z, we choose a Z-2-arrow (e, i) and a morphism s in C with (1x,1x) = (es,is).

Then
1X = e/i.

The quotient graph (AGz C)/=z together with the category structure from (a) becomes a localisation of C,
where the localisation functor loc: C — (AGzC)/=gz is given on the objects by

loc(X) =X

for X € ObC and is constructed on the morphisms as follows. Given f € MorC, we choose a Z-2-ar-
row (f,é) and a morphism s in C with (f,1) = (fs, és).

Then
loc(f) = f/e.

For every denominator d in C, the inverse of loc(d) is constructed as follows. We choose a Z-2-arrow (¢, d)
and a morphism s in C with (1,d) = (és, ds).
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Then

loc(d)™! = ¢/d.

Given a category D and a functor F': C — D such that Fd is invertible for every denominator d in C, the
unique functor F': (AGyzC)/=z — D with F = F oloc is given by

P(f/i) = (FNF)™
for (f,i) € Arr AGzC.

Proof. By corollary (2.61), the inclusion morphism inc: AGzC — AGgC induces a graph isomorphism
(AGZ C)/Ez — (AGS C)/ES.
Thus the assertion follows from theorem (2.85) by transport of structure, cf. corollary (1.14)(c). O

(2.101) Definition (Z-Ore localisation). We suppose given a Z-prefractionable category C. The Z-Ore lo-
calisation of C is defined to be the localisation Orey(C) of C, whose underlying category is the quotient graph
(AGyz C)/=y together with composition and identities as in proposition (2.100)(a), and whose localisation functor
is given as in proposition (2.100)(b).

So by construction of the Z-Ore localisation, we get:
(2.102) Remark. We suppose given a Z-prefractionable category C. The unique isofunctor
I: Orez(C) — Oreg(C)

Oreg(C) Orez(C)

with loc =TJoloc is given on the objects by

IX=X

for X € ObOrez(C) and on the morphisms by
I(f/i)=f/i

for (f,i) € Arr AGyC.

Composites and inverses in the S-Ore localisation of a Z-fractionable category

The additional axioms of a Z-fractionable category yield the following simplified constructions for composites
and inverses in the Z-Ore localisation.

(2.103) Remark. We suppose given a Z-prefractionable category C.

(a) We suppose that C fulfils the Z-concatenation axiom. Given Z-2-arrows (f1,i1), (f2,i2) in C with
Target (f1,41) = Source (fa,12), the composite (f1/i1)(f2/i2) in Orez(C) can be constructed as follows.

We choose an S-Ore completion (f3,4}) for fo and 4y such that (f1f5,i2i}) is a Z-2-arrow in C.
bAl f2
i f2 "o
R —
s

Then
(f1/i1)(f2/i2) = f1fs/i21].

(b) We suppose that C fulfils the Z-inversion axiom. Given a Z-2-arrow (f,i) in C such that f is a denominator
in C, the Z-fraction f/i is invertible in Orez(C) with

(f/)~t =i/f.
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8 Maltsiniotis’ 3-arrow calculus

Inspired by the 3-arrow calculus of DWYER, HIRSCHHORN, KAN and SMITH for so-called homotopical categories
admitting a 3-arrow calculus [11, sec. 36.1, sec. 36.3], which may be seen as a generalisation of Quillen model
categories (that admit functorial factorisations), GEORGES MALTSINIOTIS developed a 3-arrow calculus for
Brown fibration categories. The key technique in his proof was Brown’s homotopy 2-arrow calculus [7, th. 1
and proof], cf. the dual of theorem (3.132). We discuss (the duals of) his results using the Z-2-arrow calculus
for Z-fractionable categories, see theorem (2.93).

Categories with Z-2-arrows as categories with D-S-T-denominators

To obtain a 3-arrow calculus, we need a notion that is dual to that of an S-denominator.

(2.104) Definition (category with D-S-T-denominators). A category with denominators, S-denominators and
T-denominators (or category with D-S-T-denominators, for short) consists of a category with D-S-denomina-
tors C together with a multiplicative subset T' of DenC. By abuse of notation, we refer to the said category
with D-S-T-denominators as well as to its underlying category with D-S-denominators just by C. The elements
of T are called T-denominators in C.

Given a category with D-S-T-denominators C with set of T-denominators T', we write TDenC := T'. In diagrams,
a T-denominator p in C will usually be depicted as

p
—l .

Throughout this section, we will consider the underlying category with D-S-denominators of a Z-prefractionable
category as a category with D-S-T-denominators as in the following remark, without further comment.

(2.105) Remark. Given a multiplicative category with D-S-denominators C, then C becomes a category with
D-S-T-denominators, where the set of T-denominators is given by

TDenC = {p € DenC | there exists an S-denominator ¢ in C with ip = 1}.

Proof. We set T := {p € DenC | there exists an S-denominator ¢ in C with ¢ip = 1}. To show that T is mul-
tiplicative, we suppose given p,q € T with Targetp = Sourceq. Then p and ¢ are denominators in C, and
S0 pq is a denominator in C by the multiplicativity of DenC. Moreover, there exist S-denominators 7 and j in C
with ip = 1 and jqg = 1. But then we also have jipg = jq = 1, and as ji is an S-denominator by the multiplica-
tivity of SDenC, it follows that pg € T. Finally, given an object X in C, we have 1x € T since 1x 1x = 1x
and since 1x is an S-denominator in C. Altogether, T' is a multiplicative subset of MorC, and so C becomes a
category with D-S-T-denominators having TDenC = T.. O

(2.106) Remark. We suppose given a category with D-S-denominators C. Moreover, we suppose given an
S-2-arrow (f, p) with T-denominator p, a normal S-2-arrow (g, j) and a denominator s in C with (f,p) = (gs, js).

Then s is a T-denominator in C.

Proof. As p is a T-denominator in C, there exists an S-denominator ¢ in C with ip = 1. But then we also have
ijs = ip = 1, and since ¢j is an S-denominator by multiplicativity, it follows that s is a T-denominator in C.

g J 7
% ’
f P i ]

(2.107) Lemma (factorisation lemma, cf. [36, (Fac) in def. (3.1)(a), lem. (5.1)]). We suppose given a category
with Z-2-arrows C that fulfils the Z-replacement axiom for denominators and the Z-inversion axiom.
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(a) For every denominator d in C there exist an S-denominator ¢ and a T-denominator p in C with d = ip.

io o p

(b) We suppose that C is S-semisaturated and that C fulfils the weakly universal S-Ore completion axiom.
We suppose given S-2-arrows (f1,az2), (f2,a2) and denominators d, da, ds in C such that f1c22 =difo
and Q1J2 = dyas. Moreover, we suppose given S-denominators i1, io and T-denominators py, po in C with
di1 = i1p1, do = iap2. Then there exist an S-denominator i, a T-denominator p2 and an S-2-arrow (f,a)
in C such that the following diagram commutes.

f1 . f2

Proof.

(a) We suppose given a denominator d in C. By the Z-replacement axiom for denominators, there exist a
Z-2-arrow (i, e) with denominator ¢ and a morphism p in C with (d, 1) = (ip, ep). By S-semisaturatedness,
p is a denominator, and since every Z-2-arrow is a normal S-2-arrow, it follows that p is in fact a T-de-
nominator. Moreover, since C fulfils the Z-inversion axiom, it follows that ¢ is an S-denominator by
remark (2.74).

(b) By the weakly universal S-Ore completion axiom, there exist a weakly universal S-Ore completion (af,5)
for a; and ig, and there exist a weakly universal S-Ore completion (f7,4}) for fii5 and i;. As

ardy = daaz = i2p2as,

there exists a morphism dj with paas = a)dy and dy = ihdy. By S-semisaturatedness, a} and d}, are
denominators in C. We obtain

leIQCZ/Q = f1d2 = d1f2 = Z'1101]02,

and so there exists a morphism dj with p,fo = f{dy and dy = i1dj. By S-semisaturatedness, dj is a
denominator in C. Finally, by (a) there exist an S-denominator j and a T-denominator p in C such

that /2/ = jﬁg
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11 b1
dy
f/
1
v
1 0> f2
Y T g
iy
o ™ dy
;oas 7} ©p2
dn N e dy .
o 2
d2 po
’
T ay
ai az
12 b2
da

We set f:= flj, a = a}ilj, i = i%i}j, and get

fria = frigivj = irfij = irf,

fb2 = flibe = fidy = p1fa,

ariz = ayihilj = izayitj = isa,

apy = ayi)jpa = dyiydy = aydy = pras.

Moreover, a = a}4j is a denominator and 7o = i%i)j is an S-denominator in C by multiplicativity. O
(2.108) Proposition. We suppose given an S-semisaturated category with Z-2-arrows C that fulfils the Z-con-
catenation axiom and the Z-inversion axiom. For every S-2-arrow (f,a) in C there exist a Z-2-arrow (f,a) and
a T-denominator s in C with (f,a) = (fs,as).

f

a
> <O

=13
L ovos
Proof. We suppose given an S-2-arrow (f,a) in C. By the Z-replacement axiom, there exist a Z-2-arrow (f 1,€1)
and a morphism s; in C with (f,1) = ( flsl,élsl), and by the Z-replacement axiom for denominators, there
exist a Z-2-arrow (é2,as) with denominator éo and a morphism s in C with (1,a) = (é282,a2s2). Then és is in
fact an S-denominator by remark (2.74), and s1, s2 are denominators by S-semisaturatedness.

fi
>
SXI €2
o >
2 s1 "o.az
f o QX S2
_—
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Moreover, by the Z-concatenation axiom, there exist a weakly universal S-Ore completion (&5, ¢é}) for é5 and é;
such that (f, a) = (flé'Q, ag€}) is a Z-2-arrow in C. As é3s9 = 1 = é151 and s, is a denominator by S-semisat-
uratedness, there exist a morphism s with s; = é,s and sy = é]s. We obtain flé’zs = flsl = f as well as
(2€}8 = G282 = a. Finally, s is a denominator in C by S-semisaturatedness. So since €2€]s = €255 = 1 and é3¢]
is an S-denominator by multiplicativity, it follows that s is a T-denominator in C.

f1 &y
>

. Fe
“oér &g 1 T0E]
— 00—

2 s1 os . ‘ “aaa
f B Looas2
N\ N
e -

(Normal) 3-arrows

Analogously to the S-2-arrow graph and the normal S-2-arrow graph, see definition (2.10), we will now define
the 3-arrow graph and the normal 3-arrow graph. In contrast to the former, where we used a quotient of
the S-2-arrow graph to construct the S-Ore localisation, see theorem (2.85), we will not make explicit use of
the graph structure on the 3-arrow graph here — we will just use (the language for) its arrows. An analogous
construction applied to an analogous quotient of the 3-arrow graph in a somewhat different context can be
found in [36, prop. 5.2, prop. 5.5].

(2.109) Definition (3-arrow shape). The 3-arrow shape is defined to be the graph @ given by

ob®e = {0,1,2,3},
Arr® = {(1’ O)v (17 2)’ (Sa 2)}7

and where Source (1,0) = 1, Target (1,0) = 0, Source (1,2) = 1, Target (1,2) = 3, Source (3,2) = 3, Target (3,2)
=2

0 1 2 3

(2.110) Definition ((normal) 3-arrow graph).

(a) We suppose given a category with denominators C. The 3-arrow graph of C is defined to be the graph AGC
given by
ObAGC = ObC(,
ArrAGC={A € Ob c® | A1 and Az o are denominators in C},

and where Source A = A resp. Target A = A3 for A € Arr AGC.

An arrow A in AGC is called a 3-arrow in C. Given a denominator b: X — X, a morphism f: X - Y
and a denominator a: Y — Y in C, we abuse notation and denote the unique 3-arrow A with A; o = b,
Ao =f, As2=aby (b, f,a) := A. Moreover, we use the notation (b, f,a): X + X =Y « Y.

!

ng%?Hi—Y

X «—
(b) We suppose given a category with D-S-T-denominators C. A 3-arrow (p, f,i): X «+ XY +«YinCis
said to be normal if p is a T-denominator and ¢ is an S-denominator in C.

The normal 3-arrow graph of C is defined to be the wide subgraph AG, C of AGC with

Arr AG,C ={A € Arr AGC | A is normal}.
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A 3-arrow calculus for Z-(pre)fractionable categories

In the framework of Brown fibration categories, GEORGES MALTSINIOTIS found a 3-arrow calculus in the sense
of the validity of a “3-arrow representative condition” and a “3-arrow equality condition”, cf. [11, sec. 36.2—
3] (cf. definition (2.31) for the respective notions for S-2-arrows). In his proof, he used Brown’s homotopy
S-2-arrow calculus |7, th. 1 and proof]. We obtain (the dual of) his 3-arrow calculus in the slightly more general
framework of Z-fractionable categories, cf. theorem (3.127), using the Z-2-arrow calculus instead of Brown’s
homotopy S-2-arrow calculus.

(2.111) Theorem (Maltsiniotis’ 3-arrow calculus [26, p. 32]). We suppose given a Z-prefractionable category C.

(a) We have

Mor Oreg(C) = {loc(b) ! loc(f)loc(a)™t | (b, f,a) is a 3-arrow in C}.

(b) We suppose given 3-arrows (b, f,a), (b, f’,a’) in C. The following conditions are equivalent.

(i) We have
loc(b) "t loc(f)loc(a)™t = loc(d') "t loc(f")loc(a’) ™t

in Oreg(C).

(ii) For every Z-2-arrow (f,a), every normal S-2-arrow (b, ') and all morphisms s, t with (f,a) = (fs, as),
(b,0") = (bt,b't), there exist an S-2-arrow (f’,a’) and a normal S-2-arrow (c, j) such that the following
diagram commutes.

b f a
—n— — ——
TS
b f a
—r— — —0—
b c
t VAR 1
— YR
v’ 0J
b’ I a’
—n— — ——

(iii) There exist Z-2-arrows (f,a), (b,¥'), an S-2-arrow (f’,@’), a normal S-2-arrow (¢, j) and denomina-
tors s, ¢t in C such that the following diagram commutes.

b f a
—— — R
RS
b f a
—— > O
b c
t f! a
<R RS
oy 0j
b’ f’ a’
—r— —— —r—

If C fulfils the Z-concatenation axiom and the Z-inversion axiom, then these three conditions are further-
more equivalent to the following condition.

(iv) There exist Z-2-arrows (f,a), (b,b'), an S-2-arrow (f’,@’), a normal S-2-arrow (¢, j) and T-denomina-
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tors s, ¢t in C such that the following diagram commutes.

b f a
—r— — —r—
o
b f a
—r— > <0
b c
t f! a
<o R~
oy 0j
v f! ’
—r— — —r—

(c) We suppose given 3-arrows (b1, f1,a1), (be, f2,a2), (p1,91,d1), (e2,92,j2) in C such that p; is a T-denom-
inator and js is an S-denominator. The following conditions are equivalent.

(i) We have

loc(b1) ' loc(f1)loc(ar) loc(er) ! loc(gs) loc(jz)
= loc(p1) ' loc(g1) loc(dy) ™ loc(by) " loc(f2) loc(ag) ™!

in Oreg(C).

(ii) For every Z-2-arrow ( fi, ap), every normal S-2-arrow (g1, dl) and all morphisms sy, t1, ¢ in C with
f1 = fis1, era1 = a1s1, g1 = gita, bady = dity, cp1 = by, there exist an S-2-arrow (f2,a2) and a
normal S-2-arrow (g, j2) such that the following diagram commutes.

by f1 ax
—m—
%pl ‘ le
c f1 ay ‘
ng g1 g2 ng
21 fa i a2
— e
Qdq dq O j2 %]2
| b f2 az
—r— ——

(iii) There exist Z-2-arrows (f1,a1), (91,d1), an S-2-arrow (fa,ds), a normal S-2-arrow (g, j2), denomi-
nators s, t; and an S-denominator 4; in C such that i;p; = 1 and such that the following diagram

commutes.
b1 f1 ax
—r— —
%Pl QS1 R el
blil fl dl ‘
LIRS > o)
ng g1 g2 ng
t1 f2 o a2
PR > A
R dy od, 07 %jz
| b f2 a2
—— —

If C fulfils the Z-concatenation axiom and the Z-inversion axiom, then these three conditions are further-
more equivalent to the following condition.

(iv) There exist Z-2-arrows (f1,a1), (§1,d1), an S-2-arrow (fa, @), a normal S-2-arrow (Jz, ja), T-denom-
inators s1, t; and an S-denominator i1 in C such that i;p; = 1 and such that the following diagram
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commutes.

Proof.
(a) This follows from corollary (2.94)(a).
(c) First, we suppose that condition (i) holds, that is, we suppose that

loc(by) ™ loc(f1)loc(ay) ™ loc(ey) ™ loc(gz) loc(j2) ~*
= loc(p1) ' loc(gy) loc(dy) ™t loc(by) ™t loc(f2) loc(az) ™!

in Oreg(C). Moreover, we suppose given a Z-2-arrow (fl, a1), a normal S-2-arrow (g1, dl) and morphisms
S1, tl, c in C with f1 = flsl, e1a1 = dlsl, cg1 = gltla bgdl = dltl, Ccp1 = bl. Then we get

loc(f1)loc(erar) "t loc(gs) loc(j2) ™t = loc(f1)loc(ar) " loc(er) ! loc(gz) loc(jz) ™+
= loc(by) loc(pr) "t loc(g1)loc(dy) ™t loc(by) ™  loc( fa) loc(ag) ™t
= loc(c)loc(g1) loc(dy) ™  loc(ba) "t loc(f2) loc(az) ™! = loc(cgr ) loc(bady) ™t loc(f2) loc(az) ™!,

and so by corollary (2.94)(c) there exist an S-2-arrow (fa, @) and a normal S-2-arrow (jz, j2) in C such
that the following diagram commutes.

— > <
Q bady %dl 052 jLJ2
‘ P az

_—

But then the following diagram also commutes, that is, condition (ii) holds.

Condition (ii) and the Z-replacement axiom imply condition (iii).

Finally, if condition (iii) holds, then we have

loc(by)~Hloc(f1) loc(ar) ™ loc(er) "Hloe(ge) loc(j2) 1 = loc(by) ™t loc(f1) loc(ar) ™ loc(ga) loc(ja) ™
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= loc(by) " loc(f1) loc(gz) loc(az) ™ loc(j2) ~*

= loc(py) "t loc(byiy) loc(gl)loc(fg)loc(jg) oc(ag)™?
= loc(p1) " loc(gy) loc(t)™ Noc(dy)~ Yoc(f2)loc(ag) ™
= loc(p1) ™' loc(g1) loc(dr) ™ loc(b2) ™' loc(f2) loc(az) 7,

that is, condition (i) holds.
Altogether, the three conditions (i), (ii) and (iii) are equivalent.

If C fulfils the Z-concatenation axiom and the Z-inversion axiom, then condition (ii) implies condition (iv)
by proposition (2.108), and condition (iv) is a particular case of condition (iii). So in this case, the four
conditions (i), (ii), (iii) and (iv) are equivalent.

(b) This follows from (c). O
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Chapter 111

Cofibration categories

In homotopical algebra, we study categories with weak equivalences and their homotopy categories in the
following sense: A category with weak equivalences consists of a category that is equipped with a sort of
distinguished morphisms called weak equivalences, cf. definition (3.1)(a). We would like to consider objects
that are connected by a weak equivalence as essentially equal. So as weak equivalences are not isomorphisms in
general, we define the homotopy category of a category with weak equivalences as its localisation with respect
to the subset of weak equivalences, cf. definition (1.11) and definition (1.25), that is, as the universal category
where the weak equivalences become invertible.

To study homotopy categories, it seems hardly possible to work with weak equivalences alone. However, the
naturally occurring examples of categories with weak equivalences share more structure; for example, they
are equipped with cofibrations (in the sense of definition (3.14)(a)) or fibrations (in a sense dual to defini-
tion (3.14)(a)) or both. Whereas the weak equivalences form the important part of a category with cofibra-
tions and weak equivalences in the sense that they suffice to define and construct the homotopy category, the
(co)fibrations are usually seen as auxiliary tools to provide constructions and, in consequence, to understand
the homotopy category. While we restrict our attention to cofibrations in this thesis, every notion has a dual
notion and every assertion has a dual assertion.

In this chapter, we study the basic homotopical algebra of Brown cofibration categories and the slightly more
general Cisinski cofibration categories. Both notions of cofibration categories are particular well behaved cat-
egories with cofibrations and weak equivalences. In particular, we show in theorem (3.127) that every Brown
cofibration category admits the structure of a Z-fractionable category in the sense of definition (2.81)(a), so
that we may apply our results from chapter II to obtain a description of the hom-sets of the homotopy category
of a Brown cofibration category, see theorem (3.128). As the homotopy category of every Cisinski cofibration
category is equivalent to the homotopy category of its full subcategory of cofibrant objects [9, prop. 1.8], which
is a Brown cofibration category by remark (3.53), this also gives us a convenient calculus for the morphisms
in the homotopy category of every Cisinski cofibration category (and so, in particular, of every Quillen model
category).

Some of the facts and proofs presented in this chapter are folklore or known in the (more particular) context
of Quillen model categories. The author’s guide was the extensive manuscript of RADULESCU-BANU [30].
Many assertions are applicable to other contexts as well, such as Waldhausen (cofibration) categories or exact
categories. In order not to exclude these possible applications, we shall point out which axioms are actually
needed at each point. The main innovation is the relativisation of QUILLEN’s cylinder notion of an object to
S-2-arrows.

The chapter is organised as follows. In section 1, we define categories with weak equivalences and their homotopy
categories. The notion of a category with cofibrations, which is an auxiliary tool from our point of view, is
defined in section 2, and we combine both structures to the notion of a category with cofibrations and weak
equivalences in section 3. Then in section 4, we discuss the interplay between cofibrations and weak equivalences
and define Cisinski and Brown cofibration categories, our main objects of study. After that, we study the
somewhat technical notion of a coreedian rectangle in section 5, which is used to define some cofibration
category structures on diagram categories in section 6 and occurs furthermore at some other places in this and
the following chapter. In section 7, we generalise the well-known notion of a cylinder of an object to the notion
of a cylinder of an S-2-arrow and study their main properties. Cylinders are used to give a proof of the so-called
gluing lemma in section 8. Moreover, in section 9, we will see that cylinders yield a concept to turn a Brown
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Brown cofibration
category (3.52)
(Cat), (Iso), (20f3g),
(20f37), (Inic),
(Compc), (Isoc),
(Push.), (Cof),
(Fac), (Incc)

l

Cisinski cofibration

Quillen model SRR

Cat), (Iso), (20f3g),
(}:latlegcln');1 [f28i > ( (2)0f(3T)), ((Inic),S)
il (Compc), (Isoc),

(Push.), (Face), (Incc)

l

category with cofi-
brations and weak category with

equivalences (3.30) cofibrations (3.14)
(Cat), (Iso), ? (Inic), (Compc),
(Inic), (Compc), (Isoc), (Pushc)

(Isoc), (Pushc)

l

category with weak
equivalences (3.1)
(Cat), (Iso)

Figure 1: Hierarchy of some structures in homotopical algebra.

cofibration category into a Z-fractionable category, see theorem (3.127). In particular, the homotopy category
of every Brown cofibration category admits a Z-2-arrow calculus as in theorem (3.128). This Z-2-arrow calculus
is used to give a new proof for Brown’s homotopy S-2-arrow calculus, see theorem (3.132).

1 Categories with weak equivalences

In this section, we define categories with weak equivalences, that is, categories equipped with a distinguished
subset of morphisms called weak equivalences that fulfil some closure properties, as well as their homotopy
categories.

Definition of a category with weak equivalences

We suppose given a category C and a subset U of the set of morphisms Mor C in C. The subset U is said to be mul-
tiplicative in C if it is closed under composition and contains all identity morphisms in C, see definition (1.35)(a).
Moreover, it is said to be isosaturated in C if it contains all isomorphisms in C, see definition (1.36)(a).

(3.1) Definition (category with weak equivalences).

(a) A category with weak equivalences consists of a category C together with a multiplicative and isosaturated
subset W of MorC. By abuse of notation, we refer to the said category with weak equivalences as well as
to its underlying category just by C. The elements of W are called weak equivalences in C.

Given a category with weak equivalences C with set of weak equivalences W, we write WeC := W. In
diagrams, a weak equivalence w: X — Y in C will usually be depicted as

X =Y.

(b) We suppose given categories with weak equivalences C and D. A morphism of categories with weak
equivalences from C to D is a functor F': C — D that preserves weak equivalences, that is, such that Fw
is a weak equivalence in D for every weak equivalence w in C.
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The notion of a category with weak equivalences is closely related to that of a relative category by BARWICK
and KAN |3, sec. 3.1] and to that of a category pair by RADULESCU-BANU [30, def. 1.8.2].

Formally seen, a category with weak equivalences is the same as a multiplicative and isosaturated category with
denominators. Indeed, we will often take this point of view, see remark (3.7) and definition (3.8). However, the
notion of a weak equivalence, originally introduced by QUILLEN [28, ch. I, §1, def. 1, ex.] as an abstraction of
the notion of a weak homotopy equivalence from topology, is historically established.

We change our point of view now: The localisation construction steps in the background, whereas properties
of the localisation step in the foreground. As we study the localisation and their models with the methods of
homotopical algebra, denominators will be called weak equivalences, and the localisation will be called homotopy
category, see definition (3.8).

(3.2) Remark. Given a category with weak equivalences C, its opposite category C°P becomes a category with
weak equivalences having We(C°P) = WeC.
The category of categories with weak equivalences

(3.3) Definition (category with weak equivalences with respect to a Grothendieck universe). We suppose given
a Grothendieck universe 1. A category with weak equivalences C is called a category with weak equivalences
with respect to Y (or a U-category with weak equivalences) if its underlying category is a i-category.

(3.4) Remark.

(a) We suppose given a Grothendieck universe 4. A category with weak equivalences C is a {-category with
weak equivalences if and only if it is an element of i1.

(b) For every category with weak equivalences C there exists a Grothendieck universe 4 such that C is a
$l-category with weak equivalences.

(3.5) Remark. For every Grothendieck universe {4 we have a category CatW (), given as follows. The set of
objects of CatW y is given by

Ob CatW ) = {C | C is a U-category with weak equivalences}.
For objects C and D in CatW ), we have the hom-set
catwy, (C, D) = {F' | F is a morphism of categories with weak equivalences from C to D}.

For morphisms F': C — D, G: D — £ in CatW ), the composite of F' and G in CatW ) is given by the
composite of the underlying functors G o F': C — £. For an object C in CatW ), the identity morphism on C
in CatW ) is given by the underlying identity functor id¢: C — C.

(3.6) Definition (category of categories with weak equivalences). We suppose given a Grothendieck universe il.
The category CatW = CatW ) as considered in remark (3.5) is called the category of categories with weak
equivalences (more precisely, the category of i4-categories with weak equivalences).

The homotopy category

If unambiguous, we will consider a category with weak equivalences as a category with denominators, see
definition (1.1)(a), in the following way, without further comment.

(3.7) Remark.

(a) Given a category with weak equivalences C, the underlying category of C becomes a multiplicative and
isosaturated category with denominators having

DenC = WeC.

(b) Given a morphism of categories with weak equivalences F': C — D, then F becomes a morphism of
categories with denominators from C to D.
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Categories with denominators have been introduced to be localised. The reason why we consider a category
with weak equivalences as a category with denominators is that we want to study its localisation, see defini-
tion (1.11)(b), which is unique up to isomorphism of categories.

(3.8) Definition (homotopy category). We suppose given a category with weak equivalences C. The homotopy
category of C is the Gabriel-Zisman localisation HoC := GZ(C).

(3.9) Remark. We suppose given a Grothendieck universe 4. We have a functor
Ho: CatW ) — Caty,,

given on the morphisms as follows. For every morphism F:C — C’ in CatW(y), the morphism Ho F:
HoC — HoC' in Catyy is the unique morphism in Cat gy with loctoC o F = (Ho F) o loc™°¢,

Proof. This follows from corollary (1.27)(a). O

The zero-pointed case

A zero-pointed category is a category together with a (distinguished) zero object. A morphism of zero-pointed
categories is a functor that preserves the zero-objects.

(3.10) Definition (zero-pointed category with weak equivalences). A zero-pointed category with weak equiva-
lences consists of a category with weak equivalences C together with a (distinguished) zero object N in C. By
abuse of notation, we refer to the said zero-pointed category with weak equivalences as well as to its underlying
category with weak equivalences just by C. The zero object N is called the zero object (or the distinguished zero
object) in C.

Given a zero-pointed category with weak equivalences C with distinguished zero object N, we write 0 = 0¢ := N.

(3.11) Remark. Given a zero-pointed category with weak equivalences C, the homotopy category Ho C becomes
a zero-pointed category having

OHOC _ OC.

In particular, the localisation functor loc: C — HoC becomes a morphism of zero-pointed categories.

Proof. This follows from corollary (1.20). O

The saturation of a category with weak equivalences

The interpretation of a category with weak equivalences as a category with denominators gives us the notion of
the saturation of a category with weak equivalences:

(3.12) Remark. Given a category with weak equivalences C, the saturation SatC becomes a category with
weak equivalences having

We Sat C = Den SatC.

Proof. This follows from proposition (1.43). O

2 Categories with cofibrations

Is is a hard task to study the homotopy categories of arbitrary categories with weak equivalences. To remedy
this, one studies categories with weak equivalences that have additional structure such as cofibrations or, dually,
fibrations. While the weak equivalences suffice to define the homotopy category, cofibrations allow us to do
constructions that give us more information and additional structure on the homotopy category. For example,
the description of the hom-sets of the homotopy category of a Brown cofibration category developed in section 9,
see theorem (3.128), remark (3.129) and theorem (3.132), strongly relies on the notion of a cofibration. Moreover,
the construction of the triangulated structure in chapter V involves Coquillen rectangles, see definition (3.101),
and therefore the cofibrations.
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We will introduce categories with cofibrations and weak equivalences in definition (3.30)(a) in section 3. However,
there are some facts that may be deduced solely from the presence of cofibrations, and so they may be also
used in examples where one has no natural notion of a weak equivalence at hand. For example, every exact
category in the sense of QUILLEN [29, §2, pp. 99-100], cf. also [20, app. A], [8, def. 2.1], becomes a category with
cofibrations, where the cofibrations are precisely those monomorphisms that occur as kernels in distinguished
short exact sequences.

Definition of a category with cofibrations

To state the axioms of a category with cofibrations, the notion of a cofibrant object with respect to a given
multiplicative subset will be defined first:

(3.13) Definition (C-cofibrant object). We suppose given a category C and a subset C C MorC. The full
subcategory Co.cor of C with

ObCo.cot = {X € ObC | there exists an initial object I in C such that ini% € C}

is called the full subcategory of C-cofibrant objects in C. An object in C that lies in Co_cof is said to be cofibrant
with respect to C' (or C-cofibrant).

(3.14) Definition (category with cofibrations).

(a) A category with cofibrations (1) consists of a category C together with a subset C' C MorC such that the
following axioms hold.
(Ini.) Ezistence of a cofibrant initial object. There exists an initial object in C that is C-cofibrant.
(Comp.) Composition axiom for cofibrations. The subset C' is closed under composition in C.
(Iso.) Isomorphism aziom for cofibrations. Every isomorphism with C-cofibrant source object is in C.
(Push.) Pushout aziom for cofibrations. Given morphisms f: X — Y and i: X — X’ in Co_cof with ¢ € C,

there exists a pushout rectangle

x Ly

X—Y
in C such that i’ € C.
By abuse of notation, we refer to the said category with cofibrations as well as to its underlying category

just by C. The elements of C' are called cofibrations in C.
Given a category with cofibrations C with set of cofibrations C, we write Cof C := C. In diagrams, a
cofibration i: X — Y in C will usually be depicted as

9

X —o—Y .

(b) We suppose given categories with cofibrations C and D. A morphism of categories with cofibrations from C
to D is a functor I': C — D that preserves cofibrations, that is, such that F% is a cofibration in D for every
cofibration 7 in C.

In the particular case where C has a (distinguished) zero object and Co.cof = C, cf. definition (3.29), this is called a c-category
by HELLER [17, sec. 3| and a category with cofibrations by WALDHAUSEN [38, sec. 1.1].
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The category of categories with cofibrations

(3.15) Definition (category with cofibrations with respect to a Grothendieck universe). We suppose given a
Grothendieck universe 4. A category with cofibrations C is called a category with cofibrations with respect to
(or a U-category with cofibrations) if its underlying category is a il-category.

(3.16) Remark.

(a) We suppose given a Grothendieck universe 4. A category with cofibrations C is a il-category with cofi-
brations if and only if it is an element of 4[.

(b) For every category with cofibrations C there exists a Grothendieck universe $ such that C is a $-category
with cofibrations.

(3.17) Remark. For every Grothendieck universe  we have a category CatCy, given as follows. The set of
objects of CatCy is given by

ObCatCyy = {C | C is a Y-category with cofibrations}.
For objects C and D in CatCjy), we have the hom-set
catCy,, (C,D) = {F | F is a morphism of categories with cofibrations from C to D}.

For morphisms F': C — D, G: D — £ in CatCy,, the composite of F' and G in CatCy is given by the
composite of the underlying functors G o F': C — £. For an object C in CatCy), the identity morphism on C
in CatCy is given by the underlying identity functor id¢: C — C.

(3.18) Definition (category of categories with cofibrations). We suppose given a Grothendieck universe {l. The
category CatC = CatC ) as considered in remark (3.17) is called the category of categories with cofibrations
(more precisely, the category of i-categories with cofibrations).

Cofibrant objects

In a category with cofibrations C, one has the notion of a cofibrant object with respect to the set of cofibra-
tions Cof C, see definition (3.13). We abbreviate the terminology:

(3.19) Definition (cofibrant object). We suppose given a category with cofibrations C. The full subcate-
gory Ceot = C(cof ¢)-cof Of C is called the full subcategory of cofibrant objects in C. An object in C that lies in
Ceof 1s said to be cofibrant, and a morphism in C..¢ is called a morphism of cofibrant objects in C.

Given a category with cofibrations C, there exists an initial object in C that is cofibrant. Moreover, an object X
in C is cofibrant if there exists an initial object I such that the unique morphism inig(: I — X is a cofibration
in C. The following two remarks show the independence of the notion of cofibrancy from the considered initial
object. Likewise, remark (3.25) shows the independence of the considered pushout in the pushout axiom for
cofibrations.

(3.20) Remark. Every initial object in a category with cofibrations is cofibrant.

Proof. We suppose given a category with coﬁbrations C and an initial object I in C. There exists an initial
object I’ in C that is cofibrant, and so as ini} : I’ — I is an isomorphism in C, it is a cofibration in C. But this
means that [ is cofibrant. O

(3.21) Remark. We suppose given a category with cofibrations C. An object X in C is cofibrant if and only
if for every initial object I in C, the unique morphism ini&: I — X is a cofibration in C.

Proof. We suppose given an object X in C. First, we suppose that X is cofibrant, that is, we suppose that
there exists an initial object I’ in C such that iniﬁé: I' — X is a cofibration. Moreover, we let I be an arbitrary
initial object in C. Then the unique morphism ini} : I — I’ is an isomorphism and therefore a cofibration as I
is cofibrant by remark (3.20). But then also ini% = ini, inig(/ is a cofibration as cofibrations are closed under
composition. Conversely, if inig( : I — X is a cofibration for every initial object I in C, then X is cofibrant since
there exists an initial object in C. O
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If unambiguous, we will consider the full subcategory of cofibrant objects in a category with cofibrations, see
definition (3.19) and definition (3.14)(a), as a category with cofibrations in the following way, without further
comment.

(3.22) Remark. Given a category with cofibrations C, the full subcategory of cofibrant objects C.or becomes
a category with cofibrations having

Cof Ceor = Cof C N Mor Ceof.
Moreover, Cof Ceor is a multiplicative subset of Mor Ccof.

(3.23) Remark. Given a category with cofibrations C, then every cofibration in C with cofibrant source object
has a cofibrant target object.

Proof. We suppose given a cofibration i: X — Y in C such that X is cofibrant. Then iniy is a cofibration, and
hence iniy = inix 7 is a cofibration as cofibrations are closed under composition. Thus Y is cofibrant. O]

(3.24) Corollary. Given a category with cofibrations C, the full subcategory of cofibrant objects Ceof is closed
under isomorphisms in C.

Proof. We suppose given an isomorphism f: X — Y in C such that X is cofibrant. Then f is a cofibration by
the isomorphism axiom for cofibrations, and hence Y is cofibrant by remark (3.23). O

(3.25) Remark. We suppose given a category with cofibrations C and a pushout rectangle

X/ L) Y/

X—Y

in C such that f: X — Y is a morphism and i: X — X' is a cofibration in C..s. Then ¢’ is a cofibration and Y’
is cofibrant in C.

Proof. As C is a category with cofibrations, there exists a pushout rectangle

in C such that ¢/: Y — Y’ is a cofibration. Then Y’ is cofibrant since Y is cofibrant and i’ is a cofibration.
Moreover, since (X,Y, X’,Y’) and (X,Y, X’,Y") are pushout rectangles in C, the unique morphism g: Y’ — Y”
with f/ = f’ g and ¢ = 'g is an isomorphism. By the isomorphism axiom for cofibrations, it follows that g is a
cofibration as Y” is cofibrant. In particular, ¢/ = ¢ is a cofibration as cofibrations are closed under composition,
and Y’ is cofibrant by remark (3.23).
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(3.26) Proposition (cf. [30, lem. 1.2.1(1)]). We suppose given a category with cofibrations C.

(a) The full subcategory of cofibrant objects C.or has finite coproducts. Given n € Ny and objects Xj
in Ceof for k € [1,n], the coproduct er[l’n] Xj, in Ceof is a coproduct in C and the embedding emby, :

Xy = [ep1,n) Xi 1s a cofibration in C for every k € [1,n].

(b) Given n € Ny and cofibrations ix: X — Y; in Ceof for & € [1,n], the coproduct er[l’n] g
Lei,n Xk = i n Yo is a cofibration.

Proof.

(a) As j is cofibrant, for cofibrant objects X1, Xo in C, there exists a pushout C of inix, and inix, by the
pushout axiom for cofibrations. The embeddings emb; and embs are cofibrations and C' is cofibrant by
remark (3.25). Moreover, C' is a coproduct of X; and X5 in C.

embo

Xo —e— C

inix, + } emb
il’lin

| —e— X3

The assertion follows by induction, using the closedness of Cof C.of under composition and the isomorphism
axiom for cofibrations.

(b) As j is cofibrant, the identity morphism 1; =1ini;: | — j is a cofibration. Given cofibrations i;: X; — Y3,
i9: Xo — Y5 in Ceof, we have the following pushout rectangles, in which ¢; 11 x, and 1y, ITi are cofibrations
by remark (3.25).

v, L VX, Y, L v 1TY,
i1$ {ilL[lXQ i2$ %1)/11_[1;2
X, 2L X, X, X, S VX,

Thus i1 ITie = (i3 T 1x,)(1y, IT43) is a cofibration.

For n € Ny arbitrary, the assertion follows by induction. O

(3.27) Corollary. We suppose given a category with cofibrations C, an n € Ny and morphisms i;: X — Y
in Ceof for k € [L,n]. If (ir )pey )t e,y Xe — Y is a cofibration in C, then ix: X — Y is a cofibration
in C for every k € [1,n].

Proof. As X}, for k € [1,n] is cofibrant, the embedding emby: X — ]_[je[l’n] X, is a cofibration by proposi-
tion (3.26)(a). So if (ix )ye(y ) 1S a cofibration, then i, = emby (i) ;[ ,,) is a cofibration for every k € [1,n] by
closedness under composition. [

(3.28) Proposition. We suppose given a category with cofibrations C and morphisms i;: X; — X,
ig: Xo = X, f: Xo =Y in Ceor. If (Z;) : X7 II Xy — X is a cofibration in C, then

iembXHX2Y X
( L e ) X Y — X 112 Y
emb,

is a cofibration in C.

i1 emb;

X, —e—s X —5 X112y

+ iz + embg
!

Xy — 1 Yy
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Proof. We have

X, 11X . X, 1Y
emb;, (1x, II f) = femb; ,
. xuXz2y ) xuXzy . xuX2y
(1:1 ) eIan]_[XQY _ iremb] _ i1emb] _ (1 I f) i1emb]
2 ! i embxuxzy fembxuxzy X embXHXQY ’
2 1 2 2

that is, the diagram

embq

X — 7 . xuty

<i¢;)+ ](‘a:iz‘;l)
1x, II f

XXy — 5 X, 1Y

embg + %embfz

X, Y

commutes. So since (Xs,Y, X1 I X, X; 1Y) and (X,Y, X, X II*? Y) are pushout rectangles, the quadran-

. xuXzy
gle (X7 II X5, X; 1Y, X, X II*2 Y) is also a pushout rectangle, whence fremb, x is a cofibration by
X1I*2Yy
emb,
remark (3.25). O

The cofibrancy axiom

(3.29) Definition (cofibrancy axiom). A category with cofibrations C is said to fulfil the cofibrancy axiom if
the following holds.

(Cof) Cofibrancy axiom. Every object in C is cofibrant.

3 Categories with cofibrations and weak equivalences

In this section, we combine the notion of a category with weak equivalences from section 1 with that of a category
with cofibrations from section 2 and introduce the notion of category with cofibrations and weak equivalences,
see definition (3.30)(a). The two underlying structures given by the cofibrations on the one hand, and by the
weak equivalences on the other hand, are completely independent so far; there are no axioms that describe the
interplay between cofibrations and weak equivalences. This will be done in the next section 4, where we present
some properties such a category with cofibrations and weak equivalences may fulfil.

Definition of a category with cofibrations and weak equivalences

For the definition of a category with cofibrations and of a morphism of categories with cofibrations, see defini-
tion (3.14). For the definition of a category with weak equivalences and of a morphism of categories with weak
equivalences, see definition (3.1).

(3.30) Definition (category with cofibrations and weak equivalences).

(a) A category with cofibrations and weak equivalences consists of a category C together with subsets
C,W C MorC such that C becomes a category with cofibrations having Cof C = C and a category
with weak equivalences having WeC = W.

(b) We suppose given categories with cofibrations and weak equivalences C and D. A morphism of categories
with cofibrations and weak equivalences from C to D is a functor F': C — D that is a morphism of categories
with cofibrations and a morphism of categories with weak equivalences.

As for categories with weak equivalences, cf. definition (3.10), we can define a zero-pointed variant, which will
become important in chapter V.
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(3.31) Definition (zero-pointed category with cofibrations and weak equivalences). A zero-pointed category
with cofibrations and weak equivalences consists of a category with cofibrations and weak equivalences C together
with a (distinguished) zero object N in C. By abuse of notation, we refer to the said zero-pointed category with
cofibrations and weak equivalences as well as to its underlying category with cofibrations and weak equivalences
just by C. The zero object N is called the zero object (or the distinguished zero object) in C.

The category of categories with cofibrations and weak equivalences

(3.32) Definition (category with cofibrations and weak equivalences with respect to a Grothendieck universe).
We suppose given a Grothendieck universe 4. A category with cofibrations and weak equivalences C is called
a category with cofibrations and weak equivalences with respect to il (or a LU-category with cofibrations and weak
equivalences) if its underlying category is a i-category.

(3.33) Remark.

(a) We suppose given a Grothendieck universe . A category with cofibrations and weak equivalences C is a
$l-category with cofibrations and weak equivalences if and only if it is an element of i1.

(b) For every category with cofibrations and weak equivalences C there exists a Grothendieck universe 4 such
that C is a Y-category with cofibrations and weak equivalences.
(3.34) Remark. For every Grothendieck universe Ll we have a category CatCW (), given as follows. The set
of objects of CatCW (y) is given by
Ob CatCW ) = {C | C is a Y-category with cofibrations and weak equivalences}.
For objects C and D in CatCW g, we have the hom-set

CatCW(u) (C7 D)
= {F | F is a morphism of categories with cofibrations and weak equivalences from C to D}.
For morphisms F': C — D, G: D — £ in CatCW (y), the composite of F' and G in CatCW y is given by the

composite of the underlying functors Go F': C — £. For an object C in CatCW ), the identity morphism on C
in CatCW y is given by the underlying identity functor idc: C — C.

(3.35) Definition (category of categories with cofibrations and weak equivalences). We suppose given a
Grothendieck universe 4. The category CatCW = CatCW ) as considered in remark (3.34) is called the
category of categories with cofibrations and weak equivalences (more precisely, the category of i-categories with
cofibrations and weak equivalences).

Cofibrant objects in a category with cofibrations and weak equivalences

By remark (3.22), we may consider the full subcategory of cofibrant objects in a category with cofibrations,
see definition (3.19) and definition (3.14)(a), as a category with cofibrations. Likewise, if unambiguous, we will
consider the full subcategory of cofibrant objects in a category with cofibrations and weak equivalences as a
category with cofibrations and weak equivalences in the following way, without further comment.

(3.36) Remark. Given a category with cofibrations and weak equivalences C, the full subcategory of cofibrant
objects C.or becomes a category with cofibrations and weak equivalences having

Cof Ceof = Cof C N Mor Ceof,
We Ceor = WeC N Mor Ceof.

The saturation of a category with cofibrations and weak equivalences

(3.37) Remark. Given a category with cofibrations and weak equivalences C, the saturation SatC becomes a
category with cofibrations and weak equivalences having

Cof Sat C = Cof C,
We Sat C = Den SatC.

Proof. This follows from remark (3.12). O
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Acyclic cofibrations

(3.38) Definition (acyclic cofibrations). We suppose given a category with cofibrations and weak equiva-
lences C. A cofibration 7 in C is said to be acyclic if it is a weak equivalence. The set of acyclic cofibrations in C
is denoted by aCof C := Cof C N WeC.

By remark (3.7)(a), we may consider a category with weak equivalences, see definition (3.1)(a), as a category with
denominators, see definition (1.1)(a). Likewise, if unambiguous, we will consider a category with cofibrations and
weak equivalences that fulfils the cofibrancy axiom, see definition (3.29), as a category with D-S-denominators,
see definition (2.1)(a), in the following way, without further comment.

(3.39) Remark.

(a) Given a category with cofibrations and weak equivalences C that fulfils the cofibrancy axiom, the category
with denominators C becomes a category with D-S-denominators having

SDenC = aCof C.

(b) Given a morphism of categories with cofibrations and weak equivalences F': C — D such that C and D
fulfil the cofibrancy axiom, then F' becomes a morphism of categories with D-S-denominators from C to D.

4 Cofibration categories

We consider some axioms that a category with cofibrations and weak equivalences as introduced in defini-
tion (3.30)(a) may fulfil. Moreover, we discuss the relationship between some of the axioms and deduce some
simple consequences of them. At the end, we define the concepts of a Cisinski cofibration category and of a
Brown cofibration category, see definition (3.51)(a) and definition (3.52)(a).

The factorisation axiom for cofibrations

The factorisation axiom for cofibrations roughly states that every morphism with cofibrant source object in
a given category with cofibrations and weak equivalences is a cofibration up to an approximation by a weak
equivalence.

(3.40) Definition (factorisation axiom for cofibrations). A category with cofibrations and weak equivalences C
is said to fulfil the factorisation axiom for cofibrations if the following holds.

(Face) Factorisation axziom for cofibrations. For every morphism f: X — Y with X cofibrant there exist a
cofibration i: X — Y and a weak equivalence w: Y — Y such that f = iw.

@

ie Lw

.

(3.41) Remark. Given a category with cofibrations and weak equivalences C, if C fulfils the factorisation axiom
for cofibrations, then C..¢ fulfils the factorisation axiom for cofibrations.

(3.42) Remark. The saturation of a category with cofibrations and weak equivalences that fulfils the factori-
sation axiom for cofibrations also fulfils the factorisation axiom for cofibrations.

Proof. We suppose given a category with cofibrations and weak equivalences C that fulfils the factorisation
axiom for cofibrations. Moreover, we suppose given a morphism f: X — Y with X cofibrant in SatC. Since
Cof Sat C = Cof C, it follows that X is cofibrant in C. So as C fulfils the factorisation axiom for cofibrations, there
exists a cofibration i: X — Y and a weak equivalence w: ¥ — Y in C with f = iw. But since Cof Sat C = Cof C
and WeC = DenC C Den SatC = We Sat C, the morphism 1 is also a cofibration in SatC and w is also a weak
equivalence in Sat C. Thus SatC fulfils the factorisation axiom for cofibrations. O
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Gluing, excision and incision

Next, we will introduce the gluing axiom, the excision axiom and the incision axiom for categories with cofibra-
tions and weak equivalences. In general, the gluing axiom is stronger than the excision axiom and the incision
axiom, as shown in proposition (3.46). However, if a given category with cofibrations and weak equivalences
is semisaturated and fulfils the factorisation axiom for cofibrations introduced in definition (3.40), then these
three axioms are equivalent, see Radulescu-Banu’s criterion (3.123).

(3.43) Definition (gluing axiom, excision axiom, incision axiom). We suppose given a category with cofibra-
tions and weak equivalences C.

(a) We say that C fulfils the gluing axiom if the following holds.

(Glug) Gluing axziom. We suppose given a commutative cuboid

X ———Y; 95
9
g2
f3
g1 Xé —_ 2’
)/’/} ,
12 ()
fa

Xo ——m Y

in Ceor such that i; and is are cofibrations and such that (X1,Y7, X{,YY) and (Xs,Ys, X5,Y5) are
pushout rectangles in C. If g1, g2, ¢} are weak equivalences, then so is gj.

(b) We say that C fulfils the excision axiom if the following holds.

(Excc) Fzcision axiom. Given a pushout rectangle

x Ly

% f +

X —Y

in C such that f is a weak equivalence in Ceof and 7 is a cofibration, then f’ is a weak equivalence.
(¢) We say that C fulfils the incision aziom if the following holds.

(Inc.) Incision axiom. Given a pushout rectangle

X/ L> Y/

7,}22 +i'
f

X —Y

in C such that f is a morphism in C.o¢ and 4 is an acyclic cofibration, then ¢’ is an acyclic cofibration.

(3.44) Remark. Given a category with cofibrations and weak equivalences C, if C fulfils the gluing axiom resp.
the excision axiom resp. the incision axiom, then C.o¢ fulfils the gluing axiom resp. the excision axiom resp. the
incision axiom.
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(Excc) & (Glue) —p (Incc)

Figure 2: Gluing implies excision and incision.

By remark (3.39)(a), we may consider every category with cofibrations and weak equivalences that fulfils the
cofibrancy axiom as a category with denominators and S-denominators, see definition (2.1)(a) — the denominators
being the weak equivalences and the S-denominators being the acyclic cofibrations.

(3.45) Remark. We suppose given a category with cofibrations and weak equivalences C that fulfils the
cofibrancy axiom. If C fulfils the incision axiom, then the category with D-S-denominators C fulfils the weakly
universal S-Ore completion axiom.

Proof. This follows from the pushout axiom for cofibrations and the incision axiom. O

If a semisaturated category with cofibrations and weak equivalences fulfils the factorisation axiom for cofibra-
tions, then the gluing axiom, the excision axiom and the incision axiom are equivalent, see Radulescu-Banu’s
criterion (3.123). The more elementary parts of this theorem, namely that the gluing axiom implies the excision
and the incision axiom, will be proven in the following proposition. These two implications hold even if we do
not require the factorisation axiom for cofibrations, so for example in any Waldhausen cofibration category (?).
The statement that the excision axiom implies the gluing axiom will be proven in proposition (3.66), after
we have proven the factorisation lemma (3.65). Finally, the implication that the gluing axiom can be derived
from the incision axiom is known as the gluing lemma in the literature, which will be shown in section 8, see
corollary (3.121). Its proof implicitly involves cylinders, which will be introduced in section 7.

(3.46) Proposition. If a category with cofibrations and weak equivalences fulfils the gluing axiom, then it
fulfils the excision axiom and the incision axiom.

Proof. We suppose given a category with cofibrations and weak equivalences C that fulfils the gluing axiom,
and we let

x Iy

X —Y

be a pushout rectangle in C such that f is a morphism and i is a cofibration in Ccog.
Since in the commutative cuboid

X' X'
X X f/
/
X/ f N Y/

v

X—Y

the quadrangles (X, X, X’ X') and (X,Y, X', Y’) are pushout rectangles, it follows that if f is a weak equiva-
lence, then f’ is a weak equivalence. Thus C fulfils the excision axiom.

2WALDHAUSEN uses the terminology category with cofibrations and weak equivalences [38, sec. 1.2]. Many authors call this just
a Waldhausen category.
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Moreover, since in the commutative cuboid

f

X—— X'

A

X —w X' i’
I f’ A
X —Y

<1

X— Y

the quadrangles (X, X', X, X’) and (X,Y, X', Y’) are pushout rectangles, it follows that if i is a weak equivalence,
then i’ is a weak equivalence. Thus C fulfils the incision axiom. O

(3.47) Proposition. We suppose given a category with cofibrations and weak equivalences C that fulfils the
excision axiom. Given n € Ny and weak equivalences wy: X — Yj in Ceor for k € [1,n], the coproduct

Irepn wet e n Xk = Liep,n Yo is a weak equivalence.

Proof. This is proven analogously to proposition (3.26)(b). O
(3.48) Proposition (cf. [30, lem. 1.2.1]). We suppose given a category with cofibrations and weak equiva-

lences C that fulfils the incision axiom or the excision axiom. Given n € Ny and acyclic cofibrations ix: X — Y
in Ceof for k € [1,n], the coproduct [, ¢y ikt Hyepr ) Xk = Lep,n Yo is an acyclic cofibration.

Proof. If C fulfils the incision axiom, this is proven analogously to proposition (3.26)(b). If C fulfils the excision
axiom, this follows from proposition (3.26)(b) and proposition (3.47). O

Gunnarsson’s cuboid lemma

The following lemma is purely category theoretic — we do not need the specific structure of a category with
cofibrations and weak equivalences. It will be used in proposition (3.50) and proposition (3.60).

(3.49) Lemma (Gunnarsson’s cuboid lemma, cf. [14, proof of lem. 7.4]). We suppose given a category C and
a commutative cuboid

in C such that (X3,Y7,X{,Y!) and (X»,Y3, X}, Y]) are pushout rectangles. Given a pushout C of hy and ¢y
and a pushout D of hy and g} in C, there exist unique morphisms C — X}, D — Yy, C — D such that the
following diagram commutes. Moreover, the quadrangles (X2, Y5, C, D) and (C, D, X},Y3) in this diagram are
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pushout rectangles.

f/
X1 - Yy
g1 9
X1 I Y; hb
}l2
C D
N I
h1 Xé e Yg
g2 95
X, f2 Yy
Proof. We let
g/
X, _n X! Yy, — Y/
g 5

X242>C’ and Yo —— D

be pushout rectangles. Moreover, we let k1: C' — X5 be the unique morphism with h} = fl’lk’l and go = gokq,
we let ko1 D — Yy be the unique morphism with hy = hyks and g5 = ghko, and we let f: C'— D be the unique
morphism with fog, = gof and f{hl, = kY f. Then we have

G2fka = fagoka = fags = g2fy = G2k fs,
Ry fka = fihaks = fihb = Wy f5 = Bika fs,

and therefore fko = k1 f}.

i

/ ’
Xi i
91 91
R
7’
f1 hy
X1 Y1 hy
hy
ha
C . D
ko fs ko
h1 Xé — }/2/
g2 5
92 95
f2
Xo Yo
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In the diagram above, (X1, Y7, X1,Y{) and (Y7,Y5,Y{, D) are pushout rectangles, whence (X1,Y2, X{,D) is a
pushout rectangle. Further, since (X1, X2, X{,C) and (X1,Y2, X1, D) are pushout rectangles, it follows that
(X2,Y5,C, D) is a pushout rectangle. Finally, as (X, Y32, C, D) and (Xa, Y3, X5, Y5) are pushout rectangles, we
conclude that (C, D, X},Y3) is a pushout rectangle. O

(3.50) Proposition. We suppose given an S-semisaturated category with cofibrations and weak equivalences C
that fulfils the excision axiom, and we suppose given a commutative cuboid

f

X1 Yy
1
91
f1
Xf ——mm% g5
92
./
2
g1 X — | — V!
2 2

s

X24]02—>Y2

in Ceof such that ¢, io and js are cofibrations and such that (X;,Y7, X],Y]) and (X, Ys, X}, Yy) are pushout
rectangles in C. If g1, g2, g; are weak equivalences, then so is gj.

Proof. We let

. -/
1 1
X, —e— X] Y] —e— Y/

g1 J Jg; 92 J Jg;
- =
K3

X, —e>C and Y,—e—D

be pushout rectangles. We let hy: C' — X} and ho: D — Yy and j: C — D be the unique morphisms such that
the following diagram commutes.

f1

/ /
Xl Yl
i1 i1
9
f g
1 2
X1 Y 95
’
91
. g2
J
¢ {
hl\‘ J2
g1 Xé g - Yg
ia
i2
J2
X2 d }/2

By Gunnarsson’s cuboid lemma (3.49), the quadrangles (X5, Y3, C, D) and (C, D, X}, Yy) are pushout rectangles.
In particular, j is a cofibration. As C fulfils the excision axiom, if g; resp. go resp. hy is a weak equivalence,
then g} resp. g5 resp. ho is a weak equivalence. Thus if g1, g2 and ¢} are weak equivalences, then §] and g5 are
weak equivalences, therefore hy is a weak equivalence by S-semisaturatedness, hence hs is a weak equivalence,
and finally ¢}, = g5hs is a weak equivalence by multiplicativity. O
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Cisinski cofibration categories and Brown cofibration categories

Now we can give the definitions of a Cisinski cofibration category and of a Brown cofibration category. For the
definition of a category with cofibrations and weak equivalences, see definition (3.30)(a), and for the definition
of semisaturatedness, see definition (1.37)(b), cf. also remark (3.7)(a).

(3.51) Definition (Cisinski cofibration category).

(a) A Cisinski cofibration category () is a semisaturated category with cofibrations and weak equivalences
that fulfils the factorisation axiom for cofibrations and the incision axiom.

(b) We suppose given Cisinski cofibration categories C and D. A morphism of Cisinski cofibration categories
from C to D is a morphism of categories with cofibrations and weak equivalences from C to D.

(c) We suppose given a Grothendieck universe 4. The full subcategory CisCofCat = CisCofCaty of
CatCW () with

Ob CisCofCat ) = {C € Ob CatCW ) | C is a Cisinski cofibration category}

is called the category of Cisinski cofibration categories (more precisely, the category of - Cisinski cofibration
categories). An object in CisCofCat g is called a U-Cisinski cofibration category, and a morphism in
CisCofCaty is called a U-morphism of Cisinski cofibration categories.

(d) The full subcategory CatW¢, = CatWg () of CatW (g with

Ob CatW(; (i) = {C € Ob CatW y | there exists C' C MorC such that C becomes a Cisinski
cofibration category with Cof C = C},

is called the category of categories with weak equivalences admitting the structure of a Cisinski cofibration
category (more precisely, the category of U-categories with weak equivalences admitting the structure of a
Cisinski cofibration category).

A category with cofibrations is said to fulfil the cofibrancy axiom, see definition (3.29), if all of its objects are
cofibrant.

(3.52) Definition (Brown cofibration category).
(a) A Brown cofibration category (*) is a Cisinski cofibration category C that fulfils the cofibrancy axiom.

(b) We suppose given Brown cofibration categories C and D. A morphism of Brown cofibration categories
from C to D is a morphism of categories with cofibrations and weak equivalences from C to D.

(c) We suppose given a Grothendieck universe . The full subcategory BrCofCat = BrCofCaty, of
CatCW(u) with

ObBrCofCat ) = {C € Ob CatCW | C is a Brown cofibration category}

is called the category of Brown cofibration categories (more precisely, the category of {-Brown cofibration
categories). An object in BrCofCat ) is called a {-Brown cofibration category, and a morphism in
BrCofCaty is called a U-morphism of Brown cofibration categories.

(d) The full subcategory CatWi, = CatWi, () of CatW ) with

Ob CatWg, () = {C € ObCatW y | there exists C' C MorC such that C becomes a Brown
cofibration category with Cof C = C'},
is called the category of categories with weak equivalences admitting the structure of a Brown cofibration

category (more precisely, the category of U-categories with weak equivalences admitting the structure of a
Brown cofibration category).

3CisiNsKI uses the terminology catégorie dérivable a droite (right derivable category) [9, sec. 2.22]. RADULESCU-BANU uses the
terminology (Anderson-Brown-Cisinski) precofibration category |30, def. 1.1.1].
4In the dual situation, K. BrowN uses the terminology category of fibrant objects [7, sec. 1, p. 420].
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There are other definitions of cofibration categories by several authors, which are more or less similar to those
of CISINSKI and BROWN. A precise comparison between some of them can be found in RADULESCU-BANU’S
manuscript [30, ch. 2].

Every Brown cofibration category is a Cisinski cofibration category by definition. On the other hand, we have:

(3.53) Remark. Given a Cisinski cofibration category C, the full subcategory of cofibrant objects Ceof is a
Brown cofibration category.

By a theorem of CISINSKI [9, prop. 1.8], which is a variant of a part of Quillen’s homotopy category theorem [28,
ch. I, sec. 1, th. 1], the homotopy category of a Cisinski cofibration category C and its full subcategory of cofibrant
objects Ccof are equivalent.

A zero-pointed Cisinski cofibration category is a zero-pointed category with cofibrations and weak equivalences
whose underlying category with cofibrations and weak equivalences is a Cisinski cofibration category, that is, a
Cisinski cofibration category together with a (distinguished) zero object. Likewise, a zero-pointed Brown cofi-
bration category is a zero-pointed category with cofibrations and weak equivalences whose underlying category
with cofibrations and weak equivalences is a Brown cofibration category, that is, a Brown cofibration category
together with a (distinguished) zero object.

5 Coreedian rectangles

In this section, we introduce coreedian rectangles and study their properties. They will occur in the construction
of a structure of a category with cofibrations on a diagram category, see definition (3.82)(a) and definition (3.88),
in the gluing lemma for cofibrations and acyclic cofibrations (3.61), as well as in several factorisation lemmata,
see for example the Brown factorisation lemma (3.113).

Definition of a coreedian rectangle

(3.54) Definition ((acyclicly) coreedian rectangle).

(a) We suppose given a category with cofibrations C. A Coreedy rectangle (or coreedian rectangle or coreedian
quadrangle) in C is a commutative quadrangle X in Ceof such that X (o) 0,1) is a cofibration and such
that there exists a pushout C' of X|_ in C such that the induced morphism

X000 \°
(xm,l),(l,n) (0= X

is a cofibration.

Xo,1

Xoo — Xip

(b) We suppose given a category with cofibrations and weak equivalences C. An acyclic Coreedy rectangle
(or acyclicly coreedian rectangle or acyclicly coreedian quadrangle) in C is a commutative quadrangle X
in Ceof such that X0y (0,1) is a cofibration and such that there exists a pushout C' of X|_ in C such that
the induced morphism

Xa.0.a. \C
<X(U,1),(1,1)) 1O = X(l’l)
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is an acyclic cofibration.

Xo,1

Xoo — Xipo

The definition of a coreedian rectangle is not symmetric. So if we say that a quadrangle (X1,Y7, X5,Y5) is
coreedian, then the morphism X; — X5 is meant to be a cofibration. However, we will sometimes be slightly
unprecise when we draw a quadrangle (which might occur from the data of another diagram) and say that this
quadrangle is coreedian. In this case, we will see which of the morphisms are cofibrations from the respective
situation.

(3.55) Remark. We suppose given a category with cofibrations C and a commutative quadrangle X in Ceof
such that X(g,0),(0,1) is a cofibration. Moreover, we suppose given a pushout C' of X|_in C.

c
a) If X is coreedian, then C is cofibrant and ( x 1) . ¢ = X4 is a cofibration.
X(0,1),(1,1) (1,1)

(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences. If X is

X(1,0),(1,1)

c
X(O,l),(l,l)) : C — X(1,1) is an acyclic cofibration.

acyclicly coreedian, then C is cofibrant and (

Proof.

(a) We suppose that X is coreedian, so that there exists a pushout C of X | in C such that C is cofibrant
o N

and (X“’o)’“’l’) : C = X(1,1) is a cofibration. Then (

X(0,1),(1,1) emb§’
fore a cofibration by the isomorphism axiom for cofibrations. In particular, C' is cofibrant. Moreover,

e
b¢ ~ . . .
emb ) : C' — (' is an isomorphism and there-

A\ C
C ~
(emblé> : C' — C'is a cofibration, and so

embg

N\ C ~
X000 \¢ _ ([ embf X0 \¢
Xon.an /) T\ emb§ X0,
is a cofibration by closedness under composition.
(b) This is proven analogously to (a). O

(3.56) Remark. We suppose given a category with cofibrations C and a commutative quadrangle X in Ceof.

(a) We suppose that X is coreedian. Then X(1,0),(1,1) is a cofibration. If, in addition, X g 0),(1,0) is a cofibration,
then X 1),(1,1) is a cofibration.

(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences that fulfils
the incision axiom. Moreover, we suppose that X is acyclicly coreedian. Then X(; o) (1,1) is an acyclic
cofibration. If, in addition, X (g ), (1,0) is an acyclic cofibration, then X g 1) (1,1) is an acyclic cofibration.

Proof.
(a) This follows from remark (3.25) and closedness under composition.
(b) This follows from the incision axiom and closedness under composition. O

(3.57) Remark. We suppose given a category with cofibrations C and a commutative quadrangle X in Ceof
such that X(g,0y,(0,1) i an isomorphism.

a) The quadrangle X is coreedian if and only if X(q gy (1.1) is a cofibration in C.
( K )7( K )
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(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences. The
quadrangle X is acyclicly coreedian if and only if X1 ¢y (1,1) is an acyclic cofibration in C.

Proof. This follows from remark (3.55) as

-1
X(o,o),(o,l)X(O,O),(LU)

Xo1) X(1,0
zw
X(0,0) X0
is a pushout rectangle in C. O

(3.58) Corollary.

(a) We suppose given a category with cofibrations C. A morphism i: X — Y in C.of is a cofibration if and
only if

i —e— Y

E

j—e— X

is a Coreedy rectangle.

(b) We suppose given a category with cofibrations and weak equivalences C. A morphism i: X — Y in Ceof is
an acyclic cofibration if and only if

is an acyclic Coreedy rectangle.

(3.59) Proposition. We suppose given a category with cofibrations C and a commutative diagram

X, f2 Y, g2 7,

in Ccof.

(a) If (X1,Y1, Xo,Ys) and (Y1, Z1,Ys, Zs) are coreedian rectangles, then (X7, 71, Xa, Z5) is also a coreedian
rectangle. If (X3, Xo,Y1,Ys) and (Y1, Ys, Z1, Zs) are coreedian rectangles, then (X1, Xy, Z1, Z5) is also a
coreedian rectangle.

(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences that
fulfils the incision axiom. If (X7,Y7, X5,Y5) and (Y3, Z1,Ys, Z5) are acyclicly coreedian rectangles, then
(X1, Z1, X2, Z3) is also an acyclicly coreedian rectangle. If (X7, X5,Y7,Y>) and (Y1, Ya, Z1, Z5) are acyclicly
coreedian rectangle, then (X, Xo, Z1, Z5) is also an acyclicly coreedian rectangle.
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Proof.

(a) We suppose that (X1,Y1,X»,Y2) and (Y1, Z21,Y5,Z5) or that (X1, X5,Y1,Y2) and (Y1,Ys,Z1,Z5) are
Coreedy rectangles, so that there exist pushout rectangles

f/ !
Xy —— () Y, SN Cs
f1 g1

Xl — Yl and Y1 E— Z1

in C such that C; and Cs are cofibrant and such that the unique morphism i;: C7 — Y3 with he = hjiy
and fy = fii; and the unique morphism i5: Cy — Z5 with hy = hbis and go = gis are cofibrations.

X, f2 Y, g2 Z
fi Cl 91 C2
h1 ha hs
hi hiy
X, f1 v g1 7

Moreover, as fig; or hi is a cofibration, there exists a pushout rectangle

X, — ¢

hl‘ M

X, fig Z

in C such that C is cofibrant. Since hik = fig1hY, there exists a unique morphism ¢{': C; — C with
k= fig{ and g1h} = higy.

k

/\
Xgﬁcl > C

f1 !Ji/

X, RN Y, 9 Z
As (X1,Y1,X5,C1) and (X3, 71, Xo,C) are pushout rectangles, we conclude that (Y7,7;,C1,C) is a
pushout rectangle. So since hjiig] = hagi = gi1hb, there exists a unique morphism i: C — Cs with
1197 = g4'i and hh = hYi.

f2 g2
2
f1 Ol 91 02
) \ c k .

1"
91
hy h
ha

X

Y, Z

"
hl

X, f1 Y 91 7
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Since (Y1, Z1,C4,C) and (Y1, Z1, Ys, Cy) are pushout rectangles, it follows that (Cy, C, Ys, C3) is a pushout
rectangle. But then ¢ is a cofibration since i; is a cofibration. Finally, we have

.. NI /- /-
kiia = fig1ii2 = fli1g102 = fag2,
h’l/iig = h’2i2 = hg,

and iy is a cofibration as cofibrations are closed under composition. Thus (Xi, Z1, X, Z2) resp.
(X1,X2, Z1,Z5) is coreedian.

(b) This is proven analogously to (a). O

The gluing lemma for cofibrations and acyclic cofibrations

Next, we are going to prove the gluing lemma for cofibrations (3.61)(a) and the gluing lemma for acyclic cofibra-
tions (3.61)(b), which may be seen as the building blocks of the (ordinary) gluing lemma, see corollary (3.121)
and its proof.

(3.60) Proposition. We suppose given a category with cofibrations C and a commutative cuboid

f/
X! : Y/
i// i
f
X — Y A
‘/gi
92
’ f2 ’
91 X5 — Y
7/ ib
X2 # Y2

in Ceor such that i1 and iy are cofibrations and such that (Xi,Y7, X}, YY) and (Xs,Ys, X5,YS) are pushout
rectangles.

(a) If (X1, X2, X], X}) is coreedian, then (Y7, Y2,YY,Yy) is also coreedian.

(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences that
fulfils the incision axiom. If (X7, X5, X7, X}) is acyclicly coreedian, then (Y7,Ys,Y!,Yy) is also acyclicly
coreedian.

Proof.

(a) We suppose that (X1, Xo, X}, X}) is a Coreedy rectangle, so that there exists in particular a pushout C
of g1 and 4; that is cofibrant. Moreover, as 4] is a cofibration, there exists a pushout D of g, and ¢} that
is cofibrant. By Gunnarsson’s cuboid lemma (3.49), the following quadrangle, where f: C' — D is the
unique morphism on the pushouts induced by fi, fa, fi, is a pushout rectangle in C.

C$>D

@y @)

/ 2 /
X2 Y2

. \C \D
So as (;3) is a cofibration, it follows that (;’7‘) is also a cofibration by remark (3.25). Thus the
2

1

quadrangle (Y7,Y5,Y7,Yy) is coreedian.

(b) This is proven analogously to (a). O
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(3.61) Corollary (gluing lemma for (acyclic) cofibrations). We suppose given a category with cofibrations C
and a commutative cuboid

XI f{ Y/
1 1
/ g
f1
Xl Y] gé
’
91
g2
I
g1 X} Yy

P

Xo——mm—'Y,
in Ceor such that ¢; and iy are cofibrations and such that (Xi,Y7, X],YY) and (Xs,Ys, X5,Y5) are pushout
rectangles.

(a) If g1 and g9 are cofibrations and (X7, X5, X1, X5) is coreedian, then g and ¢} are cofibrations and
(Y1,Y2,Y],Yy) is coreedian.

(b) We suppose that C carries the structure of a category with cofibrations and weak equivalences that fulfils
the incision axiom. If g; and go are acyclic cofibrations and (X7, X, X1, X}) is acyclicly coreedian, then g}
and g} are acyclic cofibrations and (Y7, Y3, Y/, Yy) is acyclicly coreedian.

Proof.
(a) This follows from proposition (3.60)(a) and remark (3.56)(a).
(b) This follows from proposition (3.60)(b) and remark (3.56)(b). O

Alternative proof for proposition (3.26)(b). For n = 2, the assertion follows from corollary (3.58)(a) and the
gluing lemma for cofibrations (3.61)(a).

embo
Xog ——— X7 I X5

140—))(1 i1Hi2

cmbg

— Y1 II Y2
iniy, %bl
iniy;
j————— Y1)
For n € Ny arbitrary, the assertion follows by induction. O

Analogously, the gluing lemma for acyclic cofibrations (3.61)(b) yields an alternative proof for proposition (3.48).

Coreedian rectangles and coproducts

(3.62) Proposition. We suppose given a category with cofibrations C and a commutative quadrangle

(%)

X I X, —24 X

hlL[th Jh
(91

ViIY, -2V
in Ceor with X7, X5, Y7, Y5 cofibrant.
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(a)

CHAPTER III. COFIBRATION CATEGORIES

If hy is a cofibration and (X7 II X5,Y; I Y3, X,Y) is a coreedian rectangle, then (X;,Y:,X,Y) is a
coreedian rectangle. If hy and ho are cofibrations and (X; II X5, X, Y7 I1 Y5,Y) is a coreedian rectangle,
then (X1, X,Y1,Y) is a coreedian rectangle.

x, - x

hll Jh

vy, .y

We suppose that C carries the structure of a category with cofibrations and weak equivalences that fulfils
the incision axiom. If ho is an acyclic cofibration and (X; IT X5,Y; I Y3, X,Y) is an acyclicly coreedian
rectangle, then (X;,Y7,X,Y) is an acyclicly coreedian rectangle. If h; is a cofibration, hs is an acyclic
cofibration and (X7 II X5, X, Y7 I1 Y5,Y) is an acyclicly coreedian rectangle, then (X7,X,Y7,Y) is an
acyclic coreedian rectangle.

Proof.

(a)

(b)

We suppose that hs is a cofibration, so that

iniy
i —e— Y5

is a coreedian rectangle. As the cuboid

emboy
X X1 I Xy
ini)/ enll/
inix,
> X, ha I ho
ha
h1

commutes, (X1,Y7, X1 I X5, Y; 1TY5) is coreedian by proposition (3.60)(a). This coreedian quadrangle fits
into the following commutative diagram.

embq (g)
X1 — X1 HXQ — X

Jhl Jhl I ho Jh
emb; (gl

Y, —es V11V, —25 Y
So if (X1 II X5,Y; 11 Y, X|Y) is coreedian, then (X;,Y7,X,Y) is coreedian by proposition (3.59)(a).
Moreover, if hy is a cofibration and (X7 IT X, X, Y1 I[1Y>,Y) is coreedian, then (X7, X; IT X5,Y7,Y; 11Y3)
is coreedian, whence (X1, X,Y7,Y) is coreedian by proposition (3.59)(a).

This is proven analogously to (a). O
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(3.63) Corollary. We suppose given a category with cofibrations and weak equivalences C and a commutative
diagram

XIL)YI‘;Yl

ng Jflz ng
fz 'Uf/

X24’1~/2‘7Y2

[vl ‘52 ]"Ug
Xo L 172 ‘72 Y,

in Ceof such that (J!) and (2) are cofibrations and such that

(4)um(s)

(Xl HYl)H(XQHY2)40—>Y1H1/2

(z;ﬁzg)J (%) l(iz)

XY, — oY)

is a coreedian rectangle.

(a)

(b)

()

(d)

The following quadrangle is coreedian.

(X1 11 X5) 11 (Y3 11 Yz) Y, 1Y,
(ii)H(ié)J (4) l(i;)
XpIY] —et ¥y

The following quadrangles are coreedian.

G (%)

X1HY140—>Y1 XQHYQ"—)Y‘Q
g1 HQQJ (fé> J/572 U1 ]_[UzJ/ (fé) J/f)g
X}V ~e5 V) X)1Y) —e5 V)

If go resp. g1 resp. vo resp. vy is a cofibration, then (X1,X},Y1,Y)) resp. (Y1,Y4,Y1,Y)) resp.
(XQ,XQ,YQ,YQ) resp. (YQ,YQ,YQ,YQ) is coreedian.

If g1 and gs are cofibrations, then g- is a ~coﬁbration. If v1 and vy are cofibrations, then ¥5 is a cofibration.
If (3!) and (92) are coﬁbratlons then (gz) is a cofibration.

Proof.

(a)

This holds as the quadrangles ((X; 1Y) IT (X5 I Y3), Y3 IT Ya, X5 LT VY, ¥3) and ((X; 11 X,) 1T (Y1 11 Y3),
Y1 1Y, X, 1YY, Y)) are isomorphic.

This follows from proposition (3.62).

This follows from (b) and proposition (3.62).

If g1 and g are cofibrations, then g; I g, is a cofibration by proposition (3.26)(b), and so g» is a cofibration
by remark (3.56)(a) as the rectangle (X, 1Yy, X5 1Yy, ¥1,Yy) is coreedian by (b).

Analogously, if v; and v are cofibrations, then v IT vy is a cofibration, and so ¥y is a cofibration by (b)
and remark (3.56)(a).

Finally, if (7!) and ($?) are cofibrations, then (J!) I (2) is a cofibration, and so (gz) is a cofibration

by (a) and remark (3.56)(a). O
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The Coreedy approximation lemma and the factorisation lemma

Given a category with cofibrations and weak equivalences that fulfils the factorisation axiom for cofibrations,
every morphism is a cofibration up to an approximation by a weak equivalence, see definition (3.40). This
generalises to commutative quadrangles in the following sense:

(3.64) Lemma (Coreedy approximation lemma). We suppose given a category with cofibrations and weak
equivalences C that fulfils the factorisation axiom for cofibrations and a commutative quadrangle

X14]:1—>Y1

glJ JQQ
f2
X2 — Y2

in C such that X7, X5, Y; are cofibrant and such that f; is a cofibration. Then there exist a cofibration
fg Xo — Yg, a morphism go: Y7 — Y2 and a weak equivalence w: Y2 — Y5 such that the diagram

f1

X1 ——Y;

Cw
. fa
X, ———— Y

in C commutes and such that (X7, X2, Y7, 172) is coreedian.

Proof. By the pushout axiom for cofibrations, there exists a pushout rectangle

X, vy

gll Jg{
f
X9 —e—C
in C such that C is cofibrant. Since the quadrangle (Xi,Y7, X5,Y2) commutes, there exists a unique mor-

phism h: C' — Y3 such that fo = f{h and go = g} h. Moreover, as C fulfils the factorisation axiom for cofibrations
and C is cofibrant, there exist a cofibration i: C' — Y, and a weak equivalence w: Yy — Y with h = jw.

X, A Y,
91
91 g2
C : : > 5}2
A S
ROl
f o
X, 2 a Y,

Setting fo := fi and §o := g¢}i yields the assertion. O
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(3.65) Lemma (factorisation lemma, cf. [30, lem. 1.3.3(1)]). We suppose given a category with cofibrations
and weak equivalences C that fulfils the factorisation axiom for cofibrations.

(a) We suppose given morphisms fli X1 — Yl, f25 Xg — }/2, g1: X1 — XQ, gz: Y1 — Y2 in C with Xl, Xg
cofibrant and such that figs = g1 fs.

Given a cofibration i;: X7 — Y1 and a weak equlvalence wy: Y1 — Y; with f1 = 1w, there exist a
cofibration i5: Xo — Yg, a weak equivalence ws: Yg — Y5 and a morphism go: Y1 — Y2 such that the

diagram

i @ Coaw
iz ® Qw2

f2 i

X, — 2 v

commutes and such that (X7, Xo, Y, Yg) is a coreedian rectangle.

(b) We suppose that C is T-semisaturated. Moreover, we suppose given morphisms f1: X7 — Y7, fo: Xo — Yo,
5 X5 — Yy and S-2-arrows (g1,u1): X1 — X§ « Xa, (g2,u2): Y1 — Yy < Yy in C with X3, Xo, X}
cofibrant and such that f1go2 = ¢1f4 and fous = uy f5.

Given cofibrations i1: X; — 371, ia: Xy — Ys and weak equivalences wy : Y, — Y1, wa: Y, — Y, with
f1 =d1w; and fy = iswy, there exist a cofibration i : X} — }72’, a weak equivalence w: 372' — Y5 and an
S-2-arrow (g, s): Y1 — Yy < Y3 such that the diagram

g2
g1 Yy g2
oA
g -
2 QW2
D¢ —Y!
2 2
QU2
ul | Y, Q| u2
% NN

fa

Xo—— Y
commutes and such that the following quadrangle is coreedian.

i1 I ig

XXy, —e>Y 1Y,

(2 J ) l(ié)

X5 Y;
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Proof.

(a) Since ;w192 = f1g2 = g1f2, the Coreedy approximation lemma (3.64) yields a cofibration iz: Xo — Ya, a
morphism go: Y7 — Y5 and a weak equivalence ws: Yo — Y5 such that the diagram

11 ~
Xy ——Y
g2 .
g1 - = wi1g2

€
19 .7
. L wa
e M

Xy ——— Y,

commutes and such that the quadrangle (X7, Xo, Y1, }72) is coreedian.

(b) By proposition (3.26)(b), the coproduct i; Tig: X IT Xy — Y1 I1 Y3 is a cofibration. Since

(i Wiz) (32) = (i) = (f2) = (0%) = @) £,

w1 fy

the Coreedy approximation lemma (3.64) yields a cofibration i} : X} — }72’, a morphism ( gz ) V411, — }72’

and a weak equivalence w): Y — YJ such that the diagram

i1 I g

X1 Xy —e—— Y11V,

commutes and such that (X, IT X5, X7, f’l I f’g, }72’) is a coreedian rectangle. The morphism s is a weak
equivalence in C by T-semisaturatedness.

Y;
/ NG
f1
X — Y
g2
g1 2’ g2

Xg ——mmMMM Y, O

As an application of the factorisation lemma, we show that the gluing axiom and the excision axiom are
equivalent under certain additional conditions.

(3.66) Proposition. We suppose given an S-semisaturated category with cofibrations and weak equivalences C
that fulfils the factorisation axiom for cofibrations. Then C fulfils the gluing axiom if and only if it fulfils the
excision axiom. In particular, if C fulfils the excision axiom, then it fulfils the incision axiom.
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Proof. If C fulfils the gluing axiom, then it fulfils the excision axiom by proposition (3.46). So we suppose
conversely that C fulfils the excision axiom, and we suppose given a commutative cuboid

in Ceor such that i1, iy are cofibrations, g1, g2, g7 are weak equivalences, and such that (Xi,Y7, X{,Y!) and
(X2,Y5, X}, Y]) are pushout rectangles. By the factorisation axiom for cofibrations and the factorisation
lemma (3.65)(a), there exist cofibrations ji: Xj — Y}, and weak equivalences wy: Yy — Yj for k € {1,2}
and a morphism go: Y1 — Y5 with f1 = jiw1, fa = jawe, j1G2 = g1Jj2, w192 = Jaw2.

Y1
.1 .
jl‘ ' :\\‘wl
. f] e
Xl E— Yl
Qg2
g1|Q Y> 2| 92
.‘l .
jg_ ., %_’LUZ
. f2 Ey
Xo Y
Next, we let
/ g1 v/ / g i
Xl Yl X2 }/2
i1 % % i 2 % %Elz

X14J3—>1~/1 and XQ—JOQ—>1~/2

be pushout rectangles. Since fii) = ixf;, for k € {1,2}, there exists a unique morphism wy,: }N/k’ — Y} with
f1. = jrwy, and wyiy, = i wy, for k € {1,2}.

fl £
1 i 1 2 g 2
X/ e Y/ N Y/ X/ e Y/ N Y/
1 1 1 2 2 2
J1 ~ w1 J2 ~ w2
Xy ——Y — Y Xg—o— Yy —— Yy

As (Xy, Yi, X;, V() and (X, Yz, X}, Y{) are pushout rectangles for k € {1,2}, it follows that (Y, Y, Y}, Y}) is
a pushout rectangle for k € {1,2}, and hence w} and w} are weak equivalences by the excision axiom.
Moreover, since (X1,Y7, X1,Y/) is a pushout rectangle, there exists a unique morphism g5: Y/ — Y; with
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VY Y T B T AT P N
91J2 = J192, G2is = 1G5 and Gows = wigs.

.7 ’
J1 ~, wy
/ ~ / /
X1 . Yy ~ Yy
J1 g w1
X1 —— Y — Y] g5
2| g} a5
Q| g2 | 92
! g2 v/ W2 /
|9 X5 —eo— Y, — Y,
% # i
J2 g w2
X2 \d YVQ Y2

By proposition (3.50) it follows that g} is a weak equivalence and therefore that g4 is a weak equivalence by
S-semisaturatedness. Thus C fulfils the gluing axiom.

Altogether, C fulfils the gluing axiom if and only if C fulfils the excision axiom. In particular, if C fulfils the
excision axiom, then C fulfils the incision axiom by proposition (3.46). O

6 Some structures on diagram categories

In this section, we show how structures of categories with weak equivalences and categories with cofibrations
on a diagram category can be inherited from such a respective structure on the base category. We essentially
follow RADULESCU-BANU [30, sec. 9.2, but we use a slightly more general definition of a Reedy cofibration in
our particular context, see definition (3.82).

Given categories C and S, we denote by C° = Cgat the category of S-commutative diagrams in C (that is, the
category of functors from S to C).

Pointwise weak equivalences

First, we introduce the pointwise structure of a category with weak equivalences, see definition (3.1)(a), on a
diagram category.

(3.67) Definition (pointwise weak equivalence). We suppose given a category with weak equivalences C and
a category S. A morphism of S-commutative diagrams w: X — Y in C is called a pointwise weak equivalence
if wg: X — Y} is a weak equivalence in C for every k € Ob S.

(3.68) Remark. Given a category with weak equivalences C and a category S, then C° becomes a category
with weak equivalences having

WeC® = {w € MorC? | w is a pointwise weak equivalence}.

Proof. This follows from proposition (1.42)(a), (b). O

(3.69) Definition (pointwise structure). Given a category with weak equivalences C and a category S, we
denote by C° = Cgtw the category with weak equivalences whose underlying category is C° and whose set of

weak equivalences is
We Cgtw = {w € MorC® | w is a pointwise weak equivalence}.

The structure of a category with weak equivalences of C3. is called the pointwise structure (of a category with

ptw
weak equivalences) on C°.

(3.70) Remark. We suppose given a category with weak equivalences C and a category S. If C is semisaturated,
then so is C°.

Proof. This follows from proposition (1.42)(c). O
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Restriction functors and the diagram functor

(3.71) Remark. We suppose given a category with weak equivalences C and a category S.

(a) For every subcategory U of S, the restriction functor (—)|y: C¥ — CY is a morphism of categories
with weak equivalences. In particular, there exists a unique functor Ho (—)|y: HoC® — HoCY with

1oc™°€” 6 (=) |y = Ho (=)|y o loc™€”.

(b) For every object k in S, the evaluation functor —: C® — C is a morphism of categories with weak

equivalences. In particular, there exists a unique functor Ho —;: HoC® — HoC with locteC o - =

S
Ho —j, o loct°¢" .

(3.72) Notation. We suppose given a category with weak equivalences C and a category S.
(a) Given a subcategory U of S, we abuse notation and write
()|v := Ho (=)|y: HoC® — HoCY.
In particular, we write ¢|y = (Ho (—)|r)¢ for every morphism ¢: X — Y in HoC?.
(b) Given an object k in S, we abuse notation and write
—p :=Ho—4: HoC® — HoC.
In particular, we write ¢ = (Ho —)¢ for every morphism ¢: X — Y in HoC®.

Given a category with weak equivalences C and a category S, the homotopy category of the diagram cat-
egory HoC® and the diagram category on the homotopy category (HoC)® are, in general, not equivalent.
However, every object in HoC?®, that is, every S-commutative diagram in C, yields an S-commutative diagram
in HoC, that is, an object in (HoC)®, by pointwise application of the localisation functor loc: C — HoC. More
precisely, we obtain a canonical functor between both categories as described in the following remark.

(3.73) Remark. We suppose given a category with weak equivalences C and a category S. There exists a
S
unique functor dia: HoC® — (HoC)® with (loc™®¢)% = dia o loc™°¢".

S (locH®€)S g
C° — (Ho()
locHo¢® J dia

Ho(C*

Proof. We suppose given a pointwise weak equivalence of S-commutative diagrams w: X — Y in C. Then
wg: X — Yy is a weak equivalence in C and therefore loc(wg): Xx — Yj is an isomorphism in HoC for
every k € Ob S. But this means that (loc™®¢)%w is an isomorphism in (HoC)®.

So (loc°€)S: ¢5 — (HoC)S maps weak equivalences in C° to isomorphisms in (HoC)®, and the assertion
follows from the universal property of HoC®. O

(3.74) Definition (diagram functor). We suppose given a category with weak equivalences C and a category S.

The unique functor dia = diag: HoC® — (HoC)S with (loc™°¢)S = diao locH°C” is called the diagram functor
with respect to S.

(3.75) Remark. We suppose given a category with weak equivalences C and a category S. For an S-commu-
tative diagram X in C, we have

dia(X), = X

for every k € Ob S and
dia(X), = loc™¢(X,)

for every a € Mor S. For a morphism of S-commutative diagrams f in C, we have
dia(loc™ €’ ()i = loc™°C(f,)

for every k € Ob S.

We will see examples of full and dense diagram functors in proposition (5.53).
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Pointwise cofibrations

Like we did with pointwise weak equivalences, we can turn a diagram category into a category with cofibrations,
see definition (3.14)(a), using pointwise cofibrations.

(3.76) Definition (pointwise cofibration). We suppose given a category with cofibrations C and a category S.

(a) A morphism of S-commutative diagrams i: X — Y in C is called a pointwise cofibration if ix: X — Yi
is a cofibration in C for every k € Ob S.

(b) An S-commutative diagram X in C is said to be pointwise cofibrant if it is cofibrant with respect to
{i € MorC® | i is a pointwise cofibration}.

(3.77) Remark. We suppose given a category with cofibrations C and a category S. An S-commutative
diagram X in C is pointwise cofibrant if and only if X}, is cofibrant for every k € Ob S.

(3.78) Proposition. Given a category with cofibrations C and a category S, then C* becomes a category with
cofibrations having

Cof €% = {i € MorC® | i is a pointwise cofibration}.

Proof. We set C := {i € MorC® | i is a pointwise cofibration}. In the following, we verify the axioms of a
category with cofibrations.

The category C° has an initial object I given by I}, = i€ for k € Ob S and by I, = Lic for every morphisma: k — [
in S. Moreover, I is pointwise cofibrant as 17 = inif: I — I is a pointwise cofibration.

The closedness under composition of C' in C* is proven analogously to proposition (1.42)(a).

To show the isomorphism axiom for cofibrations, we suppose given an isomorphism f: X — Y in C° such that X
is pointwise cofibrant. Then f;: X — Y is an isomorphism and X is cofibrant in C for every k € Ob S. So
since C fulfils the isomorphism axiom for cofibrations, it follows that fr: X — Y is a cofibration in C for
every k € Ob S, that is, f: X — Y is a pointwise cofibration.

To show the pushout axiom for cofibrations, we suppose given a morphism f: X — Y and a pointwise cofibra-
tion i: X — X’ of S-commutative diagrams in C such that X, Y, X’ are pointwise cofibrant. As C fulfils the
pushout axiom for cofibrations, there exists a pushout of f and 7, for every k € Ob.S. We obtain an object Y’
and morphisms f': X’ - Y’,7:Y — Y’ in C¥, where

f/
X, —- v,

Jr

X, — Y,

is a pushout rectangle in C for every k € Ob S, and where Y, : Y — Y/ for a morphism a: k — [ in S is the
unique morphism in C such that X} f/ = f.Y. and Y,i; = i}.Y,. But then the quadrangle

X/ L) Y/

X —Y

is a pushout rectangle in C® and 4’ is a pointwise cofibration.
Altogether, C° becomes a category with cofibrations having Cof C® = C. O

(3.79) Definition (pointwise structure). We suppose given a category S.

(a) Given a category with cofibrations C, we denote by C° = C3

btw the category with cofibrations whose

underlying category is C° and whose set of cofibrations is

Cof C3

Stw = 11 € Mor C® | i is a pointwise cofibration}.
s

The structure of a category with cofibrations of Cp,

is called the pointwise structure (of a category with
cofibrations) on C%.
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(b) Given a category with cofibrations and weak equivalences C, we denote by C° = C5

otw the category with

cofibrations and weak equivalences whose underlying category is C°, whose underlying structure of a
category with cofibrations is the pointwise structure of a category with cofibrations on C°, and whose
underlying structure of a category with weak equivalences is the pointwise structure of a category with
weak equivalences on C°. The structure of a category with cofibrations and weak equivalences of letw is
called the pointwise structure (of a category with cofibrations and weak equivalences) on C.

(3.80) Remark. We suppose given a category with cofibrations C and a category S. If C fulfils the cofibrancy
axiom, then so does C°.

(3.81) Remark. We suppose given a category with cofibrations and weak equivalences C and a category S.
If C fulfils the incision axiom, then so does C°.

Proof. This is proven similarly to the verification of the pushout axiom for cofibrations in proposition (3.78). O

Reedy cofibrations

Next, we introduce a sort of cofibrations on a diagram category that are a bit more complicated to define.
For the purpose of this thesis, it suffices to consider the particular case where the shape category is given
by S = A™ for some n € Ny, and so we restrict our attention to this case. A more general Reedy theory for
Cisinski cofibration categories, where S may be a so-called finite directed category, can be found in the work
of RADULESCU-BANU [30, ch. 9]. However, the Reedy cofibrations defined here are slightly more general than
those of [30, def. 9.2.2(1)(b)] as we do not require a Reedy cofibration to have a Reedy cofibrant source object.

(3.82) Definition (Reedy cofibration). We suppose given a category with cofibrations C and an n € Ny.

(a) A morphism of A"-commutative diagrams i: X — Y in C is called a Reedy cofibration if X and Y are
pointwise cofibrant, if ig: Xg — Yj is a cofibration in C, and if (Xj_1, X, Ys—1, Y%) is a coreedian rectangle
in C for k € A™\ {0}.

(b) A A™-commutative diagram X in C is said to be Reedy cofibrant if it is cofibrant with respect to
{i € MorCA" | i is a Reedy cofibration}.

(3.83) Remark. We suppose given a category with cofibrations C and an n € Ny. An S-commutative dia-
gram X in C is Reedy cofibrant if and only if X is cofibrant and Xj_1 j is a cofibration in C for k € A™ \ {0}.

Proof. First, we suppose that X is Reedy cofibrant, that is, there exists an initial object I in CA" such that
ini&: I — X is a Reedy cofibration. In particular, X is pointwise cofibrant, and so X is cofibrant in C.
I

Moreover, for k € A™ \ {0}, the morphism I j = ini;
(Tg—1, Iy Xt—1, Xk) is coreedian.

" is an isomorphism, and so Xj_; i is a cofibration as

Iy I,

I
1y,
, lnlxk/ I
k=1 iniyk

ini
Xg—1 X Xk
k

= 71\

Xk-1

Xy

Conversely, we suppose that X is cofibrant and that Xj_qj is a cofibration for kK € A™ \ {0}. Then X is
pointwise cofibrant by induction. Moreover, it is Reedy cofibrant as we have an initial object I in C2" given
by I = i€ for k € A™ and by Iy = 1,c for all k,1 € A" with k& < 1. O]

(3.84) Remark. We suppose given a category with cofibrations C and an n € Ny. Every Reedy cofibration of
A™-commutative diagrams in C is a pointwise cofibration. In particular, every Reedy cofibrant A™-commutative
diagram in C is pointwise cofibrant.

Proof. This follows from remark (3.56)(a) by an induction on n. O

(3.85) Remark. We suppose given a category with cofibrations C and an n € Ny. Every isomorphism of
A"-commutative diagrams in C with pointwise cofibrant source object is a Reedy cofibration.
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Proof. We suppose given an isomorphism of A”-commutative diagrams f: X — Y in C such that X is pointwise
cofibrant. Then f is a pointwise cofibration by the isomorphism axiom for cofibrations for Cﬁz\,. So in particular,
Y is pointwise cofibrant and fo: Xo — Yo is a cofibration. Moreover, (Xy_1, Xk, Yi—1,Ys) is coreedian for

k € A"\ {0} by remark (3.57)(a). O
(3.86) Proposition. We suppose given a category with cofibrations C and an n € Ny.

(a) We suppose given a morphism f: X — Y and a Reedy cofibration of A™-commutative diagrams i: X — X’
in C such that X, Y, X’ are pointwise cofibrant. Then there exists a pushout rectangle

XI L) Yl

X —Y
in CA".
(b) We suppose given a pushout rectangle

X/L)Y/

X —Y

in C2" such that X, Y, X’ are pointwise cofibrant and such that i: X — X’ is a Reedy cofibration of
A"-commutative diagrams in C. Then i': Y — Y’ is a Reedy cofibration of A”-commutative diagrams

in C.
Proof.

(a) Every Reedy cofibration is a pointwise cofibration by remark (3.84), so a pushout rectangle exists as Cgtw
fulfils the pushout axiom for cofibrations.

(b) By remark (3.84), i is a pointwise cofibration, and so ¢’ is a pointwise cofibration by remark (3.25). So
in particular, Y’ is pointwise cofibrant and ij: Yo — Y is a cofibration. Moreover, for k € A™ \ {0}, the
coreedianess of (Xp_1, Xx, X},_, X)) implies the coreedianess of (Yj,_1, Y%, Y} _,,Y)) by proposition (3.60),
whence i': Y — Y’ is a Reedy cofibration.

fre
X, — i,
i,/ ’%/1/
Xp—1 k i i1
f/
X! Y/
fr
X Yy O

(3.87) Proposition. Given a category with cofibrations C and an n € Ny, then C2" becomes a category with
cofibrations having

Cof C2" = {i € MorC?" | i is a Reedy cofibration}.
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Proof. We set C' := {i € Mor cA" | i is a Reedy cofibration}. In the following, we verify the axioms of a category
with cofibrations.

The category C2" has an initial object I given by I, = {€ for k € A" and by Iy = lic for all k,1 € A™ with k <.
Moreover, I is Reedy cofibrant as Iy = i€ is cofibrant and Ix—1, = 1l is a cofibration in C for k € A\{O}.

To show that C' is closed under composition, we suppose given Reedy cofibrations of A™-commutative diagrams
i: X =Y, 5:Y = ZinC, so that X, Y, Z are pointwise cofibrant, ig: Xo — Yy, jo: Yo — Zy are cofibrations
in C, and (Xp—1, Xk, Yi—1,Yx), (Yi—1,Ys, Zk—1,Zk) are coreedian rectangles in C for k € A™\ {0}. But then
t0jo: Xo — Zp is also a cofibration in C by the multiplicativity of Cof C, and (Xx—1, Xk, Zx—1, Z) is a coreedian
rectangle in C for k € A™ \ {0} by proposition (3.59)(a). Hence ij: X — Z is a Reedy cofibration.

X1 —— X

Yeoi — Y3

= b

L1 — Ly,

Finally, the isomorphism axiom for cofibrations follows from remark (3.85), and the pushout axiom for cofibra-
tions follows from proposition (3.86). O

(3.88) Definition (Reedy structure). We suppose given an n € Nj.

(a) Given a category with cofibrations C, we denote by Cﬁ:cdy the category with cofibrations whose underlying
category is C2" and whose set of cofibrations is

Cof Cﬁ:edy = {i € MorC?" | i is a Reedy cofibration}.

The structure of a category with cofibrations of CReedy is called the Reedy structure (of a category with

cofibrations) on C2".

(b) Given a category with cofibrations and weak equivalences C, we denote by Cﬁgédy the category with

cofibrations and weak equivalences whose underlying category is C2", whose underlying structure of a
category with cofibrations is the Reedy structure of a category with cofibrations on C2", and whose
underlying structure of a category with weak equivalences is the pointwise structure of a category with
weak equivalences on C2". The structure of a category with cofibrations and weak equivalences of Cf%:edy

is called the Reedy structure (of a category with cofibrations and weak equivalences) on CA".

(3.89) Remark. We suppose given a category with cofibrations and weak equivalences C and an n € Ny. If C
fulfils the incision axiom, then so does CReedy

Proof. This follows from proposition (3.86)(b) and remark (3.81). O

(3.90) Proposition. We suppose given a category with cofibrations and weak equivalences C that fulfils the fac-
torisation axiom for cofibrations, and we suppose given a morphism of A™-commutative diagrams f: X — Y for
some n € Ny. Moreover, we suppose given a Reedy cofibration of A™-commutative diagrams iyes: X|am — }N/res
and a pointwise weak equivalence of A™-commutative diagrams wyes: f’res — Y|am in C for some m € Ny
with m < n such that f|am = 4restres. Then there exist a Reedy cofibration of A™-commutative dia-
grams i: X — Y and a pomtw1se weak equivalence of A™-commutative diagrams w: Y — Y in C such that

fres = t|am, Wres = W|am and f =
X, . Xm . X,
7;ree‘,/[)/ res m in_,
~ - B Lv.‘v
Y;es,O v ree m > Yn In

\ TR
w,& |f0 reg ~ {fm Wy
"

Yo Y,, Y,
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Proof. For m = n, there is nothing to show. For m = 0, n = 1, the assertion follows from the factorisation
lemma (3.65)(a). For m,n € Ny with m < n arbitrary, the assertion follows by an induction on n — m. O

(3.91) Corollary. We suppose given a category with cofibrations and weak equivalences C and an n € Ny. If C
fulfils the factorisation axiom for cofibrations, then so does Cﬁ:edy and Cﬁ:;,.

Proof. This follows from proposition (3.90) and remark (3.84). O

For the definition of a Cisinski cofibration category and of a Brown cofibration category, see definition (3.51)(a)
and definition (3.52)(a).

(3.92) Theorem. We suppose given a Cisinski cofibration category C and an n € Ny. Then Cﬁ;dy and CpAt:V
are Cisinski cofibration categories.

Proof. This follows from remark (3.70), remark (3.81), remark (3.89) and corollary (3.91). O

(3.93) Corollary. We suppose given a Brown cofibration category C and an n € Ny. Then Cﬁt:, is a Brown
cofibration category.

Proof. This follows from theorem (3.92) and remark (3.80). O

The Quillen structure on the category of spans

Now we consider the shape category S = L, that is, the full subposet of 0 = A! x Al with underlying set
{(0,0),(1,0),(0,1)}. Given a category C, the diagram category C- is called the category of spans in C. We
define a sort of cofibrations for the category of spans in a category with cofibrations that is a mixture of a
pointwise cofibration (on the restriction to {(0,0),(1,0)}) and of a Reedy cofibration (on the restriction to

{(0,0),(0,1)}).
(3.94) Definition (Quillen cofibration). We suppose given a category with cofibrations C.

(a) A morphism of spans i: X — Y in C is called a Quillen cofibration if it is a pointwise cofibration such
that i[((0,0),(0,1)} i3 a Reedy cofibration (via the poset isomorphism A' 2 {(0,0), (0,1)}).

(b) A span X in C is said to be Quillen cofibrant if it is cofibrant with respect to {i € MorC*- | i is a Quillen
cofibration}.

(3.95) Remark. We suppose given a category with cofibrations C. A span X in C is Quillen cofibrant if and
only if it is pointwise cofibrant and X(,0),(0,1) s a cofibration in C.

(3.96) Remark. Given a category with cofibrations C, then C- becomes a category with cofibrations having
Cof C- = {i € MorC* | ¢ is a Quillen cofibration}.

Proof. We set A := {(0,0),(0,1)} and C := {i € MorC" | i is a Quillen cofibration}. In the following, we verify
the axioms of a category with cofibrations.

The category C- has an initial object I given by I}, = (¢ for k € L and by I} ; = lic for all k,l € L with k < [.
Moreover, I is Quillen cofibrant as it is pointwise cofibrant and (¢ ), 0,1) = 1;c is a cofibration in C.

To show that C'is closed under composition, we suppose given Quillen cofibrations of spansi: X - Y, j:Y = Z
in C. Then ¢ and j are pointwise cofibrations, and so ij is a pointwise cofibration. Moreover, i|a and j|a are
Reedy cofibrations, and so (ij)|a = i|a j|a is a Reedy cofibration. Thus ij: X — Z is a Quillen cofibration.
To show the isomorphism axiom for cofibrations, we suppose given an isomorphism f: X — Y in C- such that X
is Quillen cofibrant. Then X is pointwise cofibrant and therefore f is a pointwise cofibration. Moreover, X |a is
Reedy cofibrant and therefore f|a is a Reedy cofibration. Thus f is a Quillen cofibration.

To show the pushout axiom for cofibrations, we suppose given morphisms of spans f: X - Y, i: X — X' in C
such that X, Y, X’ are Quillen cofibrant and ¢ is a Quillen cofibration. Then X, Y, X’ are pointwise cofibrant
and 7 is a pointwise cofibration, and so there exists a pushout rectangle

X/L)Y/
|, ]
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in C- such that ¢ is a pointwise cofibration. But then in particular

f/
X'a 2 v,

iA‘ ]WIA
fla

X|A*>Y|A

is a pushout rectangle in C2, and so as X |a and Y|a are Reedy cofibrant and i|a is a Reedy cofibration, it
follows that i'|o is a Reedy cofibration. Thus ¢’ is a Quillen cofibration.
Altogether, C- becomes a category with cofibrations having Cof C- = C. O

(3.97) Definition (Quillen structure).

(a) Given a category with cofibrations C, we denote by CQuillen the category with cofibrations whose underlying
category is C- and whose set of cofibrations is

Cof Cquilien = {7 € MorC* | i is a Quillen cofibration}.

The structure of a category with cofibrations of Cge, is called the Quillen structure (of a category with
cofibrations) on C-.

(b) Given a category with cofibrations and weak equivalences C, we denote by CQuillen the category with
cofibrations and weak equivalences whose underlying category is C-, whose underlying structure of a
category with cofibrations is the Quillen structure of a category with cofibrations on C-, and whose
underlying structure of a category with weak equivalences is the pointwise structure of a category with
weak equivalences on C-. The structure of a category with cofibrations and weak equivalences of Cqjjen
is called the Quillen structure (of a category with cofibrations and weak equivalences) on C-.

(3.98) Remark. We suppose given a category with cofibrations and weak equivalences C. If C fulfils the
incision axiom, then so does Cgyjen-

Proof. This is proven similarly to the verification of the pushout axiom for cofibrations in remark (3.96). O

(3.99) Remark. We suppose given a category with cofibrations and weak equivalences C. If C fulfils the
factorisation axiom for cofibrations, then so does Cqijjen-

Proof. This follows from proposition (3.90). O

(3.100) Theorem. Given a Cisinski cofibration category C, then Cg ., is a Cisinski cofibration category.

Proof. This follows from remark (3.70), remark (3.98) and remark (3.99). O

The category of Coquillen rectangles

The Quillen cofibrant spans in a category with cofibrations C are precisely those spans in C that may be, by
the pushout axiom for cofibrations, by all means completed to a pushout rectangle. From the structure of a
category with cofibrations we now deduce a structure of a category with cofibrations on the category of these
particular pushout rectangles.

(3.101) Definition (category of Coquillen rectangles). We suppose given a category with cofibrations C. The
full subcategory C2J_ of C¥ with

coqu

obct . = {X € Ob ¢ | X is a pushout rectangle in C and X|_ is a Quillen cofibrant span in C}

coqu

is called the category of Coquillen rectangles (or the category of coquillenian rectangles) in C. An object in CCDOqu

is called a Coquillen rectangle (or coquillenian rectangle or coquillenian quadrangle) in C, and a morphism

in CE)qu is called a morphism of Coquillen rectangles (or a morphism of coquillenian rectangles).

(3.102) Definition (Quillen cofibration). We suppose given a category with cofibrations C. A morphism of

Coquillen rectangles i: X — Y in C is called a Quillen cofibration if it is a pointwise cofibration such that i|_
is a Quillen cofibration.
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(3.103) Remark. We suppose given a category with cofibrations C. Every Coquillen rectangle in C is cofibrant
with respect to {i € MorCL, |  is a Quillen cofibration}.

coqu

(3.104) Remark. We suppose given a category with cofibrations C and a Quillen cofibration of Coquillen
rectangles i: X — Y in C. Then i|¢,0y,(0,1)y and 4[{(1,0),(1,1)} are Reedy cofibrations.

Proof. This follows from definition (3.94)(a) and the gluing lemma for cofibrations (3.61)(a). O

(3.105) Remark. Given a category with cofibrations C, then € becomes a category with cofibrations having

coqu

Cof C'CjOqu = {i € Mor C'CjOqu | 7 is a Quillen cofibration}.
Proof. We set C := {i € Mor CcEcl)qu | ¢ is a Quillen cofibration}. In the following, we verify the axioms of a
category with cofibrations.

The category C'C:c')qu has an initial object I given by Iy = ¢ for k € O and by I;; = lic for k,1 € O with k& <.
Moreover, I is C-cofibrant by remark (3.103).

To show that C is closed under composition, we suppose given Quillen cofibrations of Coquillen rectan-
glesi: X =Y, 7:Y — Zin C. Then ¢ and j are pointwise cofibrations, and so ij is a pointwise cofibration.
Moreover, i|_ and j|_ are Quillen cofibrations, and so (ij)|_ = 4|_j|_ is a Quillen cofibration. Thus ij: X — Z
is a Quillen cofibration.

To show the isomorphism axiom for cofibrations, we suppose given an isomorphism f: X — Y in C(E’,qu. Then X
is pointwise cofibrant and therefore f is a pointwise cofibration. Moreover, X|_ is Quillen cofibrant and there-
fore f|_ is a Quillen cofibration. Thus f is a Quillen cofibration.

To show the pushout axiom for cofibrations, we suppose given morphisms of Coquillen rectangles f: X — Y,
i: X — X' in C such that ¢ is a Quillen cofibration. Then X, Y, X’ are pointwise cofibrant and 4 is a pointwise
cofibration, and so there exists a pushout rectangle

X/ L} Y/

X —Y
in CY such that i’ is a pointwise cofibration. But then

fl

X/‘L *’Y/‘L

i\_] ]i,lL
fle

X|.—Y|.

is a pushout rectangle in C-, and so as X|_ and Y|_ are Quillen cofibrant and i|_is a Quillen cofibration, it
follows that i’|_ is a Quillen cofibration and that Y| is Quillen cofibrant span. Moreover, Y’ is a pushout
rectangle as X, Y and X’ are pushout rectangles. Thus Y’ is a Coquillen rectangle in C and ¢ is a Quillen
cofibration.
Altogether, CE)qu becomes a category with cofibrations having Cof ngu =C. O
(3.106) Definition (Quillen structure).

(a) Given a category with cofibrations C, we denote by (CIC:(’)qu)Quillen the category with cofibrations whose

underlying category is C_ and whose set of cofibrations is

coqu

Cof (CD )Quillen = {% € Mor cH | 7 is a Quillen cofibration}.

coqu coqu

O

The structure of a category with cofibrations of (Csyq,

with cofibrations) on CJJ

coqu*

)Quillen is called the Quillen structure (of a category
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O

(b) Given a category with cofibrations and weak equivalences C, we denote by (Cqoqu

0

coqu’

)Quillen the category

with cofibrations and weak equivalences whose underlying category is C whose underlying structure

of a category with cofibrations is the Quillen structure of a category with cofibrations on Cquu, and
whose underlying structure of a category with weak equivalences is the pointwise structure of a category
with weak equivalences on CE)qu. The structure of a category with cofibrations and weak equivalences
of (C(E,qu)Qumen is called the Quillen structure (of a category with cofibrations and weak equivalences)

on CJ

coqu*

(3.107) Remark. We suppose given a category with cofibrations and weak equivalences C. If C fulfils the
incision axiom, then so does (CCDOqu)Qumen.

Proof. This follows from remark (3.81) and remark (3.98). O

Given a Cisinski cofibration category C, we will show in corollary (3.122) that (CCD()qu)Qumen is a Brown cofibration
category. To this end, we implicitly use the notion of a cylinder of an S-2-arrow, which we will introduce in the

next section.

7 Cylinders

In this section, we introduce the notion of a cylinder of an S-2-arrow in a category with cofibrations and weak
equivalences, cf. definition (3.30)(a). This is a relative version of the common notion of a cylinder of an object
as occurring for example in the works of QUILLEN |28, ch. I, sec. 1, def. 4] and BROWN [7, dual of sec. 1]. We will
see that the cylinder of an S-2-arrow is an appropriate notion for a convenient “factorisation” of an S-2-arrow,
see the Brown factorisation lemma (3.113)(a), and therefore yields a convenient representative of a morphism
in the homotopy category, cf. section 9, in particular, theorem (3.128).

Definition of a cylinder

(3.108) Definition (cylinder). We suppose given a category with cofibrations and weak equivalences C.

(a) We suppose given an S-2-arrow (f,u): X — Y « Y in C. A eylinder (or cylinder object) of (f,u)
consists of an object Z together with a morphism ig: X — Z, a weak equivalence i;: Y — Z and a weak
equivalence s: Z — Y in C such that ips = f and ;s = u, and such that there exists a coproduct C of X
and Y in C such that (2‘1) )C : C'— Z is a cofibration. By abuse of notation, we refer to the said cylinder
as well as to its underlying object by Z. The morphism i is called the start insertion (or the insertion
at 0) of Z, and the morphism i, is called the end insertion (or the insertion at 1) of Z. The morphism s
is called the cylinder equivalence of Z.

Given a cylinder Z of (f,u) with start insertion ig, end insertion ¢; and cylinder equivalence s, we write

insg = insg ‘= 14g, ins; = inslz =14y and s =% :=s.
insg insy
X—Z———Y Z
. insq
Rlb (msazﬂ/] 2 s
o u (1) >
X—Y ——Y C Y

(b) A cylinder of a morphism f: X — Y in C is a cylinder of (f,1y).

X gy z
1w
f (1)

x1.yv— v c— Yy
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(¢) A cylinder of an object X in C is a cylinder of 1x.

x g Ay Z
(1)
X— X—— X c X

(3.109) Notation. We suppose given a category with cofibrations and weak equivalences C. In the context

of cylinders, we use a different notation for the embeddings into a binary coproduct. Given an S-2-arrow

(fyu): X =Y «< Y inC, acylinder Z of (f,u) and a coproduct C of X and Y, we write emby = embOC: X -=C
insa \C

and emb; = emb{: ¥ — C (instead of emb; and emby) and ins = ins? = (:ﬁzf) : C — Z, so that we have

insg = emby ins and ins; = emb; ins.

(3.110) Remark. We suppose given a category with cofibrations and weak equivalences C, an S-2-arrow
(f,u): X - Y « Y in C with X and Y cofibrant and a cylinder Z of (f, ). For every coproduct C of X and Y,
the induced morphism ins”: C' — Z is a cofibration in C.

Proof. We suppose given an arbitrary coproduct C' of X and Y. As Z is a cylinder, there exists a coproduct C
of X and Y such that (ins" )C : C' — Z is a cofibration. By proposition (3.26)(a), the object C is cofibrant,

insy

whence the canonical isomorphism
\C
bC ~
em % :C—=C
emb;
is a cofibration. But then
a\C .
( insg )C _ embg ( insg )C
insq - cmb? insy
is a cofibration by closedness under composition. O

(3.111) Remark. We suppose given a category with cofibrations and weak equivalences C and an S-2-arrow
(fu): X Y «+ Y in C with X and Y cofibrant. Given a cylinder Z of (f,u) in C, the start insertion insg is
a cofibration and the end insertion ins; is an acyclic cofibration in C.

Proof. This follows from corollary (3.27). O
For the definition of T-semisaturatedness, see definition (1.37) and remark (3.7)(a).

(3.112) Remark. We suppose given a category with cofibrations and weak equivalences C and an S-2-arrow
(fyu): X =Y « Y in C. Moreover, we suppose given a cofibration i: C' — Z for some coproduct C of X and YV’
in C and a weak equivalence s: Z — Y in C such that (5)0 = is. If C is T-semisaturated, then Z becomes a
cylinder of (f,u) with ins? = emb§i, ins? = emb{i and sZ = s.

(e}
)

Proof. As (5)0 = is, we have emb§is = emb§ ({)° = f and emb{is = emb? (£)C = u. Moreover, since s

u

and u are weak equivalences in C, it follows that emb?i is a weak equivalence in C by T-semisaturatedness.

Thus Z becomes a cylinder of (f,u) with ins? = emb$'4, ins? = emb%i, s7 = s. O

The Brown factorisation lemma

The following lemma gives a sufficient criterion for the existence of cylinders in a category with cofibrations
and weak equivalences. A category with cofibrations and weak equivalences fulfils the factorisation axiom
for cofibrations if each of its morphisms with cofibrant source factors into a cofibration followed by a weak
equivalence, see definition (3.40).

(3.113) Lemma (Brown factorisation lemma, cf. [7, factorisation lemma, p. 421]). We suppose given a
T-semisaturated category with cofibrations and weak equivalences C that fulfils the factorisation axiom for
cofibrations.
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(a) We suppose given an S-2-arrow (f,u): X — Y < Y in C. If X and Y are cofibrant, then there exists a

cylinder Z of (f,u).
(b) We suppose given a commutative diagram
uy

X1L5~/1<TY1

J g1 J g2 J g2
! u/

Xy vty

R ‘ v Q T Vg Q ] Vo

X5 L }72 # Y,
in C with Xy, Xo, X}, Y1, Y5, Yy cofibrant and with weak equivalences uy, ug, uh, v1, v2, U2. For
every cylinder Z; of (f1,u1) and every cylinder Z; of (fa,uz2) there exist a cylinder Z} of (f},u5) and an

S-2-arrow (g,v): Zy — Z§ + Z5 such that the diagram

f1 ~ ug
X1 Yl ~ Yl
Zy
S HH /
/ insf1 inslz1
X1 * Z1 ; Yi g2
91 g2
g g2
fz/ ~ u’z
/ / !
g1 X5 5 = Y,
-
Z/
s“2
/ TR 1 /
, insg , ins) ,
X5 o> Ly« . Y, Q| vz
Q|1 R | U2
Qv Q| v2
f2 ~ Uz
Q| v X9 Y, — Y,
/ sZ2 2 /
ins§2 inslz2
X5 . Zo . Y,

commutes and such that the following quadrangle is coreedian.

.z . Z
(X IV IL(X, [T Y,) 202 7 11 7,

9111g2
vy vy

J(i)

!
ins%2

XYy —E 7y

In any such completion such that this quadrangle is coreedian, we have the following additional assertions.

(i) The following quadrangles are coreedian.
ins%2
X2 II YQ — ZQ

. zZ
X, 1Y, 255 7,
glﬂng Jg v1Hsz22 ZZJU
insZé insZé
XéHYQ/‘o—>Zé XéHYQ/—Q—>Z§
- N,Y3,Z1,Z3) resp.

(ii) If go resp. g1 resp. ve resp. vy is a cofibration, then (X, X}, Z1,Z}) resp
(Xo, X}, Zs, Z) vesp. (Ya,Ys, Zo, Z}) is a coreedian rectangle.



CHAPTER III. COFIBRATION CATEGORIES

122
(iii) If g; and go are cofibrations, then g is a cofibration.
(iv) If v and vy are acyclic cofibrations, then v is an acyclic cofibration.
(v) If (91) and (92) are cofibrations, then () is a cofibration.

Proof.

(a) By proposition (3.26)(a), there exist finite coproducts of cofibrant objects in C and these finite coproducts
are again cofibrant. So if X and Y are cofibrant, then the factorisation axiom for cofibrations implies that

there exist a cofibration i: X IV — Z and a weak equivalence s: Z — Y such that (1) =1is.

X1 Y
By remark (3.112), Z becomes a cylinder of (f,u) with ins? =i and s% = s.
(b) We suppose given a cylinder Z; of (fi,u1) and a cylinder Z of (f2,uz). Since
(W)a=(15)= (k) =@me (7).
()= (5) = (1) = e ().
and since X;11Y7, XoI1Y,, X511Y; are cofibrant by proposition (3.26)(a), the factorisation lemma (3.65)(b)

implies that there exist a cofibration ¢4 : X, 1Yy — Z), a weak equivalence s,: Z) — Y5 and an S-2-arrow

(9,v): Z1 — Z + Z5 such that the diagram

Zy
21 Zq
ms N S
/.(f/1) \
u] -

S
[

v
Ne}}

Xl II Yl — Yl
g
g1 I g2 Zé g2
R ~
iy @ » g
S (fé) T2
! "
’ / “2 Y
X, 1Y} — V]
Qv
1)1]_[1)2 Q ZQ 2 772
ins?2 RN sZ2
(%)
ug

XY, ———2 Y,
commutes and such that

ins? ins?
(X, 1Y) I (X, 1Y) 282 7 11 7,

(ﬁﬁizw J(i)

XY — o 7,
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is a coreedian rectangle. By remark (3.112), Z} becomes a cylinder of (f3, u5) with ins%2 = i, and s72 = 5.

f1 ~ uq
X Y; Y;
1 1 = 1
/ le &) /
insg1 mlel
X1 * Z - Y1 g2
91 g2
g g2
f3 -, Uy
g X5 R Yy
sZ3
/ e O
, IHSD , lnbl ,
X5 * Z4 . Y, Q| ve
2| v Q| V2
Q|v Q| v2
f2 ~ Uug
Q| v X Y, — Y,
/ sZ2 2 /
Z3 Z3

IHSO

We verify the additional assertions.

(i) This follows from corollary (3.63)(b).
(ii) This follows from corollary (3.63)(c).
(iii) This follows from corollary (3.63)(d).
(iv) This follows from corollary (3.63)(d).

) (3.63)(d)

(v) This follows from corollary (3.63)(d). O

Alternative proof of the Brown factorisation lemma (3.113)(a). We suppose that X and Y are cofibrant. By the
factorisation lemma (3.65)(b), there exist a weak equivalence s: Z — Y and an S-2-arrow (ig,i1): X = Z « Y
such that the diagram

X

N

)

i

<
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commutes and such that

iniX I iniy

i —e—— X 1Y

is a coreedian rectangle, that is, (j‘f) is a cofibration. Thus Z becomes a cylinder of (f,u) with insg = ig,
T T
ins{ =11, 8% =s. O

Concatenations and inversions

In analogy to the case of cylinders of objects (cf. [28, ch. I, sec. 1, lem. 3, proof of lem. 4]), one may define
concatenations and inversions of cylinders of S-2-arrows.

(3.114) Definition (concatenation, inversion). We suppose given a category with cofibrations and weak equiv-
alences C.

(a) We suppose given S-2-arrows (fo,uo): Xo — X, « X1, (fiom): X1 — Xo « Xo, (fi,up):
X1 — Xa < Xy in C with uof{ = fiuj. Given a cylinder Zy of (fo,up) and a cylinder Z; of (f1,u1),
a concatenation of Zy and Z; with respect to (fo,uo), (f1,u1), (fi,up) is a cylinder Z of (fof],u1up):
Xy — X5 + X5 such that the underlying object of Z is a pushout of inslzO and insg1 in C and such that

Zo ¢ \Z
- 7 _ . Zg Z . Z _ . 7y Z Z _ (s°0f
insg = insj®embyg’, insy = ins{'emb?{’, s* = ( .

sZ1u))
Z
embOZ
embIZ
Zo Z
. Zg
insg o
/ sto 1n501 Nslzl
XO Xl 2| sZ X2
Q sZO Q le
Eo
’
/ Ao

Xo X1 Xo

(b) We suppose given an S-2-arrow (w,u): X — X < X in C such that w is a weak equivalence. Given a
cylinder Z of (w,u), an inversion of Z is a cylinder Z’ of (u,w): X — X < X with underlying object Z
z' z Z Z

S =

’
and with mSg = 1nslz, insy = insg, s,

The proof of the next proposition follows the arguments of QUILLEN [28, ch. I, §1, lem. 3, lem. 4].

(3.115) Proposition. We suppose given an S-semisaturated category with cofibrations and weak equiva-
lences C.
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(a) We suppose that C fulfils the incision axiom. Moreover, we suppose given S-2-arrows (fo,ug):
Xo — Xl — Xl, (fl,ul): X — XQ — XQ, (f{,?.l/o) Xl — XQ — XQ in C with Xo, )(17 X9 cofi-
brant and such that ugf; = fiuj. There exists a concatenation of every cylinder of (fy,up) and every
cylinder of (f1,u1) with respect to (fo,wo), (f1,u1), (fi,up)-

(b) We suppose given an S-2-arrow (w,u): X — X + X in C with X, X cofibrant and such that w a weak
equivalence. There exists a (unique) inversion of every cylinder Z of (w, u) with ins{ a weak equivalence.

Proof.

(a) We suppose given a cylinder Zj of (fo,up) and a cylinder Z; of (f1,u1). By remark (3.111), the insertions
insy, ins?, ins?', ins?' are cofibrations as Xo, X, X are cofibrant. So by the pushout axiom for
cofibrations, there exists a pushout Z of inslzO and insg '. Moreover, embg 1 Zy — Z is a cofibration by
remark (3.25) and emb?: Z; — Z is an acyclic cofibration by the incision axiom. As

insZ0s%0 f = ug f] = fruf = insg*sZ uf),
sZof1

Z _
1y ) : Z — X5 exists. The morphism insgoembg is a cofibration and the
0

the induced morphism (

. . . . . o, . ZO / Z .
morphism 1nle1 emblz is an acyclic cofibration by closedness under composition, and (:Zl j: h ) is a weak
0

equivalence by S-semisaturatedness.

cmbOZ
’&nbf
Zo 7
insZ0
0 z
2
Xo X1 2 <S§ff£> X
sZ1u)
Q SZU Q le
. X2
/ ’
/ A Uo
X1 Xo
fo u f1 "
N NG
X, X, X,

Zo z
ins] emby

. Z . Z,
As (THSOO ) : XoII X, — Zj is a cofibration, the morphism (msooembg) : XolIZ, — Z is also a cofibration

Z1

by proposition (3.28). Moreover, as insy* is a cofibration, the coproduct 1x, IT inslz ! is a cofibration by

o insg © embZ . insZ0emb? \ . .

proposition (3.26)(b), and so ™ ™70 ) = (1x,lins?") (lmo emby ) is a cofibration by closedness under
ins] "t emb7 emby

ition. Altogether, Z b linder of (fof{, u1uf) with ins§ = insf°emby, ins? = ins{* emb?

composition. Altogether, Z becomes a cylinder of (fo f{, uiuf) with ins§ = ins{°emby, ins{ = ins7'emb7,

Zi INZ
sZ = (b 0f1> , that is, a concatenation of Zy and Z; with respect to (fo,uo), (f1,u1), (f1,up)-

sZ1 ug

. zZ
(b) We suppose given a cylinder Z of (w,u) with insg a weak equivalence. Then (Z?Z> is a cofibration since
20

the quadrangle
-7
insZ
ins? omb XX it
4 ) |G
XOX —>XIOX

is cocartesian and ins? is a cofibration. Thus we have a cylinder Z’ of (u, w) with underlying object Z

Z

272 27 7 : ; i
and such that ins§ =insy, ins{ =ins{, s =s“, that is, an inversion of Z. O
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Refinements

Refinements of cylinders of objects have been considered by RADULESCU-BANU [30, sec. 6.3, pp. 69-70]. We
generalise to S-2-arrows:

(3.116) Definition (refinement). We suppose given a category with cofibrations and weak equivalences C and

an S-2-arrow (f,u): X — Y < Y in C. Given cylinders Z and Z’ of (f,u), we say that Z’ is a refinement of Z

’ . . !
z Zj and sZ = is?’.

(or that Z is a coarsening of Z') if there exists a cofibration i: Z — Z’ such that ins® = ins
X ! v . Y
z
/ . % o, /
IIISO 1nsl

X Z Y
x 1! Y — Y

X IHSO Z/ 11131 Y

(3.117) Remark. We suppose given a T-semisaturated category with cofibrations and weak equivalences C
that fulfils the factorisation axiom for cofibrations, and we suppose given an S-2-arrow (f,u): X — Y «Y
in C with X and Y cofibrant. For all cylinders Z and Z of (f,u), there exists a cylinder Z’ of (f,u) that is a
refinement of Z and Z.

Proof. This is a particular case of the Brown factorisation lemma (3.113)(b). O

8 The gluing lemma

As an application of cylinders, we show in this section that every Cisinski cofibration category fulfils the
gluing axiom. This fact, known as gluing lemma in the literature, was proven in this axiomatic approach in a
particular case by BROWN [7, sec. 4, lem. 2], cf. proposition (3.46) and theorem (3.123), and in full generality
by GUNNARSSON in his thesis [14, lem. 7.4]. The idea behind the proof presented here is due to CISINSKI.

A characterisation of morphisms of categories with weak equivalences

A morphism of categories with weak equivalences is a functor that preserves weak equivalences, see defini-
tion (3.1)(b). Similarly, a morphism of categories with cofibrations and weak equivalences is a functor that
preserves cofibrations and weak equivalences, see definition (3.30)(b).

(3.118) Lemma (cf. [19, lem. 1.1.12]). We suppose given a T-semisaturated category with cofibrations and
weak equivalences C that fulfils the factorisation axiom for cofibrations and an S-semisaturated category with
weak equivalences D. A functor F': C.of — D is a morphism of categories with weak equivalences if and only if
it maps acyclic cofibrations in C.of to weak equivalences in D.

Proof. We suppose given a functor F': Ceof — D. If F' is a morphism of categories with weak equivalences,
that is, if it maps weak equivalences in Cqor to weak equivalences in D, then it maps in particular acyclic
cofibrations in C.o¢ to weak equivalences in D. Conversely, we suppose that F' maps acyclic cofibrations in Ceot
to weak equivalences in D and we suppose given an arbitrary weak equivalence w: X — Y in C.of. By the Brown
factorisation lemma (3.113)(a), there exists a cylinder Z of w. The insertions insg: X — Z and ins;: Y — Z are
acyclic cofibrations by remark (3.111) and T-semisaturatedness, and thus Fiinsg and Fins; are weak equivalences
in D. Since

(Fins1)(Fs) = F(insys) = Fly = lpy
is a weak equivalence, we conclude that F's is a weak equivalence by S-semisaturatedness. But then
Fw = F(insps) = (Flinsg)(F's)

is a weak equivalence by multiplicativity. O
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(3.119) Corollary. We suppose given a T-semisaturated category with cofibrations and weak equivalences C
that fulfils the factorisation axiom for cofibrations, and we suppose given an S-semisaturated category with
cofibrations and weak equivalences D. A functor F': Ceof — D is a morphism of categories with cofibrations and
weak equivalences if and only if F' preserves cofibrations and acyclic cofibrations.

The pushout functor for Cisinski cofibration categories

For the following proposition, we recall some notations and definitions. The poset L is the full subposet of
0 = A! x A! with underlying set {(0,0),(1,0),(0,1)}. Given a Cisinski cofibration category C, cf. defini-
tion (3.51)(a), the category of spans C- together with the Quillen structure of a category with cofibrations and
weak equivalences becomes a Cisinski cofibration category Cg e, by theorem (3.100). A span X in C is Quillen
cofibrant, that is, cofibrant in Cg ey, if and only if it is pointwise cofibrant and X o) (0,1) is a cofibration. By
the pushout axiom for cofibrations, every Quillen cofibrant span in C can be prolonged to a Coquillen rectangle
as introduced in definition (3.101). The category of Coquillen rectangles then becomes a Brown cofibration
category, where cofibrations and weak equivalences are defined via restriction to (Céumen)cof.

(3.120) Proposition. We suppose given a Cisinski cofibration category C. The pushout functor (°)

O
(Cbuillen)COf - (Ccoqu)QUiHen
is a morphism of Brown cofibration categories.

Proof. The pushout functor (Céuﬂlen)mf — (Clcz(l)qu)Quillen preserves cofibrations resp. acyclic cofibrations by
the gluing lemma for cofibrations resp. acyclic cofibrations (3.61). Thus it is a morphism of categories with

cofibrations and weak equivalences by corollary (3.119), that is, a morphism of Brown cofibration categories. [

(3.121) Corollary (gluing lemma, cf. [14, lem. 7.4], [30, lem. 1.4.1]). Every Cisinski cofibration category fulfils
the gluing axiom.

Proof. We suppose given a Cisinski cofibration category C. Then Cq ), is also a Cisinski cofibration category

by theorem (3.92). By proposition (3.120), the pushout functor (Cémuen)cof — (CCDOqu)Qumerl is a morphism of

Brown cofibration categories. In particular, it maps weak equivalences in (Céumen)cof to weak equivalences in
(CH..)Quillen, that is, C fulfils the gluing axiom, cf. definition (3.43)(a). O

coqu

(3.122) Corollary. Given a Cisinski cofibration category C, the Quillen structure on the category of Coquillen

rectangles (CCDOqu)Qumen is a Brown cofibration category.

Proof. The category with cofibrations and weak equivalences (C5J

coqu)Quillen 18 semisaturated by remark (3.70)

and fulfils the incision axiom by remark (3.107). Moreover, every object in (CS

Coqu)Quﬂ]en is cofibrant by re-

mark (3.103). So to show that (CIC:(’)qu)Quillen is a Brown cofibration category, it remains to verify the factorisa-
tion axiom for cofibrations. To this end, we suppose given a morphism of Coquillen rectangles f: X — Y in C.

As X|_is Quillen cofibrant and Cg.,, fulfils the factorisation axiom for cofibrations by remark (3.99), there ex-

ists a Quillen cofibration of spans éyes: X|. — Y,es and a pointwise weak equivalence of spans wyes: Yies — Y|,
in C with f|_ = 4restwres. By the pushout axiom for cofibrations, there exist a Coquillen rectangle Y in C
with }~/'|L = Ves. Moreover, as X and Y are pushout rectangles, there exist morphisms of Coquillen rectan-
gles i: X — Y and w: Y — Y in C such that |, = dres and w|_ = wyes, and we have f11 = i1 w11 and
therefore f = iw. Finally, ¢ is a Quillen cofibration by the gluing lemma for cofibrations (3.61)(a) and w is a
pointwise weak equivalence by the gluing lemma (3.121). Thus (CC':(')qu)Quiuen fulfils the factorisation axiom for
cofibrations. O

A characterisation of Cisinski cofibration categories

For the formulation of the factorisation axiom for cofibrations, see definition (3.40); for the gluing axiom, the
excision axiom and the incision axiom, see definition (3.43).

(3.123) Theorem (Radulescu-Banu’s criterion [30, lem. 1.4.3]). We suppose given a semisaturated category
with cofibrations and weak equivalences C that fulfils the factorisation axiom for cofibrations. The following
conditions are equivalent.

5Defined via a choice of pushout rectangles, cf. appendix A, section 1.
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Cisinski cofibration
(Ca(m), f(Iso)), ((12 of)Ss), (Ca(d;), f(Iso)), ((I2 of)SS), (Cca)te(glor)y g.Sfl; )
20f37), (Ini.), 20f37), (Ini.), at), (Iso), (20 s
(Compo), (o). €| (Compo), (tso),  [§|  (2of3r), (Inic),
(Push,), (Facc), (Gluc) (Push.), (Face), (Excc) (Compc), (Isoc),
(Push.), (Facc), (Incc)

Figure 3: Radulescu-Banu’s criterion.

(a) The gluing axiom holds in C.
(b) The excision axiom holds in C.

(¢) The incision axiom holds in C, that is, the category with cofibrations and weak equivalences C is a Cisinski
cofibration category.

Proof. By proposition (3.66), C fulfils the gluing axiom if and only if C fulfils the excision axiom. Moreover,
if C fulfils the gluing axiom, then C fulfils the incision axiom by proposition (3.46). Finally, if C fulfils the
incision axiom, that is, if C is a Cisinski cofibration category, then C fulfils the gluing axiom by the gluing
lemma (3.121). O

9 The homotopy category of a Brown cofibration category

In this section, we apply our results on cylinders of S-2-arrows to give a description of the hom-sets of a Brown
cofibration category as in definition (3.52)(a). More precisely, we show that every Brown cofibration category
fits into our axiomatic framework of a Z-fractionable category introduced in chapter II, sections 4 to 5, see
theorem (3.127). As localisations are defined via a universal property, it follows that the homotopy category of
every Brown cofibration category is isomorphic to the S-Ore localisation constructed in chapter II, section 6,
cf. corollary (1.14)(a). We conclude that the Z-2-arrow calculus developed in theorem (2.93) holds for any
Brown cofibration category, cf. theorem (3.128). Finally, we apply the Z-2-arrow calculus to give a new proof
for the classical homotopy S-2-arrow calculus of BROWN [7, dual of th. 1 and proof], see theorem (3.132).

Z-2-arrows in Brown cofibration categories

We consider a category with cofibrations and weak equivalences C that fulfils the cofibrancy axiom, see def-
inition (3.30)(a), as a category with D-S-denominators, see definition (2.1)(a), as in remark (3.39). Under
certain additional assumptions, we even consider C as a category with Z-2-arrows, see definition (2.38)(a), in
the following way, without further comment.

(3.124) Remark. We suppose given a T-semisaturated category with cofibrations and weak equivalences C that
fulfils the cofibrancy axiom and the factorisation axiom for cofibrations. The category with D-S-denominators C
becomes a category with Z-2-arrows, having a Z-2-arrow graph given on the arrows by

Arr AGz C = {(ig,i1) € Arr AGs C | (:‘f) is a cofibration}.
Proof. We let Z be the wide subgraph of AGgC with Arr Z = {(ip,i1) € Arr AGg C | (’:0) is a cofibration}.

11 K
Given an arbitrary arrow in Z, that is, an S-2-arrow (ig,41): X — Z < Y in C such that (;f) : XIIY - Z is
a cofibration, then Z becomes a cylinder of (ig, 1) with ins? = (z‘l’) and sZ = 1. In particular, inslz =4y iS

an acyclic cofibration by remark (3.111), that is, Z is a subgraph of AGg,, C.
To show the Z-replacement axiom, we suppose given an S-2-arrow (f,u): X — Y + Y in C. By the Brown
factorisation lemma (3.113)(a), there exists a cylinder Z of (f,u). So (;n®) : XIIY — Y is a cofibration, that

insy
is, (insg,ins1) is an arrow in Z. Moreover, we have (f,u) = (insg s, ins; ).

insg insg
X—Z—Y

f

X sy L vy

~

Altogether, C becomes a category with Z-2-arrows having AGzC = Z. O
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In the proof of the last remark, we have seen that the insertions of every cylinder (of an S-2-arrow) yield a
Z-2-arrow — roughly spoken, cylinders are replacements of S-2-arrows by Z-2-arrows. Moreover, we have also
used that every Z-2-arrow can be seen as some kind of trivial cylinder:

(3.125) Remark. We suppose given a T-semisaturated category with cofibrations and weak equivalences C that
fulfils the cofibrancy axiom and the factorisation axiom for cofibrations. Given a Z-2-arrow (ig,i1): X — Z <Y
in C, then Z becomes a cylinder of (i, ;) with ins? = (2‘1)) and sZ = 1.

(3.126) Remark. We suppose given a T-semisaturated category with cofibrations and weak equivalences C
that fulfils the cofibrancy axiom and the factorisation axiom for cofibrations. The category with Z-2-arrows C
fulfils the Z-replacement axiom for denominators, the relative Z-replacement axiom, the relative Z-replacement
axiom for Z-2-arrows, the Z-comparison axiom, the Z-inversion axiom and the Z-expansion axiom.

Proof. The Z-replacement axiom for denominators follows from the Z-replacement axiom and the T-semisatur-
atedness. The relative Z-replacement axiom and the relative Z-replacement axiom for Z-2-arrows and the
Z-comparison axiom follow from the Brown factorisation lemma (3.113)(b). The Z-inversion axiom follows from
proposition (3.115)(b). The Z-expansion axiom holds as cofibrations are closed under composition. O

For the definition of a Brown cofibration category, see definition (3.52)(a).

(3.127) Theorem. We suppose given a Brown cofibration category C. The category with Z-2-arrows C is a
Z-fractionable category.

Proof. By remark (3.45) and remark (3.126), the category with Z-2-arrows C fulfils the weakly universal S-Ore
completion axiom, the Z-replacement axiom for denominators, the relative Z-replacement axiom, the relative
Z-replacement axiom for Z-2-arrows, the Z-comparison axiom, the Z-inversion axiom and the Z-expansion axiom.
The Z-concatenation axiom follows from proposition (3.115)(a). The Z-numerator axiom follows from the
pushout axiom for cofibrations and the excision axiom, which holds by Riadulescu-Banu’s criterion (3.123). O

The Z-2-arrow calculus for Brown cofibration categories

As every Brown cofibration category carries the structure of a Z-fractionable category by theorem (3.127), we
can apply our results on Z-fractionable categories from chapter II to Brown cofibration categories. In particular,
we obtain the following descriptions of the hom-sets.

(3.128) Theorem (Z-2-arrow calculus). We suppose given a Brown cofibration category C.
(a) We have

Mor HoC = {loc(f)loc(i)~" | (f,i) is a Z-2-arrow in C}.

(b) Given Z-2-arrows (f1,i1): X — Y1 < Y, (fa,i2): X — Y5 < Y in C, we have

loc(f1)loc(i1) ™! = loc(fa)loc(iz) ™!
in HoC if and only if there exist a Z-2-arrow (f,i): X — Y + Y and acyclic cofibrations j;: ¥; — Y and
j2: Yo — Y in C such that the diagram

)(AAAQ—% fﬁ e—&—fif

o >}7<

RO

X 4404» }a e—&—fif
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commutes and such that the following quadrangle is coreedian.

f1 f2

(XHY)H(XHY)MKHE

(%)J J(ﬁ)

(1) -
XY —e——

In any such completion such that this quadrangle is coreedian, we have the following additional assertions.
(i) The following quadrangles are coreedian.

f1 f2
ey ()

XIY -5 Y,

R}]’l Z%Jé
(N = (H =
XY —e—Y XY —— Y

(ii) The quadrangles (X, X,Y1,Y), (Y,Y,Y1,Y), (X, X,Y5,Y), (Y,Y,Y5,Y) are coreedian.

(c) Given Z-2-arrows (f1,41): X1 — Y, « Y4, (fa,i2): Xo — Y, « Y, and S-2-arrows (g91,v1):
X1 — X} + Xo, (92,v2): Y1 = Yy + Y5 in C, we have

loc(f1)loc(i1) "t loc(go) loc(vs) ™! =loc(gr) loc(v1) ™! loc(f2) loc(iz) !
in HoC if and only if there exist a Z-2-arrow (f3,45): X5 — Y] < YJ and an S-2-arrow (g, ¥2):
Y1 — Yy <« Y5 in C such that the diagram

Xl—fol—>5~/1<—l:1—}/1

th g2 ng
N~

> i
A A !
X5 e Yy < Y,

ZZ"UI ) 22]112
7 .

2 i 12
Xy —o—> Y —o— Y,

IS

ne

commutes and such that such that the following quadrangle is coreedian.

(u(z)
(X1 YY) I (Xo [ Ys) —L el ¥ 11 Vs
X,Y] —— et V)

In any such completion such that this quadrangle is coreedian, we have the following additional assertions.
(i) The following quadrangles are coreedian.

1 {2
Xluylﬂﬂ(”) Y, ()

Xo11Yy; —e5 Yy

g1 O g2 J , g2 vy Hog | R , Q| V2
< fa ) ( f4 >
i -/
i il

X)1Y] 5 VY X,11Y) —5 V)

(ii) If g resp. g1 resp. vy resp. v; is a cofibration, then (X1, X},Y1,Y)) resp. (Y1,Y4,Y1,Y)) resp.
2,X5,Ya, resp. (Ya,Yy, Z2,Yy) is a coreedian rectangle.
Xo, X}, Y2, Z} Yo, Y. Z5,Y]) i di 1
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(iii) If g1 and go are cofibrations, then g is a cofibration.
(iv) If v; and vy are acyclic cofibrations, then ¥ is an acyclic cofibration.

(v) If (g1,v1) and (g2, v2) are Z-2-arrows, then (go,¥2) is a Z-2-arrow.

(d) Given a category D and a functor F': C — D such that Fw is invertible in D for every weak equivalence w
in C, the unique functor F: HoC — D with F = F oloc is given on the objects by

FX=FX
for X € ObC and on the morphisms by
Flloe(f)loc(i) ™) = (Ff)(Fi)~*
for every Z-2-arrow (f,) in C.
Proof.
(a) This follows from theorem (3.127) and theorem (2.93)(a).

(c) This follows from theorem (3.127) and theorem (2.93)(c), remark (3.125) and the Brown factorisation
lemma (3.113)(b).

(b) This follows from (c).
(d) This follows from theorem (3.127) and theorem (2.93)(f). O
(3.129) Remark. We suppose given a Brown cofibration category C.
(a) We have
Mor HoC = {loc(f)loc(u)™" | (f,u) is an S-2-arrow in C}.
(b) We suppose given S-2-arrows (fi,u1): X — Yy < Y, (f2,us): X — Y2 + Y in C. The following conditions

are equivalent.

(i) We have

loc(f1)loc(ur) ™! = loc(f2) loc(ug) ™"

in HoC.

(ii) For every cylinder Z; of (f1,u;) there exist an S-2-arrow (f,u): X — Y + Y and a normal S-2-ar-

row (¢,j): Z1 — Y < Y5 in C with weak equivalence c¢ such that the following diagram commutes.

XL»}}NLY
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(iii) There exist a cylinder Z; of (fi,u1), an S-2-arrow (f,u): X — Y < Y and a normal S-2-ar-

row (¢,j): Z1 — Y < Y5 in C with weak equivalence c¢ such that the following diagram commutes.
p GEELEN, P %
R
X inoso AR iH:SI Y
Ric
X ! > }:/ ¢ : Y
zz:j

x Loy ly

(c) We suppose given S-2-arrows (f1,u1): X1 — Y; « Y1, (fa,u2): Xo — Yy Y, (g1,b1): X1 = X} + X5
and a normal S-2-arrow (g2,72): Y1 — Yy « Y5 in C. The following conditions are equivalent.

(i) We have

loc(f1)loc(uy)™

in HoC.

Moc(ga) loc(j2) ' =loc(g1) loc(v1) "t loc(f2) loc(ug) ™t

(ii) For every cylinder Z; of (fi,u1), every normal S-2-arrow (gi,91): X1 — X2 < X3 and every mor-
phism t: X5 — X3 in C with (g1,v1) = (g1t,91t) there exist an S-2-arrow (fo,lin): Xy — Yy Yy
and a normal S-2-arrow (§2,72): Z1 — Yy < Y5 in C such that the following diagram commutes.

X1L>371<7Y1

Zz ‘ i

Xy

ng

t = f2

~ U
X5 —— X} » ¥ 2 Yy
zz}m zz%m Qe jy ZZ}]@
f2 ~ uz
Xo Xo Y Y,

(iii) There exist a cylinder Z; of (fi,

(f1,u1), a cylinder Ay of (g1,v1), an S-2-arrow (fo,in): Ay — Y4 < Y
and a normal S-2-arrow (§a, j2)

: Z1 — Y4 + Y, in C such that the following diagram commutes.

1 &
X —— Y1 <— Y7
22 SZ
inso msl
X1 1 e Zy <.
ng Oins[?l g2 J92
A1 Y B 2 g
S 2
Xy A 2 Yy oo Yy
R%Ul Reinsl  Xej> ZZ%JQ
f2 ~ uz
Xo Xo Yo —— Y,
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(d) Given a category D and a functor F': C — D such that Fw is invertible in D for every weak equivalence w
in C, the unique functor F': HoC — D with F = F oloc is given on the objects by

FX=FX
for X € ObC and on the morphisms by
F(loc(f)loc(u) ™) = (Ff)(Fu)™*
for every S-2-arrow (f,u) in C.
Proof. This follows from corollary (2.94). O

In [36, ex. (7.1)], we have shown that the full subcategory of cofibrant objects Mo in a Quillen model cate-
gory M admits a 3-arrow calculus in the sense of 36, th. (5.18)], where we have used the lifting axiom in the
proof. Now theorem (3.128) and remark (3.129) apply to the full subcategory of cofibrant objects in a Quillen
model category M [7, sec. 1, p. 421], yielding a better description, without using the lifting axiom in the proof.

Brown’s homotopy S-2-arrow calculus

To calculate in homotopy categories of a Brown fibration category, BROWN developed a homotopy 2-arrow
calculus in analogy to the homotopy 2-arrow calculus that one obtains by the construction of the derived category
as a localisation of the homotopy category of complexes, cf. the introduction, section 1, p. vi. We sketch his
approach in the dual situation of Brown cofibration categories: First, he introduced a weak cylinder homotopy

relation ~, which is weaker than the cylinder homotopy relation < from definition (3.130)(a)(ii) below, and
showed that ~ is a congruence of categories and that the homotopy category can be obtained as a localisation of

the corresponding quotient category C/ ~. This quotient C/ é, equipped with the images of the weak equivalences
as denominators, turns out to become an S-fractionable category [7, prop. 2], cf. definition (2.27)(a). But this

implies that C/ ~ admits an S-2-arrow calculus by theorem (2.35). In other words, C admits an S-2-arrow calculus

up to the congruence ~. However, this turns out to be equivalent to the fact that C admits an S-2-arrow calculus
up to the stronger relation ~, that is, C admits a homotopy S-2-arrow calculus.

We give an alternative proof of Brown’s result, using the Z-2-arrow calculus (3.128). To formulate the theorem,
we have to recall QUILLEN’s definition of a cylinder homotopy [28, ch. I, §1, def. 3, def. 4, lem. 1].

(3.130) Definition (cylinder homotopy). We suppose given a category with cofibrations and weak equiva-
lences C.

(a) We suppose given morphisms fo, f1: X =Y in C.

(i) Given a cylinder X of X, a cylinder homotopy (5) from fo to fi with respect to X is a mor-
phism f: X — Y in C with fo = insgf and f; = ins; f.

XLY

J insg

XL>Y

‘ ]‘ iHSI

X f1
For a cylinder homotopy f from fy to f1 with respect to X, we usually write f: fo fng f1.

(ii) Given a cylinder X of X, we say that fy is cylinder homotopic to fi with respect to X, written
fo ~ x f1, if there exists a cylinder homotopy from fy to fi with respect to X.

We say that fy is cylinder homotopic to fi, written fo ~ fi, if we have fo 'CVX f1 for some cylinder X
of X.

6QuILLEN uses the terminology left homotopy [28, ch. T, §1, def. 4].
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(b) We suppose given S-2-arrows (fo, ug), (f1,u1): X =Y « Y in C.

(i) Given a cylinder X of X and a cylinder Y of Y, a cylinder homotopy from (fo,ug) to (fi,u1) with
respect to (X,Y) is an S-2-arrow (f,u): X — Y « Y in C with f: fo R f1and us ug ~y uy.

X fo ? Uo

~

l insg H J insg
f

XLy vy

Q [ insy Q ‘ ins;
f1 ~  up

X—Y«—Y

~

For a cylinder homotopy (f,u) from (fo,up) to (fi,u1) with respect to (X,Y), we usually write
(f,u): (fo,uo) £X,Y (f1,u1)-

(ii) Given a cylinder X of X and a cylinder Y of Y, we say that (fo, up) is cylinder homotopic to (f1,u1)
with respect to (X,Y), written (fo, ug) LXY (f1,u1), if there exists a cylinder homotopy from ( fo, ug)
to (f1,u1) with respect to (X,Y).
We say that (fo,uo) is cylinder homotopic to (fi,u1), written (fo,uo) ~ (f1,u1), if we have
(fo, uo) ,&Xy (f1,u1) for some cylinder X of X and some cylinder Y of Y.

(3.131) Remark. We suppose given a category with cofibrations and weak equivalences C.

(a) Given morphisms fo, fi: X — Y in C with fy ~ f1, we have

loc(fo) = loc(f1)
in HoC.
(b) Given S-2-arrows (fo,uo), (fi,u1): X =Y « Y in C with (fo,up) ~ (f1,u1), we have
loc(fo) loc(ug) ™ = loc(f1) loc(uy)~*
in HoC.
Proof.

(a) We suppose that fj S thgt is, there exists a cylinder X of X and a cylinder homotopy f: fo LX f1. As
the cylinder equivalence s: X — X is a weak equivalence in C, the morphism loc(s) is invertible in HoC.
So insgs = ins; s = 1x implies that loc(insg) = loc(s) ™! = loc(ins; ), and so we obtain

loc(fo) = loc(insg) loc(f) = loc(insy) loc(f) = loc(f1).

(b) This follows from (a). O

(3.132) Theorem (Brown’s homotopy S-2-arrow calculus [7, dual of th. 1 and proof]). We suppose given a
Brown cofibration category C.

(a) We have
Mor HoC = {loc(f)loc(u)™" | (f,u) is an S-2-arrow in C}.

(b) We suppose given S-2-arrows (fo, ug): X — Yy« Y, (fr,u1): X — Y; < Y in C. The following conditions
are equivalent.

(i) We have
loc(fo)loc(ug) ™! = loc(f1)loc(uy)™?
in HoC.
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(ii) For every cylinder X of X and every cylinder Y of Y there exist a Z-2-arrow (jo,j1): Yo = Y « Y}
in C with acyclic cofibration jy such that (foj0, uojo) ﬁ’X,Y (f171,u1j1)-
X *> YO <7 Y
}7 w11

X*>Y'1<7Y

(iii) There exists a Z-2-arrow (jo,71): Yo — Y < Y; in C with acyclic cofibration j, such that
(fodos uojo) ~ (frjr, urjr)-
X —» }N/b <— Y
fiia {/ U1~J1

X—>Yl<—Y

Proof.
(a) This follows from remark (3.129)(a).
(b) First, we suppose that condition (i) holds, that is, we suppose that loc(fo)loc(ug) ™" = loc(f1)loc(u) ™"
in HoC, and we suppose given a cyhnder X of X and a cylinder Y of Y. Then we have (Ix,1x) =s
(1nsg(, mS{() and (ly,ly) =g (mSg, ins} ). By remark (2.17), we obtain

IOC(IIlbO )IOC(lnbl )" oc(f1)loc(uy) ™t =loc(f1)loc(ui) ™! = loc(fo) loc(ug) ™"
= loc(fo) loc(ug) ™ loc(insg) loc(ins}k)*l.

As (11180 ,1nsf() and (insg/,insf) are Z-2-arrows in C, by theorem (3.128)(c) there exist a Z-2-arrow

(josj1): Yo = Y « Y and an S-2-arrow (g,v): X — Y « Y in C such that the following diagram
commutes.

XL»YOLY

X f 1ns0 Qe jo f insé’
g M v

» Y «

X Y
2 + insX R 2 + insY
f1 uy
X — Y

Vi ——

But then (g, v) is a cylinder homotopy from (fojo, uojo) to (fiji,u1j1) with respect to (X,Y). Thus we
have (fojo, uo0jo) ,‘\ZX’Y (f1j1,u1J1), that is, condition (ii) holds.
Condition (ii) and the Brown factorisation lemma (3.113)(a) imply condition (iii).
Finally, if condition (iii) holds, then we have
loc(fo)loc(ug) ™! = loc(fojo) loc(ugjo) ™t = loc(fij1)loc(uiji) ™ = loc(f1)loc(uy) ™"
by remark (2.17) and remark (3.131)(b), that is, condition (i) holds.
Altogether, the three conditions (i), (ii) and (iii) are equivalent. O
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We have only formulated and proven an S-2-arrow equality condition up to cylinder homotopy, cf. defini-
tion (2.31)(b). An S-2-arrow composition condition up to cylinder homotopy, cf. definition (2.31)(c), is also

valid, cf. theorem (2.37).



Chapter IV

Combinatorics for unstable triangulations

In a Verdier triangulated category T, one deals with a so-called shift functor T: 7 — 7T and certain diagrams,
called Verdier triangles and Verdier octahedra. As indicated in the introduction, section 2, we may think of a
Verdier triangle as a diagram of the form

0

0—— TY

|

0 —— C——TX

]

0 X Y 0,

and of a Verdier octahedron as a diagram of the form

0
0——TZ
00— A—TY
|
0 C B TX
]
0 X Y Z 0

Likewise, for n € Ny, we may think of an n-cosemitriangle in the homotopy category of a zero-pointed Brown
cofibration category as an analogous diagram where the lowest row is supposed to have n + 1 objects.

To work conveniently with these diagrams, it is desirable to write them as objects of a diagram category 7 5°
for a suitable category Sy. One advantage of such an approach is the possibility to easily address composites, as
one has already a corresponding composite in the shape category Sy. For instance, in the example of the Verdier
octahedron drawn above, if this Verdier octahedron was an object V in 7 for a suitable category Sp, then the
composite of the morphisms C' — B and B — TX could be written in the form V, for a suitable a € Mor Sy.
One can find such a category Sp; in fact, Sy will be a poset (1), and so the described composite is of the form V; ;

We have S = #3, cf. definition (4.45).

137
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for 7,5 € Ob Sy such that C = V; and TX = V;. This makes formal manipulations of the morphisms in such a
diagram more convenient.

However, in the particular situation, such a poset Sy is still insufficient as one would also like to manage
composites that are not actually visible in the drawn picture. For example, in the case of the Verdier octahedron
drawn above, we would like to address the composite of A — TY and the shift of Y — C, which is a morphism
A — TC. This composite can be seen in the picture if we prolongate the diagram periodically:

0 —— T?2X —— T?Y T2Z 0
|
0 TZ TB TA 0
|
0 A TY TC 0
|
0 C B TX 0
]
0 X Y Z 0

We can manage the task of addressing composites with shifted morphisms by considering a category S that
is equipped with a shift functor T: S — S and that has Sy as a subcategory, and to work with a suitable
S-commutative diagram W in 7T that is compatible with the shifts in the sense of definition (4.17)(a). In fact,
S will again be a poset (?). The diagram W then carries a lot of redundant information; however, for formal
manipulations it is often easier to work with W instead of V.

In this chapter, we will develop the combinatorics for the triangulated structure studied in chapter V. We will
introduce the semistrip types #'; for n € Ny, see definition (4.42), which are posets equipped with a shift functor
that will play the role of “shape posets” for cosemitriangles: An n-cosemitriangle in the homotopy category of a
zero-pointed Brown cofibration category as introduced in definition (5.33) will be a particular #’; -commutative
diagram.

To define the semistrip types, we first study the semiquasicyclic types ©" for n € Ny, see definition (4.24).
These posets may be thought of analoga of the ordinary simplex types A™ for n € Ny, but suitably modified
such that they carry a shift. The semiquasicyclic types ©7 for n € Ny have two roles: First, they appear in
the definition of the semistrip types #’} for n € Ng, and as an n-cosemitriangle will be a diagram over #7, the
semiquasicyclic types will be used to define the cosemitriangles. On the other hand, they will be used to organise
the cosemitriangles: We will see in proposition (5.50) that cosemitriangles are stable under semiquasicyclic
operations, which are, roughly said, simplicial operations plus a translation operation. In other words, the
sets of cosemitriangles form a structure that is a variant of a simplicial set, a so-called semiquasicyclic set, see
definition (4.38)(b).

The combinatorics for an unstable triangulated structure defined in this chapter is an unstable analogon to
KUNZER’s combinatorics for Heller triangulated categories, see [23, sec. 1.1].

The chapter is organised as follows. First, we define objects with shift as a structure in an arbitrary category
in section 1, as we will need this in several ways: The homotopy category of a zero-pointed Brown cofibration
category becomes a zero-pointed category with shift, see convention (5.44), and the combinatorics for cosemi-
triangles is also pervaded by shifts. Then in section 2, we show how a shift functor can be induced on a diagram
category, and define shift compatible diagrams. In section 3 to 5, the described combinatorics around the
semiquasicyclic types and the semistrip types is developed. Finally, we introduce cosemistrips and the more
restrictively defined cosemicomplexes in section 6.

2We have S = #i, cf. definition (4.42).



1. OBJECTS WITH SHIFT 139

1 Objects with shift

A triangulated category in the sense of Verdier [37, ch. I, §1, n° 1, sec. 1-1] consists of an additive category T that
is equipped with an autofunctor T: T — 7T, usually called the shift of T, and additional structure. Variants of
this notion, where the autofunctor is replaced by a not necessarily invertible endofunctor, have been studied by
KELLER and VOSSIECK [21, sec. 1.1] and, independently, BELIGIANNIS and MARMARIDIS [6, def. 2.2, def. 2.3].
So all these structures have an underlying category that is equipped with an endomorphism. Such a construct
will be called a category with shift, see definition (4.5)(c).

In this section, we introduce the notion of an object with shift in an arbitrary category, see definition (4.1)(a).
In particular, we obtain the notion of a poset with shift, which is central in the combinatorics for higher unstable
triangulations developed in section 3 to 6.

Definition of an object with shift
(4.1) Definition (object with shift). We suppose given a category €.

(a) An object with shift in Q consists of an object X together with a morphism 7: X — X in Q. By abuse
of notation, we refer to the said object with shift as well as to its underlying object just by X. The
endomorphism 7 is called the shift morphism (or just the shift) of X.

Given an object with shift X in Q with shift morphism 7', we write T = TX :=T.

(b) We suppose given objects with shift X and Y in Q. A morphism of objects with shift in Q from X to Y
is a morphism f: X — Y in Q that preserves the shifts, that is, such that TX f = fTY.

(4.2) Remark. We suppose given a category {2 and an object with shift X in Q. The shift morphism T: X — X
is a morphism of objects with shift.

The category of objects with shift

4.3) Remark. For every category (2, we have a category T(2, given as follows. The set of objects of T2 is
g g g
given by

Ob T = {X | X is an object with shift in Q}.
For objects X and Y in T¢2, we have the hom-set
To(X,Y) ={f| f is a morphism of objects with shift from X to Y'}.

For morphisms f: X - Y, g: Y — Z in TQ, the composite of f and g in TQ is given by the composite of the
underlying morphisms fg: X — Z in Q. For an object X in T2, the identity morphism on X in T2 is given
by the underlying identity morphisms 1x: X — X in Q.

(4.4) Definition (category of objects with shift). We suppose given a category 2. The category T as
considered in remark (4.3) is called the category of objects with shift in Q.

Some instances of objects with shift

So far, we have introduced the categorical concept of an object with shift in an arbitrary category 2. Now we
particularise this notion for concretely given categories like Set () for some Grothendieck universe 4. Moreover,
we introduce universe-free variants of the notions obtained in this way.

(4.5) Definition (set with shift, poset with shift, category with shift).

(a) Given a Grothendieck universe i, the category TSety is called the category of sets with shift (more
precisely, the category of i-sets with shift), an object in T'Set y is called a set with shift with respect to
U (or a U-set with shift), and a morphism in TSet ) is called a morphism of sets with shift with respect
to 84 (or a t-morphism of sets with shift).

A set with shift is a U-set with shift for some Grothendieck universe 4. Given a set with shift X, the shift
morphism of X is also called the shift map of X. A morphism of sets with shift (or a shift preserving
map) is a U-morphism of sets with shift for some Grothendieck universe il.
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Given a Grothendieck universe i, the category TPoset y is called the category of posets with shift (more
precisely, the category of {-posets with shift), an object in TPoset ) is called a poset with shift with
respect to 4 (or a U-poset with shift), and a morphism in TPoset y is called a morphism of posets with
shift with respect to 4 (or a U-morphism of posets with shift).

A poset with shift is a U-poset with shift for some Grothendieck universe L. A morphism of posets with
shift (or a shift preserving poset morphism) is a $i-morphism of posets with shift for some Grothendieck
universe i1.

Given a Grothendieck universe 4. The category TCaty is called the category of categories with shift
(more precisely, the category of i-categories with shift), an object in TCat g is called a category with
shift with respect to 4 (or a U-category with shift), and a morphism in TCat g is called a morphism of
categories with shift with respect to 4 (or a $-morphism of categories with shift).

A category with shift is a U-category with shift for some Grothendieck universe 4. Given a category with
shift C, the shift morphism of C is also called the shift functor of C. A morphism of categories with shift
(or a shift preserving functor) is a t-morphism of categories with shift for some Grothendieck universe 4L.

Given a Grothendieck universe 4, the category TCat (4 is called the category of zero-pointed categories
with shift (more precisely, the category of zero-pointed {-categories with shift), an object in TCatg () is
called a zero-pointed category with shift with respect to l (or a zero-pointed il-category with shift), and a
morphism in TCaty is called a morphism of zero-pointed categories with shift with respect to i (or a
$l-morphism of zero-pointed categories with shift).

A zero-pointed category with shift is a zero-pointed 4-category with shift for some Grothendieck universe LI.
A morphism of zero-pointed categories with shift (or a shift preserving morphism of zero-pointed categories)
is a Y-morphism of zero-pointed categories with shift for some Grothendieck universe $.

(4.6) Remark.

(i) We suppose given a Grothendieck universe 4. A set with shift X is a i-set with shift if and only if
it is an element of 4[.

(ii) For every set with shift X there exists a Grothendieck universe 4 such that X is a {-set with shift.

(i) We suppose given a Grothendieck universe 4. A poset with shift X is a {-poset with shift if and
only if it is an element of Ll

(ii) For every poset with shift X there exists a Grothendieck universe {{ such that X is a {-poset with
shift.

(i) We suppose given a Grothendieck universe {l. A category with shift C is a $l-category with shift if
and only if it is an element of Ll.

(ii) For every category with shift C there exists a Grothendieck universe 4 such that C is a il-category
with shift.

(i) We suppose given a Grothendieck universe 4l. A zero-pointed category with shift C is a zero-pointed
$l-category with shift if and only if it is an element of 4[.

(ii) For every zero-pointed category with shift C there exists a Grothendieck universe i such that C is a
zero-pointed U-category with shift.

(4.7) Definition (subobject with shift).

(a)

(b)

()

We suppose given a set with shift X. A subset with shift of X is a set with shift U whose underlying set
is a subset of X and whose shift is given by TV = TX|Y.

We suppose given a poset with shift X. A subposet with shift of X is a poset with shift U whose underlying
poset is a subposet of X and whose shift is given by TV = TX|Y.

We suppose given a category with shift C. A subcategory with shift of C is a category with shift &/ whose
underlying category is a subcategory of C and whose shift is given by T¥ = TC|Z.
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(d) We suppose given a zero-pointed category with shift C. A zero-pointed subcategory with shift of C is a
zero-pointed category with shift ¢/ whose underlying zero-pointed category is a zero-pointed subcategory
of C and whose shift is given by T¥ = T,

(4.8) Remark.

(a) Given sets with shift X and U such that the underlying set of U is a subset of X, then U is a subset with
shift of X if and only if the inclusion inc: U — X is a morphism of sets with shift.

(b) Given posets with shift X and U such that the underlying poset of U is a subposet of X, then U is a
subposet with shift of X if and only if the inclusion inc: U — X is a morphism of posets with shift.

(¢) Given categories with shift C and U such that the underlying category of U is a subcategory of C, then U
is a subcategory with shift of C if and only if the inclusion inc: & — C is a morphism of categories with
shift.

(d) Given zero-pointed categories with shift C and U such that the underlying zero-pointed category of U is
a zero-pointed subcategory of C, then U is a zero-pointed subcategory with shift of C if and only if the
inclusion inc: U — C is a morphism of zero-pointed categories with shift.

(4.9) Definition (full subobject with shift).

(a) We suppose given a poset with shift X. A subposet with shift U of X is said to be full if its underlying
poset is a full subposet of the underlying poset of X.

(b) We suppose given a category with shift C. A subcategory with shift &/ of C is said to be full if its underlying
category is a full subcategory of the underlying category of C.

(c) We suppose given a zero-pointed category with shift C. A zero-pointed subcategory with shift U of C is
said to be full if its underlying zero-pointed category is a full zero-pointed subcategory of the underlying
zero-pointed category of C.

To abbreviate, we use the following notation for the shift map of a set with shift.

(4.10) Notation (element notation for the shift). Given a set with shift X, we write
M= g™

for v € X, m € No. (3)

If unambiguous, we will consider the set of objects and the set of morphisms of a category with shift as sets
with shift in the following way, without further comment.

(4.11) Remark. Given a category with shift C, the set of objects ObC becomes a set with shift having
TO"¢ = ObT¢
and the set of morphisms MorC becomes a set with shift having

TMorC — \Mor TC.

2 Diagram categories on categories with shift

We suppose given categories C and S. In this section, we will show that a shift functor on C induces a shift functor
on the diagram category C° (see below for details). Moreover, we will introduce the notion of a shift compatible
diagram, which is defined when both categories C and S are equipped with a shift functor. Cosemitriangles as
introduced in chapter V, section 4 will be particular shift compatible diagrams.

3In the literature, the notation x[m] := T™ is often used.
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The inner shift functor

We suppose given categories C and S. An S-commutative diagram in C is a functor X from S to C. The
category C is called the base category, and the category S is called the shape category. We denote the category
of S-commutative diagrams in C by C¥ = Cg,,. Given an object i in S, we usually write X; for the image of i
under X, and given a morphism a: i — j in .S, we usually write X,: X; — X for the image a under X.
Given a Grothendieck universe i, we have a diagram functor

(=) = (=)Gay: Catly x Caty) — Caty),

given on the objects by (=)(7)(S,C) = C® for C,S € Ob Cat ), and given on the morphisms by (=))NG,F) =
Fgat = F%.C% — D for morphisms F: C — D and G: R — S in Caty), where FE(X)=FoXoG
for X € ObC® and F¢(f) = F * f * G for f € MorC®. We abbreviate F¥ = F'9s for a morphism F: C — D
and an object S in Caty,.

(4.12) Definition (inner structure). Given a category with shift C and a category S, we denote by C¥ = Cf =
CZ.. . the category with shift whose underlying category is C° and whose shift functor is given by
Cat,in

TCh = (T¢)S: ¢S5 — ¢S,
The structure of a category with shift on C5 is called the inner structure (of a category with shift) on C°, and

S
the shift functor Ty, = TE = TG .— TCEat,in is called the inner shift functor (or just the inner shift) on C°.

m m

There is also a notion of an outer shift on the diagram category C* for a category C and a category with shift S,
cf. [23, sec. 1.2.1.2, p. 246].
For later use, we deduce explicit formulas for the inner shift functor:

(4.13) Remark. We suppose given a category with shift C and a category S. The inner shift functor Tj, on C°
is given on the objects by

(TinX); = X"
for i € Ob .S and by
(TinX)o = X[
for a € Mor S, X € ObC?®, and on the morphisms by
(Tinf)i = £
for i € Ob S, f € MorC?.
Proof. We have
(TinX); = (T€)SX); = (T 0 X); = T°X; = x 1
for i € Ob .S and
(TinX)a = (T)*X)a = (T 0 X), = TCX, = X[V
for a € Mor S, X € ObC®. Moreover, we have
(Twnf)i = (TS f)i = (T % f)i = Tf = f1"
for i € Ob S, f € MorC®. O

(4.14) Notation. Given a category with shift C, we usually abbreviate X! = TX and fl) = Tf; cf. no-

tation (4.10). When dealing with a diagram category C° for a category S, we also use this notation for the
inner shift Tlcns = (T¢)? as this shift is obtained by object- and morphismwise application of T. So given an

S-commutative diagram X in C, we have (X 1), = Xim fori € ObS and (X1, = XM for a € Mor S. Likewise
for morphisms of S-commutative diagrams.
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The diagram functor for the inner structure
We turn the inner structure of a category with shift into a functor.
(4.15) Remark. We suppose given a Grothendieck universe {l. The diagram functor
(=) Cat?ﬁ) x Catyy — Caty,
induces a functor
(=) = (=)Gapm: Catlh x TCaty) — TCaty)
given on the morphisms by
FS=FC:c) - Df
for morphisms F': C — D in TCaty) and G: R — S in Cat .
Proof. Given morphisms F': C — D in TCat and G: R — S in Cat, we have
TP o G — (TD)ldR o FG — (TD OF)Gde _ (FOTC)idsoG — G, (TC)idg el Ochn,
that is, F¢: CZ — DE

. is a morphism of categories with shift.

c!
S T%in S
Cin Cin
FGJ JFG
aTad
R T in R
Din Din

The functoriality of the induced graph morphism (:)1(11_ ). Cat®® x TCat — TCat, which is given on the
morphisms by FG = FC for G € MorCat, F € MorTCat, follows from the functoriality of (:)(_):
Cat’® x Cat — Cat. O

We suppose given a Grothendieck universe . The diagram functor (:)(_) = (—)(Ca)t Cat( 0 X Caty) — Caty
induces a diagram functor (=)(-) = (= )Cat Cat x Catg gy — Cat, (g, where 0¢° for C € Ob Catg g
S € Ob Caty is given by (Ocs)i =0C for i € Ob S.
(4.16) Remark. We suppose given a Grothendieck universe {l. The diagram functor

(=) Cat?ﬁ) x Cat, gy — Catg, (g
induces a functor

=5 = (2) S : Cat{h) x TCat (y) — TCato (),

m

given on the morphisms by

F=F%: ¢ — Dff

mn

for morphisms F': C — D in TCatg ) and G: R — S in Caty).

Proof. By remark (4.15), the diagram functor (=)(7): Cat®® x Cat — Cat induces a functor (:)i(n_):

Cat® x TCat — TCat. In particular, given C € ObTCatg, S € ObCat, the diagram category C° car-
ries the structure of a category with shift. Moreover, C* is a zero-pointed category. To show that C* carries
the structure of a zero-pointed category with shift, it remains to show that Ticnsz C% — €% is a morphism of

zero-pointed categories. Indeed, TC 0¢® is given by
(TG, 0°7) = T6(0°); = T = 0°

for i € Ob S, and so we have TiCnSOCS =0°”.

Moreover, given morphisms F: C — D in TCatg and G: R — S in Cat, then F¢: C® — DF is a morphism
of categories with shift by remark (4.15) and a morphism of zero-pointed categories, so it is a morphism of
zero-pointed categories with shift.

The functoriality of the induced graph morphism (:)l(n_ ). Cat® x TCatqy — TCatq, which is given on
the morphisms by F¢ = F¢ for G € Mor Cat, F' € Mor TCaty, follows from the functoriality of (=)
Cat®? x Caty — Caty. O
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Shift compatible diagrams

So far, we have only considered diagram categories where the base category carries the structure of a category
with shift. If the shape category is also equipped with a shift functor, as it will be in the case S = #7} for
some n € Ny in section 6, we can study those diagrams that preserves the shifts, so-called shift compatible
diagrams:

(4.17) Definition (shift compatible diagram). We suppose given categories with shift C and S.
(a) An S-commutative diagram X in C is said to be shift compatible if X o TS = T o X.
(b) A morphism of S-commutative diagrams f in C is said to be shift compatible if f+ T® = TC x f.

(4.18) Remark. We suppose given categories with shift C and S. An S-commutative diagram X in C is shift
compatible if and only if the functor X : S — C is a morphism of categories with shift.

(4.19) Remark. We suppose given categories with shift C and S.

(a) An S-commutative diagram X in C is shift compatible if and only if X;n = Xi[l] for all ¢ € ObS
and X, ) = X([ll} for all a € Mor S.

(b) A morphism of S-commutative diagrams f: X — Y in C is shift compatible if and only if X, Y are shift
compatible and f;1 = f* for all i € Ob S.

3

(4.20) Remark. For all categories with shift C and S, we have a subcategory with shift C5.,, of C*, given by

ObCFcar = {X € ObC? | X is shift compatible},
Mor C3cat = 1f € MorC® | f is shift compatible}.

Proof. Given a shift compatible diagram morphism f in C over S, then Source f and Target f are shift compatible
diagrams in C over S. Given shift compatible diagram morphisms f, g in C over S with Target f = Source g,
we have

(fg) * T% = (f * T%)(g * T%) = (T * f)(T % g) = T % (f9),
that is, the composite fg is shift compatible. Finally, given a shift compatible diagram X in C over S, we have
1x *T% = 1yops = Lpeox = T¢ x 1,

so the identity morphism 1x is shift compatible.

Altogether, the set of shift compatible diagrams in C over S resp. the set of shift compatible diagram morphisms
in C over S form the set of objects resp. the set of morphisms of a subcategory Cfq,; of C7.

Given X € ObCi.q,y, We have

TinX oT* =T o0 X oT¥ =T 0T 0 X = T¢ 0 T, X,
that is, Ty, X € Ob C%Cat. Moreover, given f € Mor C%Cat, we have
Tinf*TS :Tc*f*TS :TC*TC*f:TC*Tinf,

that is, Ty, f € Ob C%Cat. Hence T}, maps shift compatible diagrams resp. shift compatible diagram morphisms

to shift compatible diagrams resp. shift compatible diagram morphisms, and C:ECat becomes a category with
S

shift having TCTcat = TCin|CTCa¢

TCat

cS.
T, | TCat
in|,g

TCat S
CTCat

inc J J inc

Tin cS O]

(4.21) Definition (category of shift compatible diagrams). We suppose given categories with shift C and S. The
category with shift C:ECat as considered in remark (4.20) is called the category of shift compatible S-commutative
diagrams in C.
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The diagram functor for shift compatible diagrams

We show that the diagram functors for the inner structure, see remark (4.15) and remark (4.16), induce respective
diagram functors for the categories of shift compatible diagrams.

(4.22) Remark. We suppose given a Grothendieck universe . The diagram functor
(:)(7): Cat‘()g) X Cat(u) — Cat(u)
induces a functor
(:)SI‘_C)Iat: (TCat(u))OP X TCat(u) — TCat(u),
given on the morphisms by
DE e
F’?Cat = Fgat|c§§; : C%Cat - D’}I‘%Cat
for morphisms F': C — D and G: R — S in TCaty,.
Proof. We suppose given morphisms F': C — D and G: R — S in TCat. Then for X € ObC3.q,, We have
(FCX)oTR =FoXoGoTf=FoXoTcG=FoT‘0XoG=TPoFoXoG=TPFo(FYX),
that is, F¥X € ObDEq,.. Moreover, for f € Mor DEq,;, we have
(FEH TR =FxfxG+xTRE=Fx f+xT9+G=F+«Tx fxG=TP«Fx foG=TP % (FYf),

that is, F¢f € Mor DEq,,. Hence F¢: C% — D maps shift compatible S-commutative diagrams resp. shift
compatible morphisms of S-commutative diagrams in C to shift compatible R-commutative diagrams resp. shift
compatible morphisms of R-commutative diagrams in D.

P Gon
C’%Cat - D’?Cat
inc J J inc
cs e DE

Moreover, as the shift on C3q,.. resp. DEq, is induced from the inner shift on C¥ resp. D, remark (4.15)
implies that
. R R DR R R DR R . S
incPreat o TPTcat o FG|C§Fcat =TP" oincPreat o FG|CSTcat =TP" 6 FE o incCroat
TCat TCat

S S S S
= F%oT¢ oinctreat = FC o incCroat o TCTcar
R R S
= inCDTCat o) FG|DgCat o) TCTCat.
CTCat

R DE DE 5 DEcas - . . . .
and therefore TPrcat o FG|CSTcat = FG|CsTcat o TC¢rcat, Hence FG|CSTcat is a morphism of categories with shift.

TCat TCat TCat
T4
CS at S
TCat TCat
R R
FG‘DTCat FG|DTCat
cs, cs,
TCat TCat

DR
R T~ TCat R
DTCat DTCat

The functoriality of the induced graph morphism (z)ﬁ%at: TCat°? x TCat — TCat, which is given on the
R
morphisms by FTGCat = FG|?STcat for morphisms F': C — D in TCat and G: R — S in TCat, follows from the

TCat

functoriality of (=)(~): Cat°® x Cat — Cat. O
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(4.23) Remark. We suppose given a Grothendieck universe 4. The diagram functor
(:)(7): Cat?ﬁ) X Cat(u) — Cat(u)
induces a functor
(=)' s : (TCaty))° x TCatg () — TCatg (),
given on the morphisms by
DR
F’?Cat = FG'ci’iI::: : C’%Cat - D’II‘%Cat
for morphisms F': C — D in TCatq ) and G: R — § in TCaty,.

Proof. Given S € ObTCat, C € ObTCatg, then C%Cat is a zero-pointed subcategory with shift of C as
(Ocs)im =0 = (09 = (OCS)EH for i € Ob.S, that is, 0c° € ObC3cai- The assertion follows from re-
mark (4.16) and remark (4.22). O

3 Semiquasicyclic types

The cosemitriangles in the homotopy category of a zero-pointed Brown cofibration category, see definition (5.51),
as well as already their models, see definition (5.33), will be organised in a so-called semiquasicyclic category,
that is, a semiquasicyclic object in the category of categories Cat, see definition (4.38). A semiquasicyclic object
in turn may be seen as a variant of a simplicial object.

Simplicial objects in a category €) are presheaves with values in 2 over the category of simplex types A, that
is, A°P-commutative diagrams in €2, where the category A consists of the simplex types AP for p € Ny and
morphisms of posets. In contrast, semiquasicyclic objects in {2 are presheaves with values in {2 over the category
of semiquasicyclic types @, consisting of the semiquasicyclic types ©% for p € Ny and morphisms of posets
with shift, see definition (4.24). The stable analogon, so-called quasicyclic objects, has been introduced by
KUNZER |23, sec. 5.2].

In this section, we define the category of semiquasicyclic types and study some of their properties. As a poset,
the p-th semiquasicyclic type ©% for some p € Ny will be just the poset of non-negative integers Ny, see
definition (4.24)(a). However, ©" will be a poset with shift, and the shift morphism on @, will influence the
way we think of ©F , namely as result of a gluing of cells ©2, for m € Ny in the sense of definition (4.27), see
corollary (4.34). Moreover, we give a presentation of the poset structure of ©F by means of shift values of the
elements of the cell ©f, see proposition (4.32), and show that the inclusion inc: ©f — ©% fulfils a universal
property, see proposition (4.35).

Definition of semiquasicyclic types
(4.24) Definition (semiquasicyclic type).
(a) We suppose given p € Ng. The p-th semiquasicyclic type is defined to be the poset with shift ® with
underlying poset Ny and whose shift is given by
TOM: @) = @8, i i+ (p+1)
(b) We suppose given a Grothendieck universe 4l such that Ny is in 4. The full subcategory @, in TPoset g
with
Ob®, = (6" | p No}
is called the category of semiquasicyclic types. A morphism in @ is called a morphism of semiquasicyclic
types.
(4.25) Example. In ©2, we have 0 =0, 119 = 1, 2[00 = 2 3001 = 3 ol =4, 10 =5 200 = ¢, 31 =7,
02l =8, 18 =9, etc.
In [23, sec. 1.1, p. 243], KUNZER’s stable analogon to the semiquasicyclic type ©% is the periodic repetition
g Y Yy +

of A, (this is AP in our notation), denoted by A, in loc. cit.

(4.26) Remark. For every p € Ny, the shift T oL, ©f — O is an injective morphism of posets with shift that
reflects the order of ©.
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The cell decomposition

One can think of @ for some p € Ny as an |Ny|-fold copy of AP, see example (4.25) and corollary (4.33), cf. also
the definition of KUNZER’s stable analogon [23, sec. 1.1, p. 243|. For some technical purposes, as in the proof
of proposition (4.35), this is very convenient. Sometimes, however, we prefer to think of @ﬂ as the consequence
of a gluing of cells in the following sense, see corollary (4.32).

(4.27) Definition (cells of @} ). For p,m € Ny, we let @2, be the full subposet in ©F with underlying set
given by

er, = {i™ |ie0,p+1]}.
(4.28) Example. We have
@3 = {010, 1001 2001 3101 4101} — £0, 1,2, 3,4},
@3 = {oM 100 ol 31 41} — {45 6,7, 8},
O3 = {012,112 2l 312 41} = {8 9 10,11,12}.
(4.29) Notation. As usual, we interpret the posets ©F and ©j for some p € Ny as categories. In particular,

the least element in ©F is a unique initial object and will be denoted by | = i®§ = 0, and the greatest element
in ©f is a unique terminal object and will be denoted by ! = 190 = p+1

(4.30) Notation. For p € Ny, we denote by AP the full subposet of ©f with underlying subset ©f \ {!} = [0, ],
and we denote by A the full subposet of ©F with underlying subset O} \ {j,!} = [1,p].

(4.31) Example. We have
@8 ={0,1,2,3,4} = {0[0]’ 1[0]72[0],3[0]70[1]} - {i[O]} U {1[0]72[0],3[0]} U {![0}}’
O} ={4,5,6,7,8} = {0[1]7 1[1]72[1]’3[1170[2]} - {i[l]} U {1[1]72[1]73[1]} U {![1}}’
03 = {8,9,10,11,12} = {0[2]7 1[2]72[2]73[2]’0[3]} — {1[2]} U {1[2]’2[2]73[2]} U {![2]}
and 119 — Q1] — ;011 1[1) _ of2l — ;12]
(4.32) Proposition. We suppose given p € Np.
(a) We have
Of = (i} U AP U {1},
O = {i™ |i e @}, m e No}.
(b) Given 4,5 € ©F, m,n € Ny, we have

jm) — i)

=J
in @4 if and only if

m=mn,1 =7  or
m+1l=n,i=!j=jor
m=n+1l,i=j,j="\
(c) Given i,j € ©F, m,n € Ny, we have
ilml < 4
in @4 if and only if

m < n or
m=mn,1<jor

m=n+1,i=j,j=1
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Proof.

(a) Given k € ©F, there exist i,m € Ny with
k=i+m(p+1)=i™
and 7 € [0,p] = AP C O by division with remainders.

(¢) The condition il™ < ;" is equivalent to i + m(p +1) < j+n(p+1). Asi,j € ©F = [0,p+ 1], we
have j —i € [—(p+1),(p+1)]. Thus i + m(p+1) < j+ n(p+ 1) implies that

mp+1)<(G—i)+nlp+1) < (n+1)(p+1),

so we necessarily have m < n + 1.

Ifm=n+1 theni+m(p+1) <j+n(p+1)is equivalent to i + (p + 1) < j, that is, to i = 0 = |
and j=p+1=1"

If m =n, theni+m(p+1) <j+n(p+1)is equivalent to ¢ < j.

If m <n, theni+m(p+1) <j+n(p+1)is equivalent to i < j+ (n—m)(p+ 1), and this holds without
restriction as ¢ € ©F = [0,p + 1] implies that i <p+1<j+ (n—m)(p+1).

(b) We have il™ = j[" if and only if il[™ < j[" and j[™ < il™. By (c), we have il") < j"l if and only if
m<norm=mn,i<jorm=n+1,i=i j=/! and we have j™ <il"l if and only if n < m or n = m,
j<iorn=m+1, j=j,i="!. In particular, we have the three cases m =norm+1=norm=n+ 1.

If m = n, then i = jI" is equivalent to i < j and j < 4, that is, to ¢ = j. If m 4+ 1 = n, then " = 5[
is equivalent to i = !, j = i. If m = n + 1, then " = ;[ is equivalent to i =, j = !. O

(4.33) Corollary. We suppose given p € Ny.
(a) We have
AP ={i} U AP,
@% = {il™ | i € AP, m € Ny}.
(b) Given i,j € AP, m,n € Ny, we have i™ = j["] in ©% if and only if m =n and i = j.
(¢) Given i,j € AP, m,n € Ny, we have ™ < j[" in ©1 if and only if m <n orm =mn, i< j.
Proof.
(a) By proposition (4.32)(a), we have
@7 ={i" |ie @, meNy} ={il™|ie AP, meN}u{!l" |meNy}
={ilm i e AP, m e N} U iU | m e No} = {i™ | i € AP, m € Ny}
(b) This follows from proposition (4.32)(b).
(¢) This follows from proposition (4.32)(c). O
The semiquasicyclic types decompose into the cells introduced in definition (4.27):
(4.34) Corollary. We suppose given p € Ny.
(a) For m € Ny, we have
er, ={i" |iceh}={ke@” |m <k <1l
(b) We have

e = |J en.

m&ENy
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(c) For m € Ny, we have
en, Ney, ., = {1}y = {1y,
@%ﬁ@’r’n_s_k:@forkENwitthZ

(d) For m € Ny, i,7 € ©F, we have il™! < jl™ in @2 if and only if i < j in ©F.

(e) For m,n € Ny with m < n, we have k <[ in ©% for all k € ©F , | € ©F, where k = [ holds if and only if
m+1=n, k:![m]’l:i[m—i-l].

Proof.
(a) This follows from definition (4.27).
(b) By proposition (4.32)(a), we have
oF ={il"icef,meN}= | {i"|icof}= ] oF,.
méeNg meENg
(c) This follows from proposition (4.32)(a), (b).
(d) This follows from proposition (4.32)(c).
(e) This follows from proposition (4.32)(c), (b). O

The universal property
The semiquasicyclic types, considered as categories with shift, admit the following universal property.

(4.35) Proposition. We suppose given p € Ny. Then we have ! = j[! in S
Moreover, for every category with shift C and every functor F': ©f — C with F! = (F ), there exists a unique
morphism of categories with shift F': © — C with F = F |@§, given on the objects by

F@my = (Fi)im

for i € ©f, m € Ny, and on the morphisms by

. 1(Fi)[m] 1fm:n+1,
E@EMm 5y = L R, g)lm] if m =mn,
F(iv |)[m] (.re(m-ﬁ-l,n—l]F(ia ')[T])F(laj)[n] if m < n,

for i,j € ©F, m,n € Ny with il < 47,

Proof. We suppose given a category with shift C and a functor F: ©F — C with F! = (F})[!l. To construct a
functor F': © — C with F = F |®87 we will use the asymmetric description of ©% as given in corollary (4.33).

We define a map Fyy: Ob ©" — MorC by
Fy@my = (Fiytm]

for i € AP, m € Ny, and we define a map Fy : Mor ©% — Mor C by

Al i F(i, §)lm if m=n,
Fy (i, ) = pﬂﬂ NG A O
F(Zv ') (’TE(m-l—l,n—l]F(la ') )F(h]) ifm<n

for i,j € AP, m,n € Ny with i[™ < j["I. Then we have

A c © 2\ [m] . _
SOUI‘CQC Fl(i[m],j[n]) _ {SOUI'CQ F(Z,]) it m Tl,}

Sourcec(F(i, ')[m] (‘T'E[m—i—l,n—ﬂF(ia ')[T])F(h])[n]) ifm<n
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B {Sourcec F(i, )™ if m =n, } B { (Source® (@, )M if m =n, }
" | Source® F(i,)M ifm<n [ | F(Source®t (i, )M if m <n
= (Fi)l™ = Fy(i™) = Fy(Source®* (i, 57y)
and, analogously,
Target® Fy (i, j1") = Fy(Target®+ (i, jI71)

for i,5 € AP, m,n € Ny with ilml < j["]. Moreover, we get

F(i, 5)™F(, k)[”] ifm=n,n=gq,
F(i, )M E GO (0rcpnir gy F(LDITFG R ifm=n,n<gq,
Fy(it, ) B (1K) = F@0M<mmﬂnuF(>> G DEG R i m <n,n=q,
F(i,DM (0 ermi1n—11 F (i, DI F(, 5
F(G,NOM (0reingrq— F G DI F(, k)l ifm<n,n<g
F(i, j)I™ P (j, k)bl ifm=mn,n=gq,
F(%J)[m] GO (oretmar -1 F( DI F(L R i m =n, n < g,
= F(%') (rerm+1q HF(lv-)m) (1»])[q F(j, k)[q] ifm<mn,n=q,
F(Z") ( re[m+1,n— 1‘\F ) F(lv.7>[n]
F( )[ ]( ® cin+1,q—11F (i )[T])F(I,k)[q] ifm<n,n<g
F(i, k)m ifm=n,n=yq,
_JFG M ( orcrmitg-11 F(LDIMNF(L R ifm=n,n<gq,
T FGDM (orermst -1 P DI FGL R it m < n, =g,
Fi, )M (oretmarg- P DI, R ifm <n,n < g
_ {F(z,k)[m] ifm:q,} = Fy(ilm, k)
F(i, ) (oretmirg-11 FG DI F(L R if m < g ’

= Fy (™ iy (50 glaly)
for i,j,k € AP, m,n,q € Ny with il™ < jl < kld and
By (L) = Fy (@7, il™) = F(,0)0™ = F(1)M™ = 1paym = 15 Gom)
for i € AP, m € No. Thus we have a functor F': @ﬁ — C with Ob F' = F}, and Mor F' = ﬁ'l, that is, such that
F(im) = (Fa)m]

for i € AP, m € Ny, and

F@m iy = F(i, )™ if m =n,
7 F(i,1)m (e refm+1n—11F(, DIYEG,HP if m < n,

for i,7 € AP, m,n € Ny with il™) < j[.
As

F(i,)tm+1 ifm+1=n+1,
(D (0 o FG DD i m1 <t 1

F
PG, )t ifm=n
a F(Zv ')[erl] (.Tefm-‘rl,n—l] F(l7 ')[r+1])F(|aJ)[n+1] ifm<n

(F (i, ) m =4 it oy
(F (D (o epmsr -1 @D i m < n ’
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fori,j € AP, m,n € Ny with il™ < jl"} we have F o T®% = TCo F. Thus F is in fact a morphism of categories
with shift.
Moreover, as F! = (F;)l!l| we have

F(ivi)[l] = F(li)[l] = 1(F1)[1] =1lpm=FL, =F(!)

and hence
F(i,j) ific AP, jeAp, F(i,7) ifie AP, je AP,
F(i,j)=qFG,ilY)  ifiedr j=1, 3= SF@HFG)Y ifieAr, j=1,
PG ifi=1, 5= F(j, i)l ifi=1 ;=
F(i,j) ifieAr, je AP,
=< F@GE)) ifieAr,j=1 3 =TF(,j)
F(O,0) ifi=1j=

for i, j € O} with ¢ < j. Thus we have F = F|@g. In particular, F' is necessarily given by

F(i[m]) _ (ﬁi)[m] _ (Fi)[m]

for i € ©F, m € Ny, and by

F(glm) ybm=1ly if m=n+1,
F@tm iy = & plml jimly if m=n,

F((Z[m]v ‘[m]) (.rerm—i—l,n—ﬂ (I[T]v '[T])) (l[n]v.j[n])) if m < n,
F(i[m]7i[M]) ifm=n+1,

= § B, 5 ifm=n,
F@ 1) (0 pna e FGELITD) BGEL G i <,
Fli[m] ifm=n+1,

= S B, j)m if m = n,
F@D™ (rermirn-n FGOD) )M ifm <,
1F(i)[m] lfm:n+1,

= ¢ F(i,j)lm if m =n,
F(Za |)[m] (.Te(erl,nfl]F(ia ')[T]) F(h])[n] if m < n,
1(Fi)["”] ifm=n+1,

= F(i,j)[m] if m =n,

F(i,1)™) (e pros et DI F( ) i m <,

for 4,7 € @4, m,n € Ny with "] < jnl.
Conversely, given an arbitrary morphism of categories with shift G: ©F. — C with F' = G|gp, then we necessarily
have ’

m] G(ilml, jm] if m =n,
G, i) = ( '[m]j-[mlu NS INYAD TN
G((Z s )(.T€|—m+1,n71-\ (I s | )) (l ) )) ifm<n
_fGtm jmh if m = n,
GG (01— GG T GG )i mo<n
~fGtm jmhy if m=n,
- G(z‘[m] I ]) (.refm+1,n—1]G(i[r]v ![f’])) G(i[”],j["]) ifm<n
R (GLey if m=n,
G((i, M) (orerma1,n—1G((LDIN)) GG, )M) ifm<n
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Yl if m=mn,
i, 1)tm] (®rerm+1,n—11Gi, MGG, HM ifm<n }
il if m=n,
j,1)tml (orerma1,n—11F (i DI FG, )M ifm <n

for i,j € AP, m,n € Ny with il™ < j["l that is, G = F. O

(4.36) Corollary. For every poset morphism ag: ©f — ©% for p,q € Ny with lay = (joro)M there exists a
unique morphism of semiquasicyclic types a: @7 — % with ag = a\@g7 given by

imla = (iao)[m]

fOI“iGGg, m € Ny.

4 (Co)semiquasicyclic objects

In this section, we define semiquasicyclic objects in a category {2 as presheaves with values in €2 over the
category of semiquasicyclic types @, as introduced in definition (4.24)(b), that is, as objects in the diagram
category 0%, Likewise, we introduce the dual notion of a cosemiquasicyclic object as an object in Q®+.

We have a faithful functor I: A — @, given on the objects by IA? = ©F for p € Ny, and on the morphism
as follows. Given a morphism of simplex types a: AP — A? for some p,q € Ny, then I« is the unique
morphism of semiquasicyclic types with (Ia)|4, = « and !(Ia) = (0a)M, cf. corollary (4.36). In particular,
every semiquasicyclic object has an underlying simplicial object. So we adapt the usual terminology and
notations from simplicial algebraic topology.

The category of (co)semiquasicyclic objects

(4.37) Definition ((co)semiquasicyclic object). We suppose given a category 2.

(a) The category of cosemiquasicyclic objects in € is defined to be the category cq € := 0®+. An object
in cq, 2 is called a cosemiquasicyclic object in €1, a morphism in cq € is called a morphism of cosemi-
quasicyclic objects in Q.

We suppose given a cosemiquasicyclic object X in 2. For p € Ny, we write XP? for the image of @ﬁ_ under X.
Given a morphism of semiquasicyclic types a: ©F — ©% for p,q € Ny, the image X*: X? — X7 of «
under X is called the cosemiquasicyclic operation induced by .

(b) The category of semiquasicyclic objects in  is defined to be the category qQ := 0®%. An object in g4+ (2
is called a semiquasicyclic object in €2, a morphism in q4 2 is called a morphism of semiquasicyclic objects
in Q.
We suppose given a semiquasicyclic object X in Q. For p € Ny, we write X, for the image of @ﬁ under X.
Given a morphism of semiquasicyclic types a: @7 — @4 for p,q € Ny, the image X,: X; — X, of «
under X is called the semiquasicyclic operation induced by a.

Some instances of (co)semiquasicyclic objects
(4.38) Definition ((co)semiquasicyclic set).

(a) Given a Grothendieck universe i, the category cq, Sety is called the category of cosemiquasicyclic sets
(more precisely, the category of cosemiquasicyclic {-sets), an object in cq, Set(y) is called a cosemi-
quasicyclic set with respect to Ll (or cosemiquasicyclic {-set), and a morphism in cq, Sety is called a
cosemiquasicyclic map with respect to 34 (or cosemiquasicyclic 4-map).

A cosemiquasicyclic set is a cosemiquasicyclic 4-set for some Grothendieck universe L, and a cosemiqua-
sicyclic map is a cosemiquasicyclic Y-map for some Grothendieck universe LI.
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(b) Given a Grothendieck universe i, the category qSety is called the category of semiquasicyclic sets
more precisely, the category of semiquasicyclic {-sets), an object in qSety is called a semiquasicyclic
+2CL ()
set with respect to 3 (or semiquasicyclic $4-set), and a morphism in qSet ) is called a semiquasicyclic
+9CL ()
map with respect to L (or semiquasicyclic Y-map).

A semiquasicyclic set is a semiquasicyclic i-set for some Grothendieck universe 4, and a semiquasicyclic
map is a semiquasicyclic U-map for some Grothendieck universe 4.

Analogously, one defines semiquasicyclic posets and semiquasicyclic poset morphisms, semiquasicyclic cate-
gories and semiquasicyclic functors, semiquasicyclic zero-pointed categories and semiquasicyclic morphisms of
zero-pointed categories, semiquasicyclic sets with shift and semiquasicyclic morphisms of sets with shift, semi-
quasicyclic posets with shift and semiquasicyclic morphisms of posets with shift, semiquasicyclic categories with
shift and semiquasicyclic morphisms of categories with shift, semiquasicyclic zero-pointed categories with shift
and semiquasicyclic morphisms of zero-pointed categories with shift; and their cosemiquasicyclic variants.

(4.39) Definition ((co)semiquasicyclic subset).

(a) We suppose given a cosemiquasicyclic set X. A cosemiquasicyclic subset of X is a cosemiquasicyclic
set U such that UP is a subset of XP for all p € Ny and such that U* = X¢ gz for every morphism of
semiquasicyclic types a: ©F — 0%, where p, ¢ € N.

(b) We suppose given a semiquasicyclic set X. A semiquasicyclic subset of X is a semiquasicyclic set U such
that U, is a subset of X, for all p € Ny and such that U, = Xa|g’; for every morphism of semiquasicyclic
types a: ©F — ©%, where p, ¢ € N.

Analogously, one defines semiquasicyclic subposets, semiquasicyclic subcategories, semiquasicyclic zero-pointed
subcategories, semiquasicyclic subsets with shift, semiquasicyclic subposets with shift, semiquasicyclic subcate-
gories with shift, semiquasicyclic zero-pointed subcategories with shift; and their cosemiquasicyclic variants.

(4.40) Definition (full (co)semiquasicyclic subcategory).

(a) We suppose given a cosemiquasicyclic category C. A cosemiquasicyclic subcategory U of C is said to be
full if YP is a full subcategory of CP for all p € Ny.

(b) We suppose given a semiquasicyclic category C. A semiquasicyclic subcategory U of C is said to be full
if U, is a full subcategory of C, for all p € Ny.

Analogously, one defines full semiquasicyclic subposets, full semiquasicyclic zero-pointed subcategories, full semi-
quasicyclic subposets with shift, full semiquasicyclic subcategories with shift, full semiquasicyclic zero-pointed
subcategories with shift; and their cosemiquasicyclic variants.

5 Semistrip types

We suppose given p € Ny. In this section, we define the semistrip type #f_ as a certain extension of the semi-
quasicyclic type ©% as introduced in definition (4.24)(a), cf. corollary (4.50). A p-cosemitriangle as introduced
in definition (5.51) will be in particular a p-cosemistrip, see definition (4.55)(a), that is, a #' -commutative
diagram.

While the semiquasicyclic types are organised in a category, see definition (4.24)(b), the semistrip types will
be organised in a cosemiquasicyclic poset, see definition (4.38), for their use in the next section 6. Similarly
to the description of ©F as a gluing of cells in corollary (4.34), we will deduce a cell decomposition of #,
see definition (4.45) and corollary (4.49). Moreover, we will show that # fulfils a universal property, see
proposition (4.53), in analogy to proposition (4.35). As a consequence of this universal property, we will see
that p-cosemitriangles and morphisms of p-cosemitriangles are uniquely determined by their values on the finite
subposet #( of #', cf. proposition (4.60).

The cosemiquasicyclic poset of semistrip types

4.41) Remark. There is a cosemiquasicyclic poset with shift , given as follows. For p € Ny, the underlying
+
poset of #% is the full subposet of © x ©F (with the componentwise order) given by

L={(hi) €0} xOf |i <k <ill}.
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The shift of #/ is given by

T#E: #0 — #2 (kyi) = (i k).

For a morphism of semiquasicyclic types «a: @f_ — ©% for p,q € Ny, the cosemiquasicyclic operation induced
by « is given by

#5:# = #L, (ki) = (ka,ia).

Proof. For p € Ny, we let XP be the subposet of ©F x ©F. given by XP = {(k,i) € O} x ©F | i <k <illl}.
We suppose given p € Ny. For (k,i) € XP, we have i < k < i1l and therefore & < i) < kM as the
shift T4 : @ﬁ — @{’F is a monotone map, whence (i[l], k) € XP. So the underlying set of X? becomes a set
with shift where (k, i)l = (il k) for (k,i) € XP. To show that the poset X? becomes a poset with shift, we
have to show that TX” is a monotone map. Indeed, given (k,1), (I,5) € XP with (k,i) < (I, j), that is, such that
i < jand k <, we also have !l < jllI ag TO% ©f — ©F is monotone, and therefore

(k, i) = (i, k) < (i1, 0) = (1, 5)M.

Hence TX" is indeed a monotone map, that is, X? is a poset with shift.

Next, we suppose given p,q € Ny and a morphism of semiquasicyclic types a: @4 — ©% for p,q € Np.
For k/i € XP, we have k < il!l and therefore ka < illa = (ia)!!l as a preserves the shifts, so (ka,ia) € X9.
Thus we obtain a well-defined map

X5 XP = X9 (ki) — (ka,ia).

p,q-

For (k,i),(l,7) € XP with (k,7) < (I,4), that is, such that ¢ < j and k <, we also have i < jo and ka < la
as « is monotone, and therefore

(k, i) X, = (kayia) < (la, jo) = (1,5) X,
Hence X', is a monotone map. Moreover, since
. le' 1 . 1 . 1 -[1 -[1 [eY -\ [1 a
(ki) X5 ) = (kv i) = (i), k) = (iWar, k) = (i), W)X, = (k)X

for (ki) € #’i, the poset morphism X7 : X? — X7 is a morphism of posets with shift.
Given morphisms of semiquasicyclic types a: @ — 0%, §: @4 — O, for p,q,r € Ny, we have

(k, ) #S#7 = (ka,ia)#] = (kaB,iaB) = (k,i)#5°.

Moreover, for p € Ny, we have

A\, der . . ) o
(k7 7’)#+ = (k 1d®’_;_ b ld@:'_) - (kv Z) = (ka 7’) ld#:'_ :
Altogether, we obtain a cosemiquasicyclic poset with shift # , , given by ﬁ_ = X? for p € Np and by #% = X7,
for a morphism of semiquasicyclic types a: #5 — #%, where p, ¢ € N.

(4.42) Definition (cosemiquasicyclic poset of semistrip types). The cosemiquasicyclic poset with shift
#. = #% as in remark (4.41) is called the cosemiquasicyclic poset of semistrip types. For p € Ny, the poset
with shift #% is called the p-th semistrip type. The elements of #% will be denoted by k/i := (k,1).

We suppose given p € No. For 7, j € ©F, we have i < j if and only if there exists a morphism from i to j in ..
In particular, #% as in definition (4.42) is isomorphic to a full subposet of the diagram category (@ﬁ)Al.

In [23, sec. 1.1, p. 24}3], KUNZER’s stable analogon to the semistrip type # is the strip of the periodic repetition
of Ap, denoted by A% in loc. cit.
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(4.43) Example. The shape of #3 may be displayed as follows.

1

2[1]/2[1] SN 3[1}/2[1] — 0[2]/2[1] —
100 /100 — 20 /100 —, 3[1&@ — o/ —
0[1]/0[1] — 1100 — 2[1]/0[1] N 3[1]%[1] — 012 /oM
3/3 — 0lll/3 1[11/3 2[j/3 3[11/3
2/2 — 3}2 — 0[11/2 1[11/2 2[£/2

1 | |

1/1 —2/1 —3/1 —o0t/1 — 1ll/1

[ |

0/0 — 1/0 — 2/0 — 3/0 — 0111/0

(4.44) Remark. For every p € Ny, the shift T#" : #' — #% is an injective morphism of posets with shift
that reflects the order of #7 .

The cell decomposition
(4.45) Definition (cells of #% ). For p,m € Ny, we let #? be the full subposet in #! with underlying set
given by
#2, = {(k/D)™ i,k @, i <k}
(4.46) Example. The cells #3, #%, #3 of #3 may be displayed as follows.

0[2]/0[2]

3 /30 — of2l /30
2[1]/2[1] N 3[1]/2[1] N 0[2]/2[1]

1[1]/1[1] N 2[1}/1[1] N 3[1]/1[1] N 0[2]/1[1]

I I [

ol /ol — 101 /0l — 201 /olt) —, 301 /0l — o] /plH

0[1]/0[1] ol /ot — 1[1]/0[1] N 2[1]/0[1] — 30l — 0[2]/0[1]

| [ l
3/3 — 001/3 ottl/3 111/3 oltl /3 —— 301/3
I l l
2/2 — 3/2 — 01 /2 oltl/2 111/2 2l /2

1 l l

1/1 —2/1 —3/1 — 0l1/1 otl/1 — 11
7 1 | l

0/0 — 1/0 — 2/0 — 3/0 — 0111/0 otl/o

We would like to emphasise that an expression as “¢ < j, k < [” as occurring in part (c) of the following
proposition has to be read as “i < k and j <17 (and not as “i < k <land i <j <.
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(4.47) Proposition. We suppose given p € Ny.

(a) We have

#b=A{k/i|ikeO, i<k},

#5 = {(k/D)I™ | k/i € #5, m € No}.

(b) Given k/i,1/j € #5, m,n € Ny, we have

(k/i)lm) = (1/5)i"
in #% if and only if

m=mn,1=j,k=1or
m+l=n,i=10 k=1 j=jor
m=n+1,7=k i=j,l="!or
m+2=n,i=k=!j=10l=jor
m=n+2,i=k=j,j=1=".

(c) Given k/i,l/j € #5, m,n € Ny, we have
(ki) < (1/5)
in #% if and only if

m+1<nor
m+1=mn,i<lor
m=mn,1<7, k<lor
m=n+1,k<j,i=jl="!or
m=n+2i=k=j,j=10="

Proof.

COMBINATORICS FOR UNSTABLE TRIANGULATIONS

(a) We suppose given an arbitrary element [/j € #7%, that is, we suppose given j,/ € ©% with j < < 5.
By corollary (4.33)(a), there exist i,k € AP, m,n € Ny, with j = il™ [ = k", As

;lml = Sl:k{n]

)

we obtain m < n or m = n, i < k by corollary (4.33)(c), and as

gl = < 1) = gl

we obtainn <m+lorn=m+1, k <i. Sowe have n=m and i < k or we have n =m + 1 and k <.

If n =m and 7 < k, then
1/j = kbl = (i),

and if n =m + 1 and k <, then

1/j = k[m+1]/i[m] - (i[m]/k[m])[l] - (i/k)[2m+1]_

Conversely, we suppose given i,k € ©F with i < k. Then we have i < k < ill by corollary (4.34)(e),
hence k/i € #% and therefore (k/i)™ € #% for all m € No.
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()

First, we suppose that m < n, so that

1/ = (1ldl /jlalylm] if n = m 4+ 2q for some ¢ € Ny,
(jlatt /ilalyIm]if p = m + 2 + 1 for some g € Ny.

As T#" reflects the order of #" by remark (4.44), the condition (k/3)™ < (1/5)["] is equivalent to
ki Jlal /5ldl if n = m + 2q for some ¢ € Ny,
= | jlatuyild i n = m + 2¢ + 1 for some ¢ € No.
By proposition (4.32)(c), this holds if and only if n >m+1lorn=m+1,i<lorn=m, k<l i<j.
Next, we suppose that m > n. Analogously, we see that (k/i)l™ < (1/)I"] is equivalent to

1j> kldl /ildl if m = n + 2q for some ¢ € N,
)= ilatll /Elaif ;= n 4+ 2¢ + 1 for some g € N.

By proposition (4.32)(c), this holds if and only if m =n+2,l=j=k=i=jorm=n+1,1=1,
=i, k<j.

We have (k/i)l™ = (1/7)" if and only if (k/i)™ < (1/§)" and (1/5)M < (k/i)™. By (c), we

have (k/i)l™ < (1/j)") if and only if m+1 <norm+1=mn,i <lorm=mn,i<j, k<Ior
m=n+1,k<ji=jl=!orm=n+2i=k=1i j=1=! and we have (I/7)" < (k/i)l™ if
andonlyif n+1<morn+1l=m,j<korn=m,j<il<korn=m+1,1<i,j=j k="!or
n=m+2,j=101=j,i=k=". In particular, we have the five cases m=norm+1=norm=n+1or

m+1l<norm<n+1.
If m = n, then (k/i)™ = (1/§)I" is equivalent to i < j, k <land j <4, <k, that is, to i = 5, k = [.
If m 4+ 1 = n, then (k/i)l™ = (1/§)!" is equivalent to i <l and 1 <4, j =i, k=1, thatis,toi=1, j =,

= 1. If m = n+1, then (k/i)l™ = (1/5)"] is equivalent to k < j, i = i, I = ! and j < k, that is, to
j=ki=1i 1= Ifm+41<n,then (k/i)"™ = (1/§)" is equivalent ton =m +2, j =l =i, i =k =
If n+1 < m, then (k/i)™ = (1/§)I" is equivalent to m = n+2,i =k =, j =1 = |. Altogether,

(k/i)l™ = (1/5)!" is equivalent to
m=mn,i=j,k=1or
m+l=n,i=[k=!j=jor
m=n+1,j=k i=jl="!or
m+2=n,i=k=!j=10=jor
m=n+2,i=k=j,j=1=". O

(4.48) Corollary. We suppose given p € Ny.

(a)

We have
#E = {(k/D)I™) i,k € AP, i <k, m € No}.

(b) Given 4,j,k,l € AP with i <k, j <l and m,n € Ny, we have

(k/i)tm) = (/)i
in #% if and only if

m=mn,i=j, k=1

(¢) Given i,j,k,l € AP with i <k, j <1 and m,n € Ny, we have

(/i) < (1/5)
in #% if and only if
m+1<nor
m+1=mn,i<lor
m=n,1<7, k<L
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Proof.
(a) By proposition (4.47)(a), we have

#7 = {(k/D)™ | i,k €O, i <k, me Ny}
={(k/D)™ i,k e AP, i <k, m e No}U{(!/)"™ |ie AP, m e No} U {(1/D)™ | m e No}
={(k/)™ i,k e AP, i <k, m e No} U{(i/)m | ie AP, m e No}U{(i/)™*? | m e Ny}
= {(k/D)™ i,k e AP, i <k, m e Ny}

(b) This follows from proposition (4.47)(b).

(¢) This follows from proposition (4.47)(c). O
In analogy to corollary (4.34), we obtain the following cell decomposition for the semiquasicyclic types:
(4.49) Corollary. We suppose given p € Ny.

(a) For m € Ny, we have
#in = (/)™ | k/i € #5}.
(b) We have

U #5.

m&ENy

(c) For m € Ny, we have
#p ﬂ#p +1 :@%4_1’
#p n #m+2 7n N # m—+1 N #m+2 - {('/l)[erl]} = {(l/l)[m+2]}7
#f’nﬁ#erk = for k € N with k£ > 3.
(d) For m € No, k/i,l1/j € #5, we have (k/i)l™ < (1/7)!™) in #% if and only if k/i < I/j in #5, and we
have (k/q)™ < (1/7)+1 in #% if and only if k/i < 511 /1 in #5 U 47,
(e) For m,n € Ny with m + 1 < n, we have k/i < 1/j in #% for all k/i € #F,, 1/j € #P, where k/i =1/j
holds if and only if n = m + 2, k/i = (/)™ 1/5 = (/i)™ +2.
(f) For m € Ny, we have
= {kfie #1L1 G/D)™ < kfi < (/)Y
Proof.
(a) This follows from definition (4.45).

(b) This follows from proposition (4.47)(a).

(b) and (b).
(

(

) (4.47)
(¢) This follows from proposition (4.47)
(d) This follows from proposition (4.47)(c).

) (

)

e) This follows from proposition (4.47)(c), (b).

f) We suppose given m € Ng and 1/j € #". First, we suppose that [/j € #?,, so that there exists k/i € #{
with 1/j = (k/i)l™. Since j is the least element and ! is the greatest element of ©f and since the shift
morphism is monotone, we have

G/ < (k/)t < (1t
and so (j/)™ < 1/5 < (/M. Conversely, we suppose that 1/ fulfils (j/;)l™ < 1/5 < I/
proposition (4.47)(a), there exist k/i € #5, n € No with 1/j = (k/9)[". As (j/p™ < 1/j = (k‘/z)[”]
we have n > morn =m —1,1/j = (/) = i/ orn=m —2,1/j = (/D)2 = (;/)" b
proposition (4.47)(c). As (k/i)" =1/5 < (/M) wehaven < morn =m+1,1/j = (k/j)m+1 = (1/k) ]
orn=m+2,1/7= (/)" = (1/1)™ by proposition (4.47)(c). Thus we have I/j € #P,. O

(
(
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(4.50) Corollary. We have an injective morphism of posets with shift b: @i — #i that reflects the orders,
given by

iy = (i)™

for i € ©F, m € Ny, with ©fb C #5.

Proof. We let by: ©F — #b be given by ibg := i/j for i € ©F. Then by is a poset morphism and we have
o =1/ =i"/i= (/)M = (ibo)™"
#6

in #% . By proposition (4.35), there exists a unique morphism of posets with shift b: ©% — #% with by = b|®g,
given by il™b = (ibo)™ = (i/})l"™ for i € ©F, m € Ny. To show that b reflects the orders, we suppose
given i,j € ©F, m,n € Z with i™b < j"p, that is, with (i/;)"™ < (j/;)"). By proposition (4.47)(c), it follows
that

m+1<nor

m+1l=mn,;<jor

m=n,i<i,i<jor

m=n+1,i<jj=jj=!or

m=n+2,j=i=jj=j=1
thatis, m <norm =mn,i <jorm=mn+1,i=j,j =" Ineach casewe have i[™ < jl"l by proposition (4.32)(c).
Thus b reflects the orders, and so it is in particular injective. O

(4.51) Convention. We suppose given p € Ng. From now on, we identify ©" with the image of the injective
morphism of posets with shift b: @} — #% from corollary (4.50). That is, by abuse of notation, we write ©%
instead of Im b, and, given i € @}, m € Ny, the image il"b = (i/;)l™ € #ﬂp of iml € ©F will also be denoted
by il™]. Accordingly, although the objects | = {9 € @} C O resp. | = 1 ¢ @ C © are no longer initial
resp. terminal in # , we will still use this notation for these elements in #% .

With this convention, the semiquasicyclic type ©% for p € Ny lies like a snake in the semistrip type # :
(4.52) Example.

(a) The shape of ©3 C #% may be displayed as follows.

1110 — ol g —

11 112] 9[2]
3/3 — 3 — 13— ollly3 —

[ | l

2/2 — 3/2 — 2l — 12— 9l /9

[

1/1 —2/1 — 3/1 — 10 — 1l /1

P rt

i —1 2 3
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(b) The cells #3, #3, #3 of #3 may be displayed as follows.

114]

(3/3)2 — 30

(2/2)P — (3/2)2 — 2B

|

(/D)3 — (2/1) — (3/1)& — 16

| | I

e 102 912] 302] 112l

(1] (1] 1121 ol2] 302l 1021

|

3/3 — 3l

I

2/2 — 3/2 — 21l

[

1/1 — 2/1 — 3/1 — 101

P rt

| [ I

3 — 3/ — (3/2)M — (3/3)M
20l — (2/nH)l — (2/2)l1
11— (1/1)1

el

i— 1 2 3

The universal property
Analogously to proposition (4.35), we will now prove a universal property for the semistrip types.

(4.53) Propogition. We suppose given p € Ny. For every category with shift C and every functor F': #{ — C
with FoT#+ |g§ = TCoF|@g7 there exists a unique morphism of categories with shift F': #% — C with F' = F|#g,
given on the objects by

F((k/i)l™) = F(k/i)™

for k/i € #f, m € Np, and on the morphisms by

Lipyyim ifm=n+2,
E((k/D)t™, (/)M = ’ 7
F (kb )0 (81 fmrnen) Fliny i) 0) F(in, 1/ ifm <

for k/i,l/j € #5, m,n € Ny with (/i)™ < (1/5)M, and for arbitrarily chosen i, € ©5, r € [m+ 1,n],
with k/i < igl]ﬂ and 4,, <1/j in the case m < n.

Proof. We suppose given a category with shift C and a functor F': #§ — C with F o T#i%g = TCo F|@g.

To construct a functor F': #! — C with F = F |#{§7 we will use the asymmetric description of #% as given in
corollary (4.48). We define a map Fy: Ob #" — ObC by

Ey((k/D)I) := F(k /i)™
for i,k € AP with i < k, m € Ny, and we define a map Fy: Mor #ﬁ — MorC by

F(k/i,1/§)m if m =n,
F(k/i, it p 1/5)m+1] ifm+1=n,
F(k/l?'[l])[m] (.refm+2,n71‘\F(ia!)[r])F(iJ/j)[n] ifm+1<n

Fy((k/a)l™, 1/ 5)!) =
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for i,7,k,1 € AP with i < k, j <1 and m,n € Ny such that (k/i)"™ < (1/5)".
Then we have

Source® Fy (/i)™ (1/5)!")

Source® F(k/i,1/j)" if m =n,
= { Source® (F(k/i, it F(i,1/5)m+1) if m+1=n,
Source® (F(k/i. ")) (o, a1 (D) FLIHM) im 1 <n
Source® F(k/i,1/j)™ if m =n, F(Source O(k/i,l/j))[m] if m =n,
= { Source® F(k/i,i")M if m+1=mn, p = { F(Source™ (k/i,il)m if m+1=n,
Source® F(k/z hml ifm4+1<n F(Source™ (k/i, M)l it m+1<n
= F(k/i)!™ = Fo((k/i)™) = Fy(Source® ((k/i)™, (1/)"))

and, analogously,
Target® (/i)™ (1/7)™) = Fo(Target™ ((k/i)™, (1/5)!")
for i,,k,1 € AP with i <k, j <1 and m,n € Ny such that (k/i)l™ < (1/)I"l. Moreover, we get

Fy((ky /i)™, (Ko fi2)™2)) By (Ko /i2)™2), (ks fis) ™))
F(ky/in, ko /io)™] F(ky iy, ks /iz)im2] if my = ma, me = ms,
F(ky /i1, ko /i2) ™) F(ky fig, 50 m2l F(iy, ks/iz)met if my = my, ma + 1 = ms,
F(ky /i1, ka iz)l™) F(ky fig, 11))Im2]

(®refmat2ms—11F (1, DI F (i, ks fig)lme) if mi =ma, mo+1 < ms,
F(ky Ji1, i8I Biy, ke i)t By fig, ks fi5) M2 if my + 1 =ma, mo = ma,
F(ky /iv, i) F(iy, ko fig) ) F(ky fig, il ima]

F(ig, k3 /ig)lm2t1] if my +1=mg, my+1=ms,
) Py fiy, i8I B (i Ry i)+ F(ky i, !“J)[mzl
B (o rerm2+2m3 nFG O F (i7k3/i3) ma) if mp +1=ma, ma +1 < ms,
(k‘l/h )l (o E[m1+2 ma—11F (1, D) F (i, Ky fi2) 2]
(kg/ZQ k3/23) me] if mi 4+ 1< mg, mg =ms,
F(ky fig, M)l (o retmit2,ma—11F (1, D) F (i, ke fig)m2]
(kg/ZQ,ZQ])[m2] F(ig, k3 /iz)lm2+1] if miy 4+ 1< ma, mg+1=mgs,

(kl/ll )[ml] (®rcfmit2.ms—11F (s !)[r])
F (i, ko fig)lm2) F (ko /iy, 11 lme]

(®rermat2,ms—11F (i, NI F (i, ks /i) ) ifmy +1<mg, mo+1<ms

161
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F(ky /i1, ko /io)™] F(ky fig, ks /iz)lm] if my = ma, my = ms,
F(ky [iy, ko /ig)lm] F(kz/izyi[zl])[ml] F(ig, ks /ig)lmatl] if my = mg, mo +1=mg,
F(ky /i1, ko /ia) ™) F(ky /in, \P) ™) (00 fny 2m -1 F (1, D))
F(i, ks/iz)lms! if my =mo, mo+ 1< ms,
F(ky /iv, i iy, ko fig) itV F(ky fig, ks is)mat] if my + 1 =ma, my =ms,
F(ky /iv, i5H ) B(iy, kg fig) il F(ky fig, il ma+1]
-F(ig, ks /iz)lmi+?] if my +1=mg, mao+1=ms,
) Py fiy, 8 B (i Ry i) F(ky fig, 1) a1
(®refmy+3,ms—11F (1, DI F (i, k3 fig)tme) if mi +1=mo, ma+1<ms,
F(lﬁ/ih 1)l (rcrmit2ma—11F (1, D) F(j, ko /ig)me2]
(kg/ig ks /iz)lm2] if mp +1 < ma, ma =ms,
(kl/ll H)imal (o refmi+2,ma—11F(, NI F (i, ko fin)me)
(kg/zg 12})[7”2} F(ig, ks /ig)tma+1] if mi +1<mog, mo+1=ma,
(ki3 ot 2m ) PG
F (i, ka i2) ™2 F(ky /i, 1) 2]
(®rermatams—11F (1, D) F(i, ks fig)tms] if mp +1<ma, mo+1<ms
F(ky [iv, k3 /iz)lm if m; = ma, ma = ms,
F(ky /i, z[”) ] Pt iyl Py, kg fig)ima+] if my = mg, mg + 1 = ma,
F(ky fiy, /1)) (o retmit2,ms—11F (1, D) F (i, ks fig)me] if my =mg, mo +1 < mg,
F(ky /i1, z[ ]) [l iy, k3 fig)mat1] if mi 4+ 1 =ma, mg = ms,
F(ky /iv, z[ Wil p(iy, i1l p1 Yt Biy ks fig) 2 i my 4+ 1= ma, mo + 1 = ma,
F(ky /i, J”)[ml]p( Dylmat1] gy, [+
(o re[m1+3 ms—11F(i, DD F(p, ks fig)ims] if mi +1=mq, my+1<mg,
(k1/21 )["“] (®rermi+2,ma—11F (i, DD F(;, ks fiz)me] if mi +1 < ma, mo =ms,
Fky /i, ")) (0, oy 2,ma -1 F (1 DI F (G, 1) (1, iG]
-F(ig, kg /iz)lmz+1] if my +1 < mz, ma +1=ms,
F(ky fir,\Blma) (o re[mi+2, m2 1 FG, hir) F(h hylmal p(1, 10y me]
(®rermat2,ms—11F (i, DD F(j, ks fig)lms] ifm+1<mg, mo+1<ms
F(kl/zl,k3/23)[m1] if m1 = mo, ma = ms,
F(ki /iy, i[l])[mll F(iy,i2)m+1 F(iy, kg fig)ma+1] if my = mg, my+1=ma,
F(ky /iy, 1Bhimal (e refma+2,ms—11F (1 D) F(j, ks fig)ms) if m; =mg, mg +1 < mg,
Fky fiy, ] ) Im) F(iy, kg fig) i+ if mi +1=ma, my =mg,
F(ky /iy, il pt o0 ])[mﬂ F(i,io)m+2 F(iy, ks /ig)m™+2 i my +1 = ma, ma + 1 = ms,
_ | Flafi i G E I F G
(o Te[mlJrg s — 11F(|, DD F(j, ks fig)lms] ifmy+1=mg, mo+1<ms,
(kl/zl )[ml]( e[m1+2,m2—11F( ,.)H) G ,]Cg/ig)[mz] if mi +1 < mgy, mg =mg,
Fky fin, M) (0, 1y 2,ma1 F (1, D) F (j, i) P72+
F(zz,krg/z?,) [m2+1] if my +1<mg, mg+1=mgs,
Fky /i1 )] (01 iy 2 FG, DI F (G, 1+
(®rermat2,ms—11F (i, DD F(j, ks fig)lms] ifmi+1<mo, mo+1<mg
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F(ky /iy, ks/is)lml if m1 = ma, Mo = ms,
F(ky/i1, z[l]) [l By, kg fig)lma 1 if my = ma, ma + 1 =mg,
F(ky /iy, 1 Bhimal (o o cimyt2,ms—11F (1 D) F (i, ks fis)msl if my = ma, ma + 1 < m,
Fky fiy, iy ) F(ig, kg fig) i+ if my +1=ma, mg =ms,

= F(ky /iy, MYl B(j, ks fig)lme) if my +1=mg, ma+1=nmg,
F(ky /in, ") (0, ety 0ms 11 F G DI F (i, ks fia)s] if my +1 = ma, mo + 1 < ma,
F(ky /in, ") (0, ety v0.mn 11 F (L, DI F (i, ks fiz)2) if my +1 < ma, mo = m,
F(ky /iy, 'M)lm] (o T»e[mlﬂ,mﬂF(u!ﬂﬂ)F(.,kg/zS)[mﬁ” if my + 1< mg, mg + 1 =mj,
F(ky /iy, "M ) (0, fnyv2,ma 11 F (D) F (5, ks /i)™ i my + 1 < ma, ma +1 < m
F(k1 /iy, ks /i)™ if m1 = mg,

= { Fky/in, zm)ml]F(zl s [i3)ma] if my 4+ 1 =ms,

F(ky fin, ™)) (0t 42,ma—11 F Gy DI F (ks fiz) 2] if my + 1 < myg

= Fy((ky/in)!™], (ks fig)ms]).

163

for iy, 2,13, k1, ko, ks € AP with i3 < ki, ig < ko, i3 < k3 and my,ma,m3 € Ny such that (ky/i;)™) <

(k)g/i2>[m2] < (kg/ig)[m3], and
By (Lgoyiyom) = Er((k/D), (k0™ = F(k/i, b /D) = F (i)™ = Lo = 1, oy

for i,k € AP with ¢ < k and m € No. R R R R
Thus we have a functor F': #f_ — C with Ob F = F;; and Mor F' = F}, that is, such that

E((k/i)™) = F(k/i)™
for i,k € AP with i < k, m € Ny, and

F(k/i,1/) if m =n,
E((k/0), (1)) = { ki, ithm B 1/5)) ifm+1=n,
F(k/‘/i’!m)[m]( refmt2n—11F(is DIYEG /)M ifm4+1<n

for i,7,k,1 € AP with i < k, j <1 and m,n € Ny such that (k/i)"™ < (1/5)".
Moreover, as

F(((k/a)tm, (l/j)[n])[l]) - ﬁ’((k/i)[m+l]’ (1/5)l+1)

F(k/i,1/5)m+1] ifm+1=n+1,
= { F(k/i, it R, 1))+ ifm+2=n+1,
F(k/i, " (0 g ) F (DI EGL L) ifm+2 <nt1
(F(k/i, l/J) hw if m=n,
= § (F(k/i, M R, 1/7)) if m+1=n, p = F((k/)™, /50
(F (/i /D (0rcpmian-1 FG DD FG /)P i m 4+ 1 <n

for i,j,k,1 € AP with i < k, j <1 and m,n € Ny such that (k/i)l"™ < (1/5)["), we have Mor E' o Mor T#% =

Mor T€ o Mor £'. Hence F'o T#% = TC o 13’, that is, Fisin fact a morphism of categories with shift.
Finally, we get

E(k/i,1/5) ific AP, ke AP, jEAP, | € AP,
E(k/i, (5/)M) ific AP, keAP, jeA, =1,
o Bk G/DEY ificAP, keAr, j=1 1=
17 = B/ G/ i< 00,1, g < an 1=,
f?((l/n) (i
F(G/0P, (G

ifieAP, k=1,j5=11=1,
/DB

i ":., :.,’:.7 =1
MY =l k=1 =11=!

I
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F(k/i,1/9) ifie AP, ke AP, j € AP, | € AP,
F(k/i,ithYF@, ) ific AP, ke AP, j € AP, 1 =,
) PR/ EG )P e AP ke Ar, j=11=1,
) F(i, )M ifieAP, k= jeAP | =
F(i, YWF(j, )P ifieAr k=1j=11=1,
F(;,)® ifi=lk=1j=11=
F(k/i,1/5) ific AP, ke AP, je AP, 1€ AP,
F(k/i,ithFEM ) ific AP k€ AP, j € AP 1=,
;1 i P P oi—1 ] =
= { g g IS B SRATTATD
74 ifieAP k=1 €Al =1,
(i1 ifieAr, k=1,j=11=
FOI 0 ifi=lk="!j=11=

for k/i,l/j € #{ with k/i < 1/j, that is, we have Mor F = Mor F|#g and therefore F' = F|#g. In particular,

Fis necessarily given on the objects by

B((k/D)™) = B(k/i)m) = F(k/i)m)

for k/i € #5, m € No. To derive a formula for the values of F' on the morphisms, we suppose given k/i,l/j € #5,
m,n € Ng with (k/i)l™ < (1/5)". By proposition (4.47)(c), we have m+1<norm+1=mn,i <l or m=n,
i<j,k<lorm=n+1, kgj,zfl,lf'orm*nJrQ i=k=1i,j=10=1!. In particular, we have the four
casesm=norm=n-+1orm=n+2orm<n. If m=n, then we necessarily have 1 < j, k <[ and

F((k/)!, 1/5)) = E((k/D), 1) 7)) = E((k/i,1/5)"™) = F(k/i, 1/ ) = F(k/i, 1/5)™.

If m = n+ 1, then we necessarily have k < j,i =i, =" and
E (/D)™ (1)) = F(k/D), /)=y = BRI, 500 = Bk, 5)0 = F(k, §)0.
If m = n 4+ 2, then we necessarily have i = k=i, j=1=1 and

E((k/)!™, 1/5)) = F(G /), a2y = L) = B, = Rt
=F(1 )[ ]_1(1«“)m]

Finally, we suppose that m < n. We choose i, € ©F for r € [m + 1,n] with k/i < zm+1 and zn <l/j. (If
m =n — 1, it is possible to choose i,,4+1 with k/i < z[ ] 41 and dp 1 < 1/7, that is, with k/i < z < (1/HH,

since in thls case we have ¢ <[ by proposition (4.47)(c ) ) Then we necessarily have
B((k/1), (1/5)") = F(((R/D, i) (oremenm-n (I a5 @l 1/50))
F((k /1), () )™ (0 efiman- 11F( Lh( D) B (1/5))
F(k/z,z&h ) (01 fmrm—1) F i, ,«H) D) Bi, 1)
= F(k/i,ily), )™ (o ) Fin, 1/5)1.

Conversely, given an arbitrary morphism of categories with shift G: #4 — C with FF = G |#{)” we necessarily
have

re[m+1,n— I]F(ZTv r+1

G((k /i)™, (1/5)) if m = n,
G((k/D™, (1)) = G(((k /i), (1) ml) (§lm+1](1/5)m+11)) if m+1=n,
G(((k/i)lm), (DI (@, ¢ gm—11 G G, (1/5))) i m+1 <m
G((k /i), <l/y>[m ) if m = n,
= ¢ G((k/i)lm), (i)lmD) G+, (1/5)bm 1) ifm+1=n,
G((k /), (D) (0, (s GG GGIL (1/)) i m+1<n
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G(k/i, l/j)[m if m=n,

= L G(k/i,il )[ml G(i,1/4)tm+1 if m+1=n,
Gk /i, B (0, rpy2n 11GGL DI GGLUHIT i m+1 <
F(k/i, l/j)[ if m =n,

= ¢ F(k/i, it F(i,1/5)mt1 ifm+1=n,
F(k/i, "™ (0, tmi2mn—1) F (L, D) F (1) i m+1<n

for 4,5, k,1 € AP with i <k, j <1 and m,n € Ny such that (k/i)™ < (1/§)l"), whence G = F. O

6 Cosemistrips and cosemicomplexes

We suppose given p € Ng. In this section, we will introduce p-cosemistrips in a given category C as #* -commu-
tative diagrams therein, see definition (4.55)(a). The semistrip type # is a poset with shift, cf. definition (4.42).
If C is also equipped with a shift functor, we may consider the particular shift compatible # -commutative
diagrams as introduced in definition (4.17)(a): In such a diagram, the morphism on (k/i)M — (1/5)1 for
k/i,l/j € #% with k/i < 1/j is obtained by an application of T¢: C — C on the morphism on k/i — 1/j.
Because of the injectivity (on the objects and the morphisms) of T#% . #ﬁ — #ﬁ, cf. remark (4.44), these
particular diagrams are called periodic p-cosemistrips, see definition (4.55)(b). Likewise, periodic morphisms
of p-cosemistrips are defined. The universal property of # of proposition (4.53) will show that periodic
p-cosemistrips and periodic morphisms of p-cosemistrips are uniquely determined by their values on the (finite)
subposet #( of #% , cf. definition (4.27) and proposition (4.60).

Examples of cosemistrips will be the Heller cosemistrips in a zero-pointed Brown cofibration category, see
definition (5.33), which will be the models for the cosemitriangles in the corresponding homotopy category, see
definition (5.45) and definition (5.51). The cosemitriangles will be in fact particular periodic cosemistrips with
zeros at the “boundaries”, so-called cosemicomplexes as in definition (4.62).

The semiquasicyclic categories of cosemistrips and periodic cosemistrips

(4.54) Remark. We suppose given a Grothendieck universe il that contains Ny.

(a) We have a functor
Strips“™: Cat(y) — a4 Caty),
given by
Strips®® T (—) = Stripsi> ™t (—) := —#%.

For every morphism F: C — D in Caty), the morphism Strips® " (F): Strips®*(C) — Strips®* (D)
in q4 Caty, is given by

Stripst® T (F)X = FX
for X € ObStrips®®*(C) and
Strips> ™ (F) f = Ff
for f € Mor Stripsc>™(C), n € No.
(b) We have a functor
Strips;%f TCat ) — q TCaty),

given by

Stripst%t(—) = Strips¢%f, (=) = _ﬁéat'

per per,e
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For every morphism F': C — D in TCaty, the morphism Stripsgfé’r+ (F): Stripsg;fr €) — Stripsf)z’rJr(D)
in q; TCat ) is given by
Strips®2. T (D)

Stripsis (F) = Stipsi?* (F) St

for n € Np.
Proof.
(b) This follows from remark (4.20) and remark (4.22). O
(4.55) Definition (semiquasicyclic category of (periodic) cosemistrips).

(a) We suppose given a category C. The semiquasicyclic category Strips® ™ (C) = Stripsc®™(C) = C#* as
considered in remark (4.54)(a) is called the semiquasicyclic category of cosemistrips in C. For p € Ny, the
category with shift Strips;O’Jr(C) is called the category of p-cosemistrips in C, an object in Stripszo’Jr(C) is

called a p-cosemistrip in C, and a morphism in Stripsgo’+(C) is called a morphism of p-cosemistrips in C.
We suppose given a p-cosemistrip X in C for some p € Ny. Given k/i € #i, we Write X’W for the image
of k/i under X. Given k/i,l/j € #% with k/i < 1/j, we write X*/ /3. X*/i — XUJ for the image
of (k/i,1/j) under X.

(b) We suppose given a category with shift C. The semiquasicyclic category with shift Strips®®™(C) =

per

Stripsff;’rf,(C) = Cf{gat as considered in remark (4.54)(b) is called the semiquasicyclic category of pe-

riodic cosemistrips in C. For p € ObNg, the category with shift Stripsg;’r;(C) is called the category of
;Z;TP(C) is called a periodic p-cosemistrip in C, and a

(C) is called a periodic morphism of p-cosemistrips in C.

periodic p-cosemistrips in C, an object in Strips
co,+

morphism in Strips;2;",

(4.56) Example.

(a) A 3-cosemistrip X in a category C may be displayed as follows.

1
X2[1]/2[1] - X3[1]/2[1] - X0[2]/2[1] o

Xl[l]/l[ll N XQ[I/E/lm R X3[1T]/1[1] R Xo[j]\/l[ll o
T T T T
Xo[ll/o[l] _ Xl[l]/O[ll N X2[1]/0[1] _ X3[1]/0[1] _ X0[2]/0[1]
T 1 1 7
X3/3 ., xoMys ., xaltlys _ x2lMy3 | y3ltys
T T T 1
x2/2 _, x3/2 _, xotly2 | yillj2 | 2ly2
I 7 T 7
XU/, x2/1 , x3/1 ., xo/n _ xiltia

7 7 7 T
X0/0 _, x1/0 _, x2/0 _, x3/0 __, xo"/0
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(b) A periodic 3-cosemistrip X in a category with shift C may be displayed as follows.

1 1
(X221 - (x3/2)8 - (x2)B -

T 1 T
(XN (x2ME o (x3mE L (x B

T T 1 T
(Xi)[Z] N (Xl)[2] N (XQ)[2] N (XB)[2] SN (Xi)[3]
T 1 T 1
X3/3 (XB)[l] N (X3/1)[1] N (XS/Z)[l] _ (XB/S)[l]
T T 1 T
X2/2 N X3/2 N (XQ)[l] N (X2/1)[1] N (X2/2)[1]
I i 1 1
Xl/l _ X2/1 N X3/1 _ (Xl)[l] _ (Xl/l)[l]

T T T T
X — X' — X2 — X% — (x»)l

(4.57) Remark. We suppose given a category C. For every morphism of semiquasicyclic types a: @7 — O
for m,n € Ny, the semiquasicyclic operation Stripst® ¥ (C): Strips¢® ™ (C) — Strips>™(C) is given on the objects
by
(Stripse> T (C) X)M/T = Xhe/io
for k/i € #7 and
(Stripseo ™ (C)X)F/id/i = xka/ielalia
for k/i,1/j € #7 with k/i <1/j, X € Ob Stripsc®™(C), and on the morphisms by
(Strips>+ (€) )/ = proro
for k/i € #7, f € Mor Stripsi™* (C).
Proof.
(a) We have

(Stripsc® ™ (C)X)*/ 47 = (C#H(X))F/WWT = (X o #i)k/i7l/j = X ®/LUYN#HE — x (R/O#F.U/D#S

(03

_ Xka/ia,la/ja
for k/i,1/j € #7 with k/i <1/j, X € Ob Stripsc®*(C), and we have
(Stripse™* (C) )M = (CHH(N)MF = (fx #g)? = fOO#E = phosie
for k/i € #7, f € Mor Strips> ™ (C). O
(4.58) Remark. We suppose given a category with shift C and a p € Ny.
(a) A p-cosemistrip X in C is periodic if and only if
xR (Xk/i’l/j)[l]
for k/i,1/j € #5 with k/i <1/j.
morphism of p-cosemistrips f: X — Y in C is periodic if and only if X, Y are periodic an
b) A hi f istrips f: X - Y inCi iodic if and only if X, Y iodi d
fim/k _ (fk/i)[l]

for k/i € #.
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Proof. This follows from remark (4.19). O
(4.59) Remark. We suppose given a Grothendieck universe 4l that contains Ny.

(a) The functor Strips®>*: Cat ) — q Cat ) induces a functor
Strips® T : Cat () — g4 Cat ),
where 05triPs7” 7€) for p € Ny is given by (OStripS;O’Jr(c))k/i =0C for k/i € #*.
(b) The functor Stripsc:*: TCat ) — q TCat g induces a functor

per

CO,+ .
per °*

Strips TCatg y) — q+TCatg (y),

where 0StFiPsRep(©) = Stripsy” " (€) fo1 ) € N,
Proof.
(b) This follows from remark (4.23). O

The following proposition explains in which sense an p-cosemistrip resp. a morphism of p-cosemistrips for
some p € Ny is periodic:

(4.60) Proposition. We suppose given a category with shift C and a p € Ny.
HENEY i
(a) For every #f-commutative diagram X in C with X Tt 2 (XM for i, § € OF with i < j there exists
a unique periodic p-cosemistrip X in C with Xy = X |#{‘)’v given by
XEDT (k]

for k/i € #5, m € Ny, and by

l(X(x))[m] if m=n+2,
X[ym] ifm=n+1
(k/i)m, /i) (X ko )
X (X(]f/z’l/j)[m] if m =n,
B/l ] PN RN NS
(XO ) (.re [m+1,n—1] (XO ) ) (XO ) if m <n,

for k/i,l1/j € #5, m,n € Ny with (k/i)l™ < (1/§)l"), and for arbitrarily chosen 4, € eF, r € [m+1,n],
with k/i < ig,ll]H and i,, <1/j in the case m < n.

(b) We suppose given periodic p-cosemistrips X, Y in C. For every morphism of #f-commutative dia-
T .
grams fo: X|#g — Y|#g with fé[] = (fHlM for i € ©F there exists a unique periodic morphism of
p-cosemistrips f: X — Y in C with fy = f\#g, given by

DT (/5 m)
for k/i € #5, m € Ny.
Proof.
(a) This is a reformulation of proposition (4.35).
(b) We suppose given a morphism of #{-commutative diagrams fo: X|#g — Y|#g such that fém = (fhHH
for all i € ®). Then we obtain a #5-commutative diagram Hy in C2' with SourceoHy = X |4z and

Target oHo = Y|, given by (Hy'")o1 = fo/* for k/i € #8 and by HY "/ = (X[ )13, (Y | o )F/01/3)
= (XR/BUI YR for k[i 15 € #5 with k/i <1/3.

Xk XU/

A —
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Since fém = (fHM for i € @Y, we have
Hém’j[l] _ (Xime,Yimvjm) _ ((Xi,j)[1]7 (Yi,j)[l]) _ (Xi,j7yi,j)[1] — (ng)[l]

for 4,7 € ©f with i < j. So by (a) there exists a unique periodic p-cosemistrip H in CA" with Hy = H|#g.
As

(Source o )| 4» = Source oH | 4» = Source oHo = X |y,
(Target oH )| 4r = Target oH | 4r = Target oHo = Y|4z,

it follows that SourceoH = X and TargetoH =Y by (a). So we obtain a morphism of p-cosemistrips
f: X =Y, given by

i)lml i)lml k/iy[m k/iN[m
f(k/) :(H(’“/) )0,1:(H0/)([)1]:(f0/)[]

)

for k/i € #b, m € Ny. Moreover, we have
NG NG i i
FOL (O™, = (B = (77
for k/i € #1, that is, f is periodic, and we have (Source oH)|ur = X |4z, (Target o )| ur = Y|4r and
i i k/i k/i
PR = (H o1 = (Hy Nox = fo!

for k/i € #¢, that is, f|ur = fo.

Conversely, we suppose given an arbitrary periodilc morphism of p-cosemistrips g: X — Y in C with
fo = g|#g. We obtain a p-cosemistrip K in C® with SourceoK = X and TargetoK = Y, given

by (K*/%)g1 = g*/* for k/i € #% and by K*/4U/5 = (Xk/0l3 Yk/W3) for k/i,1/j € #5 with k/i <1/j.
Xkl xUi
gk/iJ ng/j
vkl Lyl
The n-cosemistrip K is periodic since
KEADGDN — x /DN e/ Z (xR0 y R/
= (X R/ yRIBUHT = (R
for k/i,1/j € #- with k/i <1/j. Moreover, we have
KRG — (Xk/i,l/j’yk/i,l/j) _ Hée/i,l/j

for k/i,1/j € 45 with k/i <1/j, that is, K|4» = Ho. Thus we have K = H, and therefore g = f. O

The semiquasicyclic categories of cosemicomplexes and periodic cosemicomplexes
Finally, we will introduce cosemicomplexes, that is, cosemistrips with zeros at the “boundaries”.
(4.61) Remark. We suppose given a Grothendieck universe il that contains Nj.

(a) We have a functor

COIIICO’+Z Cato,(u) — Q+Cat0,(u),

given as follows. For C € Ob Cat ), the semiquasicyclic zero-pointed category Com®>*(C) is the full
semiquasicyclic zero-pointed subcategory of Strips“>™(C) given by

Ob Com$”*(C) = {X € ObStrips;™™(C) | XD 20 for i € ©5, m e Ny}
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for p € Nyg. For every morphism F': C — D in Catg ), the morphism Com®>*(F): Com“>"(C) —
Com® " (D) in q+Catg (g is given by

Omc0,+
COm;O’-i_(F) = StripS;O’+(F)‘gomg°’+E?))

for p € Np.
We have a functor

co,+ .,

Comy ;" : TCaty g1y — q+TCaty (y),

given as follows. For C € Ob TCatg ), the semiquasicyclic zero-pointed category with shift Comffé’f (C)
co,+
per

is the full semiquasicyclic zero-pointed subcategory with shift of Strips’ ™ (C) given by

Ob Com<%* (C) = Ob Strips2%* (C) N Ob Com> ™ (C)

per,p per,p

for p € Ny. For every morphism F': C — D in TCat ), the morphism Comifé’f(F): Comffg’f C€) —

Comge,* (D) in g4 TCato (y) is given by
Come3™ (F) = Stripsest: (F)| O "5 ()
OMper p = SUPSper,p COm;(é}tL ©)
for p € Np.

Proof.

(a)

First, we suppose given an object C in Catg. Given a morphism of semiquasicyclic types a: 0 — ©%
for p,q € Ng and X € Ob Strips{>™*(C) such that XG/ND"™ =0 for j e ©d, n € Ny, we also have

(StripsC°’+(C)X)(i/i)[m] _ xGa/ie)™ _

(03

for i € ©F, m € Ny. Thus we have a full semiquasicyclic zero-pointed subcategory Com®*(C) of
Strips®>™(C) given by

Ob Com®*™(C) = {X € ObStripse*(C) | X@/D™ = 0 for i € ©F, m € No}

for p € Np.

Next, we suppose given a morphism F: C — D in Catyg. We have to show that the morphisms of
zero-pointed categories with shift Strips?f”*(F): Stripsff”*(C) — Stripsff”*(D) for p € Ny map objects

in Com{”*(C) to objects in Com;™* (D). So we suppose given p € Ny and X € ObCom>*(C), so

that X /9" = 0C for i € ©F, m € Ng. As F is a morphism of zero-pointed categories, it follows that
(StripsSt (F) X)W/ = px /0™ = po¢ = oP

for i € @4, m € Nyg. Thus Stripsiy’" (F)X € ObCom$% " (D). As X € ObCom$% " (C) was arbitrary, it

co,+
follows that the restriction Strips(jﬁ”+(F)|ComP (P)

d exists.
Com}o’+ ©)

The functoriality of Com®* follows from the functoriality of Strips®*: Cat, — q,Catg, see re-
mark (4.54)(a).

(b) This follows from (a) and remark (4.54)(b). O

(4.62) Definition (semiquasicyclic category of (periodic) cosemicomplexes).

(a) We suppose given a zero-pointed category C. The full semiquasicyclic zero-pointed subcategory Com® ™ (C)

of Strips®®™(C) as considered in remark (4.61)(a) is called the semiquasicyclic category of cosemicomplexes
in C. For p € Ny, the zero-pointed category Com;(’""(C) is called the category of p-cosemicomplezes in C,
an object in Com;O’Jr(C) is called a p-cosemicompler in C, and a morphism in Com®>™(C) is called a

P
morphism of p-cosemicomplexes in C.
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(b) We suppose given a zero-pointed category with shift C. The full semiquasicyclic subcategory with shift
Com;(é’rJr(C) of Stripsgf;rJr (C) as considered in remark (4.61)(b) is called the semiquasicyclic category of
periodic cosemicomplezes in C. For p € Ny, the category with shift Com;‘;:;(C) is called the category of

periodic p-cosemicomplezes in C, an object in Com;‘;g;(C) is called a periodic p-cosemicomplex in C, and
co,+

a morphism in Comper,p(C) is called a periodic morphism of p-cosemicomplexes in C.

(4.63) Example.

(a) A 3-cosemicomplex X in a zero-pointed category C may be displayed as follows.

0 X3[1T1/2[1] - XO[j;/?[l] -

T T
0 X2m/1[1] R X3[1]/1[1] R X0[2]/1[1] R
T T T T
0 Xlll]/o[ll N X2[1]/0[1] _ X3[1]/0[1] 0
00— X0[1]/3 . XIE]/?) N XQ/[E]/:; N g
T 1 T T
0 X3/2 _, Xo[”/z N Xﬂll/z 0
1 T 1 T
0— X2/1 _, x3/1 _, xot/ar 0
T 1 T T

0*>X1/0 _ X2/0 —)X?’/O 50

(b) A periodic 3-cosemicomplex X in a zero-pointed category with shift C may be displayed as follows.

1 T
0 —— (X3P - (XHBl - .

1 1 )
0 —— (X¥HR - (x3/HP - (xHBl - |
1 1 1 T
0 —— (X)) — (X2 — (%) —— 0
1 1 1 1
0 — (X3 - (X3 S (X321 g
I 1 1
0 —> X3/2 _ (XQ)[l] _ (X2/1)[1] -0
T T 1 1
0 — X2/1 N X3/1 N (Xl)[l] 0
T T T T

0> X' - X2 X3 — 50

By proposition (4.60), a periodic p-cosemistrip for some p € Ny is uniquely determined by its values on #5.

(4.64) Remark. We suppose given a zero-pointed category with shift C and a p € Ny. A periodic p-cosemi-
strip X is a p-cosemicomplex if and only if X%/% = 0 for i € e5.

Proof. If X is a p-cosemicomplex, then in particular X% = 0 for i € ©F. Conversely, if we have X it =0
for i € ©F, then we also have

XU _(xifiyiml gl —

for i € ©F, m € Ny as X is periodic and T¢: C — C is a morphism of zero-pointed categories, and so X is a
p-cosemicomplex in C. O
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Chapter V

The triangulated structure

We suppose given a zero-pointed Brown cofibration category C, that is, a Brown cofibration category as in
definition (3.52)(a) that is equipped with a (distinguished) zero object. BROWN has shown in [7, dual of th. 3]
that the homotopy category HoC, see definition (3.8), carries the structure of a category with shift as introduced
in definition (4.5)(c). If C is stable, that is, if the shift on HoC is invertible, then HoC becomes a triangulated
category in the sense of VERDIER [37, ch. I, §1, n° 1, sec. 1-1], as proven in this generality by SCHWEDE |33,
th. A.12]. In the case where the shift is not necessarily invertible, a variant of this structure involving homotopy
cofibre sequences was already studied by BROWN [7, dual of sec. 4, pp. 430-434].

In this chapter, we construct an unstable analogon of higher triangles in the homotopy category, called cosemi-
triangles, in the spirit of KUNZER [22, def. 2.1.2] and MALTSINIOTIS [25, sec. 1.4]. We show that these cosemi-
triangles may be organised in a semiquasicyclic category in the sense of definition (4.38) and that prolongation
properties analogous to those for the Verdier triangles in a Verdier triangulated category hold, see theorem (5.55).
For more detailed explanations, see the introduction, section 2. A key tool on our way is proposition (5.53) due to
CISINSKI [9, prop. 2.15], which roughly states that the objects resp. morphisms in (HoC)2" for some n € N,
cf. notation (4.30), may be strictified to objects resp. S-2-arrows in C2". We give a new proof for this result using
the Z-2-arrow calculus (3.128). We do not show an analogon to the rotation axiom in a Verdier triangulated
category.

A comment on the terminology: While Verdier triangulated categories are self-dual, the “higher unstable trian-
gles” on HoC, which we call cosemitriangles, are of course not. The “semi” in cosemitriangles should indicate
that they are only defined in a “positive area of the plane”, cf. example (4.63)(b), using only non-negative powers
of the shift on HoC. The “co” refers to the direction of the arrows in the cosemitriangle; the “higher unstable
triangles” in the homotopy category of a zero-pointed Brown fibration category would be called semitriangles.
For “unstable Verdier triangles” in an additive framework, see also the work of KELLER and VOSSIECK [21] and,
independently, BELIGIANNIS and MARMARIDIS [6].

The chapter is organised as follows. In section 1, we study cones, which are convenient models for a morphism
to the zero object in the homotopy category. Using this, we introduce Coheller rectangles in section 2 and
construct the shift on the homotopy category by a choice of such Coheller rectangles. Moreover, we define
the Coheller construction, see definition (5.22), which is a choice-free variant of the shift. Finally, we study
the models for cosemitriangles in section 3 and the cosemitriangles in section 4. The prolongation results for
cosemitriangles can be found in theorem (5.55).

1 Cones

Throughout this section, we suppose given a category with cofibrations and weak equivalences C that has a zero
object, cf. definition (3.30)(a).

In the construction of the Coheller shift and the cosemitriangles on the homotopy category HoC, cf. defini-
tion (5.28) and definition (5.51), cones play a prominent role. The main property of cones is that they are
suitable replacements in C for a morphism to the zero object in HoC, cf. remark (5.7).

173
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Coacyclic objects

(5.1) Definition (coacyclic object). An object A in C is said to be coacyclic if it is cofibrant and if there exists
a zero object N in C such that inig : N — A is a weak equivalence.

(5.2) Remark. We suppose given an coacyclic object A in C. For every zero object N in C, the unique
morphism inil} : N — A is an acyclic cofibration.

Proof. We suppose given a zero object N in C. As A is acyclic, there exists a zero object N such that inif{ :

N — A is a weak equivalence. Moreover, inig~ is a cofibration by remark (3.21). But N is cofibrant, whence

the canonical isomorphism ini%: N — N is an acyclic cofibration. But then inig = ini% ini% is an acyclic

cofibration by closedness under composition. O
(5.3) Remark. Every coacyclic object in C is a zero object in HoC.

(5.4) Remark. We suppose given a coacyclic object A in C. If C fulfils the incision axiom or the excision
axiom, then emb;: X — X IT A is an acyclic cofibration for every cofibrant object X in C.

Proof. This holds as

embo

A—e= XITA

%ZZ %emm

0—e— X

is a pushout rectangle in C. O
(5.5) Remark. We suppose given a morphism f: X — Y in Ceof.

(a) If X is coacyclic and f is a weak equivalence, then Y is coacyclic.

(b) We suppose that C is T-semisaturated. If Y is coacyclic and f is a weak equivalence, then X.

(c) We suppose that C is S-semisaturated. If X and Y are coacyclic, then f is a weak equivalence.

Proof. We have inix f = iniy, that is, the following diagram commutes.

0
n% \ni‘Y
f

X Y

(a) If inix and f are weak equivalences, then iniy is a weak equivalence by multiplicativity. That is, if X is
coacyclic and f is a weak equivalence, then Y is coacyclic.

(b) If iniy and f are weak equivalences, then iniy is a weak equivalence by T-semisaturatedness. That is,
if Y is coacyclic and f is a weak equivalence, then X is coacyclic.

(¢) If X and Y are coacyclic, that is, if iniy and iniy are weak equivalences, then f is a weak equivalence by
S-semisaturatedness. O

Definition of cones

With the notion of a coacyclic object at hand, we are able to define cones:

(5.6) Definition (cone). We suppose given a cofibrant object X in C. A cone of X consists of a coacyclic
object C in C together with a cofibration i: X — C. By abuse of notation, we refer to the said cone as well
as to its underlying object by C. The cofibration 4 is called the insertion of C. Given a cone C' of X with
insertion ¢, we write ins = ins® := 1.
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Cones in C may be seen as cofibrant models (in the sense of the Reedy structure (3.88)(b)) for morphisms to
the zero object in the homotopy category:

(5.7) Remark. Given a cofibrant object X and a cone C of X in C, then (ins,ini¢) is a Z-2-arrow in C and
we have

terx = loc(ins) loc(ini¢) ™+
in HoC.
Proof. This holds as the following diagram commutes.

ins

X ——(Ceo—0

|

X —0—— O

(5.8) Remark. We suppose given a cofibrant object X in C. Moreover, we suppose given a cofibrationi: X — C
in C such that terg: C — 0 is a weak equivalence in C. If C is T-semisaturated, then C' becomes a cone of X
with ins® = i.
Proof. As terc: C — 0 is a weak equivalence, it follows that inic: 0 — C' is a weak equivalence by T-semisatu-
ratedness, that is, C' is coacyclic. Thus C' becomes a cone of X with ins® = . O

Cones behave somehow like injective objects. More precisely, we have the following lemma. For the formulation
of the factorisation axiom for cofibrations, see definition (3.40).

(5.9) Lemma (cf. [17, lem. 5.2]). We suppose that C is T-semisaturated and fulfils the factorisation axiom
for cofibrations. Moreover, we suppose given an S-2-arrow (f,u): X — Y « Y and a cofibration i: X — X’
in Ceot. For every cone C' of Y there exist a cone C of Y and an S-2-arrow (g,v): X' — C + C in C such that
the diagram

X e X'
Jf g
}'} ing R é

Zl‘u Qv

Yy ins® C
commutes and such that the following quadrangle is coreedian.

i I ins®
XY —— X'11C

11
(z:)l lm

ins® =
Y C

Proof. By the factorisation lemma (3.65)(b), there exist a cofibration j:Y — C and an S-2-arrow (g,v):
X' — C <« C in C such that ters: C' — 0 is a weak equivalence, such that

i I ins®
XY —— X'11C
(1) lm

7 ~

C

R —
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is coreedian and such that the diagram

AN

X——-— X
g
! C
ie -
Y -0
Qv
u | C
IHSC \
Q/
Y 0
commutes. But then ' becomes a cone of ¥ with insC = j by remark (5.8). O

(5.10) Corollary (Heller factorisation lemma). We suppose that C is T-semisaturated and fulfils the factori-
sation axiom for cofibrations.

(a) There exists a cone of every cofibrant object in C.

(b) We suppose given an S-2-arrow (f, u): X1 — Xy Xy in Ceop. For all cones Cp of X and Cy of Xy, there
exist a cone Cy of X3 and an S-2-arrow (g,v): C; — Cy < C5 such that the diagram

ins©1

X, —— (4

fl Qg

Z G 2
X2 1ns. . 02
u | Qv

ins©2

X9 —e— (s
commutes and such that the following quadrangle is coreedian.

ins®1 11 ins©2

X1HX240—>01HCQ

(5% yz)

ins

Xz * 62

Proof.

(a) This follows from the factorisation axiom for cofibrations and remark (5.8).

(b) This follows from lemma (5.9). O
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2 The Coheller shift

We suppose given a Brown cofibration category C that has a zero object, cf. definition (3.52)(a). In this section,
we will turn the homotopy category HoC into a category with shift as in definition (4.5)(c), that is, we define
a suitable endofunctor on HoC. Such an endofunctor ¥: HoC — HoC, called suspension, was constructed by
BROWN [7, dual of th. 3] on the objects as follows. For every object X in C, he chose a Coquillen rectangle,
cf. definition (3.101), of the form

quo
Zx — Xx

c

XOX ——0 ,

where Zx is a (chosen) cylinder of X, cf. definition (3.108)(c), and set ¥X := X x. To construct higher triangles,
as we will do in section 3 and section 4, it is more convenient to have a construction of a shift via cones instead
of cylinders, cf. definition (5.6); more precisely, via a choice of Coquillen rectangles of the form

quo
CX —_— TX

S

X—>0 ,

as HELLER did in his framework of h-c-categories in [17, prop. 5.3] (or in an additive case already in [16, sec. 3]).
BROWN’s construction may be seen as a particular case of HELLER’s one as every cylinder Zx of an object X
gives rise to a commutative diagram of the form

quo

Zx —2 ., Oy Sx
ins?x { ins©x % %
xnx 2. x 0,
S
X 0

in which (X,0, X1IX, X), (XIIX, X, Zx,Cx), (X,0,Cx,Xx) are Coquillen rectangles. As insgx = emby ins?¥
is an acyclic cofibration, the unique morphism inic, : 0 = Cx is also an acyclic cofibration, whence Cx is a
cone of X.

However, different choices of cones lead to isomorphic shift functors, see remark (5.31), so from a philosophical
point of view, BROWN’s shift is as good as HELLER’s. Finally, it is not necessary to have a zero object in
the chosen Coquillen rectangles; we actually construct a shift via an arbitrary choice of Coheller rectangles as
introduced in definition (5.11) for the objects in C, see definition (5.28).

A comment on the terminology: In additive frameworks, the dual of our shift construction is often called the
Heller operator in honour of HELLER’s work [16, sec. 3]. As we adopt HELLER’s ideas to the framework of
Brown cofibration categories, the author chose the word Coheller shift for the shift constructed in this thesis,
cf. definition (5.28), leaving the notion of a suspension for those particular Coheller shifts constructed via (cones
that arise from) cylinders. In an arbitrary Brown cofibration category that has a zero object, it seems unlikely
that every cone as in definition (5.6) appears as a quotient of a cylinder as in definition (3.108)(c).

From now on, throughout the rest of this section, we suppose given a category with cofibrations and weak
equivalences C that has a zero object.

Coheller rectangles

A Coquillen rectangle in C is a pushout rectangle X in Ceof such that X (0,1) is a cofibration, cf. defini-
tion (3.101). The category of Coquillen rectangles in C is denoted by C'C]Oqu.
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5.11 efinition (category of Coheller rectangles). e full subcategor o wit
(5.11) Definition (category of Cohell gles). The full subcategory C, .| of C&J ith

coqu

ObCL = {X €ObC . | X1 and X, are coacyclic objects in C}

coqu

is called the category of Coheller rectangles (or the category of cohellerian rectangles) in C. An object in cH

cohel
is called a Coheller rectangle (or cohellerian rectangle or cohellerian quadrangle) in C, and a morphism in Cg,,
is called a morphism of Coheller rectangles (or a morphism of cohellerian rectangles).

(5.12) Remark. If C is equipped with the structure of a zero-pointed category with cofibrations and weak
equivalences, then the category of Coheller rectangles C,E)hel becomes a zero-pointed category, where the zero

O
object 0Ceonet is given by Oi“’hel = 0° for k € Ob0.
(5.13) Remark. We suppose given a pointwise weak equivalence of Coquillen rectangles f: X — Y in C.
(a) If X is a Coheller rectangle in C, then Y is a Coheller rectangle in C.

(b) We suppose that C is T-semisaturated. If Y is a Coheller rectangle in C, then X is a Coheller rectangle
in C.

Proof.
(a) This follows from remark (5.5)(a).
(b) This follows from remark (5.5)(b). O

The following remark gives a connection between the concept of a Coheller rectangle and that of a cone as
introduced definition (5.6).

(5.14) Remark.

(a) Given a Coheller rectangle Y in C, then Yj ; becomes a cone of Y o with ingYo1 = Y(0,0,(0,1)-

(b) For every object X and every cone C of X there exists a Coheller rectangle Y in C with Y 0),(0,1) = ins®
and YI,O =0.

Proof.
(b) This follows from the pushout axiom for cofibrations. O
For the definition of a Cisinski cofibration category, see definition (3.51)(a).

(5.15) Remark. We suppose that C is a Cisinski cofibration category. A morphism of Coheller rectan-
gles f: X = Y in C is a pointwise weak equivalence if and only if fj o is a weak equivalence in C.

Proof. We suppose given a morphism of Coheller rectangles f: X — Y. As X, o, Xo,1, Y1,0, Y0,1 are coacyclic
objects, the components f19: X109 — Y10 and fo1: Xo1 — Yp,1 are weak equivalences by remark (5.5)(c). So
if f is a pointwise weak equivalence, then in particular fyo is a weak equivalence, and conversely, if fy o is a
weak equivalence, then f is a pointwise weak equivalence by the gluing lemma (3.121).

Xo1 Xi1

/

Xo.o X1io0 fi1
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The following lemma is our main tool for the construction of the Coheller construction and the Coheller shift,
see definition (5.22) and definition (5.28). We make use of notation (3.72)(b).

(5.16) Lemma (Heller lemma, cf. [17, lem. 5.2]). We suppose that C is a Cisinski cofibration category. For
every Coquillen rectangle X and every Coheller rectangle Y in C, the evaluation functor —g¢: CcDoqu — Ceof
induces a bijection

Hocd (X, Y) = Hocuo (X0,0, Y0,0)5 ¥ = ¢0,0-

coqu

Proof. We suppose given a Coquillen rectangle X and a Coheller rectangle Y in C. As ngu is a Brown

cofibration category by corollary (3.122), the induced map 00 (X,Y) = Hoc..;(Xo0,0, Yo,0) is given by
coqu

(loc(f) loc(u)_l)o,o =loc(fo,0) loc(u(m)_1

for every S-2-arrow (f,u): X - Y < Y in CCDOqu, see corollary (2.94)(d).

To show the surjectivity of HocO,, (X,Y) = Hocu:(X0,0,Y0,0), ¢ = ©0,0, we suppose given a morphism
bt Xoo — Yoo in HoCeor. By corollary (2.94)(a), there exist an S-2-arrow (f,,up): Xoo — Yy, Yoo
in Ceop with ¢, = loc(fi,)loc(up)™ . As Y is a Coheller rectangle, Y51 becomes a cone of Yo,0 with inser-
tion ins¥0! = Y(0,0),0,1) by remark (5.14)(a). So by lemma (5.9), there exist a cone C' of Y}, and an S-2-arrow
(g,v): Xo1 — C = Yp1 in C such that X 0),0,1)9 = foins® and Y(0,0),001)V = upins®. By remark (5.14)(b),
there exists a Coheller rectangle Y in C with 37(010)7(0’1) = ins® and }71’0 = 0. Moreover, as X and Y are

pushout rectangles, there exist morphisms of Coquillen rectangles f: X — Y and u: Y — Y in C such that
fo,0 = fo, foq =g, f1,0 = terx, o, uo,0 = up, uo,1 = v, u1,0 = tery, ,, and u is a pointwise weak equivalence by
remark (5.15). So we have

(loc(f)loc(u) ™ )o.0 = loc(fo.0) loc(ugo) ™" = loc(fi) loc(up) ™" = ¢p.

Thus the induced map is surjective.

Xo,1 X Xo1 X1
Xo,0 X10 Xo,0 X1 fia
g g
fh (j fb (j 5>i71
ins® .- T insC
v, 2w Y;, 0 2| wia
2| v
2
Q| ub YO,l Yl,l &€ | ub YO,l }/1,1
Yo,0 Yio Yo,0 Yio

To show injectivity, we suppose given morphisms ¢, o’ : X — Y in Ho C,E)qu such that woo = ¢p - By theo-

rem (3.128)(a), there exist Z-2-arrows of Coquillen rectangles (f,7): X — Y « Y and (f/,i'): X - Y/ « Y
in C with ¢ = loc(f)loc(i)~* and ¢’ = loc(f")loc(i’) L. Hence we have
loc(fo,0)loc(io,0) ™" = wo.0 = ¢ 0 = loc(fy o) loc(in ) ™,

and so by theorem (3.128)(b) there exist a Z-2-arrow (fu,ip): Xoo — Yy, Y00 and acyclic cofibrations
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E }7070 — Y, §': }70’70 — Y}, in C such that the following diagram commutes.

Xo,0 X0,0 X0,0
ifo,o ° fi, }fé,o
. ~ )
. j N j .
Yoo @ 0 Yp e Yy,
ZZ}Z'U,O 2 XN ZZ%%,O
Yoo Yoo Yo,0

Moreover, as Y; o and Yy ; are coacyclic, the unique morphisms tery, ,: Y10 — 0 and tery, , : Yo,1 — 0 are weak
equivalences. So since the diagram

Xo,1 * Xo,0 X1,0
Xo1 o X0,0 X1
/ foa / fo,0 / ®fio
Xo,1 * Xo,0 X1
® fuo
Yo Yo,0 Y10
¢ fo / ¢ fo,0 i ¢ f10 /
0 i, 0
/ o XTI i, Reif g / X T
Yo Yo,0 Y10
2 X8 i, 2
Yo e———|—— Y00 Yio
24 / 2dion / 2dine /
Yo o Yo.0 Yio

YE),l . YO’O Yi,O

commutes, we have loc(f|_)loc(i|_ )~ = loc(f’|.)loc(i’|_)~! in HoC-. As X|_and Y|_ are Quillen cofibrant, we
even have loc(f].)loc(i|.) " = loc(f'|.)loc(#'|.) ™" in Ho (Cuien)cof DY [9, prop. 1.8]. But then we also have

@ =loc(f)loc(i) ™t =loc(f)loc(i') ™! = ¢’

in Ho CCDOqu. O

The Coheller construction

As already indicated at the beginning of this section, the Coheller shift will be defined via a choice of a
Coheller rectangle for each cofibrant object in C. Before we do so, we present a uniform variant of the shift
construction, which does not necessitate choices, using the theory developed in appendix B, section 1. This
Coheller construction as introduced in definition (5.22) will be useful in our treatment of cosemitriangles in
section 4; in particular, it will be used in definition (5.45)(a) of a standard cosemitriangle.
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(5.17) Definition (Coheller rectangle of an object). Given a cofibrant object X and a Coheller rectangle R
in C such that Ry o = X, we say that R is a Coheller rectangle of X.

(5.18) Remark. We suppose that C is T-semisaturated and fulfils the factorisation axiom for cofibrations.
Then there exists a Coheller rectangle of every cofibrant object in C.

Proof. This follows from the Heller factorisation lemma (5.10)(a) and remark (5.14)(b). O
For the concept of the structure category, see definition (A.2).

(5.19) Definition (Coheller category). For X € ObHoCeot = ObC.of, we let Rx be the set of Coheller
rectangles of X. The structure category

Hel®(C) := (Ho Ceof)n
is called the Coheller category of C.
(5.20) Remark. We have

ObHel°(C) = {(X,R) | X € ObHoCot and R is a Coheller rectangle of X}.
For objects (X, R) and (Y, S) in Hel*°(C), we have the hom-set

et () (X, R), (Y,5)) = Hoco (X, Y).

For morphisms ¢: (X,R) — (V,5), ¢¥: (Y,S) — (Z,T) in Hel®(C), the composite pip: (X,R) — (Z,T)
in Hel®(C) has the underlying morphism ¢t¢: X — Z in HoCeor. For an object (X, R) in Hel®(C), the
identity morphism 1(x g): (X, R) — (X, R) in Hel**(C) has the underlying morphism 1x: X — X in HoCeot.
The forgetful functor U: Hel®®(C) — HoC,f is given on the objects by

UrX =X
for (X, R) € ObHel*°(C), and on the morphisms by
Urssp =

for every morphism ¢: (X, R) — (Y, 5) in Hel*(C).
]

If C is a Cisinski cofibration category, then the evaluation functor —g0: Cooqu

— Ceot induces a bijection
Hocl,, (11,5) = Hoceor (R0, 50,0); ¥ = 0.0
for all Coheller rectangles R and S in C, see the Heller lemma (5.16). This gives rise to the following construction.
(5.21) Proposition. We suppose that C is a Cisinski cofibration category. Then we have a functor
H: Hel*(C) — Ho Ceof,
given on the objects by
Hr(X) =R

for (X, R) € ObHel*°(C), and on the morphisms as follows. We suppose given a morphism ¢: (X, R) — (Y, 5)
in Hel®(C). Moreover, we let 1: R — S be the unique morphism in Ho co  with ¢ = 10,0 in HoCeor. Then

coqu
Hr.s(p) = 9¥1.1.

Proof. We define a map
Hy: ObHel®(C) — ObHo Ceof, (X, R) — R11.

We suppose given (X, R), (Y, S) € ObHel®(C). As the evaluation functor —go: CJ ., — Ceof induces a bijection

coqu

Prs: moc,, (B S) = Hoceor(10,0,50,0), ¥ = o0
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by the Heller lemma (5.16), we obtain a well-defined map

Hx r,(v,s): Heteo(0) (X, R), (Y, S)) = HocCeoe(R1,1,51,1), ¢ — (@‘P}E}S)l,y

Given morphisms ¢: (X, R) — (Y, S) and p: (Y,S) — (Z,T) in Hel®(C), we have

(eP75) (pP57))0.0 = (9P s)0.0 (PP5 )00 = ©p

and therefore

Hix,r), (2 (09') = ((ep)Prr) 11 = (0P 51 (0P5 )11 = (9Prlg)11 (0P5 )1
= H(x r),(v,s)(¢) Hey,s),(2,1)(p)-

Given an object (X, R) in Hel®(C), the identity 1z: R — R in Ho CcEcl)qu fulfils (1r)o,0 = 1Ry, = 1x, and so we
have
Hx ry,x,r(1x) = (1r)11 = 1r,, = lHy(x,R)-

Thus we have a functor H: Hel®(C) — HoCcor given by HrRX = Hy(X,R) for (X,R) € ObHel(C) and
by Hr,s¢ = Hx pr),v,s)¢ for every morphism ¢: (X, R) — (Y, S) in Hel®(C). O

(5.22) Definition (Coheller construction). We suppose that C is a Cisinski cofibration category. The func-
tor H: Hel*°(C) — HoCeo from proposition (5.21) is called the total Coheller construction functor. For an
object (X, R) in Hel®(C), the object Hr(X) in HoCcof is called the Coheller construction of X with respect
to R. For a morphism ¢: (X, R) — (Y,S) in Hel®(C), the morphism Hg s(¢): Hr(X) — Hs(Y) in HoCeor is
called the Coheller construction of p: X — Y with respect to R and S.

(5.23) Remark. We suppose that C is a equipped with the structure of a zero-pointed Cisinski cofibration
category. The Coheller category Hel®(C) becomes a zero-pointed category having the zero object OHel™(€) —

(0HoC_ (Ceiner). Moreover, the Coheller construction
H: HelCO(C) — Ho Ceor

is a morphism of zero-pointed categories with respect to this structure on Hel®(C).

Proof. We have

(]
H o (010€) = ofme = o€ = ot1oC, O

0%cohel

Construction of the Coheller shift

Now we are ready to define the Coheller shift as the Coheller construction via a choice of a Coheller rectangle
for each cofibrant object in C.

(5.24) Definition (choice of Coheller rectangles).

(a) A choice of Coheller rectangles in C is a family (Rx) xeobHo ¢, Such that Ry is a Coheller rectangle of X

for each X € ObHoCcof = Ob Ceof-

cof

(b) We suppose that C is equipped with the structure of a zero-pointed category with cofibrations and
weak equivalences. A choice of Coheller rectangles (Rx)xecobHoc,,, in C is said to be zero-pointed if

O
Rye = 0Ccohel ,

cof

(5.25) Remark. We suppose that C is T-semisaturated and fulfils the factorisation axiom for cofibrations.
(a) There exists a choice of Coheller rectangles in C.

(b) If C is equipped with the structure of a zero-pointed category with cofibrations and weak equivalences,
there exists a zero-pointed choice of Coheller rectangles in C.

Proof. This follows from remark (5.18). O



2. THE COHELLER SHIFT 183
(5.26) Remark. For X € ObHoCeor = Ob Ceof, we let Rix be the set of Coheller rectangles of X. A choice of
Coheller rectangles of C is precisely a choice of structures with respect to R = (R x) xcOb Ho Cons-

For the definition of the structure choice functor with respect to a choice of structures, see definition (A.8). In
the case of a choice of Coheller rectangles, the structure choice functor is given as follows.

(5.27) Remark. We suppose given a choice of Coheller rectangles R = (Rx)xecobHoc,.,, of C. The structure
choice functor Ig: HoCeof — Hel®(C) is given on the objects by

IrX = (X, Rx)

for X € ObHoCcof, and on the morphisms by
Irp =¢: (X,Rx) — (Y, Ry)

for every morphism ¢: X — Y in Ho Ceof.

(5.28) Definition (Coheller shift). We suppose that C is a Cisinski cofibration category. Moreover, we suppose
given a choice of Coheller rectangles R = (Rx)xecObHoc.,,- Lhe composite

(f‘IoelleI' = Tﬂ)euenR :=Ho IR Ho CCOf — Ho CCOf
is called the Coheller shift (or Coheller shift functor) on Ho C.of with respect to R.

(5.29) Remark. We suppose that C is a Cisinski cofibration category, and we suppose given a choice of Coheller
rectangles R = (Rx)xcobHoc,,,- For X € ObHo Ceot, we have

T?—?eller,RX = HRX (X)
For a morphism ¢: X — Y in HoC.of, we have

T?fcllcr,R(p = HRX-,RY (50)
Proof. This follows from remark (5.27) and proposition (5.21). O

A zero-pointed Cisinski cofibration category is a Cisinski cofibration category as in definition (3.52)(a), equipped
with a (distinguished) zero object. Then C.ot becomes a zero-pointed Brown cofibration category, the homotopy
category HoC.of becomes a zero-pointed category and the localisation functor becomes a morphism of zero-
pointed categories, cf. remark (3.53) and remark (3.11).

(5.30) Remark. We suppose that C is a zero-pointed Cisinski cofibration category. The Coheller shift
THener, r: HoCeot = HoCeof is a morphism of zero-pointed categories for every zero-pointed choice of Coheller
rectangles R = (RX)XEOb Ho Ceof in C.

Proof. By remark (5.23), we have

=H o (OHOC):OHOC. 0

co HoC __ HoC
THcllcr,RO - HR 0 ) 0Ccohel

ptoc (

(5.31) Remark. We suppose that C is a Cisinski cofibration category. Moreover, we suppose given choices of
Coheller rectangles R = (Rx)xe0obHocCo,; and R’ = (R’y)xcObHoC.- Then we have

co ~ mCco
Heller,R — -~ Heller,R’"
] 1 . CcO CcO 3 1
An isotransformation ag r': Tiier g = THeller, r 15 given by
— . cO CcO
(ar,pr)x = HRX,R’X(lX)- THetier, kX = THetter, 7 X

for X € ObC. The inverse of ap g is given by aglR, = R/, R-

Proof. This follows from corollary (A.12). O
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3 Heller cosemistrips

We suppose given a zero-pointed Brown cofibration category C, that is, a Brown cofibration category as in
definition (3.52)(a) equipped with a (distinguished) zero object. Cosemitriangles in HoC will be diagrams that
arise, up to isomorphism, in a suitable manner from a diagram in C. This section is dedicated to the study of
these models, called Heller cosemistrips.

Throughout this section, we suppose given a category with cofibrations and weak equivalences C, see defini-
tion (3.30)(a), that has a zero object.

The semiquasicyclic category of Heller cosemistrips

For n € Ny, an n-cosemistrip in C is just a #’}-commutative diagram in C, see definition (4.55)(a) and defini-
tion (4.42). The cosemistrips in C are organised in a semiquasicyclic category Strips“ ™ (C), cf. definition (4.38).
In the following remark, we construct a semiquasicyclic subcategory of Strips“>™(C).

Given a cosemistrip X in C, we denote by X*/1/ik/3l/i = (Xk/i XU/t XF*/7 X!/7) the unique commutative
quadrangle in X that is determined by the four indicated vertices.

(5.32) Remark. We suppose given a category with cofibrations and weak equivalences C that has a zero object.

We have a full semiquasicyclic subcategory Stripsfféﬁ‘er(C) of Strips“>™(C) given by

Ob Stripsffeﬁer’n(C) = {X € ObStrips<t(C) | X*/*, XM/ are coacyclic for i € @7 and X*/H/ik/3:1/3
is a Coquillen rectangle for k/i,1/j € #} with k/i <1/j < (k/i)H}
for n € Np.

Proof. We suppose given a morphism of semiquasicyclic types a: @7 — 07 for m,n € Ny and an object X
in Stripsc®*(C) such that X7/7 and x3"/i are coacyclic for j € @, and such that XV /3/i )5 g Coquillen

rectangle for 1/j,1'/j' € #% with 1/j < /5" < (1/4)!l. But then also (Stripsc>*(C)X)¥/? = Xi*/i* and
1] /. .11 . . 1 /- .t NS
(StTiPSCO’+(C)X)1[ Vi = xitlasia — x(i)M/ia gre coacyclic for i € @7, and (Stripst ™ (C) X )k/Bk /ik/IK /i —

@ [e%

Xhka/iok afioka/i'ak /i js o Coquillen rectangle for k/i, k' /i’ € #7 with k/i < K /i’ < (k /i)l O

(5.33) Definition (semiquasicyclic category of Heller cosemistrips). The full semiquasicyclic subcategory
Strips%o(;ffer (C) of Strips®>™(C) as in remark (5.32) is called the semiquasicyclic category of Heller cosemistrips

in C. For n € Ny, the category Stripsﬁjéﬁrer‘n(C) is called the category of Heller n-cosemistrips in C, an object

in Stripsiloéﬁrer,n (C) is called a Heller n-cosemistrip in C, and a morphism in Stripsiﬁ;ﬁer’n(C) is called a morphism

of Heller n-cosemistrips in C.

If unambiguous, we will consider the category of Heller n-cosemistrips for n € Ny as a category with weak
equivalences in the following way, without further comment.

co,+

Heller,n(c) becomes a category

(5.34) Remark. For every n € Ny, the category of Heller n-cosemistrips Strips
with weak equivalences having

We Stripsipt. . (C) = We (Stripse® ™ (C)) ptw N Mor Stripsiryt  (C).

Heller,n Heller,n

Coheller rectangles in Heller cosemistrips

As the “boundaries” of every Heller cosemistrip consist of coacyclic objects, some of the Coquillen rectangles
occurring in such a Heller cosemistrip are actually Coheller rectangles as introduced in definition (5.11).

(5.35) Remark. Given a Heller n-cosemistrip X in C for some n € Ny, then XFk/iiMik/kiM ks o Coheller
rectangle in C for every k/i € #}.

(5.36) Definition (Coheller rectangles in Heller n-cosemistrip). We suppose given a Heller n-cosemistrip X
in C for some n € Ny. For k/i € #7, the quadrangle

Rk/z‘(X) — Xk/i’im/itk/k,i[ﬂ/k

is called the Coheller rectangle at position k/i in X.
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(5.37) Remark. Given a morphism of semiquasicyclic types a: @7 — ©F for m,n € Ny and a Heller
n-cosemistrip X in C, we have

R*/1 (Stripsi? ™ (C) X) = RF/1*(X)
for k/i € #7.
Proof. For k/i € #", we have

Rk/i(stripszo,-‘r(c)X) _ (Stripsco,-i-(C)X)k/i,i[l]/i,k/k,im/k _ Xka/ia,i[l]a/ia,ka/ka,ima/ka

(03

— Xka/ia,(ia)[l]/ia,ka/ka,(ioz)[l]/ka — Rka/za(X) O

For the definition of a Cisinski cofibration category, see definition (3.51)(a). For the definition of the Coheller
construction, see definition (5.22).

(5.38) Lemma. We suppose that C is a Cisinski cofibration category, and we suppose given a commutative
diagram

CLTY

WC WC/
f’ b

A—— 7 ——Tx

% f %b ]

X—Y —B
in C.
(a) If (X, B, A,Tx) is a Coheller rectangle of X and (Y, B,C,Ty) is a Coheller rectangle of Y, then we have
loc(¢) = Hx,B,a,1x),(v,B,0.1v)(loc(f)).
(b) If (X, A, B, Tx) is a Coheller rectangle of X and (Y, C, B,Ty) is a Coheller rectangle of Y, then we have
loc(¢') = Hix,a,B.1x).(v.0,B.1y) (loc(f))-

Proof. This holds by definition of the Coheller construction as the cuboid

/b/
A ! Ty
/ o
b
X ! B ¢
| flc
b//
f C — Ty
a'c ac
Y b B
in C commutes. O

(5.39) Proposition. We suppose that C is a Cisinski cofibration category, and we suppose given a Heller
n-cosemistrip X in C for some n € Nj.

(a) For k/i € #7, we have

iyl i
X = Hgrysx) (XF0).
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(b) For k/i,1/j € #7 with k/i <1/j < (k/i)!!, we have
loc (X /0™ WMy = Hes e () (loe (XE/019)),
Proof.

(a) For k/i € #7, the Coheller rectangle at position k/i in X is given by R¥/¢(X) = xk/3i ik / kiR anq
so we have

AR ;1 i
(b) Given k/i,1/j € #% with k/i < 1/j < (k/i)[1), the diagram

Xl/l - Xz N X] Y]

| % %

xk/k XUk , xiM/k
xk/i xU/i xiM _ xi™Ms
xk/i X!/ Xﬂll/i

commutes as X is a Heller n-cosemistrip. Since RF/i(X) = X#/ii"//ik/ki"l/k is 5 Coheller rectangle
of X*/t and R¥/(X) = XUt/ s 8 Coheller rectangle of X!/?, we have

7;[1] 7;[1] 2,1/
loc (X /By = Hgrsix) mivi () (loe (X F/44/1))

by lemma (5.38)(a). Analogously, since R¥/*(X) = XV ig 5 Coheller rectangle of X*/* and
RV/I(X) = XV/3:3"/i/Li"/U ig & Coheller rectangle of X'/9, we have
§111 7 501 il/i
loc(X /MY = Hguyixy revi () (loe (X547
by lemma (5.38)(b). Altogether, we have

loc (X R/DML WDy — 1o¢ (X 0/ HWDMy o0 (x WO WMy — IOC(XAU/MM/Z) IOC(XZ-[I]/ZJ[U/I)
= Hgesi(x),re/i (o0 10e (X)) Hgui ) musa (xy (loe (X /517))
= Hye/s (x) muvs (x) (loe (XF/017) Toc (X017
= Hpw/i (x) re/i () (loe (X F/HH/Y) O

The prolongation lemma

(5.40) Remark. We suppose that C is a Cisinski cofibration category. A morphism of Heller n-cosemistrips
f: X =Y for some n € Ny is a pointwise weak equivalence if and only if f|4. is a pointwise weak equivalence.

Proof. This follows from the gluing lemma (3.121) and remark (5.5)(c). O

(5.41) Remark. We suppose that C is a Cisinski cofibration category, and we suppose given n € Ny. Moreover,
we let

ol ifn=0,
S =
1 if n >0,
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and we let Z" := {k/i € #'} | i € {0,s}}. For the purpose of this remark, an n-layer in C is a Z"-commutative
diagram X in Ceof such that X0/0, Xo[ll/o’ Xs/s, X5 are coacyclic and such that X*/0:1/0.k/1/s i5 a Coquillen
rectangle for k,1 € ©F with 0 < k£ <.

Xs/s X2/s Xn/s XO[I]/S Xs[l]/s
x0/0 x1/0 x2/0 . x /0 Xot/o

(a) For every @F-commutative diagram X, in Ceor with X, and X},

in C with X;es = Xlop-

S . coacyclic there exists an n-layer X

(b) For all n-layers X, Y in C and every S-2-arrow of ©g-commutative diagrams (fres, tres): X|op — Vies
Yoy in Ceof there exists an S-2-arrow of n-layers (f,u): X — Y « Y in C with (fress Ures) = (flog,ulep)-

Proof.
(a) This follows from the Heller factorisation lemma (5.10)(a) and the pushout axiom for cofibrations.

(b) This follows from the Heller factorisation lemma (5.10)(b), the pushout axiom for cofibrations and the
gluing lemma (3.121). O

(5.42) Lemma (prolongation lemma). We suppose that C is a Cisinski cofibration category, and we suppose
given n € Np.

(a) For every A"_commutative diagram Xy, in Ceof there exists a Heller n-cosemistrip X in C with X, = X| ...

(b) For all Heller n-cosemistrips X and Y in C and every S-2-arrow (fi,up): X[zn — Y « Y|4, in CCAO?
there exists an S-2-arrow of Heller n-cosemistrips (f,u): X — Y Y in C with (fu,up) = (f] zns | zn)-

Proof.

(a) Given a A™-commutative diagram X, in Ceor, then by remark (5.41)(a) and an induction there exists a
Heller n-cosemistrip X in C with X1 =0, X|4. = Xp, X' =0.

(b) We suppose given Heller n-cosemistrips X and Y in C and an S-2-arrow (fi,,up): X|zn — Yy, Y| in
in C4;. Remark (5.41)(b) and an induction show that there exists an S-2-arrow of Heller n-cosemistrips
(fiu): X =Y « Y inCwith (fi,ul) = (terx:,inivi), (f| pzns ulzn) = (forun), (f',u') = (tery:,iniyr). O

(5.43) Corollary. We suppose that C is a Cisinski cofibration category. For every n € Ny, the restriction
functor

V| an: HoStripsiot —(C) — Ho(CA"
A

Heller,n cof

is surjective on the objects and full.

Proof. We suppose given n € Ny. The prolongation lemma (5.42)(a) implies the surjectivity on the objects.
To show fullness, we suppose given Heller n-cosemistrips X and Y in C and a morphism ¢p: X|zn — YAx

in Ho CCAOf As C is a Cisinski cofibration category, the diagram category (CCAO;)ptW is a Brown cofibration

category by corollary (3.93). So by remark (3.129)(a), there exists an S-2-arrow (fi,,up): X|in — Vi ¢ Y40
in (C2¢)ptw With @y, = loc(fp,) loc(up) ™! in HoC4;. The prolongation lemma (5.42)(b) shows that there exists

cof *

an S-2-arrow of Heller n-cosemistrips (f,u): X — Y Y in C with (f| 4., u|zn) = (fin, up). We obtain

@b = loc(fp) loc(up) ™" =loc(f|zn) loc(ul 4n) ™" = (loc(f)loc(u) )| zn-

Thus (—)|4.: Ho Stripse, ,(C) — HoC4} is full. O

eller,n
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4 Cosemitriangles

Throughout this section, we suppose given a zero-pointed Brown cofibration category C, that is, a Brown cofi-
bration category as in definition (3.52)(a) equipped with a (distinguished) zero object. Then the homotopy
category HoC becomes a zero-pointed category and the localisation functor becomes a morphism of zero-
pointed categories, cf. remark (3.11). Moreover, we suppose given a zero-pointed choice of Coheller rectan-
gles R = (Rx)xeobc as introduced in definition (5.24). (The zero-pointedness of C is not needed in the proof
of proposition (5.53).)

We move on from Heller cosemistrips in C as introduced in definition (5.33) to cosemitriangles in HoC, see
definition (5.45) and definition (5.51), and show that they fulfil prolongation properties similar to those of
ordinary triangles in a Verdier triangulated category, see theorem (5.55).

5.44) Convention. From now on, we consider HoC as a category with shift having THoC¢ = T® . In
( ) gory g Heller,R
particular, for every object X in HoC we write X1 = THoner,rX = Hry (X), and for every morphism ¢: X — Y
in HoC we write o[l = THenler, R = Hrx Ry (¢).

From Heller cosemistrips to standard cosemitriangles

We suppose given a Heller n-cosemistrip X in C for some n € No. Then the “boundary entries” X#/% and X" /i
for ¢+ € @7 are coacyclic objects in C, whence

X/t e Xi[l]/i = gHoC

in HoC. So loc(X) is almost an n-cosemicomplex in HoC, we only might have some “wrong” zero objects at the
boundaries. Moreover, we have

i)t i\ A i co i i
X®/7 = HRk/f?(X)(Xk/ ) = HRXW (Xk/ ) = Heller,RXk/ = (Xk/ )[1]

for k/i € #7 by proposition (5.39)(a) and remark (5.31). So loc(X) is almost periodic (at least on the objects),
we only might have some “wrong” shift objects on the respectively shifted indices. The standard n-cosemitriangle
obtained from X will be defined by an isomorphic replacement of the respective entries, so that we obtain a
periodic n-cosemicomplex:

(5.45) Definition (standard n-cosemitriangle). We suppose given n € Ny.

(a) Given a Heller n-cosemistrip X in C, we define an n-cosemicomplex XP" and an isomorphism of n-cosemi-
strips kx : loc(X) — XP°" in HoC as follows.

. -\ [m]
For i,k € A™ = (A™),, m € Ny, we define Kg];/z) recursively by

ter yi/i form=0, k =1,

1xrsi form =0, k > 1,

K(k/i)[m] — X (ks /3)m=1] .
X HR(k/i)[m*I] (X),RO(KX ) for m > 0, k= 1,

i)lm—1l
K(k/) ! )

H Sm—1
R(k/0) ](X)7R(Xk/i)[m—l]( X

form >0, k > 1.

The n-cosemistrip XP°" is called the standard n-cosemitriangle obtained from X, and the isomorphism
Kx : loc(X) — XP is called the compatibility isomorphism of X.

A standard n-cosemitriangle in HoC is a standard n-cosemitriangle obtained from some Heller n-cosemi-
strip X in C.

(b) Given a morphism of Heller n-cosemistrips f: X — Y, we define a morphism of n-cosemicomplexes
fPer XPer 5 YPer [y fPer . — K;(l loc(f) ky.

loc(X) ———s XPer

IOC(f)J Jf"er

loc(Y) ———s yPer

The morphism of n-cosemistrips fP°" is called the morphism of standard n-cosemitriangles obtained from f.



4. COSEMITRIANGLES 189

Periodicity

Our next aim is to show that every standard n-cosemitriangle in HoC for n € Ny is periodic in the sense of
definition (b).

(5.46) Remark. For n € Ny, k/i € #§ with i,k € A™ = (A™),, m € Ny, we have

N 0 ifk=1 ;
xper (k/z)[ ] _ ) PN — ((XPer k/i [m]
(xver) R

5.47) Proposition. For n € Ny, k/i € #', m € N, we have
+

Iy L1

iy[m—1]
R(k/D™ (X), R yperyk/iyim—1] X

Proof. There exist ig, kg € A", r € Ny, with k/i = (ko/io)l". By remark (5.46), we obtain

(ko /ig)rtm =1

(i _roio) _ | Heraosotren= o) gy (Kx if ko = o,
kxS Ky “YH (/O ik >
iy lrm—1 0 0
R(k0/i0) (X),R ko /ig)lrtm—1] X
k /io)['r+m71]
=H . N[rtm—1] K( 0 )
R{ko/i0) (X)"R(Xper)(ko/io)["*m*l] X
_ (k/i)tm=
- HR(k/i)[m—ll(X),R (KX ) [

(xpery(k/ilm=1]
(5.48) Corollary. We suppose given n € Ny.

(a) Given a Heller n-cosemistrip X in C, the standard n-triangle XP°" obtained from X is a periodic n-cosemi-
complex.

b) Given a HlOI‘phiSHl of Heller TL—COSGmiStI‘ipS : X - Y in C, the HlOI‘phiSHl of standard n-triangles
g
’per: XPer 5 YP ghtained from f is a periodic IIlOI'phiSHl of n—cosemicomplexes.

Proof.

(a) For i € ©F, m € Ny, we have (Xper)(i/i)[m] = 0, that is, X is an n-cosemicomplex. Moreover, for
k/i,l/j € # with k/i <1/j < (k/i)l1l, we have

(xPer) RO (BT =1 150 e/ 0/0) My 1/

k/iy\— il/i l/j

= (HRk/i(X)vR(Xper)k/i (KX/ ) ! HRk/i(X)le/j(X)(IOC(Xk/ ,Z/J)) HRl/j(X)7R(XPer)l/j (K}éj)
k/iy— /g /iy _ er /3
= HR(xper)k/i7R(Xper)l/j ((KX/ ) ! IOC(Xk/ l/]) K)éj) - HR(xper)k/i7R(xper)l/j ((Xp )k/ l/J)

— ((chr)k/iyl/j)[ll
by proposition (5.39)(b) and proposition (5.47), and so XP" is periodic.

(b) By (a), the standard n-triangles XP and YP®" are periodic n-cosemicomplexes. Moreover, for k/i € #,
we have
or i /il _ il k /i)
(7o) IO = (k) loe(FHT) Y

k/iy\— i
(KX/ ) ! HRk/i(X),Rk/i(Y)(IOC(fk/ ) HRk/i(Y),

k/iy— i k/i
HR(Xper)k/i’R(Yper)k/i ((K)(/z) ' IOC(fk/ ) KY/z) = HR

(/")

= (Hgw/i(x) Y

R(yper)k/i

((FPe)*) = ((rery/ i

by proposition (5.47), and so fP® is a periodic morphism of n-cosemicomplexes. O

7R(Xper)k/7',

(xperyk/i B yperyk/i

(5.49) Corollary. Given a morphism of semiquasicyclic types a: @7 — O for m,n € Ny and a Heller
n-cosemistrip X in C, the isomorphism of m-cosemicomplexes

(Stripst® T (HoC)kx) ! KStripseort () Com®;F (HoC)XP* — (Stripsiot () X)™"

per,a Heller,«

is periodic.
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Proof. By proposition (5.47) and remark (5.37), we have

: Hlil . N k)
((Strips>* (HoC)kx) " KStrlps°°+(c)X)(k/) = ((Stripst™* (HoC)kx )#/9 )~ été;%, Yo)x

O

(5P~ Hpe/i H(SEipsE T (OX) R (g, ot (o) 4Pt 1/ th/:ipsao,+(c)x)
( Isct/rilps;”(C)X)

= (K7 Kzt o) = () 7l )

- R(Xper)’m/m ’R((Strips&0’+(C)X)per)k/i X Stripse> T (C) X X Stripse> T (C) X

= (HRka/ia(X),R

(xperyka/ia

—Hp k:a/ia)fl

(chr)ka/iayRka/ia(X)(( X ) HRM/M(X),R

((strips§> T (0)x) PR/

.. co i — k/i s .CO, i
— (Stripse2 (HoC) k)Y kO = ((Stripst?™* (HoC) )™ Ky 0y )1

for k/i € #7. O

The semiquasicyclic category of cosemitriangles

Given a Heller n-cosemistrip X in C and a morphism of semiquasicyclic types a:: @ — @ for some m,n € Ny,

we will not have Comgz;fa (HoC)XPer = (Strips%oéffer)a(C)X )" in general. So the sets of standard n-cosemitri-
angles are not stable under semiquasicyclic operations. But if we consider the standard n-cosemitriangles only
up to isomorphism in Com®%" (HoC), we obtain stability under semiquasicyclic operations, as the following

per,n
proposition shows.

(5.50) Proposition. We have a full semiquasicyclic zero-pointed subcategory Tri°> " (HoC) of Com;‘;rJr(Ho C)
given by

Ob Tri® " (HoC) = {X € ObCom®%T, (HoC) | X = cor

ot ot (HoC) XPer for some X € Ob Stripsit. . (C)}

Heller,n
for n € Ny.

Proof. We suppose given a morphism of semiquasicyclic types a: @7 — @7 for m,n € Ny and an object X
in Com®%, (HoC) such that X 2, o+ (HoC) XPer for some X € ObStripsioyt  (C). We choose an isomor-

per,n perin Heller,n
phism ¢: X — XP¢ in Com® " (HoC). Then

per,n

Com®:F (HoC)v: Com: (HoC)X — Com®;t (HoC)XPer

per e per,o per,a

is an isomorphism in Com;‘;’rfm(Ho C), and

~ . per

(Stripse®t(HoC)k ¢ )~ KStripseot (€)X ° Comper o (HoC)X P — (Stripsiot 2(0)X)

is an isomorphism in Comg‘;ﬁm(Ho C) by corollary (5.49). Thus we have

per

Com: " (HoC)X = = Com<2it, (Ho ) (Str1PS%e11er L(O)X) O

per a porim
(5.51) Definition (semiquasicyclic category of cosemitriangles). The full semiquasicyclic zero-pointed subcat-
egory Tri®* (HoC) of Comgz}r'*'(Ho C) as in proposition (5.50) is called the semiquasicyclic category of cosemi-
triangles in HoC. For n € Ny, the category Tri¢>" (HoC) is called the category of n-cosemitriangles in HoC, an
object in Tri¢ T (HoC) is called an n-cosemitriangle in C, and a morphism in Tri>" (Ho C) is called a morphism

of n-cosemitriangles in C.

Prolongation

In the rest of this section, we are going to prove the main theorem of this chapter, see theorem (5.55), which
states that every “potential base” of a cosemitriangle resp. of a morphism of cosemitriangles may be prolonged
to a cosemitriangle resp. a morphism of cosemitriangles that actually has this given “potential base” as base, in
the following sense.
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(5.52) Definition (base). We suppose given n € Ny.
(a) Given an n-cosemitriangle X in HoC, the restriction X|4, is called the base of X.
(b) Given a morphism of n-cosemitriangles ¢: X — Y in HoC, the restriction ¢|,. is called the base of .

The zero-pointedness of C is not needed in the following proposition, which is a particular case of [9, dual of
prop. 2.15]. For the definition and the values of the diagram functor, see definition (3.74) and remark (3.75).

(5.53) Proposition (cf. CisINSKI [9, dual of prop. 2.15]). We suppose given n € Ng. The diagram functor
dia: HoCA" — (HoC)An
is dense and full.

Proof. We proceed by induction on n € Ny. For n € {0, 1}, the diagram functor dias»: HoC?" — (HoC)?" is
an isofunctor, whence in particular dense and full.

So we suppose given n € N with n > 2, and we suppose that dia,,._,: Ho cArt (Ho C)A'nf1 is dense and
full. To show that dia,,: Ho cAr (HoC)An is dense, we suppose given an object Y in (Ho C)A". By the
induction hypothesis, there exist an object X,es in Ho CcA"™" and an isomorphism res : diajn—1(Xves) = Y| pn-1-
We choose an S-2-arrow (f,u): Xyesn—1 — Y, < Y, in C with Vresn—1Yn—1.n = loc(f)loc(u)™t, cf. re-
mark (3.129)(a).

loc(Xres,(1,2)) loc(Xres,(2,3)) loc(Xres,(n—2,n—1)) loc(f) -
Xres,l > res,2 s Xres,n—l ’ Yn
IlZJwrcs,l |ZJ1/Jrcs,2 ||2J1/1rcs,n—1 IZJloc(u)1
Y12 Y23 Yn-2n-1 Yn-1,n
Y Y, . Y, , Y,

We let X be the unique A™-commutative diagram in C with X
: diaj, (X) — Y be the unique morphism of A"-commutative diagrams in HoC with P An-1 = Yres and
¥, = loc(u)~t. Then 1 is an isomorphism in (Ho C)A.” from loc(X) to Y. Thus diag, HoCA" — (Ho C)An is
dense.

To show that dia,n,: HoCA" — (HoC)An is full, we suppose given objects X, X' in HoC2" and a mor-

An—1 = Xres and X1, = f, and we let

phism ¢: diai, (X) — diag,.(X’) in (HoC)An. Then by the induction hypothesis, there exists a morphism

Ores: X|in-1 = X|An-1 in HoCA" ' with | pn—1 = diagn-1(¢res). As C is a Brown cofibration category, the

An—l

Siw  is also a Brown cofibration category by corollary (3.93). So by theorem (3.128)(a), there

exists a Z-2-arrow (fresa ires>: X|A”*1 - lees — X/|A."*1 in Cét::vil with Pres = IOC(fres) 10C<ires)_1 in HOCA7L71.

Moreover, there exists a Z-2-arrow (g,j): X, — X/, + X! in C with ¢,, = loc(g)loc(j)~! in HoC.

diagram category C

X1 X2 Xn—l 4>Xn

ffres,l ifres,Z ifres,nl ig

I 1 1 /
Xres,l Xres,2 T Xres,n—l Xn
R+ires,1 ?Z+ires,2 Z?+ires,n1 Z?%j
/ ! I 1
X! X} X, , —— X/,
We obtain

1OC(fres,n—1) loc(ires,n—l)_l 1OC(X7/L_1771) = diaAn—l (@res)n—l diaAn (X/)n—l,n = 'L/)n—l dia‘An (Xl)n—l,n
= diai. (X )n—1,n ¥n = loc(Xy_1,n)loc(g) loc(j)_l,
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so that by theorem (3.128)(c) there exist a Z-2-arrow (G,7): X, — A < X! and a normal S-2-arrow
(h,k): X] 1 = A+ X, in C such that the following diagram commutes.

res,n—

X, 4 X, X,
ffres,n—l (¥} }g
Klgn s oAcE X,
zz{ireml Ne; zz%‘
Xy X5 X,

We let X’ be the unique A"-commutative diagram in C with X'|;, , = X/, and X{FL” = h, and we let

(f,i): X = X' « X’ be the unique Z-2-arrow in Cpét:v with flin-1 = fres, fn =G, 1
we have
w|A"*1 = diaA‘nfl(@res) = diaAn*I (loc<fres) loc(ireb‘)_l) = diaA’nfl(lOC(ﬂA"*l)loc(ﬂA’"*l)_l)
= dia i, (loc(f)loc(i) ™) zn-1

An—1 = lres, In = J. Then

and

P = loc(g) loc(j) " = loc(fn) loc(in) " = diag, (loc(f)loc(i) ™ )n,
that is, ¢ = diaz, (loc(f)loc(i)~*). Thus dia,,: Ho CcA" = (HoC)A" is full. O
(5.54) Proposition. We suppose given n € Np.

(a) For every A"-commutative diagram Xj, in C there exists a Heller n-cosemistrip X in C such that the
standard n-cosemitriangle XP®* has the base loc(X},).

(b) For all Heller n-cosemistrips X and Y in C and every morphism ¢y, : XP| 4, — YP"| 4, in (Ho C)An there
exists an S-2-arrow of Heller n-cosemistrips (f,u): X — Y < Y in C such that fPer (uPer)~1. XPer — yper
has the base ¢y,.

Proof.

(a) We suppose given a A”-commutative diagram Xy, in C. By the prolongation lemma (5.42)(a) there exists
a Heller n-cosemistrip X with X|;, = Xp,. As k% = 1y for i € A", the standard n-cosemitriangle XP°"
has the base

AXIZ>er|An = 1OC(X)|A" = IOC(X|An) = IOC(Xb).

(b) We suppose given Heller n-cosemistrips X and Y in C and a morphism ¢, : XP¢| 4, - YPer| 4. in (Ho C)A".
By proposition (5.53), there exists a morphism 1, : XP| 4, — YP|4, in HoCA" with ¢y, = dia(yy).
As Clﬁ:v is a Brown cofibration category by corollary (3.93), there exists an S-2-arrow of A"-commutative

n

An inC with ¢, = loc™® et (fv) locHoc”” (up) ™! by remark (3.129)(a).

diagrams (fi,, up): X|zn — Yo ¢V
Thus we have

op = dia(ty,) = dia(loc™® et (fv) locHoe”” (up)™h) = dia(locHocAn (/) dia(locHocAn (up)) ™

= loc"°€(fy) loc™°€ (uy,) L.

By the prolongation lemma (5.42)(b), there exists an S-2-arrow of Heller n-cosemistrips (f,u):
X =Y « Y in C with (fp,un) = (flznsu|zn). As K = 1y: for i € A", the morphism of standard
n-cosemitriangles fPer (uPe)~1: XPer — YPr has the base

(P (@) ™) gn = fP g (WP 30) ™1 = loc(f)] 40 (loc(u)| 4 ) ™1 =Toc(f] 40) loc(u] 40 ) 7!

= loc(fp) loc(up) ™! = @p. O
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- /
0 (X'n)[l]
) 7
| gl (X2
e on” | “ e
0 X2 X/ (XH 1o
/ - ;
0 Pd w2 | H e H | —
14 (uﬂ)[\] R | ()t !
e
/ e
Rt R | |
| S P I R
e
— *)XQ/I *’X?L/l— *)(Xl)[l]
/! - :
0 Xt X2 t |

Figure 1: Prolongation to n-cosemitriangles.

(5.55) Theorem (prolongation theorem). We suppose given n € Ny. The restriction functor

(=)

is surjective on the objects and full. In other words:

it THEOT (Ho C) — (HoC)A"

(a) For every A"-commutative diagram X3, in HoC there exists an n-cosemitriangle X in HoC with base Xj,.

(b) For all n-cosemitriangles X, Y and every morphism of A"-commutative diagrams ¢p: X|an — Y|an
in HoC there exists a morphism of n-cosemitriangles ¢: X — Y in HoC with base ¢y,.

Proof.

(a) We suppose given a A"-commutative diagram Xy in HoC. By proposition (5.53), the diagram func-
tor dia: HoC2" — (HoC)?" is dense, and so there exists a A™-commutative diagram Xy in C with
X}, = loc(Xp). We choose an isomorphism vy : loc(Xp) — Xp. By proposition (5.54)(a), there exists
a Heller n-cosemistrip X in C such that XP¢ has the base loc(f(b). We let X be the unique periodic
n-cosemicomplex and 1: XP®* — X be the unique morphism of periodic n-cosemicomplexes in Ho C with

Wk ifi=i, keAn,
wk/l = ]-()E'pcr)k/i if Z,k c An,
(W ifie An k=1,

for k/i € #§. Then X is an n-cosemitriangle in HoC with base

X|in = Target 1|1, = Target iy, = Xj,.

(b) We suppose given n-cosemitriangles X, ¥ and a morphism of A™-commutative diagrams ¢y, : X| An = Y An
in HoC. We choose Heller n-cosemistrips X, Y in C and isomorphisms ¢: XP — X, p: YP* — Y
in Com;%ﬁn (HoC). By proposition (5.54)(b), there exists an S-2-arrow of Heller n-cosemistrips (f, u):
X — Y « Y in C such that fPe" (uPe)~1: XP" — YP has the base 1 An @b (pl4n) "t Moreover,
P and uP°" are periodic morphisms of n-cosemicomplexes by corollary (5.48)(b), and so p: X — Y
defined by ¢ := ¢~ fPer (uP°)~1 pis a periodic morphism of n-cosemicomplexes and therefore a morphism
of n-cosemitriangles in HoC.

~ Y| An ~
xeer| M8 Xver Y x
(fper (uper)—l)‘A_n J J/Lpb frer (uper)lJ J/‘P
Plan p

Yper ‘ An - Y|An Yper

IR
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Finally, ¢ has the base

An = (@ P (WP) T pTh)

An (S (uP) ™) An) = 0b. O

An =

@ An (P



Appendix A

A construction principle for functors via
choices

The construction of a functor F': C — D is often done by the following procedure. First, one chooses a family
S = (Sx)xeobc over ObC. Second, one constructs Ob F': ObC — Ob D, where FX for X € Ob( is supposed
to depend on X and Sy, that is, on the pair (X, Sx) — where the choice of Sx is needed to be able to use Sx
when only X is given. Third, one constructs induced values on the morphisms, where Ff: FX — FX' for a
morphism f: X — X’ in C is supposed to depend on f, Sx and Sx, that is, on the triple (f, Sx,Sx+). Fourth,
one checks compatibility with composition and identities.

Different choices S = (Sx)xeobc and S” = (S% ) xcobc then often lead to isomorphic functors F' and F’, where
an isotransformation F' — F” is obtained by applying the analogon to the third step from above to the triples
(1)(,5)(,53() for X € ObC.

An example is the construction of a pushout functor F': D- — D for some category D, where L is the full
subposet of [J = Al x Al with underlying set {(0,0),(1,0),(0,1)}. First, for every object X in D-, that is,
for every span X in D, one chooses a pushout rectangle Sy in D with X = Sx| . Second, one stipulates
FX = (Sx)1,1 for X € ObC. Third, given a morphism f: X — X’ in D-, one stipulates F'f: FX — FX' to
be the unique morphism in D that is induced by the universal property of the pushout rectangle Sx. Fourth,
one checks compatibility with composition and identities.

Different choices of pushout rectangles (Sx)xecobc and (S%) xeobc lead to isomorphic functors F, F': D- — D;
an isotransformation a: F' — F’ is given as follows. For X € ObC(, one stipulates ax: FX — F’X to be the
unique morphism in D that is induced by the identity 1x = 1g,| = lg,| and the pushout rectangles Sy
and S.

The purpose of this chapter is to formalise this procedure. Moreover, we show how the functors constructed via
choices arise from functors that do not necessitate choices. To this end, we construct a category that takes all
possible choices into account.

The theory is developed in section 1. As an illustration, we reconsider the proof of the characterisation of
equivalences of categories as full, faithful and dense functors in section 2.

Further applications of this chapter may be found in appendix B, section 2, where we construct left adjoint
functors via choices of couniversal objects, and in chapter V, section 2, where we construct the shift functor
on the homotopy category of a Brown cofibration category via choices of Coheller rectangles. The “choiceless
variant” of the shift functor also appears in chapter V, section 3 and 4.

1 The structure category
Throughout this section, we suppose given a category C and a family & = (&x)xeonc over ObC.

The structure category and the forgetful functor
(A.1) Remark.

(a) We have a category Cg, given as follows. The set of objects of Cg is given by
ObCs ={(X,S) | X € Ob(, S € &x}.

195
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For objects (X, S), (Y,T) in Cg, we have the hom-set

CG((X7 S)a (KTD = {(f? S?T) | f S C(Xa Y)}
For morphisms (f,S,T): (X,S) = (Y, T), (9,T,U): (Y,T) = (Z,U) in Cg, the composite is given by

(f,9,T)(g,T,U) = (fg,5,U).
For an object (X, S) in Cg, the identity morphism on (X, S) is given by
1ix,5) = (1x, S, 9).
(b) We have a functor U: Cg — C, given on the objects by
UX,S) =X
for (X,S) € ObCgs, and on the morphisms by

U(f,8,1T)=f
for every morphism (f,S5,T): (X,S) = (Y,T) in Cg.

(A.2) Definition (structure category). The category Cg from remark (A.1)(a) is called the structure category
of C with respect to &. The functor U: Cg — C from remark (A.1)(b) is called the forgetful functor of Cs.

For example, we suppose that C = Set(y for some Grothendieck universe i, and, for X € ObC, we suppose
that Gx is the set of all group structures on X. Then Cs may be thought of the category whose objects are
4-groups and whose morphisms are all maps between tl-groups. In particular, the category Grp g, is a wide
subcategory of Cs.

(A.3) Remark. The forgetful functor U: Cg — C is full and faithful. Moreover, U is surjective (on the
morphisms and therefore on the objects) if and only if & x # () for every X € ObC. (%)

(A.4) Notation. We suppose given objects (X,S) and (Y,T) in Cs. A morphism (f,S,T): (X
in Cg is usually denoted just by f: (X,S) — (Y,T). Moreover, we usually write ¢ ((X,S), (Y, T)
instead of ¢ ((X,S), Y, 1)) ={(f, 5, T) | f € c(X,Y)}.

(A.5) Notation. Given a functor F': Cs — D, we usually write FgX := F(X,S) for (X,5) € ObCs and
Fsrf:=F(f,S,T) for a morphism f: (X,5) = (Y,T) in Cs.

S) = (Y, T)
) = C(XvY)

Choices of structures

(A.6) Definition (choice of structures). We suppose given a full subcategory U of C. A choice of structures
for U with respect to & (or choice of &-structures for U) is a family S = (Sx)xecobu over ObU such that
Sx € 6x for every X € ObU4.

(A.7) Remark. We suppose given a full subcategory U of C. Every choice of &-structures S = (Sx)xcobu
for U yields a functor

Is: U — Cs,

given on the objects by
IsX = (X,S%)

for X € ObU, and on the morphisms by
Isf=f: (X,S5x) = (Y, Sy)

for every morphism f: X — Y in U.

1S0 if &x # 0 for every X € ObC, then the forgetful functor U: Cg — C is an equivalence of categories. However, as we will
reprove the “full-faithful-dense-criterion” in section 2, we will give a more concrete proof of this result below, see proposition (A.9)
and corollary (A.10).
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(A.8) Definition (structure choice functor). We suppose given a full subcategory U of C and a choice of
G-structures S = (Sx)xecoby for U. The functor Ig: U — Cs from remark (A.7) is called the structure choice
functor with respect to S.

Given a full subcategory U of C, the structure category Ug|,, is a full subcategory of the structure category Ce.
So in the rest of this section, we are satisfied with the case U = C.

(A.9) Proposition. We suppose given a choice of G-structures S = (Sx)xeobc for C.

(a) We have

Uolg = idec.

(b) We have
IsoU ~ide,.
An isotransformation Is o U — ide, is given by 1x: (X, Sx) = (X,T) for (X,T) € ObCs.
In particular, U: Cs — C and Ig: C — Cg are mutually isomorphism inverse equivalences of categories.
Proof.

(a) For every morphism f: X — Y in C, the underlying morphism in C of Igf: (X, Sx) — (Y, Sy) is given
by f: X = Y. Thus we have Uolg = id¢.

(b) We suppose given a morphism g: (X,T) — (Y,U) in Cs. Then the following quadrangle in C commutes.

Xy

1y

Yy —Y

1R

Hence the following quadrangle in Cg commutes.

(X,8x) — (X, T)

(Y, Sy) —— (¥, U)

Thus we have a transformation e: Is o U — id¢s with components e(x ) = 1x: (X,Sx) — (X,T)
for (X,T) € ObCs. Moreover, as 1x: X — X is an isomorphism in C for every object (X,T) in Cg,
the morphism ex7) = 1x: (X,Sx) — (X,T) in Cs is an isomorphism in Ce with inverse
5(_;7T) =1x:(X,T)— (X, Sx). Hence ¢ is an isotransformation. O

(A.10) Corollary. If Gx # () for every X € ObC, then the forgetful functor U: Cg — C is an equivalence of
categories.

(A.11) Corollary. We suppose given choices of &-structures S = (Sx)xcobc and S’ = (S%)xeobc for C.
Then we have

Is &2 1g.
An isotransformation Is — Iy is given by 1x: (X, Sx) — (X, S%) for X € ObC.
Proof. By proposition (A.9)(b), we have isotransformations

e: 150U — ide
e IgroU — ich
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given by e(x 1) = 1x: (X,5x) = (X, T) and (y oy = 1x: (X, 5%) — (X, T) for (X,T) € ObCs. Moreover,
by proposition (A.9)(b), we have UoIg =ide. Thus we obtain an isotransformation

(56,71) xlg: Ig — Lo
given by

((ee"™ 1) #Is)x = eraxel x = £(x,56)8(x 5¢) = Lx: (X, 5x) = (X, S%). O
The last corollary will often appear in the following form.

(A.12) Corollary. We suppose given a functor F': Cg — D and choices of G-structures S = (Sx)xcobe
and S’ = (S%)xeobc for C. Then we have

Folg~Folg:C—D.
An isotransformation g g/ : F'olg — F olg is given by
(as,s)x = Fsy s, (1x): Fsy X = Fgr X

for X € ObC. The inverse of ag g/ is given by a;ls, =ag.s.

2 The characterisation of equivalences of categories revisited

In this section, we apply the theory from section 1 in a reconsideration of the proof of the characterisation of
equivalences as full, faithful and dense functors.

From definition (A.19) on, we suppose given a functor F': C — D.

The easy implication

(A.13) Remark. We suppose given functors F,G: C — D and an isotransformation a: F — G. Moreover, we
suppose given X, X’ € Ob(C, and we set

Fxx:c(X,X") = p(FX,FX'), f = Ff,
GX,X’: C(XaX/) — D(GX7GX/)3 f = Gf7
(I)X,X/I D(FX,FX/) — D(GX,GX’), g — Oz)_(lgOzX/.

(a) We have
Ox x 0o Fx x =Gx x.

p(FX,FX')

(X, X7 Dy x/

Gx x/

D(GX, GX/)
(b) The map ®x x- is a bijection with inverse
ox'v: p(GX,GX') — p(FX,FX'), g~ axgay.

Proof.

(a) We have ax(Gf) = (Ff)ax for f € ¢(X,X') as « is a transformation. But since « is an isotransforma-
tion, it follows that

Ox x/ (Fxx f)= a)_(l(Ff)aX/ =Gf=Gxxf

for f S c(X7X/), that is, we have q)X,X’ OFX,X’ = GX,X’- O
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(A.14) Corollary. We suppose given functors F,G: C — D with F = G.
(a) The functor F' is faithful if and only if G is faithful.
(b) The functor F' is full if and only if G is full.

Proof. We choose an isotransformation «: F — G. Moreover, for X, X’ € Ob(C, we set

Fxxi:coX,X') = p(FX,FX'), f = Ff,
GX,X’: C(X; X/) — D(GX7 GX/), f —> Gf,
Ox x: p(FX,FX') = p(GX,GX"), g ax'gax:.

Then for X, X’ € ObC, the map ®x x- is a bijection by remark (A.13)(b) and we have ®x x+ o Fx x» = Gx x
by remark (A.13)(a).

(a) We suppose that F is faithful, that is, we suppose that F'x x- is injective for all X, X’ € ObC. But then
Gx x' = ®x x' o Fx x is also injective for all X, X’ € ObC as ®x, x- is a bijection, so G is faithful.
The converse implication follows by symmetry.

(b) We suppose that F' is full, that is, we suppose that Fx x- is surjective for all X, X’ € ObC. But then
Gx,x' = ®x x' o Fx x+ is also surjective for all X, X’ € ObC as ®x, x- is a bijection, so G is full.

The converse implication follows by symmetry. O
(A.15) Corollary. We suppose given functors F: C =D, G: D =&, H: C — £ with Go F = H.

(a) (i) If F and G are faithful, then H is faithful.
(ii) If H is faithful, then F is faithful.

(b) If F and G are full, then H is full.
Proof. For X, X' € Ob(C, we set

FX,X’: C(XvX/) _>’D(FX7FX,)7 fHFfv
(GoF)x x: C(X,X/) — ¢(GFX,GFX"), f— GFf,

and for Y, Y’ € ObD, we set
Gyy : p(Y,Y') = ¢(GY,GY"), g = Gg.

(a) (i) We suppose that F' and G are faithful, that is, we suppose that Fy x- is injective for all X, X’ € ObC
and that Gy y is injective for all Y,Y’ € ObD. But then (G o F)x x» = Grx,rx’ © Fx x/ is also
injective for all X, X’ € Ob(, that is, G o F' is faithful, and so H is faithful as H = G o F by
corollary (A.14)(a).

(ii) We suppose that H is faithful. Then G o F is faithful as H = G o F by corollary (A.14)(a), that is,
(GoF)x x = Grx rx o Fx x/ is injective for all X, X’ € ObC. But then Fx x- is also injective for
all X, X’ € Ob(, that is, F is faithful.

(b) We suppose that F' and G are full, that is, we suppose that Fx x- is surjective for all X, X’ € ObC and
that Gy,y- is surjective for all Y, Y’ € ObD. But then (Go F)x x = Grx rx’ o Fx x is also surjective
for all X, X’ € Ob(, that is, G o F' is full, and so H is full as H = G o F by corollary (A.14)(b). O

(A.16) Remark. We suppose given functors F,G: C — D with F = G. Then F is dense if and only if G is
dense.

Proof. We suppose that F' is dense, that is, we suppose that for every Y € ObD there exists an X € Ob(C
with Y 2 FX. As F 2 G, we have FX 2 GX for X € Ob(, so G is dense.
The converse implication follows by symmetry. O
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(A.17) Corollary. We suppose given functors F': C D, G: D - &, H: C — & with Go F = H.
(a) If F' and G are dense, then H is dense.
(b) If H is dense, then G is dense.

(A.18) Proposition. Every equivalence of categories is faithful, full and dense.

Proof. We suppose given an equivalence of categories F': C — D. Moreover, we choose a functor G: D — C
such that Go F 2 id¢ and F o G & idp.

The faithfulness of id¢ implies the faithfulness of F' by corollary (A.15)(a)(ii). Moreover, as idp is dense, it
follows that F'is dense by corollary (A.17)(b).

To show that F' is full, we suppose given objects X and X’ in C and a morphism g: FX — FX' in D. Asid¢ is
full and GoF 2 idc, it follows that GoF is full by corollary (A.14)(b). Hence there exists a morphism f: X — X’
in C with Gg = GFf. In particular, we have FGg = FGF f. But since idp is faithful and F o G 2 idp, it
follows that F o G is faithful by corollary (A.14)(a), and so we even have g = F f. Thus F is full.

Altogether, F is faithful, full and dense. O

Isomorphic replacements

For the rest of this section, we suppose given a functor F': C — D.
(A.19) Definition (isomorphic replacement). We suppose given an object Y in D. An isomorphic replacement

of Y along F is a pair (X, ¢) such that X is an object in C and ¢: FX — Y is an isomorphism in D.

The isomorphic replacement category

(A.20) Definition (isomorphic replacement category). For Y € ObD, we let Ry be the set of isomorphic
replacements of Y along F'. The structure category

Rpl(F) := Dy
is called the isomorphic replacement category of F.
(A.21) Remark. We have

ObRpl(F) ={(Y,X,q) | Y € ObD, X € ObC(, ¢q: FX — Y isomorphism in D}.
() For objects (Y, X,q), (Y',X’,¢") in Rpl(F), we have the hom-set

Rpl(F)((Ya X7 Q>7 (Y/a X/a q/)) = 'D(K Yl)
For morphisms g¢: (Y, X,q) — (Y, X'.¢), ¢: Y, X',¢) — (Y, X",¢") in Rpl(F), the composite
99 : (Y, X,q) = (Y, X" ¢") in Rpl(F) has the underlying morphism g¢g’: Y — Y’ in D. For an object (Y, X, q)
in Rpl(F'), the identity morphism 1y xq): (Y,X,q) — (Y, X,q) in Rpl(F) has the underlying morphism
ly: Y =Y in D.
The forgetful functor U: Rpl(F') — D is given on the objects by

UxgY =Y
for (Y, X, q) € ObRpl(F'), and on the morphisms by

Ux..(x7,a09 =9

for a morphism g: (Y, X, q) = (Y', X', ¢') in Rpl(F).

2More precisely, the objects in Rpl(F) are of the form (Y, (X,q)) for Y € ObD, X € Ob(C and an isomorphism q: FX — Y
in D, but we use the simplified notation (Y, X, ¢) instead.
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The canonical lift

(A.22) Remark.

(a) We have a functor F': C — Rpl(F), given on the objects by

FX = (FX,X,1px)
for X € Ob(C, and on the morphisms by
Ff=Ff: (FX,X,1px) = (FX', X' 1px/)
for every morphism f: X — X’ in C.
(b) We have
F=UoF.
(A.23) Definition (canonical lift). The functor F': C — Rpl(F) from remark (A.22) is called the canonical lift
of F along the forgetful functor U: Rpl(F) — D.

(A.24) Remark. For every object (Y, X, q) in Rpl("), we have the isomorphic replacement (X, q) of (Y, X, q)
along the canonical lift F': C — Rpl(F), where § = ¢q: FX — (Y, X, q). In particular, F' is dense.

(A.25) Corollary. The following conditions are equivalent.

a) The functor F': C — D is dense.

(
(

)

b) The forgetful functor U: Rpl(F) — D is dense.

(¢) The forgetful functor U: Rpl(F') — D is surjective on the objects.
)

(d) The forgetful functor U: Rpl(F') — D is an equivalence of categories.

Proof. The equivalence of condition (a) and condition (b) follows from remark (A.22)(b) and corollary (A.17)(b).
Moreover, condition (c) implies condition (d) by corollary (A.10), and condition (d) implies condition (b) by
proposition (A.18). So to show that the four conditions are equivalent, it remains to show that condition (b)
implies condition (c).

We suppose that condition (b) holds, that is, we suppose that U: Rpl(F) — D is dense. Moreover, we sup-
pose given an object Y in D. As U is dense, there exists an object (Y’,X,q) in Rpl(F) and an isomor-
phism g: U(Y’, X,¢q) — Y in D. But then we have the isomorphism qg: FX — Y in D, so (Y, X, qg) is an
object in Rpl(F) with U(Y, X,qg) =Y. Thus U: Rpl(¥) — D is surjective on the objects, that is, condition (c)
holds.

FX -y Ly m

The total isomorphic replacement functor

(A.26) Proposition. We suppose that F is full and faithful. Then we have a functor
G: Rpl(F) = C,

given on the objects by
GixoY =X

for (Y, X,q) € ObRpl(F), and on the morphisms as follows. Given a morphism g: (Y, X,q) — (Y', X', ¢')
in Rpl(F), then G(x ¢),(x7,¢)9: X — X' is the unique morphism in C with

99 = (FG(x.q),(x.¢)9)4 -
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Proof. We define a map

Go: ObRpl(F) — Ob(, (Y, X,q) — X.

We suppose given (Y, X, q), (Y, X’,q') € ObRpl(F). As F: C — D is full and faithful, the map
o(X,X") = p(FX,FX'), f =~ Ff

is a bijection. Thus we obtain a well-defined map

G(Y,X,q),(Y’,X’,q’): Rpl(F)((Y7 X7 Q)v (Ylvxla q/)) — C(Xa X/)a

where G(Y“)()q)y(yl,‘x/’q/)g € (X, X') for g € rpim) (Y, X, q), (Y, X", q')) is the unique element with qgq "t =
FGy.x.qg).(v'.x7,4)9 In D, that is, with qg = (FG(y x q).(v.x".4)9)4"-
Given morphisms g: (Y, X,q) = (Y, X',¢') and ¢': (Y, X',¢') = (Y, X" ¢") in Rpl(F), we have

qgg/ = (FG(Y,X,q),(Y/,X’,q/)g)q/g/ = (FG(Y,X,Q),(Y’,X/,q’)g)(FG(Y’,X’,q’),(Y”,X”,q”)g,)q//
= F(Grv.x.a.vxan (G xran. v xmand') 4
and therefore é(Y,X,q),(Y”,X”,q”)(ggl) = (G(Y,X,q),(Y/,X’,q/)g)(G(Y/,X’,q/),(Y”,X”,q”)g/)' MOIQOVGI', for every
(Y, X, q) € ObRpl(F), we have
qly = lpxq = (Flx)q

and therefore Gy, x q),(v.x,(ly) = 1x = 1G,(v,x,q)- Thus we have a functor G: Rpl(F) — C given by
Ob G = Go and by G (x,q),(x".¢n9 = G(v.x,q),(v",x",¢)9 for every morphism g: (Y, X,q) — (Y’, X', ¢') in Rpl(F).
O

(A.27) Definition (total isomorphic replacement functor). We suppose that F' is full and faithful. The
functor G': Rpl(F') — C from proposition (A.26) is called the total isomorphic replacement functor along F'.

If F is full and faithful, then an isomorphic replacement (X, ¢) of an object Y becomes a universal object over Y’
along F, that is, it fulfils the universal property dual to that of a couniversal object as in definition (B.2).
The total isomorphic replacement functor as just introduced may also be defined as the restriction of a total
universal object functor along F, cf. definition (B.13), to Rpl(F).

(A.28) Proposition. We suppose that F is full and faithful. Moreover, we let F': C — Rpl(F') be the canonical

lift of F' along the forgetful functor U: Rpl(F) — D and we let G: Rpl(F) — C be the total isomorphic
replacement functor along F'.

(a) We have
GoF =ide.
(b) We have
F oG = idgpi(r).
An isotransformation F oG — idgpi(py is given by ¢: (FX, X, 1rx) — (Y, X, q) for (Y, X, q) € ObRpl(F).
In particular, F': C — Rpl(F) and G: Rpl(F) — C are mutually isomorphism inverse equivalences of categories.
Proof.

(a) For every morphism f: X — X’inC, wehave Ff = Ff: (FX,X,1px) — (FX', X' 1px:),s0 1px (Ff) =
(Ff)1rx: and therefore GFf = G(x 1,4),(x' 1,5 Ff = f. Thus we have G o F' = idc.

(b) We suppose given a morphism g: (Y, X, q) — (Y', X’,¢') in Rpl(F). Then the following quadrangle in D
commutes by definition of G: Rpl(F) — C.

FX —1 vy

o

FG(xm,(x/,qwgJ Jg
’

FX’T)Y/

Q
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Hence the following quadrangle in Rpl(F') commutes.

(FX, X, 1px) —— (Y, X, q)
FG(XaQ),(X/»q’)gJ Jg
(FXlaX/a 1FX/) L’ (Y/aleq/)
Thus we have a transformation f: F o G — idrpi(F), given by By x.q = ¢: (FX, X, 1rx) — (Y, X,q)
for (Y, X,q) € ObRpl(F). Moreover, as g: FX — Y is an isomorphism in D for every object (Y, X, ¢) in
Rpl(F), the morphism By, x,q) = ¢: (FX,X,1rx) — (Y, X,q) in Rpl(F) is an isomorphism with inverse
5(}1)( 0= ¢ 1 (Y, X,q) = (FX,X,1rx). Thus 3 is an isotransformation. O
Isomorphic replacement functors

(A.29) Definition (choice of isomorphic replacements). A choice of isomorphic replacements for D along F is
a family ((Xv,qy))yeobp such that (Xy,gy) is an isomorphic replacement of Y along F for every Y € ObD.

(A.30) Remark. A choice of isomorphic replacements for D along F exists if and only if F' is dense.

(A.31) Remark. For Y € ObD, we let Ry be the set of isomorphic replacements of Y along F. A choice of
isomorphic replacements for D along F' is precisely a choice of structures with respect to 8 = (Ry )ycobp.

For the definition of the structure choice functor with respect to a choice of structures, see definition (A.8). In
the case of a choice of isomorphic replacements, the structure choice functor is given as follows.

(A.32) Remark. We suppose given a choice of S-replacements R = ((Xy,qy))yecobp for D along F. The
structure choice functor Ig: D — Rpl(F) is given on the objects by

IrY = (Y, Xv, qv)
for Y € ObD, and on the morphisms by
Irg =g: (Y, Xy, qv) = (Y, Xy, qy)
for every morphism g: Y — Y’ in D.

(A.33) Remark. We suppose given a choice of isomorphic replacements R = ((Xy, gy ))yecobp for D along F.
(a) We have

UOIR ZldD

(b) We have
IR oU= idRpl(F)‘

An isotransformation Ir o U — idgpyr) is given by ly: (Y, Xy,qv) — (Y, X', ¢) for (Y,X',¢) €
ObRpl(F).

In particular, U: Rpl(F') — D and Iz: D — Rpl(F) are mutually isomorphism inverse equivalences of categories.
Proof. This follows from remark (A.31) and proposition (A.9). O

(A.34) Definition (isomorphic replacement functor). We suppose that F' is full and faithful, and we let
G: Rpl(F) — C denote the total isomorphic replacement functor along F'. Moreover, we suppose given a choice
of isomorphic replacements R = ((Xy, gy ))yeobp for D along F. The composite

Golp:D—C

is called the isomorphic replacement functor along F with respect to R.



204 APPENDIX A. A CONSTRUCTION PRINCIPLE FOR FUNCTORS VIA CHOICES

(A.35) Remark. We suppose that F is full and faithful, and we suppose given a choice of isomorphic replace-
ments R = ((Xy, gv))yecobp for D along F. Moreover, we let G: D — C be the isomorphic replacement functor
along F' with respect to R. Then G is given on the objects by

GY = Xy

for Y € ObD, and on the morphisms as follows. Given a morphism g: Y — Y’ in D, then Gg: Xy — Xy is
the unique morphism in C with

qvg = (FGg)qy:.

Proof. We let G': Rpl(F) — C denote the total isomorphic replacement functor along F, so that G = G o I.
For Y € Ob D, we have IgY = (Y, Xy, qy) and therefore

GY = GIRY = G(Xy,qy)y = Xy.

We suppose given a morphism g: Y — Y’ in D. Then we have Irg = g: (Y, Xy,qv) — (Y, Xy, qv/),
and so Gg = G(xy qv),(Xyr.ay) RS = G(Xy qv),(Xyr,qy)9: Xy — Xy is the unique morphism in C with
qv9 = (FG(xy qv),(Xy/.ay)9)qy", that is, with ¢y g = (FGg)qy. O

The criterion for equivalences of categories

(A.36) Theorem. If F is full, faithful and dense, then F is an equivalence of categories.

For every choice of isomorphic replacements R = ((Xy, qy))yecobp for D along F, the isomorphic replacement
functor G along F' with respect to R is an isomorphism inverse of F. Isotransformations a: G o F — id¢
and B: Fo G — idp are given as follows. For X’ € Ob(C, the component ax/: GFX' — X' is given by the
unique morphism in C with gpx: = Fax:. For Y € ObD, the component Sy : FGY — Y is given by Sy = gy.

Proof. We suppose that F is full, faithful and dense.

By remark (A.22)(b), we have F = Uo F, where F: C — Rpl(F) denotes the canonical lift of F along the
forgetful functor U: Rpl(F) — D.

As F is dense, there exists a choice of isomorphic replacements for D along F'. We suppose given such a choice of
isomorphic replacements R = ((Xy, ¢y ))ycobp. By remark (A.33), we have UoIp = idp and an isotransfor-
mation @: Ig o U — idgpi(r) given by ay,x7.¢) = 1y : (Y, Xy, qv) — (Y, X', ¢') for (Y, X', ¢') € ObRpl(F).

As F is full and faithful, the total isomorphic replacement functor G: Rpl(F) — C is defined. By
proposition (A.28), we have G o F = ide and an isotransformation 3: F o G — idrpi(r) given by
/B(Y7X’,q’) = qli (FX, X, IFX) — ()/7 X/, q/) for (Y, X/, q/) € Ob Rpl(F)

Rpl(F)

Ir

W

We obtain
GOF:éOIROUOF%GOidRpl(F)oF:GoF:idc,
FOC?:UOF'OG’OIR%“UOidRpl(p)OIR:UOIR:idD7

where isotransformations a: Go F — idc and B: F o G — idp are given by o := G s a* F and 8 := Ux 3 xIp.
Thus G: D — C is an isomorphism inverse of F': C — D. In particular, F' is an equivalence of categories.

For X’ € Ob(C, we have apy, = QFX' X' 1pxs) = lpx: (FX', Xpxr,qrx') = (FX', X', 1pxs) in Rpl(F), and
SO

_ A ~ A i / /
axr = G(XFX/7qFX’)7(X/a1FX/)aFX, - G(XFX’7qFX’)7(X/71FX/)1FX/ CGFXT = X

is the unique morphism lIl C Witl} qrx’ 1FX/ = (FG(XFXM(JFX/);(X’JFX’)1FX/) lFX’, that iS, with qrx’ = FOLX/.
For Y € ObD, we have S1,v = By,xy,qv) = @v: (FXy, Xy, 1rx, ) = (Y, Xy,qy) in Rpl(F), and so

By =UBiy =qv: FXy =Y
in D. O



Appendix B

Universal properties

In this appendix, we define couniversal objects and deduce some folklore results. The author does not claim
any originality.

1 Couniversal objects

Definition of a couniversal object

(B.1) Remark. We suppose given a functor G: D — C and we choose a Grothendieck universe il such that D
is a Y-category. Moreover, we suppose given an object X in C and an object Y in D.
The map

Fun(D,Set) (D(Y; =), c(X,G=)) = ¢(X,GY), B 1y By
is a bijection. Its inverse is given by
(X, GY) = pun(p,set) (D (Y, =), c(X,G—)), u = (9 = u(Gg))y cobD-
Proof. This is a particular case of the Yoneda lemma. O

(B.2) Definition (couniversal object). We suppose given a functor G: D — C and an object X in C. A
couniversal object under X along G (or an initial object under X along G) consists of an object U in D together
with a morphism u: X — GU in C such that for every object Y in D and every morphism f: X — GY in C
there exists a unique morphism f: U — Y in D with f = u(Gf).

x . ay

|

GU

By abuse of notation, we refer to the said couniversal object under X along G as well as to its underlying object
just by U. The morphism wu is said to be the universal morphism of U.
Given a couniversal object under X along G with universal morphism u, we write uni = uni¥ := w.

The defining (universal) property of a couniversal object may be reformulated using isotransformations:
(B.3) Remark. We suppose given a functor G: D — C and an object X in C.
(a) Given a couniversal object U under X along G, then the maps
p(U,Y) = ¢(X,GY), g — uni? (Gy)
for Y € ObD define an isotransformation

p(U,—) = ¢(X,G—).

205
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(b) Given an object U in D and an isotransformation ®: p(U, —) — ¢(X, G—), then U becomes a couniversal
object under X along G with

uniU = 1U(I)U-

Proof.

(a) By remark (B.1), the universal morphism uni’: X — GU yields a transformation
b: p(U,—) = c(X,G-)
given by
By : p(U,Y) = ¢(X,GY), g — uni’(Gyg)

for Y € ObD. Moreover, @y is a bijection for every ¥ € ObD by the universal property of U, and
so ® = (Py)yeobp is an isotransformation.

(b) By remark (B.1), ® is given by
Dy : ’D(Uv Y) - C(X7 GY)ag = (lU‘I)U)(Gg)

for Y € ObD. So since ® is an isotransformation, given an object Y in D and a morphism f: X — GY
in C, there exists a unique morphism f: U — Y in D with f®y = f, that is, with (1y®y)(Gf) = f.

x L ay

1U<I>UJ %

GU

Thus we have shown that U becomes a couniversal object under X along G with uni¥ = 15®. O

Simple properties of couniversal objects

(B.4) Remark. We suppose given a functor G: D — C, an object X in C and couniversal objects U, U’
under X along G. We let 4: U’ — U denote the unique morphism in D with uni¥ = uniU/(Gﬂ), and we
let @' : U — U’ denote the unique morphism in D with wni?’ = uni¥ (G). Then 4 and @ are mutually inverse
isomorphisms.

U’
x 2 ., qu’

G
uni¥ ” fehy

GU

Proof. We have

uni’ = ui” (Ga) = wni? (Gi')(Ga) = uni’ G(a'4

),
i’ = uni’(Gi') = wi? (Ga)(Gi') = iV G(ai').

So since we also have

U

uni¥ = wniV1gy = uniU(GlU),

4 ! !
uni’’ = uni?¥ 1¢p = uni? (Gly/),

we get @4t = 1y by the universal property of U and 44’ = 1y by the universal property of U’. O
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(B.5) Remark. We suppose given a functor G: D — C, a morphism f: X; — X5 in C, a couniversal object Uy
under X7 along G and a couniversal object U; under X5 along G. There exists a unique morphism f: Uy — Us

in D with funi’? = uni’*(Gf).

)(1;,)(2

uni¥1 J J uni¥2
Gf

GU 11— GU2
Proof. This follows from the universal property of Uj.

funiY2

X1 — GU2

uni¥1 J %’

GU; O

(B.6) Proposition. We suppose given a functor G: D — C, an object X in C and a couniversal object U
under X along G. Moreover, we suppose given a retraction p: X — X’ in C with corresponding coretrac-
tion i: X' — X, a retraction ¢: U — U’ in D with corresponding coretraction j: U’ — U, and a mor-
phism v/ : X’ — GU’ such that uni¥ (Gq) = pu’ and iuni¥ = v/(G5).

X2 . x

—
i
uni¥ '
G

oUu L, qu’
—
Gj

Then U’ becomes a couniversal object under X’ along G with universal morphism
i’ =o'
Given an object Y in D and a morphism f': X’ — GY in C, the unique morphism f/: U' — Y in D with
= uniUl(Gf’) is given by
f=if,
where f: U — Y denotes the unique morphism in D with pf’ = uniU(Gf).

Proof. To show that U’ becomes a couniversal object under X’ with universal morphism u’, we suppose given
an object Y in D and a morphism f* X’ - GY inC. Since U is a couniversal object under X along G, there
exists a unique morphism f: U — Y with pf’ = uni¥(Gf).

x- " .x T qy
U
uni J Gf
QU

Hence we get
W G(jf) = (G)(Gf) = imi”(Gf) = ipf = f'

Conversely, we suppose given an arbitrary morphism ¢': U’ — Y in D with f' = «/(Gg¢’). We obtain
uni” G(gg) = mi” (Gq)(Gy) = pu'(Gg) = pf’

and therefore gqg = f But then we necessarily have g = jqg = jf. ,
Altogether, U’ becomes a couniversal object under X’ along G with uni¥" =’ O
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(B.7) Corollary. We suppose given a functor G: D — C, an object X in C and a couniversal object U under X
along G. Moreover, we suppose given an isomorphism ¢: X — X’ in C and an isomorphism b: U — U’ in D.
Then U’ becomes a couniversal object under X’ along G with universal morphism uni’ = a¢~! uni¥ (Gb).

X 2 . x/

o

. !
umUJ JumU

au -2 qu

Given an object Y in D and a morphism f': X’ — GY in C, the unique morphism U’ = Y in D such
that f/ = uni’ (Gf') is given by

fr=vf,
where f: U — Y is the unique morphism in D with af’ = uni” (Gf)

(B.8) Proposition. We suppose given a full functor G: D — C, an object X in C and a couniversal object U
under X along G. The following assertions are equivalent.

(a) The universal morphism uni: X — GU is an isomorphism in C.
(b) We have X 2 GU in C.
(¢) There exists an object Y in D with X =2 GY in C.

Proof. If uni: X — GU is an isomorphism in C, then in particular X = GU in C. Moreover, if X = GU, then in
particular there exists an object Y in D with X = GY in C. So we suppose that there exists an object Y in D and

an isomorphism f: X — GY in C. By the universal property of U, there exists a unique morphism f: U — Y
in D with f = uni(Gf).

x—ay

-

GU
As f is invertible, we get 1x = uni (Gf)f_l. Moreover, we have uni (Gf)f_1 uni = uni.

X " qu

uniJ %f)fluni

GU

Since G is full, there exists a morphism e: U — U with (G f) f~'uni = Ge, and the universal property of U
implies that e = 1r;. Thus we have (Gf)f~'uni = Gly = 1lgyu.
Altogether, uni is an isomorphism in C with uni~* = (Gf)f~'. O

Composition of functors

(B.9) Proposition. We suppose given a functor G: D — C, an object X in C and a couniversal object Ug
in D under X along GG. Moreover, we suppose given a functor K: £ — D.

(a) Given a couniversal object Uk in & under Ug along K, then the underlying object of Ui becomes a
couniversal object Ugox in € under X along G o K with universal morphism

uni’éex = uni¥e (Guni¥x).
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(b) Given a couniversal object Ugox in £ under X along G o K, then the underlying object of Ugox becomes
a couniversal object Ux in £ under Ug along K, where the universal morphism uni’% : Ug — KU is
the unique morphism in D with

uniVeex = uni¥e (GuniVx).

uniVGok

X —— GKUg = GKUgok

uniVc J %ﬂiljk

GUg

Proof. We freely use remark (B.3) in this proof. As Ug is a universal object under X along G, we have an
isotransformation ®: p(Ug, —) — ¢(X, G—) given by

Py : p(Ug,Y) = ¢(X,GY), g — uniVc (Gyg)
for Y € ObD.

(a) We suppose given a couniversal object Ux under Ug along K, so that we have an isotransforma-
tion ¥: ¢(Uk,—) — p(Ug, K—) given by

Uyt e(Uk, Z) = p(Ug, KZ), h s uni”* (Kh)

for Z € Ob&. We let O: ¢(Ug,—) = ¢(X,GK—) be the isotransformation defined by © := ¥ (® x K).
Then the underlying object of Ui becomes a couniversal object Ugox under X along G o K with universal
morphism

.U, U, U, U
uni- %% = 1y, . OVaox = Waok YUsorx PrUGox = uni ¢ G(1y, ¥y, ) = uni”¢ G(uni”x).

(b) We suppose given a couniversal object Ugox under X along G o K, so that we have an isotransforma-
tion ©: ¢(Ugok, —) — ¢(X, GK—) given by
Oz ¢(Ucok,Z) = ¢(X,GKZ), h — uni’e°** (GKh)

for Z € Ob&. Welet U: ¢(Ugox,—) — p(Ug, K—) be the isotransformation defined by ¥ := © (&K )~1.
Then the underlying object of Ugox becomes a couniversal object Ux under Ug along K with universal
morphism

Uk __ _ -1 _ —1 _ Ugor §—1
uni = 1UK\I/UK = 1UK®UK(I)KUK = lUGoKeUGoK‘I)KUcoK =uni ~° (I)KUGoK'

But this means that uni”* is the unique morphism in D with

uni’eex = uniV* d gy, . = uni¥e (GuniVx). O

2 From couniversal objects to left adjoint functors

Throughout this section, we suppose given a functor G: D — C.

The couniversal object category

(B.10) Definition (couniversal object category). For X € ObC(, we let {lx be the set of couniversal objects
under X along G. The structure category Uni®®(G) := Cy is called the couniversal object category of G.

(B.11) Remark. We have

Ob Uni®(G) = {(X,U) | X € ObC(, U couniversal object under X along G}.
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For objects (X,U), (X’,U’) in Uni“*(G), we have the hom-set

Unice () (X, U), (X', U")) = (X, X").
For morphisms f: (X,U) — (X, U’), f': (X", U') —» (X",U") in Uni®(G), the composite ff’: (X,U) —
(X”,U") in Uni®°(G) has the underlying morphism ff’: X — X’ in C. For an object (X,U) in Uni®(G), the
identity morphism 1(x ¢): (X,U) — (X,U) in Uni*°(G) has the underlying morphism 1x: X — X in C.
The forgetful functor U: Uni®®(G) — C is given on the objects by

UpX = X
for (X,U) € ObUni®(G), and on the morphisms by

Upuv f=f

for a morphism f: (X,U) — (X', U’) in Uni®(G).

The total couniversal object functor

(B.12) Proposition. We have a functor F': Uni®(G) — D, given on the objects by
FyX=U

for (X,U) € ObUni®(G), and on the morphisms as follows. Given a morphism f: (X,U) — (X',U’)
in Uni®(G), then Fy yf: U — U’ is the unique morphism in D with

funi”" = uni” (GFyu f).

Proof. We define a map
Fy: ObUni®(G) — ObD, (X,U) — U.

We suppose given (X,U), (X’,U’) € ObUni®°(G). By remark (B.5), we obtain a well-defined map
Fix.v),(xrvn unicee(a) (X, 0), (X', U")) = p(U,T),

where Fyyp f: € p(U,U’) for f € Uniee(a) (X, U), (X', U")) is the unique element with funiU' = uniU(GFU’U/f).
Given morphisms f: (X,U) — (X',U’) and f': (X', U’) — (X”,U"”) in Uni*°(G), we have
ff/ul’liUN = flll’liU/ (GF(X’,U’)7(X”,U”)f/) = uniU(GF(X,U),(X’,U’)f)(GF(X’,U’)7(X”,U”)f/)
= uniU G((F(X,U),(X/,U’)f)(F(X’,U’),(X”,U”)f/))

and therefore F(X,U),(X”,U”)(ff/) = (F(X,U)7(X',U')f)(F‘(X/,U'),(X”,U//)f/)' Moreoven for (X, U) c Ob UniCO(G),

we have
1XuniU = uniU1GU = uniU(GlU)

and therefore F{x 1r),(x,0)(1x) = 1y = 15, (x,0)- Thus we have a functor F: Uni®®(G) — D given by Ob F = F,
and by Fyu f = Fix,u),(x v f for every morphism f: (X,U) — (X’,U’) in Uni®(G). O

(B.13) Definition (total couniversal object functor). The functor F': Uni®®(G) — D from proposition (B.12)
is called the total couniversal object functor along G.

Choices of couniversal objects

(B.14) Definition (choice of couniversal objects). We suppose given a full subcategory U of C. A choice
of couniversal objects for U along G is a family (Ux)xeoby over ObU such that Ux is a couniversal object
under X along G for every X € ObC.
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(B.15) Remark. We suppose given a full subcategory U of C. For X € ObC, we let {x be the set of couniversal
objects under X along GG. A choice of couniversal objects for U along G is precisely a choice of structures for U
with respect to U = (Ux)xecobu-

For the definition of the structure choice functor with respect to a choice of structures, see definition (A.8). In
the case of a choice of couniversal objects, the structure choice functor is given as follows.

(B.16) Remark. We suppose given a full subcategory U of C and a choice of couniversal objects U =
(Ux)xecone for U along G. The structure choice functor Iy: U — Uni®(G) is given on the objects by

IyX = (X,Ux)
for X € Ob(, and on the morphisms by
Iuf=f:(X,Ux) = (X', Ux)
for every morphism f: X — X’ in C.
(B.17) Remark. We suppose given a choice of couniversal objects U = (Ux)xconc for C along G.
(a) We have
Uoly =ide.

(b) We have
IU olU idUni“‘)(G)~
An isotransformation Iy o U — idypyieo (@) is given by 1x: (X,Ux) — (X,U’) for (X,U’) € Ob Uni®(G).

In particular, U: Uni®*(G) — C and Iy: C — Uni®°(G) are mutually isomorphism inverse equivalences of
categories.

Proof. This follows from remark (A.31) and proposition (A.9). O

Couniversal object functors

(B.18) Definition (couniversal object functor). We suppose given a full subcategory U of C and a choice
of couniversal objects U = (Ux)xecobu for U along G. Moreover, we let F': Uni®°(G) — D denote the total
couniversal object functor along G. The composite

Fo Iy C—>D
is called the couniversal object functor along G with respect to U.

(B.19) Remark. We suppose given a full subcategory U of C and a choice of couniversal objects U =
(Ux)xeobu for U along G. Moreover, we let F': C — D be the couniversal object functor along G with
respect to U. Then F is given on the objects by

FX =Ux

for X € OblU, and on the morphisms as follows. Given a morphism f: X — X' in C, then Ff: Uy — Uy is
the unique morphism in D with

funi¥*" = uniV* (GFf).

Proof. We let F: Uni®®(G) — D denote the total couniversal object functor along G, so that F = F o Iy.
For X € ObU, we have Iy X = (X,Ux) and therefore

FX = FIyX = Fy, X = Ux.

We suppose given a morphism f: X — X’ in C. Then we have Iyf = f: (X,Ux) — (X',Ux’), and so
Ff=Flyf=Fyyuv,f: Ux — Ux is the unique morphism in D with funiVx’ = uni¥x (GFyx,uy, f), that is,
with funi’*" = uni¥* (GFf). O
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(B.20) Remark. We suppose given a full subcategory U of C and choices of couniversal objects U = (Ux ) xecobu
and U' = (Uy) xeobu for U along G. Moreover, we let F: U — D resp. F': U — D be the couniversal object
functor along G with respect to U resp. U’. Then we have

F~F.

An isotransformation F — F' is given as follows. For X € ObU, the component ax: FX — F'X is given by
the unique morphism in D with uni¥* = uni’* (Gay).

Proof. We let F: Uni®°(G) — D denote the total couniversal object functor along G, so that F' = F o Iy
and F' = F o Iy/. By corollary (A.12), we have

FZFOIUQFOIU/ZF/,
and an isotransformation a: F — F’ is given by ax = FUX,Uk(lX): FX — F'X for X € OblU, that is, by the

unique morphism in D with uni’* = uni”* (Gay). O

Adjointness

(B.21) Theorem. If there exists a couniversal object under every object in C along G, then G has a left
adjoint.
For every choice of couniversal objects U = (Ux)xeobc for C along G, the couniversal object functor F': C — D
along G with respect to U is left adjoint to G. An adjunction ®: F - G is given by

(I)X,Y: D(FX, Y) - C(Xv GY)» g— uniFX(Gg)
for X € ObC, Y € ObD.

Proof. We suppose given a choice of couniversal objects U = (Ux)xecobc for C along G and we let F: C — D
be the couniversal object functor along G with respect to U. By remark (B.3)(a), the maps

dxy: p(FX,Y) = c(X,GY), g uni”*(Gyg).
for X € ObC, Y € ObD define isotransformations
(I)X-,:: D<FXv :) - C(X> G:)

for every X € ObC. So to show that ® = (Px y)xecobc,yeobp is an adjunction, it remains to prove naturality
in X. Indeed, given a morphism f: X’ — X in C, we have

90xy c(f.GY) = ("™ (Gg)) c(f,GY) = funi”™ (Gg) = mi"™ (GUf)(Gg) = mi"™ G((Ff)g)
=((Fflg)®xy =gp(Ff,Y)Px'y

for g < D(FX,Y), Y € ObD, that iS, (DX,Y c(f, GY) = D(Ff, Y)‘I)X/,y for Y € ObD.

p(FX,Y) —— c(X,GY)
D<Ff,Y>J Jc(ﬁ GY)
<DX/‘Y
p(FX',Y) > c(X',GY) O



Appendix C

Another proof of the Z-2-arrow calculus

To prove the Z-2-arrow calculus for Brown cofibration categories (3.128), we roughly proceeded in three steps:
First, we introduced the notion of a Z-fractionable category and constructed a localisation, the S-Ore localisa-
tion, in this framework ab ovo. Second, we proved the Z-2-arrow calculus as a consequence of this particular
construction. Third, we showed that every Brown cofibration category gives rise to the structure of a Z-frac-
tionable category, so in particular the said Z-2-arrow calculus holds, see theorem (3.128). The first two steps
were treated in chapter II, (mainly) section 4 to 6, the third one in chapter III, section 9. As a consequence,
we gave an alternative proof for Brown’s homotopy S-2-arrow calculus, see theorem (3.132).

In this appendix, we give an alternative proof of theorem (3.128)(b), using Brown’s homotopy S-2-arrow calculus
in the sense of theorem (C.16), which is a consequence of |7, dual of prop. 2], cf. [7, dual of th. 1]. To this end,
we introduce a variant of the cylinder notion, see definition (C.4), and develop some further results. The main
step is the imitation of the mapping cylinder construction from classical homotopy theory and its application
to S-2-arrows in a suitable way, see proposition (C.12) and remark (C.11).

Finite coproducts of cylinders

We show that the notion of a cylinder, see definition (3.108), and of a cylinder homotopy, see definition (3.130),
is compatible with finite coproducts.

(C.1) Remark. We suppose given a category with cofibrations and weak equivalences C and n € No. Moreover,
for k € [1,n], we suppose given an S-2-arrow (f,uy): Xx — Yy <= Y in Ceor and a cylinder Zy, of (fy, ux). Then
Lke(1,n) Zr becomes a cylinder of ([je(1 ) fos iepn we): Hrepn X = Hiepn Yo < e, Yo having

. Uke[l ] Z o Tios er[l 1 Z | Z A
N _ s _ o R — k
ins; = er[l’n] insg*, insy = er[l,n] ins?*, stkerm 2r = er[l’n] sk,

Proof. We have

CIT wséC IT %)= I Gnsis®) =TT feo

ke[l,n] ke[l,n] ke[l,n] ke[1,n]
( H inslz’“)( H sZ’“): H (inslz’“sz’“)z H U
ke[l,n] ke[l,n] ke[l,n] ke[l,n]
Moreover,
I_[ke[l,7z] embOXkHYk . X H Y X HY
er[l,n]embi(kuylC H H &) I H k) = H (X k)

ke[l,n] ke[l,n] ke[l,n]
is an isomorphism in C.of, whence a cofibration. So as
inszk
1L (55): 1w 11
kE[L,n] ! kE[1,n] kE[1,n]

213
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is a cofibration by proposition (3.26)(b), it follows that
XYy insfk

11, ]CmkaUYk . Zy (Hkep1,n) €mbg k )(L[ke 1,n] ( ))

ell,n lnho _

( ) ( H : <ins1 >) o

X, 1TY] V4 Z
emb; F~ R k X, 11, inss*
Heern.n Kelim (Uepm om0 Ui (9, )

X ;. Y] 1ns
I ,n) (embg RETE o ) . Z
B ke(l,n] inslzk (I—Ike[l,n] ins, K )
k

X, 1y, (insZk - 11 ins”

k k 0 kel1, 1

Hkepa,n) (emby Zy, ) (t.ml
ins]

is a cofibration by closedness under composition.

zZ
k
H 1:1:.0
ke(l,n] ]nb
1

er 1,n] Xk il Yk) er[l,n] Z
H
1I n] emb
( met XkLIYk 2l Heeqt,n) insg
Hke[1,n) emby Hicpin z,
ke[l,n] 1081
(erp n] Xp) I er[l,n] Yi) er[l,n] Zy,
e, 2 .7
Altogether, [];¢(; ) Zx becomes a cylinder of (JIje(1, ) fo> Lger,n) ue) having insg = Ilkep,n insg”,
. Hk [1,n] Zk Zy . , k .
ins;"<" = er lns1 ) sHrenn 7+ = er[l,n}s " o

(C.2) Remark. We suppose given a category with cofibrations and weak equivalences C and n € Ng. Moreover,
for k € [1,n], we suppose given a cofibrant object X in C and a cylinder X of Xj. Given morphisms
fo, f1: er[l’n] Xy =Y, f: er[l,n] X, — Y in C, we have

fifo Nuke[l,n] X f1
if and only if

emby, f : emby fo ’CVXk emby, f1
for every k € [1,n].

Proof. We have f: fy nge[l X f1 if and only if insuk e % f fo and msoLI ) % f fi, that is, if and

Uien,n Xk . Iiep,n Xn Heep,n Wien,m Xk, iep,n Xe Hiepng X
only if emb, “<™" insy "N f = emb, " 1% * fo and emb, <" 1% i sp ST F = emb, TN

for every k E [1,n]. So as

X

X : X
ins; emkaEl"] f—emka’“E“’"] " H ins**) f = em kaE[ln klnSFkE[ln ‘)
kel,n]
X X
for k € [L,n], I € {0,1}, the condition embukeu" kinsluke[l’"] "f = embul‘el"] " fi is equivalent to
insl embukel”] o= embuke[” "f;. Altogether, we have f: fo 'gLIk e fi if and only if
€ n]
X
insg( embukel”] "f= mbH“l”] " fo and ms{( embuke“”] "= mbH’“e“” "f1 for every k € [1,n],
that is, to emby, f: emby, fo ~ ~x, embyfi for every k € [l,n]. O

(C.3) Corollary. We suppose given a category with cofibrations and weak equivalences C, cofibrant objects X

and Y in C, a cyhnder X of X and a cylinder Y of Y. Given S-2-arrows (fo,uo), (fl,ul) X >Y «+Y,
(fyu): X 3Y «Yin C, we have (f,u): (fo,uo) Xy (f1,uy) if and only if (u) : (fo) Xy (511)

Proof. We have (f,u): (fo,u0) vaXY (f1,u1) if and only if f: fo NX f1 and u: ug vaY up. By remark (C.2),
this is equivalent to () : ({0) <~y (£1). 0

uy
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Cylinders with mid insertion

A cylinder, see definition (3.108), is a structure consisting of an object together with three morphisms, the start
insertion, the end insertion and the cylinder equivalence. Next, we will introduce a variant of this notion where
one has a fourth morphism at hand, the so-called mid insertion.

(C.4) Definition (cylinder with mid insertion). We suppose given a category with cofibrations and weak
equivalences C and an S-2-arrow (f,u): X — Y < Y in C. A cylinder with mid insertion (or cylinder object
with mid insertion) of (f,u) consists of a cylinder Z of (f,u) together with a weak equivalence i95: Y = Z
in C such that ig.5s = 1y, and such that there exists a coproduct C of X, Y, Y such that s |1 C = Zisa

insy
cofibration. By abuse of notation, we denote the cylinder with mid insertion as well as its underlying cylinder
by Z. The morphism ig 5 is called mid insertion (or insertion at 0.5) of Z.
Given a cylinder with mid insertion Z of (f,u) having the mid insertion i 5, we write insg 5 := ig 5.

insg insy
X —Z——Y

~
> iI]So,g,

u

X*>Y<7Y C

Z

N\
Y
@

(C.5) Notation. In the context of cylinders with mid insertion, we use a different notation for the embeddings

into a tertiary coproduct. Given an S-2-arrow (f,u): X — Y <« Y in C, a cylinder with mid insertion Z

of (f,u) and a coproduct C of X, Y., Y, we write emby, = embOC: X — C, embgs = embgsz Y — C,
emb; = emb$: ¥ — C (instead of emb;, emby, embs).

S o=y

(C.6) Remark. We suppose given a category with cofibrations and weak equivalences C, an S-2-arrow

(fu): X =Y « Y in Ceor and a cylinder with mid insertion Z of (f,u). For every coproduct C' of X,
_\C

Y, Y, the induced morphism < inSO(,)S) : C — Z is a cofibration in C.

insy
Proof. This is proven analogously to remark (3.110). O

(C.7) Remark. We suppose given a category with cofibrations and weak equivalences C, an S-2-arrow
(fu): X =Y < Y in Ceor and a cylinder with mid insertion Z of (f,u). Then the start insertion insg is
a cofibration and the mid insertion insy s and the end insertion ins; are acyclic cofibrations in C.

Proof. This follows from corollary (3.27). O
The following remark states that cylinders with mid insertions are closely related to (ordinary) cylinders.

(C.8) Remark. We suppose glven a category with cofibrations and weak equivalences C and an S-2-arrow

(f,u): X =Y + Y in C with X, Y, Y cofibrant. Given a cylinder Z of ({): X 1Y — Y, the underlying

: : . .. Z u
object of Z becomes a cylinder with mld insertion Z;, of (f,u) having insy """ = emby ins{, ins;, <5f ) = ins?,

Z(fu
ins] ") = emb, 1neoz7 sZirw) =g%.

Proof. We have

emby ™ insg sZ = emby ™Y (f) = f,

ins? s% = =1y,

emby ™ insg s = emby ™ (f) = u.
Moreover,

XUY)IY
embg(uy emb[() )

emb{X 11 CXTYIY - (XTY)ITY

XUY)IY
embf{uy embg )
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is an isomorphism in C.of, whence a cofibration. So as

Cﬁ)%XﬂﬂH?%Z
is a cofibration, it follows that

- oz
X1y)uy ( 1ns
~ embé“‘IY embé ) ( i % )
X1y (XUy)uy mns N
emby emby 1 cmbffuy ins?

z
> ins? (XIY)I¥ ins?
emb{ XYY ) = emb) Y = ins?
- insy ins} XY ;2
XY (XUY)IIY oz emby insg
emb7 embyg Xy (xuy)uy [ insg
emb? emb;

inslz
is a cofibration by closedness under composition.
insg
~ (inslz )
(XOY)noy —e—— 7

emb Y elnngHY)HY

nguy)uff 2l

em ) emb X 1Y 07
emb XY o (XYY ins?
emb X 1Y insZ

XYY ——e—"% 7

Altogether, the underlying object of Z becomes a cylinder with mid insertion Z,) of (f,u) having

R AERD) zZ (fiu) Z Z(f.u)

_ . o Zipuy . _ i oZ Zf) — o2
ins, = emby insy, insy 5 = insy, ins; = emb; insy, s?¢w =%, O

Corresponding cylinders

In the following, we construct a cylinder with mid insertion of an S-2-arrow (f,u): X — Y « Y from given
cylinders of X and Y.

(C.9) Definition (corresponding cylinder (with mid insertion)). We suppose given a category with cofibrations
and weak equivalences C.

(a) We suppose given a morphism f: X — Y in C and a cylinder X of X. A cylinder of f corresponding to X
consists of a cylinder Z of f and a cylinder homotopy H : insg ~ x f inslz such that the following holds.

insg

X —o— 7

2 f insg

XL»Z

Q { ins; ZZ%HSI

x -ty

e For every morphism go: X — Y and every weak equivalence g; : Y — Y in C and for every cylinder
homotopy K : go £X fg1 there exists a unique morphism g: Z — Y with g; = inslzg and K = Hg.

e The cylinder equivalence s?: Z — Y is the unique morphism in C with 1y = inslz sZ and sX f=Hs”.

By abuse of notation, we refer to the said cylinder of f corresponding to X as well as to its underlying
cylinder by Z. The cylinder homotopy H is called the universal cylinder homotopy of Z.
Given a cylinder Z of f corresponding to X with universal cylinder homotopy H, we write H = HZ := H.

(b) We suppose given an S-2-arrow (f,u): X — Y « Y in C, a cylinder X of X and a cylinder Y of Y. A
cylinder with mid insertion of (f,u) corresponding to (X,Y) consists of a cylinder with mid insertion Z
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of (f,u) and a cylinder homotopy (Hy, H;): (insg,inslz) i)‘(,Y (finsg5,uinsg5) such that the following
holds.

insg insy

insg

—— / —eo—
2 f insg

—— J —
+ insp + mso.s5
Y

e For all S-2-arrows (go,g1): X — Y < Y and every weak equivalence go 5 : Y — Y in C and for every
cylinder homotopy (Ko, K1): (g0, 91) &Xy (fg0.5,ugo.5) there exists a unique morphism §: Z — Y
with go.5 = ins§ g and (Ko, K1) = (Hog, H1§).

e The cylinder equivalence s?: Z — Y is the unique morphism in C with 1y = insg 587 and
(st, sYu) = (Hos%, Hs%).

ins;

K
1

By abuse of notation, we refer to the said cylinder with mid insertion of (f,u) corresponding to (X,Y) as
well as to its underlying cylinder by Z. The cylinder homotopy (Hy, H) is called the universal cylinder
homotopy of Z.

Given a cylinder Z of (f,u) corresponding to (X , Y) with universal cylinder homotopy (Hy, Hi), we write
Ho = HY := Hy and H; = HY := H;.

(C.10) Remark. We suppose given a category with cofibrations and weak equivalences C.

(a) We suppose given a morphism f: X — Y in C, a cylinder X of X and a cylinder Z of f corresponding
to X. Moreover, we buppose given a morphism go: X — Y and a weak equivalence g;: Y — Y in C and
a cylinder homotopy K : gy ~ x fg1, and we let g: Z — Y be the unique morphism in C with g; = 1ns1 g
and K = Hg. Then we have

. T
go = 1insgy g.

(b) We suppose given an S-2-arrow (f,u): X — Y «+ Y in C, a cylinder X of X, a cylinder Y of Y and a cylin-
der Z of (f,u) corresponding to (X Y) Moreover, we suppose given an S-2-arrow (go,g1): X =Y « Y

and a weak equivalence go5: Y — Y in C and a cylinder homotopy (Ko, K1): (go,91) mCaX_Y (f90.5,ug0.5),

and we let §: Z — Y be the unique morphism in C with go5 = insy ;g and (Ko, K1) = (Hog, H;§). Then
we have

(907 gl) = (insg.@a lnslzg)
Proof.
(a) We have

go = insg K = insy H § = insZg.
(b) We have
(90,91) = (insg Ko, insy K1) = (insg Hog, insg H19) = (ins§ g, insy9). m

(C.11) Remark. We suppose given an S-semisaturated category with cofibrations and weak equivalences C,
an S-2-arrow (f,u): X - Y <Y in C with X, Y, Y cofibrant, a cylinder X of X, a cylinder Y of Y, and a
cylinder Z of ({): XIIY — Y corresponding to X ITY. Then the underlying object of Z becomes a cylinder

Z(fu) _ eranL[Y zZ Z(fu) oL

with mid insertion Z ) of (f,u) corresponding to (X,Y) having ins, insg, insyy ™ = insy,

s Lt Z(fu Z(fu CITY
ins; ) = emby ™Y insZ, sZ0w =7, (Hy "™ H ) = (emby ™Y HZ, mb{(HY H?).
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Proof. By remark (C.8), the underlying object of Z becomes a cylinder with mid insertion Z ) of (f,u)

. Zpa . Z(t,u . . Dt .
having insy ™ = emby ™Y insZ, insg Y™ = ins?, ins; " = emby™Y insZ, s%w = sZ. Moreover, we have

XUY 172 XUY . Z - Z T
Z.: o Z S £\ ineZ . embg H . embg insg c fins? XY 17 -
H?: ins§ ~xpy (/) insy, that is, we have (emb{‘m’ 17 ) Lompiny ine ) ~xy (ine? ) As emby 7" H” is

a weak equivalence by S-semisaturatedness, corollary (C.3) yields

(embg(m/ HZ,embf(HY HZ): (embXHY Z bXHY z)

insg , em insg 7.

~xy (f ins?, wins?
To show that Z(y,) becomes a cylinder with mid insertion of (f,u) corresponding to (X,Y) with universal
cylinder homotopy (HZ(f ) HZ(f'”)) = (embXHY HZ, emby™ H?), we suppose given an S-2-arrow (go,g1):
X =Y « Y, a weak equivalence go5: Y — Y and a cylinder homotopy (Ko, K1): (g0, 91) £X,Y (f90.5,ug0.5)-
By corollary (C.3), we have (?1’) t(90) ~xuy (1922) = ({)gos. By the universal property of HZ, there
exists a unique morphism §: Z — Y with g5 = inslzg and (ﬁ‘f) = HZ §j, that is, with go5 = ins,, (5f “ § and
(Ko, K1) = (emby " HZ g, emby "' HZg).

HZ §% = XY (1)

Finally, as , we have

(emby ™Y HZ sZGw) emb ™Y HZ sZrw) = embXHY HZ s* embXHY HZ s%)

(

(embXHY X1y (f) bXHY X1y (5))
= (

=(s

embXHY( IsY) (1), embXHY( Is¥ )(£))

Xf,s u).
Altogether, the cylinder with mid insertion Z¢, of (f,u) corresponds to (X,Y) having (H(?(f'“),le(f’“’) =
(emby ™ HZ, emb; ™Y H?). O

(C.12) Proposition. We suppose given an S-semisaturated category with cofibrations and weak equivalences C
that fulfils the incision axiom, a morphism f: X — Y in C.or and a cylinder X of X. Then X inslﬂ}( Y becomes

a cylinder of f corresponding to X having

X I¥y oy X IXY
ins, ™7 =insg emby ™t 7,
o X IFY Xine, IFY
ins; " =emb, ™|
. nxy
X ins
SXinsle Y ( Xf) 1=f
1 b
Y

; X X 1IXYy
HXme, IFY emby, "1 ¥

b'e
inso gXuXy

X e X — XYY

X + insy 2 + insy
f

X —Y

o . AXITIXY |
Proof. As insy sX f = f = f 1y, the induced morphism (Slxyf ) : X II*¥ Y — Y is well-defined. Moreover,

we have

XXy
) =S =,

XXy [
insy emby, ( !
Y

. A\NXTTXY
XXy [ x
emb; (blyf) =ly.

. X . Pl X bXHXY .
As X is a cylinder, <ms§(> : XII X — X is a cofibration, whence <1m° er;ﬂ.ﬂ?xy ) XY 5 X1 Yisa
insj emb;

XXy [ % \XIYY < A\XITXY
cofibration by proposition (3.28). Moreover, as 1y = emb] (Slyf ) , the morphism (Slyf ) is a
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. . X . .. XXy . x XXy
weak equivalence by S-semisaturatedness. So XII Y becomes a cylinder of f having ins = insj emby ,
: ; . . A\XTTXY
. X1U¥y XXy x X
ins =emb gXIY — (7 f
1 1 ’ 1y
. X XXy . Xu¥y . X XXy XXy . X¥y
As ins emby = ins and ins;* emby) = femb; = fins;
XXy XXy ¢ XXy X .
emb : insg ~ fins] . To show that X II™ Y becomes a cylinder of f corresponding to X
. . . 11X X1I*y . . S
with universal cylinder homotopy HX""Y = emby , we suppose given a morphism gg: X — Y, a weak

, we have the cylinder homotopy

equivalence g;: Y — Y and a cylinder homotopy K: gy ~ % fg1. Then we in particular have insf( K = fq,
¥ X . _ O p'e % X
fg )XH YoXTYY 5 Vs well-defined, which is the unique morphism with insi(H Y (fg )XH Y
XXy XXy
emb; ( g )

and so (

XUXY [ o\ X1IXY . Xy £ \XITY
= g1 and emby (X) = K. Finally, we have s = (S f) . Thus the

1y
. . . 0 X
cylinder X IT¥ Y of f corresponds to X having XY — embé(H Y O

(C.13) Corollary. We suppose given an S-semisaturated category with cofibrations and weak equivalences C
that fulfils the incision axiom.

(a) For every morphism f: X — Y in Ccor and every cylinder X of X, there exists a cylinder of f corresponding
to X.

(b) For every S-2-arrow (f,u): X — Y < Y in Ceof, every cylinder X of X and every cylinder Y of Y, there
exists a cylinder with mid insertion of (f,u) corresponding to (X,Y).

Proof.
(a) This follows from proposition (C.12).
(b) This follows from (a) and remark (C.11). O

(C.14) Corollary. We suppose given an S-semisaturated category with cofibrations and weak equivalences C
that fulfils the incision axiom. The following conditions are equivalent.

(a) There exists a cylinder of every object in Ceof.

(b) There exists a cylinder of every morphism in Ceef.

(¢) There exists a cylinder of every S-2-arrow in Ceof-

(d) There exists a cylinder with mid insertion of every S-2-arrow in Ccof.

Proof. Condition (a) is a particular case of condition (b), condition (b) is a particular case of condition (c), and
condition (c) is a particular case of condition (d). So it suffices to show that condition (a) implies condition (d).
But if there exists a cylinder of every object in Ceof, then there also exists a cylinder with mid insertion of every
S-2-arrow in Ceof by corollary (C.13)(b). O

(C.15) Corollary. We suppose given a semisaturated category with cofibrations and weak equivalences C that
fulfils the incision axiom and the cofibrancy axiom. Then C is a Brown cofibration category if and only if there
exists a cylinder of every object in C.

Proof. By definition (3.52)(a), the category with cofibrations and weak equivalences C is a Brown cofibration
category if and only if it fulfils the factorisation axiom for cofibrations. If C fulfils the factorisation axiom for
cofibrations, then there exists a cylinder of every object in C by the Brown factorisation lemma (3.113)(a).
Conversely, if there exists a cylinder of every object in C, then there exists a cylinder of every morphism in C,
and so C fulfils the factorisation axiom for cofibrations: Given a morphism f in C and a cylinder Z of f, we
have f = insZ sZ, where insZ is a cofibration by remark (3.111) and s is a weak equivalence. O
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From Brown’s homotopy S-2-arrow calculus to the Z-2-arrow calculus

Finally, we will give an alternative proof for the main part of the Z-2-arrow calculus, namely theorem (3.128)(b).
To this end, we make use of Brown’s homotopy S-2-arrow calculus, which has been proven in the main text as
a consequence of the Z-2-arrow calculus, see theorem (3.132).

More precisely, we use the following form of Brown’s homotopy S-2-arrow calculus, which is slightly weaker than
that of theorem (3.132)(b).

(C.16) Theorem (Brown’s homotopy S-2-arrow calculus [7, dual of th. 1 and proof], cf. theorem (3.132)(b)).
We suppose given a Brown cofibration category C.

(a) We have

Mor HoC = {loc(f)loc(u)™" | (f,u) is an S-2-arrow in C}.
(b) Given S-2-arrows (fo,ug): X — Yy < Y, (fi,u1): X = Y] < Y in C, we have

loc(fo) loc(ug) ™! = loc(f1)loc(ug) ™"

in Ho C if and only if there exist weak equivalences ¢o: Yy — Y, ¢1: Y7 — Y with (foco, uoco) ~ (fici,uicy).

X*>)~/0<7Y

ZZ Cl

X*>Y1<7Y

Proof. This follows from [7, dual of prop. 2] and theorem (2.35). (}) O

(C.17) Remark. We suppose given a category with cofibrations and weak equivalences C, S-2-arrows
(fiu): X =Y <Y, (g,0): X - Y « Y and a weak equivalence c: Y — Y. Moreover, we suppose given

a cylinder X of X and a cylinder Y of Y such that (g,v) ~ vy (fe,uc), and we suppose given a cylinder
with mid insertion Z of (f,u) corresponding to (X,Y). Then there exists a morphism é: Z — Y such that
(g,v) = (insf ¢, ins?¢).

X—»Y’%Y

22 /[ )

X Y y insg _inso L e ins;

‘

X*>Y<7Y X*>Y<7Y

20

c
~

Proof. We let (Ko, K1): (g,v) &X’Y (fe,uc). As Z corresponds to (X,Y), there exists a unique morphism
¢: Z =Y with ¢ = insf s¢ and (Ko, K1) = (Hoé, Hi¢). But then we in particular have (g,v) = (ins? ¢, ins?¢&) by
remark (C.10)(b). O

Alternative proof of theorem (3.128)(b). We suppose that loc(f1)loc(u1)™" = loc(fa2)loc(ug)™" in HoC. By
Brown’s homotopy S-2-arrow calculus (C.16)(b) there exist an S-2-arrow (c1,¢2): Y1 — Y < Y3 in C with weak

1In particular, this proof avoids the Z-2-arrow calculus.
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equivalence ¢; and such that (ficq, ulcl) (faca, uaca).

X—>?1<LY

R Cc2

XL))}Q%Y

20

fs/ e

faca e

>"<:z<

So there exists a cylinder X of X and a cylinder Y of Y such that (fier,urer) QX,Y (faca, uzcs). By corol-

lary (C.13)(b), there exists a cylinder Z; of (f1,u1) corresponding to (X,Y), and so remark (C.17) implies that
there exists a morphism c: Z; — Y such that (faca, uaca) = (1nsg c, 1nle1 c).

pQEELEN P %

~
Qs
insg insq

X e Z e Y

R:c

X face ):;, ui:Q %

Q| c2

X f2 }*/2 U2 Yy

In particular, we have (f1,u1) =s (f2,u2), see definition (2.14)(a), and so theorem (2.60)(c) and the Brown
factorisation lemma (3.113) yield the asserted commutative diagram in C.
The converse implication follows from remark (2.17). O
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