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Introduction

In the 1940s, Eilenberg and MacLane developed a homology theory for groups (see [10], [11] for example).
By definition, the homology of a group G is the (singular) homology of a connected CW-space T , called its
classifying space, whose fundamental group π1(T ) is isomorphic to the given groupG and whose higher homotopy
groups πn(T ) for n ≥ 2 are all trivial. Previously, they and Hurewicz (cf. [14] resp. [18]) had independently
recognised that the homotopy type and hence the homology of such a topological space is uniquely determined
by its fundamental group. In fact, the achievement of Eilenberg and MacLane was their purely algebraic
approach to the homology of groups, circumventing topological spaces. To this end, they implicitly used a
combinatorial model for the topological space in question, namely the classifying simplicial set BG of the
group G. The calculation of its homology leads to the homological algebra description of the homology of G
via a projective resolution.
So groups determine connected homotopy types T with only π1(T ) as non-vanishing homotopy group. The
homology of T is algebraically calculable starting from this group. Later, in 1949, Whitehead introduced
crossed modules (cf. [30]), which determine connected homotopy types T with only π1(T ) and π2(T ) as non-
vanishing homotopy groups (cf. [25]), also known as 2-types. Examples of crossed modules comprise inclusions
of normal subgroups in a group, the inner automorphism homomorphism from a group to its automorphism
group, or any surjection from a central extension of a group to this group.
In this work, we want to calculate the homology of T algebraically. Therefore we can now proceed as follows.
Given a crossed module V corresponding to T , we attach a classifying simplicial set BV to V , combinatorially
modelling T . The homology of BV is given in algebraic terms and calculates the homology of T . In analogy to
the definition of the homology of groups, we may now define the homology of V as the homology of T , or, what
amounts to the same, of BV .
The construction of the classifying simplicial set BV is done in two steps. First, we associate to V a simplicial
group, its coskeleton CoskV . Second, we construct a classifying simplical set BG for a general simplicial
group G. Thereafter we may define BV := B CoskV .
To motivate this construction, firstly, we can mention that to a simplicial group G, we can associate a crossed
module TruncG. If only the first two homotopy groups of G are nontrivial, then there is a weak homotopy
equivalence Cosk TruncG ' G, so that each such simplicial group is modelled by a crossed module via Cosk.
Secondly, simplicial groups model all connected homotopy types via B.
To construct the classifying simplicial set BG of a simplicial group G, there are two possibilities.
First, Kan introduced in [20] the Kan classifying functor W. This functor is the right adjoint and actually,
the homotopy inverse to the Kan loop group functor, which is a combinatorial analogon to the topological loop
space functor. This justifies calling WG a classifying simplicial set of G.
Second, we can invoke bisimplicial sets in the following way. As mentioned in the beginning, we can attach
a classifying simplicial set to a group, which in this context shall be called its nerve. A simplicial group is a
sequence of groups, together with so-called face and degeneracy morphisms between them. So we can apply
this nerve functor to the groups occuring in this sequence. We end up with two simplicial directions, one from
the simplicial group and one from the nerve construction; i.e. we end up with a bisimplicial set B(2)G. Reading
off the diagonal simplicial set of this bisimplicial set, we obtain the second variant for the classifying simplicial
set of G.
The second variant is more common; the first, however, yields smaller objects in a certain sense, which is more
convenient for direct calculations.
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It is well-known that these two variants for the classifying simplicial set of G are indeed homotopy equivalent
after topological realisation (1). Better still, the Kan classifying functor W can be obtained as the composite
of the nerve functor with a so-called total simplicial set functor introduced by Artin and Mazur [1] (2); and
Cegarra and Remedios [7] showed that already the total simplicial set functor and the diagonal functor yield
homotopy equivalent results after topological realisation (3).
Here, we will give an algebraic proof by constructing a simplicial homotopy equivalence between both simplicial
sets. In other words, we show that the triangle in the diagram above commutes up to simplicial homotopy
equivalence. This confirms in an algebraic way that both variants for the classifying simplicial set of G essentially
coincide. As far as the author is aware, so far, this has only been known in a topological way.
The homology of a crossed module V is defined to be the homology of its classifying simplicial set BV . More
generally, to calculate the homology of a simplicial set, one associates a complex to it and takes its homology.
Similarly, we can attach a double complex to a bisimplicial set. To a double complex in turn, we can attach its
total complex. The generalised Eilenberg-Zilber theorem (due to Dold, Puppe and Cartier [9]) states that
the total complex of the double complex associated to a bisimplicial set is homotopy equivalent to the complex
associated to its diagonal simplicial set; i.e. the quadrangle in the middle of the diagram above commutes up
to homotopy equivalence of complexes.
We solve the exercise of constructing an explicit homotopy equivalence to prove Eilenberg-Zilber, adapting the
arguments of Eilenberg and Mac Lane in [12] and [13].
The homology of the total complex of a double complex can be approximated by means of a spectral sequence.
Its starting terms are the horizontally taken homology groups of the vertically taken homology; it converges to
the homology of the total complex. In our case of the classifying bisimplicial set B(2)G of a simplicial group G,
this yields the Jardine spectral sequence [19], whose starting terms involve ordinary group homology, and which
converges to the homology of G. So the second variant of the classifying simplicial set of G enables us to use
a spectral sequence. In particular, taking G = CoskV for a crossed module V , this yields a spectral sequence
converging to the homology of V .
To obtain results in cohomology instead of homology, we have to apply the duality functor Z(−,Z) to the
associated complex resp. to the associated double complex in the procedure described above.
Finally, we show by an example that the Jardine spectral sequence does not degenerate in the case of crossed
modules.
In Ellis’ approach to the (co)homology of crossed modules via quadratic modules, he develops a (co)homology
theory for crossed modules that yields the (co)homology groups of its classifying space in dimensions less or
equal than 4 [15]. Moreover, Carrasco, Cegarra and Grandjéan in [6] develop still another (co)homology
theory of crossed modules, and Grandjean, Ladra and Pirashvili established a long exact sequence relating
this homology theory with the homology of crossed modules via classifying sets as considered here. Moreover,
this alternative (co)homology theory was extended by Paoli in [27] to the case, where the coefficients are in a
π1-module. These alternative (co)homology theories will not be dealt with here.

1Addendum (December 19, 2011): The fact that WG and DiagNG are weakly homotopy equivalent has been shown by Zis-
man [31, sec. 3.3.4, cf. sec. 1.3.3, rem. 1]. He shows that a morphism DiagNG → WG, which is essentially the same as the
morphism DG we consider in chapter IV, §5, induces an isomorphism on the fundamental groups as well as isomorphisms on the
homology groups of their universal coverings.

2This is not the total simplicial set as used by Bousfield and Friedlander [2, appendix B, p. 118].
3Addendum (December 19, 2011): To this end, Cegarra and Remedios consider a morphism DiagX → TotX, which is

essentially the same as the morphism φX we consider in proposition (3.15).
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Conventions and notations

We use the following conventions and notations.

• The composite of morphisms X f−→ Y and Y g−→ Z is denoted by X fg−→ Z. The composite of functors
C F−→ D and D G−→ E is denoted by C G◦F−−−→ E .

• Isomorphy of objects X and Y in any category is denoted by X ∼= Y .

• If C is a category and X,Y ∈ Ob C are objects in C, we write C(X,Y ) = MorC(X,Y ) for the set of
morphisms between X and Y . In particular, we write Cat(C,D) for the set of functors between (small)
categories C and D. To distinguish this notation from the functor category of functors between C and D
as objects and natural transformations between functors as morphisms, we write (((C,D))) in the latter case.

• We suppose given categories C and D. A functor C F−→ D is said to be an isofunctor if there exists a
functor D G−→ C such that G◦F = idC and F ◦G = idD. The categories C and D are said to be isomorphic,
written C ∼= D, if an isofunctor C F−→ D exists.

A functor C F−→ D is said to be an (category) equivalence if there exists a functor D G−→ C such that
G ◦ F ∼= idC and F ◦ G ∼= idD. The categories C and D are said to be equivalent, written C ' D, if a
category equivalence C F−→ D exists.

• Given a functor I X−→ C, we sometimes denote the image of a morphism i
θ−→ j in I by Xi

Xθ−−→ Xj . This
applies in particular if I = ∆op or I = ∆op ×∆op.

• In certain standard categories like Set, Grp, Top, etc., we also use the common notation for the set of
morphisms between two objects, for example, we write Map(X,Y ) for the set of maps between sets X
and Y , we write Hom(G,H) for the set of group homomorphisms between groups G and H, and we write
C(T,U) for the set of continuous maps between topological spaces T and U .

• The category associated to a poset P is denoted by Cat(P ). Similarly, given a group G, we write Cat(G)
for the associated category with one object.

• Products of objects X1 and X2 in arbitrary categories are denoted as X1 Π X2. Pullbacks of morphisms
X1 −→ Y , X2 −→ Y are denoted as X1 ϕ1

Πϕ2
X2 = X1 ϕ1

ΠYϕ2
X2. The diagonal morphism is written

X
∆−→ X Π X.

• Given an index set I and a family of groups (Gi)i∈I , we denote the direct product by×i∈I Gi. Similarly
for morphisms.

• Projections are denoted as pr, embeddings as emb.

• A subobject B of an object A in an abelian category is denoted as B � A.

• Given an additive category A, the additive category of complexes resp. double complexes in A is denoted
by C(A) resp. C2(A). The full subcategory of C2(A) with objects C such that Cp,q ∼= 0 for p < 0 or
q < 0 is denoted by C2

q(A)

• If we have a complex C in an additive category A such that Cn ∼= 0 for n < 0, we usually omit to
denote these zero objects. Similarly for morphisms, complex homotopies, etc. and for the dual situation
if Cn = C−n ∼= 0 for n < 0.

ix



x CONVENTIONS AND NOTATIONS

• In any complex C with differentials ∂, we write ZnC := Ker(Cn
∂−→ Cn−1) and BnC := Im(Cn+1

∂−→ Cn).

• Homotopy equivalence of complexes C and D in an additive category A is denoted by C ' D.

• We use the notations N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

• The Kronecker delta is defined by

δx,y =

{
1 for x = y,

0 for x 6= y,

where x and y are elements of some set.

• Given a map f : X → Y and subsets X ′ ⊆ X, Y ′ ⊆ Y with X ′f ⊆ Y ′, we let f |Y ′X′ the map X ′ → Y ′, x′ 7→
x′f . In the special cases, where Y ′ = Y resp. X ′ = X, we also write f |X′ := f |YX′ resp. f |Y

′
:= f |Y ′X .

• Given integers a, b, c ∈ Z, we write [a, b] := {z ∈ Z | a ≤ z ≤ b} for the set of integers lying between a and
b. Furthermore, we write [a, b] ∧ c := [a, b] \ {c} to omit elements in the interval.

Sometimes, we need some specified orientation, then we write da, be := (z ∈ Z | a ≤ z ≤ b) for the
ascending interval and ba, bc = (z ∈ Z | a ≥ z ≥ b) for the descending interval. Likewise da, be ∧ c, etc.
Whereas we formally deal with tuples, we use the element notation, for example we write∏

i∈d1,3e

gi = g1g2g3 and
∏

i∈b3,1c

gi = g3g2g1

or

(gi)i∈b3,1c = (g3, g2, g1)

for group elements g1, g2, g3.

• If we have tuples (xj)j∈A and (xj)j∈B with disjoint index sets A and B, then we write (xj)j∈A ∪ (xj)j∈B
for their concatenation.

• A composite of zero morphisms is stipulated to be an identity. For instance, f1 . . . fk = id if k = 0.



Chapter I

Simplicial objects

In this chapter, we recall the standard facts about simplicial sets or, more generally, simplicial objects in an
arbitrary category. For further information, the reader is referred for example to [17], [23], [26], [29, §8].

§1 The category of simplex types

Before we can introduce simplicial sets, we have to study the following category.

(1.1) Definition (category of simplex types).

(a) For n ∈ N0 we let [n] := Cat([0, n]) be the category with objects [0, n] and exactly one morphism i −→ j
for i, j ∈ [0, n] if and only if i ≤ j.

(b) The full subcategory ∆ in Cat with objects Ob ∆ := {[n] | n ∈ N0} is called the category of simplex
types.

Hence, if we disregard the category aspect of an object [n], the category ∆ consists of linearly ordered sets [n]
as objects and monotonically increasing maps as morphisms.

(1.2) Example (embedding of ∆ in Top). For every n ∈ N0 we define the topological standard n-simplex |∆n|
to be

|∆n| :=
{

(x0, . . . , xn) ∈ Rn+1

∣∣∣∣ ∑
j∈[0,n]

xj = 1 and xj ≥ 0 for all j ∈ [0, n]

}
,

equipped with the relative topology. We consider for any morphism [m]
θ−→ [n] the induced map θ∗ : |∆m| →

|∆n| defined by

(xi)i∈[0,m]θ∗ := (
∑

i∈[0,m]
iθ=j

xi)j∈[0,n] for all x = (xi)i∈[0,m] ∈ |∆m|.

Since |∆m| and |∆n| carry the relative topologies of Rm+1 resp. Rn+1, the map θ∗ is continuous. If we have
morphisms [m]

θ−→ [n] and [n]
ρ−→ [p] in ∆, this yields

(xi)i∈[0,m]θ∗ρ∗ = (
∑

i∈[0,m]
iθ=j

xi)j∈[0,n] ρ∗ = (
∑
j∈[0,n]
jρ=k

∑
i∈[0,m]
iθ=j

xi)k∈[0,p] = (
∑

i∈[0,m]
i(θρ)=k

xi)k∈[0,p] = (xi)i∈[0,m](θρ)∗

and

(xi)i∈[0,m](id[m])∗ = (
∑

i∈[0,m]
iid[m]=j

xi)j∈[0,m] = (xj)j∈[0,m] = (xi)i∈[0,m]id|∆m|

1



2 CHAPTER I. SIMPLICIAL OBJECTS

for all (xi)i∈[0,m] ∈ |∆m|. Hence

∆
|∆−|−−−→ Top, ([m]

θ−→ [n]) 7→ (|∆m| θ∗−→ |∆n|)

is well defined as a functor from the category of simplex types ∆ to the category Top of topological spaces.
In order to prove that |∆−| is faithful, we let [m]

θ−→ [n] be an arbitrary morphism in ∆. Further we let
{ei | i ∈ [0,m]} resp. {ej | j ∈ [0, n]} denote the standard basis of Rm+1 resp. Rn+1. Then we get

eiθ∗ = (
∑

i′∈[0,m]
i′θ=j

(ei)i′)j∈[0,n] = (
∑

i′∈[0,m]
i′θ=j

δi,i′)j∈[0,n] = (δiθ,j)j∈[0,n] = eiθ

for every i ∈ [0,m]. Thus if we have morphisms [m]
θ−→ [n] and [m]

ρ−→ [n] in ∆ with θ∗ = ρ∗, then in particular
we have eiθ = eiθ∗ = eiρ∗ = eiρ and therefore iθ = iρ for all i ∈ [0,m]. Hence θ = ρ, and consequently |∆−| is
a faithful functor.

We aim to distinguish generators for ∆, which we will define now.

(1.3) Definition (cofaces and codegeneracies).

(a) For n ∈ N, k ∈ [0, n], the morphism [n− 1]
δk−→ [n] defined by

iδk :=

{
i for i ∈ [0, k − 1],

i+ 1 for i ∈ [k, n− 1]

is called the k-th coface of [n].

(b) For n ∈ N0, k ∈ [0, n], the morphism [n+ 1]
σk−→ [n] defined by

iσk :=

{
i for i ∈ [0, k],

i− 1 for i ∈ [k + 1, n+ 1]

is called the k-th codegeneracy of [n].

(1.4) Proposition (cosimplicial identities). We let n ∈ N be a natural number. For the cofaces and codegen-
eracies the following identities hold:

δkδl = δl−1δk for 0 ≤ k < l ≤ n+ 1 as morphisms [n− 1] −→ [n+ 1],

σkσl = σl+1σk for 0 ≤ k ≤ l ≤ n− 1 as morphisms [n+ 1] −→ [n− 1],

δkσl =


σl−1δk for k < l,

id[n−1] for l ≤ k ≤ l + 1,

σlδk−1 for k > l + 1

 as morphisms [n− 1] −→ [n− 1], where k ∈ [0, n], l ∈ [0, n− 1].

Proof.

(a) If k < l, then

iδkδl =

{
iδl for i ∈ [0, k − 1],

(i+ 1)δl for i ∈ [k, n− 1]

}
=


i for i ∈ [0, k − 1],

i+ 1 for i ∈ [k, l − 2],

i+ 2 for i ∈ [l − 1, n− 1]


=

{
iδk for i ∈ [0, l − 2],

(i+ 1)δk for i ∈ [l − 1, n− 1]

}
= iδl−1δk

for all i ∈ [0, n− 1].
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(b) For k ≤ l we calculate

iσkσl =

{
iσl for i ∈ [0, k],

(i− 1)σl for i ∈ [k + 1, n+ 1]

}
=


i for i ∈ [0, k],

i− 1 for i ∈ [k + 1, l + 1],

i− 2 for i ∈ [l + 2, n+ 1]


=

{
iσk for i ∈ [0, l + 1],

(i− 1)σk for i ∈ [l + 2, n+ 1]

}
= iσl+1σk

for every i ∈ [0, n+ 1].

(c) Furthermore:

iδkσl =

{
iσl for i ∈ [0, k − 1],

(i+ 1)σl for i ∈ [k, n− 1]

}
=



i for i ∈ [0, k − 1], k ≤ l + 1,

i+ 1 for i ∈ [k, l − 1], k ≤ l + 1,

i for i ∈ [l, n− 1], k ≤ l + 1,

i for i ∈ [0, l], k > l + 1,

i− 1 for i ∈ [l + 1, k − 1], k > l + 1,

i for i ∈ [k, n− 1], k > l + 1



=



iδk for i ∈ [0, l − 1], k < l,

(i− 1)δk for i ∈ [l, n− 1], k < l,

i for l ≤ k ≤ l + 1,

iδk−1 for i ∈ [0, l], k > l + 1,

(i− 1)δk−1 for i ∈ [l + 1, n− 1], k > l + 1


=


iσl−1δk for k < l,

i for l ≤ k ≤ l + 1,

iσlδk−1 for k > l + 1.

Our next aim is to show that, in some sense, the cofaces and codegeneracies generate the category of simplex
types ∆ and that the cosimplicial identities of the preceding proposition yield a set of relations defining ∆.

(1.5) Notation. Given m,n ∈ N0 and 0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu ≤ n for some t, u ∈ N0,
we write

σmbt,1c := σmt · · ·σm1 as morphism [m] −→ [m− t]

and

δnd1,ue := δn1 · · · δnu as morphism [n− u] −→ [n].

(1.6) Remark. We let [m]
θ−→ [n] in ∆ be defined by

θ := σmbt,1cδnd1,ue ,

where 0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu ≤ n, and where t, u ∈ N0 such that m − t = n − u.
Furthermore, we let k ∈ [0, t] and l ∈ [0, u] be the unique elements such that i ∈ [mk + 1,mk+1] and iθ ∈
[nl, nl+1 − 1], where m0 := −1, mt+1 := m, n0 := 0 and nu+1 := n+ 1. Then we have

iθ = i− k + l for every i ∈ [0,m].

Proof. By induction on t, the case t = 0 being trivial, we have

iσmbt,1c =

{
iσmbt−1,1c for i ∈ [0,mt], i.e. k ∈ [0, t− 1],

(i− 1)σmbt−1,1c for i ∈ [mt + 1,m], i.e. k = t

}

=

{
i− k for k ∈ [0, t− 1],

(i− 1)− (t− 1) for k = t

}
= i− k
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for all i ∈ [0,m] with i ∈ [mk+1,mk+1], k ∈ [0, t]. Furthermore, by induction on u, the case u = 0 being trivial,
we have

iσmbt,1cδnd1,ue =

{
iσmbt,1cδnd1,u−1e for iσmbt,1cδnd1,u−1e ∈ [0, nu − 1], i.e. l ∈ [0, u− 1],

iσmbt,1cδnd1,u−1e + 1 for iσmbt,1cδnd1,u−1e ∈ [nu, n− 1], i.e. l = u

}

=

{
iσmbt,1c + l for l ∈ [0, u− 1],

iσmbt,1c + (u− 1) + 1 for l = u

}
= iσmbt,1c + l

for all i ∈ [0,m]. Finally, we get iθ = iσmbt,1cδnd1,ue = (i− k) + l.

(1.7) Theorem. Every morphism [m]
θ−→ [n] in ∆ can uniquely be written as

θ = σmbt,1cδnd1,ue ,

where 0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu ≤ n, and where t, u ∈ N0.

Proof. We begin by showing the existence of a factorisation. We let m1 < · · · < mt be the elements of [0,m]
such that mkθ = (mk + 1)θ for every k ∈ [1, t] and we let n1 < · · · < nu be the elements of [0, n], that do not
lie in [0,m]θ. Setting p := m− t = n− u as well as σ := σmbt,1c and δ := δnd1,ue , we have to show that we get
the factorisation θ = σδ.

[m]
θ //

σ
  

[n]

[p]

δ

??

Thereto we proceed by induction on i ∈ [0,m].
If i = 0 and l := 0θ ∈ [0, n], then, due to the monotony of θ, we have [0, l − 1] ∩ [0,m]θ = ∅. Since i ∈ [0,m1],
remark (1.6) yields 0σδ = 0− 0 + l = l = 0θ.
If i ∈ [1,m], we choose k ∈ [0, t] and l ∈ [0, u] such that i ∈ [mk+1,mk+1] and iθ ∈ [nl, nl+1−1]. We distinguish
the following two cases: If iθ = (i− 1)θ, then by the choice of m1, . . . ,mt we get i− 1 = mk ∈ [mk−1 + 1,mk].
Using the induction hypothesis and remark (1.6), this yields

iθ = (i− 1)θ = (i− 1)σδ = ((i− 1)− (k − 1))δ = (i− k)δ = iσδ.

Otherwise, iθ > (i− 1)θ and i− 1 ∈ [mk + 1,mk+1]. We let l′ ∈ [0, u] be such that (i− 1)θ ∈ [nl′ , nl′+1 − 1]. If
l′ = l, then, by the induction hypothesis and remark (1.6),

iθ = (i− 1)θ + 1 = (i− 1)σδ + 1 = ((i− 1)− k + l) + 1 = i− k + l = iσδ.

If l′ < l, we must have (i− 1)θ = nl′+1− 1 and iθ = nl + 1. Further we have nl−nl′+1 = l− (l′+ 1) = l− l′− 1
since [nl′+1, nl] ⊆ [0, n] \ ([0,m]θ). By induction hypothesis and remark (1.6), we obtain

iθ = (i− 1)θ + (iθ − (i− 1)θ) = (i− 1)σδ + ((nl + 1)− (nl′+1 − 1))

= ((i− 1)− k + l′) + (nl − nl′+1 + 2) = i− 1− k + l′ + l − l′ − 1 + 2 = i− k + l = iσδ.

Thus we have θ = σδ.
Now, we show the uniqueness of the factorisation. We suppose θ = σδ with σ = σmbt,1c and δ = δnd1,ue , where
0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu ≤ n with t, u ∈ N0.
We claim that m1, . . . ,mt consists of exactly those elements i ∈ [0,m] with iθ = (i + 1)θ. To this end, we let
k ∈ [1, t] be such that i ∈ [mk−1 + 1,mk]. Then the injectivity of δ yields the equivalence of (i + 1)θ = iθ
and (i + 1)σ = iσ. But, by remark (1.6), this is equivalent to (i + 1)σ = i − (k − 1) = (i + 1) − k, that is, to
i + 1 ∈ [mk + 1,mk+1]. Since i ∈ [mk−1 + 1,mk], saying i + 1 ∈ [mk + 1,mk+1] is the same as saying i = mk.
This proves the claim.
Further, surjectivity of σ and δ = δn1 · · · δnu show that [0, n]\([0,m]θ) = {n1, . . . , nu}. Therefore, the morphism
θ determines the numbers m1, . . . ,mt and n1, . . . , nu. This shows the uniqueness of the representation.
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§2 Simplicial objects in arbitrary categories

(1.8) Definition (simplicial objects and their morphisms).

(a) We let C be an arbitrary category. The category of simplicial objects in C is defined to be the functor
category

sC := (((∆op, C))).

An object in sC is called a simplicial object in C, a morphism in sC is called morphism of simplicial objects
in C or a simplicial morphism in C.

(i) A simplicial object in Set is called a simplicial set, a morphism is called a simplicial map.

(ii) A simplicial object in Grp is called a simplicial group, a morphism is called a simplicial group
homomorphism.

(iii) A simplicial object in AbGrp is called a simplicial abelian group, a morphism is called a simplicial
homomorphism of abelian groups.

(iv) We let R be a ring. A simplicial object in R-Mod is called a simplicial R-module, a morphism is
called a simplicial R-module homomorphism.

(v) A simplicial object in Top is called a simplicial topological space, a morphism is called a simplicial
continuous map.

(b) Dually, we define for every category C the category of cosimplicial objects in C by

csC := (((∆, C))).

(1.9) Example (constant simplicial object). We let C be a category and X ∈ Ob C an object in C. Then the
constant functor

∆op ConstX−−−−−→ C

with (ConstX)[n] = X for n ∈ N0 and (ConstX)θ = idX for θ ∈ Mor ∆ is a simplicial object in C, the constant
simplicial object.
This yields a functor C Const−−−−→ sC by letting (Const f)[n] := f for n ∈ N0, f ∈ C(X,Y ), X,Y ∈ Ob C.

(1.10) Example (singular simplicial set).

(a) We let n ∈ N be a natural number. Concerning example (1.2), the topological standard simplex functor
|∆−| is a (covariant) functor ∆ −→ Top, that is, a cosimplicial topological space.

(b) For an arbitrary topological space T , we let ∆op ST−−→ Set be the contravariant functor given by

ST := C(|∆−|, T ).

This is a simplicial set, which is called the singular simplicial set to the topological space T . In fact, we
have a functor

Top
S−→ sSet

given by S(=) = C(|∆−|,=).

(1.11) Example. For any commutative ring R we let Set
R−−−→ R-Mod be the functor that assigns to every

set M the free R-left-module RM on the set M and to every map f : M → N for sets M and N the R-module
homomorphism Rf : RM → RN , which is defined by the operation of f on the basis M . Since sSet and
sR-Mod are functor categories, this functor R− lifts to a functor sSet

R−−−→ sR-Mod. If we have an arbitrary
simplicial set X, then RX is per definitionem the simplicial R-module with (RX)[n] = RX[n], that is, the set
of n-simplices (RX)[n] of RX is a free R-module on the set X[n].



6 CHAPTER I. SIMPLICIAL OBJECTS

(1.12) Definition (faces and degeneracies). For a simplicial object X in a category C, we define morphisms

X[n]
dk−→ X[n−1]

by dk := dXk := Xδk for k ∈ [0, n], n ∈ N, called faces, and morphisms

X[n]
sk−→ X[n+1]

by sk := sXk := Xσk for k ∈ [0, n], n ∈ N0, called degeneracies.

(1.13) Notation. We letX be a simplicial object in a category C. Givenm,n ∈ N0 and 0 ≤ m1 < · · · < mt < m
and 0 ≤ n1 < · · · < nu ≤ n for some t, u ∈ N0, we write

smd1,te := sm1
· · · smt as morphism X[m−t] −→ X[m]

and

dnbu,1c := dnu · · · dn1
as morphism X[n] −→ X[n−u].

Furthermore, we use the interval notations

sdk−t+1,ke := sk−t+1 · · · sk as morphism Xm−t −→ Xm

and

dbl,l−u+1c = dl · · · dl−u+1 as morphisms Xn −→ Xn−u

for k ∈ [t− 1,m− 1], l ∈ [u− 1, n], t ∈ [0,m− 1], u ∈ [0, n].

(1.14) Proposition (simplicial identities). We let X be a simplicial object in a category C. The faces and
degeneracies satisfy the following identities:

dldk = dkdl−1 for 0 ≤ k < l ≤ n+ 1 as morphisms X[n+1] −→ X[n−1],

slsk = sksl+1 for 0 ≤ k ≤ l ≤ n as morphisms X[n+1] −→ X[n−1],

sldk =


dksl−1, for k < l,

idX[n−1]
, for l ≤ k ≤ l + 1,

dk−1sl, for k > l + 1

 as morphisms X[n−1] −→ X[n−1], where k ∈ [0, n], l ∈ [0, n− 1].

In particular, every face is a retraction and every degeneracy is a coretraction.

Proof. The required identities result from proposition (1.4).

The identities in the previous proposition are even characterising a simplicial object, as we will see now.

(1.15) Theorem (classical definition of a simplicial object). We let (Xn)n∈N0
be a sequence of objects in a

category C and we suppose given morphisms

Xn
dk−→ Xn−1 for k ∈ [0, n], n ∈ N,

and

Xn
sk−→ Xn+1 für k ∈ [0, n], n ∈ N0,

which satisfy the simplicial identities

dldk = dkdl−1 for 0 ≤ k < l ≤ n+ 1 as morphisms X[n+1] −→ X[n−1],

slsk = sksl+1 for 0 ≤ k ≤ l ≤ n as morphisms X[n+1] −→ X[n−1],

sldk =


dksl−1, for k < l,

idX[n−1]
, for l ≤ k ≤ l + 1,

dk−1sl, for k > l + 1

 as morphisms X[n−1] −→ X[n−1], where k ∈ [0, n], l ∈ [0, n− 1].

Then there exists a simplicial object X in C with X[n] = Xn for all n ∈ N0 and dXk = dk for k ∈ [0, n], n ∈ N,
as well as sXk = sk for k ∈ [0, n], n ∈ N0.
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Proof. We define X on the objects of ∆ by X[n] := Xn for n ∈ N0. On the morphisms in the category of

simplex types ∆, we define X as follows: Given a morphism [m]
θ−→ [n] in ∆, then according to theorem

(1.7), there is a unique representation of θ as a composite of codegeneracies and cofaces, θ = σmbt,1cδnd1,ue with
0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu ≤ n. We let Xθ := dnbu,1csmd1,te := dnu · · · dn1

sm1
· · · smt . In

particular, we have Xδk = dk for k ∈ [0, n], n ∈ N, and Xσk = sk for k ∈ [0, n], n ∈ N0. Since the morphisms
dk for k ∈ [0, n], n ∈ N, and sk for k ∈ [0, n], n ∈ N0, satisfy the simplicial identities, while the corresponding
cofaces and codegeneracies in ∆ satisfy the cosimplicial identities, X is compatible with the composition of
morphisms and therefore a well defined functor

∆op X−→ C,

that is, a simplicial object in C.

(1.16) Proposition (classical definition of a simplicial morphism). We let X and Y be simplicial objects in
a category C and we suppose given morphisms Xn

fn−→ Yn for n ∈ N0. If these morphisms commute with the
faces and degeneracies of X and Y , that is, if

fndk = dkfn−1 for k ∈ [0, n], n ∈ N,

and

fnsk = skfn+1 for k ∈ [0, n], n ∈ N0,

then there exists a simplicial morphism X
f−→ Y with f[n] = fn for all n ∈ N0.

Proof. Follows from theorem (1.7).

At the end of this section, we want to fix some notions.

(1.17) Definition (n-simplices). We let X, Y be simplicial objects in a category C and X f−→ Y a simplicial
morphism. We set Xn := X[n] and fn := f[n] for all n ∈ N0. If Xn is a set or has a set as underlying structure,
then the elements of Xn are called n-simplices. The 0-simplices are also called vertices and the 1-simplices are
also called edges of X. The n-simplices of the form xn−1sk for xn−1 ∈ Xn−1, k ∈ [0, n− 1], n ∈ N, are said to
be degenerate.

(1.18) Definition (reduced simplicial set). A simplicial set X is called reduced, if it has exactly one vertex,
i.e. if |X0| = 1. The full subcategory of reduced simplicial sets in sSet is denoted by sSet0.

(1.19) Definition (cartesian product of simplicial sets).

(a) Given simplicial sets X, Y , we define their (cartesian) product X × Y by (X × Y )n := Xn × Yn for all
n ∈ N0 and (X × Y )θ := Xθ × Yθ for all morphisms [m]

θ−→ [n] in the category of simplex types ∆.

(b) Given simplicial setsX, Y , X ′, Y ′ and simplicial mapsX f−→ X ′, Y g−→ Y ′, the simplicial mapX×Y f×g−−−→
X ′ × Y ′ is defined by (f × g)n := fn × gn for every n ∈ N0.

§3 The standard n-simplex
We consider a standard example of a family of simplicial sets which will be needed later.

(1.20) Definition (standard n-simplex). We let n ∈ N0 be a non-negative integer. The standard n-simplex
∆n in the category sSet is defined by

∆n := ∆(•, [n]),

that is, ∆n is the functor ∆op −→ Set represented by [n]. For the set of m-simplices of ∆n, we write
∆n
m := (∆n)m = ∆([m], [n]).

(1.21) Lemma. The standard n-simplices ∆n with n ∈ N0 form a cosimplicial object ∆− in the category of
simplicial sets sSet, that is, ∆− ∈ Ob cs(sSet).
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Proof. The homfunctor ∆(•,−) = ∆− is a functor with two arguments, contravariant in the first argument and
covariant in the second one.

(1.22) Lemma. We let X be a simplicial set and n ∈ N0. Then we have a bijective correspondence between
the n-simplices in X and the simplicial maps ∆n −→ X. It is given by

Xn → sSet(∆
n, X), xn 7→ (θ 7→ xnXθ for every θ ∈ ∆n

m)

with inverse

sSet(∆
n, X)→ Xn, f 7→ (id[n])fn.

Proof. This is a consequence from the Yoneda lemma.

The next corollary justifies the name category of simplex types for the category ∆.

(1.23) Corollary. For all non-negative integers m,n ∈ N0, we have

sSet(∆
m,∆n) ∼= ∆([m], [n]).

Proof. Lemma (1.22) implies sSet(∆
m,∆n) ∼= ∆n

m = ∆([m], [n]) for all m,n ∈ N0.

§4 The nerve
In this section, we study an example of a simplicial set, which is going to be the most important one for our
purposes - the nerve NC of a given category C. Intuitively explained, the nerve NC of a given category C has
the objects of C as vertices, while the morphisms are the edges. Furthermore, the 2-simplices are exactly the
pairs of composable morphisms, the 3-simplices are the triples, and so on. The kth face is given by "deleting"
the object number k, that is, the two morphisms that end resp. start with this object are composed, and the
kth degeneracy inserts an identity morphism for the object number k.
Since any group can be regarded as a category with a single object, we also obtain a nerve functor for groups.
We need the notion of a nerve for a category object and a group object in an arbitrary category (under certain
technical conditions).
Throughout this section, we assume given a category C, in which pullbacks and a terminal object exist. A
terminal object in C is denoted by T and the unique morphism from an object X ∈ Ob C is written as X ∗−→ T .

Examples of algebraic structures within arbitrary categories
An introduction to category objects and group objects can be found in [16].

(1.24) Definition (category objects and functors).

(a) A category object (or internal category) in C consists of objects O,M ∈ Ob C and morphisms M s−→ O,
M

t−→ O, O e−→ M and M tΠsM
c−→ M , where M tΠsM is a pullback of the morphisms t and s, such

that the following four diagrams commute.

(STC) Source and target of the composition morphism:

M

t

��

M tΠsM
pr2oo pr1 //

c

��

M

s

��
O M

too s // O

(STI) Source and target of the identity morphism:

O O
idOoo idO //

e

��

O

M

t

``

s

>>
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(AC) Associativity of the composition morphism:

M tΠsM tΠsM
c
t
ΠsidM //

idMt
Πsc

��

M tΠsM

c

��
M tΠsM

c // M

(CI) Composition of the identity morphism:

O idO
ΠsM

eΠidM //

pr2 ((

M tΠsM

c

��

M tΠidO
O

idMΠe
oo

pr1vv
M

We call O the object of objects and M the object of morphisms in the category object, the morphisms
s, t, e and c are called source (morphism), target (morphism), identity (morphism) and composition
(morphism), respectively.

Given a category object C in C with object of objects O, object of morphisms M , source s, target t,
identity e and composition c, we write ObC := O, MorC := M , s := sC := s, t := tC := t, e := eC := e
and c := cC := c.

(b) We let C, D be category objects in C. A functor from C to D in C consists of two morphisms ObC
o−→

ObD and MorC
m−→ MorD, that are compatible with the categorical structure morphisms, that is,

sCo = msD, tCo = mtD, eCm = oeD and cCm = (mΠm)cD.

We call o the morphism on the objects and m the morphism on the morphisms of the functor.

Given a functor f from C toD consisting of a morphism on the objects o and a morphism on the morphisms
m, we write Ob f := o, Mor f := m and C f−→ D.

Composition of functors is defined by the composition on the objects and on the morphisms.

(c) The category of category objects in C, where the objects are the category objects in C and the morphisms
are the functors in C, is denoted by Cat(C).

(1.25) Example (category objects in Set). A category object in Set is just an arbitrary (small) category.

(1.26) Definition (group objects and group homomorphisms).

(a) A group (object) in C consists of an object G in C and morphisms G Π G
m−→ G, T n−→ G and G i−→ G,

such that the following diagrams commute.

(AM) Associativity of the multiplication:

G Π G Π G
idG Π m //

m Π idG

��

G Π G

m

��
G Π G

m // G

(MN) Multiplication with identity:

T Π G
n Π idG //

pr2
((

G Π G

m

��

G Π T
idG Π noo

pr1
vv

G
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(MI) Multiplication with inverse:

G
( i idG ) //

∗
��

G Π G

m

��
T

n // G

G
( idG i ) //

∗

OO

G Π G

m

OO

We callm, n and i themultiplication (operation), identity or neutral (operation) and inversion (operation),
respectively.

Given a group objectG in C with multiplicationm, identity n and inversion i, then we write m := mG := m,
n := nG := n and i := iG := i.

(b) We let G, H be group objects in C. A group homomorphism from G to H in C is a morphism G
ϕ−→ H,

that is compatible with multiplication, neutral operation and inversion, that is

mGϕ = (ϕ Π ϕ)mH ,nGϕ = nH and iGϕ = ϕ iH .

Composition of group homomorphisms in C is given just by the ordinary composition in C.

(c) The category of group objects in C, where the objects are the group objects in C and the morphisms are
the group homomorphisms in C, is denoted by Grp(C).

(1.27) Example (group objects in Set, Top and sSet).

(a) The group objects in Set are just ordinary groups.

(b) In the category of topological spaces Top, the group objects are the topological groups. These are
topological spaces whose underlying sets are endowed with a group structure such that the multiplication
map and the inversion map are continuous.

(c) The group objects in the category of simplicial sets sSet are the simplicial objects in Grp and hence
simplicial groups (more precisely, there is an equivalence Grp(sSet) −→ sGrp).

(1.28) Lemma.

(a) We suppose given a group object G in C. Then C(X,G) is a group for every X ∈ Ob C with mC(X,G) =

C(X,m
G), nC(X,G) = C(X,n

G) and iC(X,G) = C(X, i
G).

(b) We suppose given a group homomorphism G
ϕ−→ H in C, where G,H ∈ Ob Grp(C). Then C(X,ϕ) is a

group homomorphism for every X ∈ Ob C.

Proof. Follows from definition (1.26) and the fact that the hom functor C(X,−) commutes with products.

As an application, we show by an example how results ordinary group theory (proven by calculations with
elements) can be used to obtain results for category objects in C.

(1.29) Proposition. We suppose given group objects G and H in C and a morphism G
ϕ−→ H. Then ϕ is a

group homomorphism in C if and only if mGϕ = (ϕ Π ϕ)mH .

Proof. If ϕ is a group homomorphism in C, then in particular mGϕ = (ϕ Π ϕ)mH .
So let us conversely assume that ϕ is a morphism with mGϕ = (ϕ Π ϕ)mH . Then we have

mC(X,G)
C(X,ϕ) = C(X,m

G)C(X,ϕ) = C(X,m
Gϕ) = C(X, (ϕ Π ϕ)mH) = C(X,ϕ Π ϕ)C(X,m

H)

= (C(X,ϕ)× C(X,ϕ))mC(X,H)
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for every X ∈ Ob C. Hence C(X,ϕ) is a semigroup homomorphism and thus, by ordinary group theory, already
a group homomorphism, that is, we have nC(X,G)

C(X,ϕ) = nC(X,H) and iC(X,G)
C(X,ϕ) = C(X,ϕ)iC(X,H) for

every X ∈ Ob C. In particular, we obtain

nGϕ = nGC(T, ϕ) = (idT ) C(T, n
G) C(T, ϕ) = (idT )nC(T,G)

C(T, ϕ) = (idT )nC(T,H) = (idT ) C(T, n
H) = nH

and

iGϕ = iGC(G,ϕ) = (idG) C(G, i
G) C(G,ϕ) = (idG)iC(G,G)

C(G,ϕ) = (idG) C(G,ϕ)iC(G,H)

= (idG) C(G,ϕ) C(G, i
H) = ϕ C(G, i

H) = ϕ iH

Hence ϕ is a group homomorphism in C.

The nerve of a category object
Since we need the notion of a nerve for a category object in an arbitrary category, existing in every category
with pullbacks, we have to introduce some notation.

(1.30) Definition. We let C, D be category objects in C and C f−→ D be a functor. We set

(MorC)t
Πsn :=


ObC if n = 0,

MorC if n = 1,

MorC tΠ
ObC
s (MorC)t

Πs (n−1) if n > 1,

and analogously

(Mor f)Πn :=


Ob f if n = 0,

Mor f if n = 1,

Mor f Π (Mor f)Π(n−1) if n > 1.

A morphism X
f−→ (MorC)t

Πsn can be denoted as the tuple (fprj)j∈bn−1,0c.

Furthermore, we define morphisms (MorC)t
Πsn

tj−→ ObC and (MorC)t
Πsn

cbj1,j0c−−−−−→ MorC by

tj :=

{
prjt if j < n,

prn−1s if j = n

for j ∈ [0, n], n ∈ N, resp. t0 := idObC for n = 0, and

cbj1,j0c :=

{
tj0e if j1 = j0,

(prj1−1, cbj1−1,j0c)c if j1 > j0

for j0, j1 ∈ [0, n] with j1 ≥ j0, n ∈ N0.

Thinking in elements, the notation cbj1,j0c should simply express that the morphisms which start with object
number j1 and end with the object number j0 are composed. Similarly, the morphism tj picks the object with
number j.

(1.31) Remark. We let C be a category object in C. There is a simplicial object NC in C given by

NnC := (NC)n := (MorC)t
Π

ObC
s n for n ∈ N0

and

NθC := (NC)θ :=

{
t0θ if m = 0,

(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0

}
as morphisms NnC −→ NmC,

for all morphisms [m]
θ−→ [n] in ∆, m,n ∈ N0.
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Proof. For all non-negative integers m,n, p ∈ N0 and all morphisms [m]
θ−→ [n], [n]

ρ−→ [p] in ∆ we have

(NρC)(NθC) =


t0ρt0θ if m = 0, n = 0,

(cb(j+1)ρ,jρc)j∈bn−1,0ct0θ if m = 0, n > 0,

t0ρ(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0, n = 0,

(cb(j+1)ρ,jρc)j∈bn−1,0c(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0, n > 0


=


t0ρt0 if m = 0, n = 0,

t0θρ if m = 0, n > 0,

t0ρ(cb0,0c)i∈bm−1,0c if m > 0, n = 0,

(cb(i+1)θρ,iθρc)i∈bm−1,0c if m > 0, n > 0

 =


t0ρidObC if m = 0, n = 0,

t0θρ if m = 0, n > 0,

t0ρ(t0e)i∈bm−1,0c if m > 0, n = 0,

(cb(i+1)θρ,iθρc)i∈bm−1,0c if m > 0, n > 0



=


t0ρ if m = 0, n = 0,

t0θρ if m = 0, n > 0,

(t0ρe)i∈bm−1,0c if m > 0, n = 0,

(cb(i+1)θρ,iθρc)i∈bm−1,0c if m > 0, n > 0

 =


t0θρ if m = 0, n = 0,

t0θρ if m = 0, n > 0,

(cb0ρ,0ρc)i∈bm−1,0c if m > 0, n = 0,

(cb(i+1)θρ,iθρc)i∈bm−1,0c if m > 0, n > 0


=

{
t0θρ if m = 0,

(cb(i+1)θρ,iθρc)i∈bm−1,0c if m > 0

}
= NθρC

as well as

Nid[n]
C =

{
t0id[n]

if n = 0,

(cb(j+1)id[n],jid[n]c)j∈bn−1,0c if n > 0

}
=

{
t0 if n = 0,

(cbj+1,jc)j∈bn−1,0c if n > 0

}

=

{
idObC if n = 0,

(prj)j∈bn−1,0c if n > 0

}
= id(NC)n ,

that is, NC is a simplicial object in C.

(1.32) Definition (nerve). We let C be a category object in C. The simplicial object NC in C given as in
remark (1.31) by

NnC = (NC)n = (MorC)t
Πsn for all n ∈ N0

and

NθC =

{
t0θ if m = 0,

(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0,

for all morphisms [m]
θ−→ [n] in ∆, m,n ∈ N0, is called the nerve of the category object C.

(1.33) Proposition. The faces NnC
dk−→ Nn−1C and degeneracies NnC

sk−→ Nn+1C for a category object C
in C are given by

dk =


(prj)j∈bn−1,1c if k = 0,

(prj)j∈bn−1,k+1c ∪ (cbk+1,k−1c) ∪ (prj)j∈bk−2,0c if k ∈ [1, n− 1],

(prj)j∈bn−2,0c if k = n

 for all k ∈ [0, n], n ∈ N, n ≥ 2,

resp.

d0 = s,d1 = t for n = 1,

and

sk = (prj)j∈bn−1,kc ∪ (tke) ∪ (prj)j∈bk−1,0c for all k ∈ [0, n], n ∈ N0.
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Proof. We have

dk = NδkC = (cb(j+1)δk,jδkc)j∈bn−2,0c

=


(cb(j+1)δk,jδkc)j∈bn−2,kc if k = 0,

(cb(j+1)δk,jδkc)j∈bn−2,kc ∪ (cbkδk,(k−1)δkc) ∪ (cb(j+1)δk,jδkc)j∈bk−2,0c if k ∈ [1, n− 1],

(cb(j+1)δk,jδkc)j∈bk−2,0c if k = n


=


(cbj+2,j+1c)j∈bn−2,kc if k = 0,

(cbj+2,j+1c)j∈bn−2,kc ∪ (cbk+1,k−1c) ∪ (cbj+1,jc)j∈bk−2,0c if k ∈ [1, n− 1],

(cbj+1,jc)j∈bk−2,0c if k = n


=


(cbj+1,jc)j∈bn−1,k+1c if k = 0,

(cbj+1,jc)j∈bn−1,k+1c ∪ (cbk+1,k−1c) ∪ (cbj+1,jc)j∈bk−2,0c if k ∈ [1, n− 1],

(cbj+1,jc)j∈bk−2,0c if k = n,


=


(prj)j∈bn−1,1c if k = 0,

(prj)j∈bn−1,k+1c ∪ (cbk+1,k−1c) ∪ (prj)j∈bk−2,0c if k ∈ [1, n− 1],

(prj)j∈bn−2,0c if k = n

for k ∈ [0, n], n ∈ N, n ≥ 2,

d0 = Nδ0C = t0δ0 = t1 = s and d1 = Nδ1C = t0δ1 = t0 = t

for n = 1, and finally

sk = NσkC = (cb(j+1)σk,jσkc)j∈bn,0c

= (cb(j+1)σk,jσkc)j∈bn,k+1c ∪ (cb(k+1)σk,kσkc) ∪ (cb(j+1)σk,jσkc)j∈bk−1,0c

= (cbj,j−1c)j∈bn,k+1c ∪ (cbk,kc) ∪ (cbj+1,jc)j∈bk−1,0c = (cbj+1,jc)j∈bn−1,kc ∪ (cbk,kc) ∪ (cbj+1,jc)j∈bk−1,0c

= (prj)j∈bn−1,kc ∪ (tke) ∪ (prj)j∈bk−1,0c

for k ∈ [0, n], n ∈ N0.

(1.34) Proposition.

(a) If C and D are category objects in C and if C f−→ D is a functor in C, then we get an induced morphism

NC
Nf−−→ ND

with

Nnf = (Mor f)Πn.

(b) The construction in (a) yields a functor

Cat(C) N−→ sC.

Proof.

(a) We have

(NθC)(Nmf) =

{
t0θ(Ob f) if m = 0,

(cb(i+1)θ,iθc)i∈bm−1,0c(Mor f)Πm if m > 0

}

=

{
t0θ(Ob f) if m = 0,

(cb(i+1)θ,iθc(Mor f))i∈bm−1,0c if m > 0

}



14 CHAPTER I. SIMPLICIAL OBJECTS

=

{
(Mor f)Πnt0θ if m = 0,

(Mor f)Πn(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0

}
= (Nnf)(NθD)

for all morphisms [m]
θ−→ [n] in ∆, m,n ∈ N0, that is

NC
Nf−−→ ND

is a morphism of simplicial objects in C.

(b) If C, D, E are category objects in C and C f−→ D, D g−→ E are functors in C, then we have

(Nnf)(Nng) = (Mor f)Πn(Mor g)Πn = ((Mor f)(Mor g))Πn = (Mor(fg))t
Πsn = Nn(fg)

and

(NnidC) = (Mor idC)Πn = (idMorC)Πn = id(MorC)Πn = idNnC = (idNC)n

for all n ∈ N0, that is, (Nf)(Ng) = N(fg) and NidC = idNC . Hence

Cat(C) N−→ sC.

is a functor.

We remark that the nerve of a category K, that is a category object in Set, can also be defined by NK :=
MorCat(−,K)|∆op . With this description, we obtain the functor

Cat
N−→ sSet

for free.

The nerve of a group object
Every group G can be considered as a category with a single object, the morphisms given by the elements of G.
The construction is functorial and thus we can define a nerve functor for groups. In the following, we proceed
in a more general manner for arbitrary group objects.

(1.35) Definition (nerve for group objects). The composition of functors

Grp(C) N◦Cat−−−−→ sC

is called the nerve functor for group objects in C and will be denoted by N, too.

Grp(C) N //

Cat %%

sC

Cat(C)
N

;;

(1.36) Proposition. We let G be a group object in C. Then the nerve of G is given by

NnG = G Π n for all n ∈ N0,

while the faces NnG
dk−→ Nn−1G and degeneracies NnG

sk−→ Nn+1G are

dk =


(pri)i∈bn−1,1c if k = 0,

(pri)i∈bn−1,k+1c ∪ ((prk,prk−1)m) ∪ (pri)i∈bk−2,0c if k ∈ [1, n− 1],

(pri)i∈bn−2,0c if k = n

 for k ∈ [0, n], n ∈ N, n ≥ 2,
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resp.

d0 = d1 = 1 for n = 1,

and

sk = (pri)i∈bn−1,kc ∪ (1n) ∪ (pri)i∈bk−1,0c for k ∈ [0, n], n ∈ N0,

where G Π n 1−→ T denotes the unique morphism to the terminal object.

Proof. This follows from proposition (1.33).
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Chapter II

Simplicial homotopies and simplicial
homology

Our overall aim is to compute the homology of the simplicial set associated to a given crossed module. As an
intermediate step, we attach a complex to such a simplicial set. Since we want to invoke Eilenberg-Zilber, we
consider both ways to attach such a complex, the associated complex and the Moore complex.
Moreover, we intend to show further down that certain diagrams commute up to simplicial homotopy, a notion
which we consider here.
Finally, in this chapter we consider the path object of a simplicial object, which then will appear in our approach
to Eilenberg-Zilber.
For more details, the reader is referred to [8], [17] or the original articles of Kan, for example [20].

§1 Simplicial homotopies

Recall that two continuous maps f, g : T → U between topological spaces T and U are homotopic if there
exists a continuous map H : T × [0, 1] → U such that (−, 0)H = f and (−, 1)H = g. A similar notion can be
obtained for simplicial sets. However, we begin with a more general definition of homotopies between simplicial
morphisms in an arbitrary category, which does not necessarily contain an analogue of the operation −× [0, 1].
The similarity to the topological definition in the case of simplicial sets will be shown thereafter.

(2.1) Definition (simplicial homotopy). We let X and Y be simplicial objects in a category C. Simplicial
morphisms X ϕ−→ Y and X

ψ−→ Y are said to be simplicially homotopic, if for every n ∈ N0 there are
morphisms Xn

hk−→ Yn+1 for k ∈ [0, n] in C such that hndn+1 = ϕn, h0d0 = ψn and

hldk =


dkhl−1 for k < l,

hk−1dk for k = l, k 6= 0,

hkdk for k = l + 1, k 6= n+ 1,

dk−1hl for k > l + 1,

hlsk =

{
skhl+1 for k ≤ l,
sk−1hl for k > l,

for all k ∈ [0, n+ 1], l ∈ [0, n]. In this case, we write ϕ ∼ ψ and (hk ∈ C(Xn, Yn+1) | k ∈ [0, n], n ∈ N0) is called
a simplicial homotopy from ϕ to ψ.

(2.2) Definition. For a simplicial set X we define ins0 and ins1 to be the composite morphisms

X
∼=−→ X ×∆0 id×d1

−−−−→ X ×∆1 resp. X
∼=−→ X ×∆0 id×d0

−−−−→ X ×∆1.

Here dl = ∆δl for l ∈ [0, 1] denotes the l-th coface in the cosimplicial set ∆−.

(2.3) Definition. For k ∈ [0, n+ 1], n ∈ N0, we let τk ∈ ∆1
n = ∆([n], [1]) be the functor with

[0, n− k]τk = {0} and [n− k + 1, n]τk = {1}.

17
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Note that, with the definitions from above, we have

(xn)(ins0)n = (xn, τ
0) and (xn)(ins1)n = (xn, τ

n+1)

for all n-simplices xn ∈ Xn in a given simplicial set X and all n ∈ N0.

(2.4) Proposition. The composite morphisms

[n− 1]
δk−→ [n]

τl−→ [1] and [n+ 1]
σk−→ [n]

τl−→ [1]

are given as follows: We have

δkτl =

{
τl if k ≤ n− l,
τl−1 if k > n− l

for k ∈ [0, n], l ∈ [0, n+ 1], n ∈ N, and

σkτl =

{
τl if k ≤ n− l,
τl+1 if k > n− l

for k ∈ [0, n], l ∈ [0, n+ 1], n ∈ N0.

Proof. If k ≤ n− l, we compute

iδkτl =

{
iτl for i ∈ [0, k − 1],

(i+ 1)τl for i ∈ [k, n− 1]

}
=


0 for i ∈ [0, k − 1],

0 for i ∈ [k, n− 1− l],
1 for i ∈ [n− l, n− 1]

 =

{
0 for i ∈ [0, n− 1− l],
1 for i ∈ [n− 1− l, n− 1]

}

= iτl,

and if k > n− l, we have

iδkτl =

{
iτl for i ∈ [0, k − 1],

(i+ 1)τl for i ∈ [k, n− 1]

}
=


0 for i ∈ [0, n− l],
1 for i ∈ [n− l + 1, k − 1],

1 for i ∈ [k, n− 1]


=

{
0 for i ∈ [0, n− l],
1 for i ∈ [n− l + 1, n− 1]

}
= iτl−1.

Furthermore, if k ≤ n− l, we have

iσkτl =

{
iτl for i ∈ [0, k],

(i− 1)τl for i ∈ [k + 1, n+ 1]

}
=


0 for i ∈ [0, k],

0 for i ∈ [k, n+ 1− l],
1 for i ∈ [n+ 2− l, n+ 1]


=

{
0 for i ∈ [0, n+ 1− l],
1 for i ∈ [n+ 2− l, n+ 1]

}
= iσl,

and if k > n− l, we compute

iσkτl =

{
iτl for i ∈ [0, k],

(i− 1)τl for i ∈ [k + 1, n+ 1]

}
=


0 for i ∈ [0, n− l],
1 for i ∈ [n+ 1− l, k],

1 for i ∈ [k + 1, n+ 1]


=

{
0 for i ∈ [0, n− l],
1 for i ∈ [n+ 1− l, n+ 1]

}
= iσl.
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(2.5) Proposition. We let X and Y be simplicial sets and X f−→ Y and X g−→ Y be simplicial maps. There is
a bijective correspondence between the simplicial homotopies from f to g and the simplicial maps X×∆1 −→ Y
that let the following diagram commute:

X
ins0

��

f

��

X
ins1

��

g

��

X ×∆1

��
Y

Proof. First, we let (hk ∈ Set(Xn, Yn+1) | k ∈ [0, n], n ∈ N0) be a simplicial homotopy from f to g. For each
n ∈ N0, we define Hn : Xn × ∆1

n → Yn by (xn, τ
0)Hn := xnfn and (xn, τ

n+1−k)Hn := xnhkdk for k ∈ [0, n],
xn ∈ Xn. Using proposition (2.4), this implies

(xn, τ
n+1−l)Hndk = xnhldldk =

{
xnhldkdl−1 for k < l,

xnhldk+1dl for k ≥ l

}
=


xndkhl−1dl−1 for k < l,

xnhk+1dk+1dk for k = l 6= n,

xnfndn for k = l = n,

xndkhldl for k > l


=


xndkhl−1dl−1 for k < l,

xnhk+1dkdk for k = l 6= n,

xndnfn−1 for k = l = n,

xndkhldl for k > l

 =


xndkhl−1dl−1 for k < l,

xndkhkdk for k = l 6= n,

xndkfn−1 for k = l = n,

xndkhldl for k > l


=


(xndk, τ

n−(l−1))Hn−1 for k < l,

(xndk, τ
n−k)Hn−1 for k = l 6= n,

(xndk, τ
n−k)Hn−1 for k = l = n,

(xndk, τ
n−l)Hn−1 for k > l

 =

{
(xndk, τ

n+1−l)Hn−1 for k < l,

(xndk, τ
n−l)Hn−1 for k ≥ l

}

= (xndk, δ
kτn+1−l)Hn−1 = (xndk, τ

n+1−ldk)Hn−1 = (xn, τ
n+1−l)dkHn−1

for all xn ∈ Xn, k ∈ [0, n], l ∈ [0, n], n ∈ N, and

(xn, τ
n+1−l)Hnsk = xnhldlsk =

{
xnhlskdl+1 for k < l,

xnhlsk+1dl for k ≥ l

}
=

{
xnskhl+1dl+1 for k < l,

xnskhldl for k ≥ l

}

=

{
(xnsk, τ

n+2−(l+1))Hn+1 for k < l,

(xnsk, τ
n+2−l)Hn+1 for k ≥ l

}
=

{
(xnsk, τ

n+1−l)Hn+1 for k < l,

(xnsk, τ
n+2−l)Hn+1 for k ≥ l

}
= (xnsk,σ

kτn+1−l)Hn+1 = (xnsk, τ
n+1−lsk)Hn+1

= (xn, τ
n+1−l)skHn+1

for all xn ∈ Xn, k ∈ [0, n], l ∈ [0, n], n ∈ N0. Since additionally

(xn, τ
0)Hndk = xnfndk = xndkfn−1 = (xndk, τ

0)Hn−1 = (xndk, δ
kτ0)Hn−1 = (xndk, τ

0dk)Hn−1

= (xn, τ
0)dkHn−1

for all xn ∈ Xn, k ∈ [0, n], n ∈ N, and

(xn, τ
0)Hnsk = xnfnsk = xnskfn−1 = (xnsk, τ

0)Hn−1 = (xnsk,σ
kτ0)Hn−1 = (xnsk, τ

0sk)Hn−1

= (xn, τ
0)skHn−1

for all xn ∈ Xn, k ∈ [0, n], n ∈ N0, we know that the maps Hn : Xn × ∆1
n → Yn yield a simplicial map

X ×∆1 H−→ Y . Furthermore, we get

xn(ins0)nHn = (xn, τ
0)Hn = xnfn
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as well as

xn(ins1)nHn = (xn, τ
n+1)Hn = xnh0d0 = xngn

for all xn ∈ Xn, but this shows the ins0H = f and ins1H = g.
Conversely, we let X ×∆1 H−→ Y be a simplicial map such that

X
ins0

��

f

��

X
ins1

��

g

��

X ×∆1

H

��
Y

commutes. For n ∈ N0, k ∈ [0, n], we define hk : Xn → Yn+1, xn 7→ (xnsk, τ
n+1−k)Hn+1. According to

proposition (2.4) we get

xnhldk = (xnsl, τ
n+1−l)Hn+1dk = (xnsl, τ

n+1−l)dkHn = (xnsldk, τ
n+1−ldk)Hn

=


(xndksl−1, δ

kτn+1−l)Hn if k < l,

(xn, δ
kτn+1−l)Hn if k = l,

(xn, δ
kτn+1−l)Hn if k = l + 1,

(xndk−1sl, δ
kτn+1−l)Hn if k > l + 1

 =


(xndksl−1, τ

n+1−l)Hn if k < l,

(xn, τ
n+1−l)Hn if k = l,

(xn, τ
n−l)Hn if k = l + 1,

(xndk−1sl, τ
n−l)Hn if k > l + 1


=


(xndksl−1, τ

n−(l−1))Hn if k < l,

(xn, τ
n−(l−1))Hn if k = l,

(xn, τ
n−l)Hn if k = l + 1,

(xndk−1sl, τ
n−l)Hn if k > l + 1

 =


xndkhl−1 if k < l,

xnhk−1dk if k = l, k 6= 0,

xnhkdk if k = l + 1, k 6= n+ 1,

xndk−1hl if k > l + 1


and

xnhlsk = (xnsl, τ
n+1−l)Hn+1sk = (xnsl, τ

n+1−l)skHn+2 = (xnslsk, τ
n+1−lsk)Hn+2

=

{
(xnsksl+1,σ

kτn+1−l)Hn+2 if k ≤ l,
(xnsk−1sl,σ

kτn+1−l)Hn+2 if k > l

}
=

{
(xnsksl+1, τ

n+1−l)Hn+2 if k ≤ l,
(xnsk−1sl, τ

n+2−l)Hn+2 if k > l

}

=

{
(xnsksl+1, τ

n+2−(l+1))Hn+2 if k ≤ l,
(xnsk−1sl, τ

n+2−l)Hn+2 if k > l

}
=

{
xnskhl+1 if k ≤ l,
xnsk−1hl if k > l

}

for all xn ∈ Xn, k ∈ [0, n+ 1], l ∈ [0, n], n ∈ N0. Moreover, we have

xnhndn+1 = (xnsndn+1, τ
1dn+1)Hn = (xn, δ

n+1τ1)Hn = (xn, τ
0)Hn = xn(ins0)nHn = xnfn

and

xnh0d0 = (xns0d0, τ
n+1d0) = (xns0d0, δ

0τn+1) = (xn, τ
n+1)Hn = xn(ins1)nHn = xngn

for all xn ∈ Xn, n ∈ N0, that is, (hk ∈ Set(Xn, Yn+1) | k ∈ [0, n], n ∈ N0) is a simplicial homotopy from f to g.
At last, it remains to show the bijectivity. Thereto, we let (hk ∈ Set(Xn, Yn+1) | k ∈ [0, n], n ∈ N0) be a simplicial
homotopy from f to g. We define Hn : Xn ×∆1

n → Yn by (xn, τ
0)Hn := xnfn and (xn, τ

n+1−k)Hn := xnhkdk
for xn ∈ Xn, k ∈ [0, n], n ∈ N0, and we define h′k : Xn → Yn+1, xn 7→ (xnsk, τ

n+1−k)Hn+1 for k ∈ [0, n], n ∈ N0.
Then we get

xnh
′
k = (xnsk, τ

n+1−k)Hn+1 = (xnsk, τ
n+2−(k+1))Hn+1 = xnskhk+1dk+1 = xnhkskdk+1 = xnhk

for all xn ∈ Xn, that is, h′k = hk for all k ∈ [0, n], n ∈ N0.
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Conversely, we let X × ∆1 H−→ Y be a simplicial map such that ins0H = f and ins1H = g and define
maps hk : Xn → Yn+1, xn 7→ (xnsk, τ

n+1−k)Hn+1 for k ∈ [0, n], n ∈ N0 and maps H ′n : Xn × ∆1
n → Yn by

(xn, τ
0)H ′n := xnfn and (xn, τ

n+1−k)H ′n := xnhkdk for xn ∈ Xn, k ∈ [0, n], n ∈ N0. This implies

(xn, τ
0)H ′n = xnfn = xn(ins0)nHn = (xn, τ

0)Hn

and

(xn, τ
n+1−k)H ′n = xnhkdk = (xnsk, τ

n+1−k)Hn+1dk = (xnsk, τ
n+1−k)dkHn = (xnskdk, τ

n+1−kdk)Hn

= (xn, δ
kτn+1−k)Hn = (xn, τ

n+1−k)Hn

for k ∈ [0, n], xn ∈ Xn, n ∈ N0, and hence H ′ = H.

(2.6) Definition (simplicial homotopy). We let X and Y be simplicial sets and X
f−→ Y and X

g−→ Y be
simplicially homotopic simplicial maps. A simplicial map X ×∆1 H−→ Y such that

X
ins0

��

f

��

X
ins1

��

g

��

X ×∆1

H

��
Y

commutes is also called a simplicial homotopy from f to g. We write f H−→ g for a simplicial homotopy from f
to g.

Hence the standard 1-simplex ∆1 plays the role that the real interval [0, 1] has in the category of topological
spaces.
Next, we show how simplicial homotopy in one category can be transferred to simplicial homotopy in another
category and introduce the related notion of a homotopy equivalence.

(2.7) Proposition. We let C and D be categories and C F−→ D be a functor. Further, we let X and Y be
simplicial objects in C. If X f−→ Y and X g−→ Y are simplicially homotopic morphisms in C, then FX Ff−−→ FY

and FX Fg−−→ FY are simplicially homotopic in D.

Proof. We suppose that f ∼ g by a simplicial homotopy (hk ∈ C(Xn, Yn+1) | k ∈ [0, n], n ∈ N0). Then we have

(Fhn)dFYn+1 = (Fhn)(FdYn+1) = F (hndYn+1) = Ffn = (Ff)n

and

(Fh0)dFY0 = (Fh0)(FdY0 ) = F (h0dY0 ) = Fgn = (Fg)n

as well as

(Fhl)d
FY
k = (Fhl)(FdYk ) = F (hld

Y
k ) =


F (dXk hl−1) for k < l,

F (hk−1dYk ) for k = l, k 6= 0,

F (hkdYk ) for k = l + 1, k 6= n+ 1,

F (dXk−1hl) for k > l + 1


=


(FdXk )(Fhl−1) for k < l,

(Fhk−1)(FdYk ) for k = l, k 6= 0,

(Fhk)(FdYk ) for k = l + 1, k 6= n+ 1,

(FdXk−1)(Fhl) for k > l + 1

 =


dFXk (Fhl−1) for k < l,

(Fhk−1)dFYk for k = l, k 6= 0,

(Fhk)dFYk for k = l + 1, k 6= n+ 1,

dFXk−1(Fhl) for k > l + 1


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and

(Fhl)s
FY
k = (Fhl)(F sYk ) = F (hls

Y
k ) =

{
F (sXk hl+1) for k ≤ l,
F (sXk−1hl) for k > l,

}
=

{
(F sXk )(Fhl+1) for k ≤ l,
(F sXk−1)(Fhl) for k > l

}

=

{
sFXk (Fhl+1) for k ≤ l,
sFXk−1(Fhl) for k > l

}

for all k ∈ [0, n + 1], l ∈ [0, n], n ∈ N0. Thus (Fhk ∈ D(FXn, FYn+1) | k ∈ [0, n], n ∈ N0) is a simplicial
homotopy from Ff to Fg and we have Ff ∼ Fg.

(2.8) Definition (simplicial homotopy equivalence). We let C be a category. Simplicial objects X and Y in C
are said to be simplicially homotopy equivalent if there are simplicial morphisms X f−→ Y and Y g−→ X in C
such that fg ∼ idX and gf ∼ idY . In this case we write X ' Y and we call f and g mutually inverse simplicial
homotopy equivalences.

(2.9) Proposition. We let C and D be categories and C F−→ D be a functor. If there are simplicially homotopy
equivalent simplicial objects X and Y in C, then the simplicial objects FX and FY in D are simplicially
homotopy equivalent, too.

Proof. Suppose there is a homotopy equivalence X f−→ Y with inverse Y g−→ X. Then we have fg ∼ idX and
gf ∼ idY . By proposition (2.7), we get

(Ff)(Fg) = F (fg) ∼ F (idX) = idFX and (Fg)(Ff) = F (gf) ∼ F (idY ) = idFY .

Thus Ff is a simplicial homotopy equivalence between FX and FY with inverse Fg.

We introduce some notation needed later.

(2.10) Definition (simplicially contractible simplicial set). A simplicial set is called simplicially contractible
if it is simplicially homotopy equivalent to Const ∗, where ∗ denotes a set with a single point.

(2.11) Definition (simplicial deformation retract). We let X,Y be simplicial sets and Y i−→ X be a dimen-
sionwise injective simplicial map, that is, in is assumed to be injective for all n ∈ N0.

(a) We call Y a simplicial deformation retract of X, if there exists a simplicial map X
r−→ Y such that

ir = idY and ri ∼ idX . In this case, r is called a simplicial deformation retraction.

(b) We suppose given a simplicial set X ′, simplicial maps X f−→ X ′ and X g−→ X ′ and a simplicial homotopy
f

H−→ g. Then H is said to be constant along i, if (ynin, τ
k)Hn = yninfn = yningn for all yn ∈ Yn,

k ∈ [0, n+ 1], n ∈ N0.

(c) If there exists a homotopy ri H−→ idX which is constant along i, we call Y a strong simplicial deformation
retract of X and r a strong simplicial deformation retraction.

§2 Simplicial homology
In this section, we introduce simplicial homology for simplicial sets. To do this, we have to construct from a
given simplicial set a complex in a module category, so that we can take its homology to be the homology of
the given simplicial set.
We begin now with a little bit more general framework, introducing a complex associated to every simplicial
object in an additive category.
Throughout this section, we let A be an additive category.

(2.12) Remark. We let A be a simplicial object in A. Then the objects An together with the morphisms
An

∂−→ An−1 defined by

∂ :=
∑

k∈[0,n]

(−1)kdk
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form a complex with entries in A.

. . .
∂−→ A2

∂−→ A1
∂−→ A0.

Proof. Applying the simplicial identities, we compute

∂∂ = (
∑

l∈[0,n+1]

(−1)ldl)(
∑

k∈[0,n]

(−1)kdk) =
∑

l∈[0,n+1]

∑
k∈[0,n]

(−1)l+kdldk

=
∑

l∈[0,n+1]

∑
k∈[0,l−1]

(−1)l+kdldk +
∑

l∈[0,n+1]

∑
k∈[l,n]

(−1)l+kdldk

=
∑

k∈[0,n+1]

∑
l∈[0,k−1]

(−1)l+kdkdl +
∑

k∈[0,n]

∑
l∈[0,k]

(−1)l+kdldk

=
∑

k∈[1,n+1]

∑
l∈[0,k−1]

(−1)l+kdkdl +
∑

k∈[1,n+1]

∑
l∈[0,k−1]

(−1)l+k−1dldk−1

=
∑

k∈[1,n+1]

∑
l∈[0,k−1]

(−1)l+k(dkdl − dldk−1) = 0

for all n ∈ N.

(2.13) Definition (associated complex). For a simplicial object A in A, the complex

CA := (. . .
∂−→ A2

∂−→ A1
∂−→ A0)

with entries CnA := (CA)n = An for n ∈ N0 and differentials

∂ :=
∑

k∈[0,n]

(−1)kdk

for n ∈ N is said to be the complex associated to A.

(2.14) Proposition.

(a) Given simplicial objects A, B in A and a simplicial morphism A
ϕ−→ B, there exists an induced complex

morphism

CA
Cϕ−−→ CB,

which is given by Cnϕ := (Cϕ)n = ϕn for all n ∈ N0.

(b) The construction in (a) yields a functor

sA C−→ C(A).

Proof.

(a) Since the morphisms An
ϕn−−→ Bn for n ∈ N0 commute with all face maps, they commute with the

differentials of CA.

(b) We let A, B, C be simplicial objects in A and A
ϕ−→ B, B ϕ−→ C be simplicial morphisms. Then we

obtain

(Cnf)(Cng) = fngn = (fg)n = Cn(fg)

and

CnidA = (idA)n = idAn = idCnA = (idCA)n

for all n ∈ N0, that is, we have a functor

sA C−→ C(A).
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Simplicial homotopy induces complex homotopy. This will be shown now.

(2.15) Proposition. We let A and B be simplicial objects in A. If A f−→ B and A
g−→ B are simplicially

homotopic morphisms in A, then CA
Cf−−→ CB and CA

Cg−−→ CB are complex homotopic morphisms between the
corresponding associated complexes.

Proof. We suppose f ∼ g by a simplicial homotopy (hk ∈ A(An, Bn+1) | k ∈ [0, n], n ∈ N0). For each n ∈ N0,

we define a morphism An
h′n−→ Bn+1 by

h′n :=
∑

k∈[0,n]

(−1)khk.

This implies

h′n∂ + ∂h′n−1 = (
∑
l∈[0,n]

(−1)lhl)(
∑

k∈[0,n+1]

(−1)kdk) + (
∑

k∈[0,n]

(−1)kdk)(
∑

l∈[0,n−1]

(−1)lhl)

=
∑
l∈[0,n]

∑
k∈[0,n+1]

(−1)l+khldk +
∑

l∈[0,n−1]

∑
k∈[0,n]

(−1)l+kdkhl

=
∑
l∈[0,n]

∑
k∈[0,l−1]

(−1)l+khldk +
∑
l∈[0,n]

(hldl − hldl+1) +
∑
l∈[0,n]

∑
k∈[l+2,n+1]

(−1)l+khldk

+
∑

l∈[0,n−1]

∑
k∈[0,n]

(−1)l+kdkhl

=
∑
l∈[1,n]

∑
k∈[0,l−1]

(−1)l+kdkhl−1 + (h0d0 − hndn+1) +
∑

l∈[0,n−1]

∑
k∈[l+2,n+1]

(−1)l+kdk−1hl

+
∑

l∈[0,n−1]

∑
k∈[0,n]

(−1)l+kdkhl

= gn − fn −
∑

l∈[0,n−1]

∑
k∈[0,l]

(−1)l+kdkhl −
∑

l∈[0,n−1]

∑
k∈[l+1,n]

(−1)l+kdkhl

+
∑

l∈[0,n−1]

∑
k∈[0,n]

(−1)l+kdkhl

= gn − fn

for all non-negative integer n ∈ N0 and hence (h′n ∈ A(An, Bn+1) | n ∈ N0) is a complex homotopy between Cf
and Cg.

(2.16) Proposition. We letA andB be simplicial objects inA. IfA andB are simplicially homotopy equivalent
simplicial objects in A, then the associated complexes CA and CB are homotopy equivalent complexes with
entries in A.

Proof. We let A f−→ B be a simplicial homotopy equivalence with inverse B g−→ A, that is, fg ∼ idA and
gf ∼ idB . By proposition (2.15), we get

(Cf)(Cg) = C(fg) ∼ CidA = idCA and (Cg)(Cf) = C(gf) ∼ CidB = idCB .

Hence CA is homotopy equivalent to CB since Cf is a homotopy equivalence with inverse Cg.

Now we apply definition (2.13) to the context we have in mind.

(2.17) Definition (associated complex to a simplicial set). We let R be a commutative ring. For a simplicial
set X, the complex C(X;R) := CRX is called the complex associated to X over R. If R = Z, we will just speak
of the complex associated to X and we write C(X) := C(X;Z).

(2.18) Definition (simplicial homology and cohomology of a simplicial set). We let R be a commutative ring,
M an R-module and X a simplicial set. The nth (simplicial) homology group of X with coefficients in M over
R is defined to be

Hn(X,M ;R) := Hn(C(X;R)⊗RM).
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The nth (simplicial) cohomology group of X with coefficients in M over R is defined to be

Hn(X,M ;R) := Hn(R(C(X;R),M)).

Moreover, we abbreviate

Hn(X;R) := Hn(X,R;R),

Hn(X,M) := Hn(X,M ;Z),

Hn(X) := Hn(X,Z;Z)

and

Hn(X;R) := Hn(X,R;R),

Hn(X,M) := Hn(X,M ;Z),

Hn(X) := Hn(X,Z;Z).

(2.19) Example (singular homology of a topological space). Given a topological space T , then the integral
singular homology groups (cf. example (1.10)) are defined to be

Hn(T ;Z) := Hn(ZST ) for n ∈ N0.

(2.20) Proposition. Given simplicially homotopy equivalent simplicial sets X and Y , we have

Hn(X,M ;R) ∼= Hn(Y,M ;R) and Hn(X,M ;R) ∼= Hn(Y,M ;R)

for all n ∈ N0 and every module M over a commutative ring R.

Proof. We let X,Y ∈ Ob sSet with X ' Y and we let R be a commutative ring and M be an R-module. It
follows from proposition (2.9) and proposition (2.16) that C(X;R) ' C(Y ;R). Since the functors −⊗RM and
R(−,M) preserve homotopy equivalences, the complex homotopy invariance of the homology functor implies
the asserted statements.

§3 The Moore complex
In the last section we attached a complex C to a given simplicial object A in an additive category A. Here
we will introduce a subcomplex MA of CA if A is an abelian category. At the end, we will show that both
complexes are homotopy equivalent and so deliver the same homology.
We suppose given an abelian category A.

(2.21) Remark. We let A be a simplicial object in A. We let

MnA :=
⋂

k∈[1,n]

Ker dk for all n ∈ N0.

Then we may let

MnA
∂−→ Mn−1A

be induced by An
d0−→ An−1 for all n ∈ N, forming a complex

MA := (. . .
∂−→ M2A

∂−→ M1A
∂−→ M0A).

Proof. We have

(MnA)d0dk = (MnA)dk+1d0 = 0 for all k ∈ [0, n− 1],

that is, (MnA)d0 � Ker dk for all k ∈ [0, n − 1] and therefore (MnA)d0 �
⋂
k∈[1,n−1] Ker dk = Mn−1A.

Altogether, the differentials

MnA
∂−→ Mn−1A

are well-defined and fulfill ∂∂ = 0.



26 CHAPTER II. SIMPLICIAL HOMOTOPIES AND SIMPLICIAL HOMOLOGY

(2.22) Definition (Moore complex). We let A be a simplicial object in A. The complex MA given as in remark
(2.21) is called the Moore complex of A.

(2.23) Proposition. Given a simplicial object A inA, the Moore complex MA is a subcomplex of the associated
complex CA.

Proof. Letting MnA
ιn−→ An denote the embedding of MnA into An for all n ∈ N0, we have

ιn∂
CA = ιn(

∑
k∈[0,n]

(−1)kdk) =
∑

k∈[0,n]

(−1)kιndk = ιnd0 = ∂MAιn−1,

because ιn factorises over each kernel of dk for k ∈ [0, n], n ∈ N. Hence we have a commutative diagram

MnA
∂MA

//

ιn

��

ιnd0

$$

Mn−1A

ιn−1

��
An

∂CA
// An−1

for each n ∈ N, that is, the ιn for n ∈ N0 yield a complex monomorphism

MA
ι−→ CA.

(2.24) Proposition.

(a) Given simplicial objects A, B in A and a simplicial morphism A
ϕ−→ B, there exists an induced complex

morphism

MA
Mϕ−−→ MB,

where Mnϕ := (Mϕ)n is induced by ϕn for all n ∈ N0.

(b) The construction in (a) yields a functor

sA M−→ C(A).

Proof.

(a) The morphisms An
ϕn−−→ Bn induce morphisms MnA

Mnϕ−−−→ MnB for n ∈ N0. Denoting the embeddings
from MnA into An resp. from MnB into Bn by

MnA
ιAn−→ An resp. MnB

ιBn−→ Bn,

we compute

∂MA(Mn−1ϕ)ιBn−1 = ∂MAιAn−1ϕn−1 = ιAn∂
CAϕn−1 = ιAnϕn∂

CB = ϕnι
B
n ∂

CB = ϕn∂
MBιBn−1

and since ιBn−1 is a monomorphism, this implies ∂(Mn−1ϕ) = ϕn∂ for all n ∈ N0. Hence the morphisms

Mnϕ for n ∈ N0 yield a complex morphism MA
Mϕ−−→ MB.

(b) We suppose given simplicial objects A, B, C in A and simplicial morphisms A ϕ−→ B and B ϕ−→ C. The
embeddings are denoted as in (a) by

MnA
ιAn−→ An resp. MnB

ιBn−→ Bn resp. MnC
ιCn−→ Cn

for all n ∈ N0. Then we have

(Mnϕ)(Mnψ)ιCn = (Mnϕ)ιBnψn = ιAnϕnψn = ιAn (ϕψ)n = Mn(ϕψ)ιCn
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and

(MnidA)ιAn = ιAn (idA)n = ιAn idAn = idMnAι
A
n = (idMA)nι

A
n

for all n ∈ N0. Since ιCn and ιAn are monomorphisms, we conclude that (Mnϕ)(Mnψ) = Mn(ϕψ) and
MnidA = (idMA)n for all n ∈ N0. Thus we have (Mϕ)(Mψ) = M(ϕψ) and MidA = idMA and hence, we
have a functor

sA M−→ C(A).

Our next aim is to ameliorate this proposition in the sense that we intend to show that the Moore complex
is even a direct summand of the associated complex. A complement can be specified, namely the degenerate
subcomplex. This will be introduced now.

(2.25) Remark. There exists a subcomplex DA � CA for every simplicial object A in A with DnA :=∑
k∈[0,n−1] Im sj for each n ∈ N0.

Proof. We have

(Im sk)∂ = Im(sk∂) = Im(sk
∑
l∈[0,n]

(−1)ldl) = Im(
∑

l∈[0,k−1]

(−1)ldlsk−1 +
∑

l∈[k+2,n]

(−1)ldl−1sk)

�
∑

l∈[0,k−1]

Im(dlsk−1) +
∑

l∈[k+2,n]

Im(dl−1sk) �
∑

l∈[0,k−1]

Im sk−1 +
∑

l∈[k+2,n]

Im sk �
∑

m∈[0,n−2]

Im sm

= Dn−1A

and hence

(DnA)∂ � Dn−1A

for all n ∈ N, that is, the subobjects DnA � An for n ∈ N0 yield a subcomplex DA � CA.

(2.26) Definition (degenerate complex). We let A ∈ Ob sA be a simplicial object in A. The subcomplex
DA � CA given as in remark (2.25) with DnA =

∑
k∈[0,n−1] Im sk for all n ∈ N0 is called the degenerate

complex of A.

(2.27) Proposition. For k ∈ [0, α], α ∈ N, we let F (−k) ∈ C(A) be complexes with entries in A. Further, we
let

F (−k + 1)
ϕ(−k)−−−−→ F (−k) and F (−k)

ψ(−k)−−−−→ F (−k + 1) for k ∈ [1, α]

be complex morphisms and we let (h(−k)n | n ∈ Z) be a complex homotopy from idF (−k+1) to ϕ(−k)ψ(−k),
k ∈ [1, α]. Note that h(−k)n is a morphism from F (−k + 1)n to F (−k + 1)n+1. Then we have a complex
homotopy (H(−α)n | n ∈ Z) from idF (0) to ϕ(−1) . . . ϕ(−α)ψ(−α) . . . ψ(−1) given by

H(−α)n =
∑

k∈[1,α]

ϕ(−1)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−1)n+1 for all n ∈ Z.

Proof. We proceed by induction on α ∈ N. For α = 1, we have H(−1)n = h(−1)n for all n ∈ Z and there is
nothing to show. Now we assume that α > 1 and that the assertion holds for all smaller natural numbers. Then
we compute

idF (0)n − ϕ(−1)n . . . ϕ(−α)nψ(−α)n . . . ψ(−1)n

= idF (0)n − ϕ(−1)nψ(−1)n + ϕ(−1)nψ(−1)n − ϕ(−1)n . . . ϕ(−α)nψ(−α)n . . . ψ(−1)n

= idF (0)n − ϕ(−1)nψ(−1)n + ϕ(−1)n(idF (−1)n − ϕ(−2)n . . . ϕ(−α)nψ(−α)n . . . ψ(−2)n)ψ(−1)n

= h(−1)n∂ + ∂h(−1)n−1 + ϕ(−1)n

(
(
∑

k∈[2,α]

ϕ(−2)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−2)n+1)∂

+ ∂(
∑

k∈[2,α]

ϕ(−2)n−1 . . . ϕ(−k + 1)n−1h(−k)n−1ψ(−k + 1)n . . . ψ(−2)n)
)
ψ(−1)n



28 CHAPTER II. SIMPLICIAL HOMOTOPIES AND SIMPLICIAL HOMOLOGY

= h(−1)n∂ + ∂h(−1)n−1 + (
∑

k∈[2,α]

ϕ(−1)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−2)n+1)∂ψ(−1)n

+ ϕ(−1)n∂(
∑

k∈[2,α]

ϕ(−2)n−1 . . . ϕ(−k + 1)n−1h(−k)n−1ψ(−k + 1)n . . . ψ(−1)n)

= h(−1)n∂ + ∂h(−1)n−1 + (
∑

k∈[2,α]

ϕ(−1)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−2)n+1)ψ(−1)n+1∂

+ ∂ϕ(−1)n−1(
∑

k∈[2,α]

ϕ(−2)n−1 . . . ϕ(−k + 1)n−1h(−k)n−1ψ(−k + 1)n . . . ψ(−1)n)

= h(−1)n∂ + ∂h(−1)n−1 + (
∑

k∈[2,α]

ϕ(−1)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−1)n+1)∂

+ ∂(
∑

k∈[2,α]

ϕ(−1)n−1 . . . ϕ(−k + 1)n−1h(−k)n−1ψ(−k + 1)n . . . ψ(−1)n)

= (
∑

k∈[1,α]

ϕ(−1)n . . . ϕ(−k + 1)nh(−k)nψ(−k + 1)n+1 . . . ψ(−1)n+1)∂

+ ∂(
∑

k∈[1,α]

ϕ(−1)n−1 . . . ϕ(−k + 1)n−1h(−k)n−1ψ(−k + 1)n . . . ψ(−1)n)

= H(−α)n∂ + ∂H(−α)n−1

for all n ∈ Z and so (H(−α)n | n ∈ Z) is a homotopy form idF (0) to ϕ(−1) . . . ϕ(−α)ψ(−α) . . . ψ(−1).

(2.28) Theorem (normalisation theorem). We have

CA ∼= DA⊕MA and CA ' MA

for each simplicial object A ∈ Ob sA in A.

Proof. In the first step, we construct a pointwise finite pointwise split filtration from MA to CA. Thereto, we
let

F (−α)n :=
⋂

k∈[max(1,n−α+1),n]

Ker dk for all α, n ∈ N0,

and we denote by F (−α)n
µ(α)n−−−−→ An the embedding from F (−α)n into An. We let a non-negative number

α ∈ N0 be given. Since

(F (−α)n)dkdl = (F (−α)n)dl+1dk = 0 for all k ∈ [0,max(0, n− α)], l ∈ [max(0, n− α), n− 1],

we have F (−α)ndk � Ker dl for all k ∈ [0,max(0, n− α)], l ∈ [max(0, n− α), n− 1], and therefore

F (−α)n∂ = (F (−α)n)(
∑

k∈[0,n]

(−1)kdk) = (F (−α)n)(
∑

k∈[0,max(0,n−α)]

(−1)kdk) �
⋂

l∈[max(1,n−α),n−1]

Ker dl

= F (−α)n−1.

Hence we have induced morphisms

F (−α)n
∂−→ F (−α)n−1

given by the commutative diagram

F (−α)n
∂ //

µ(−α)n

��

F (−α)n−1

µ(−α)n−1

��
An

∂ // An−1
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where the vertical morphisms are the canonical embeddings. Since

∂∂µ(−α)n−2 = ∂µ(−α)n−1∂ = µ(−α)n∂∂ = 0

and since µ(−αn−2) is a monomorphism, we have ∂∂ = 0 as morphisms F (−α)n −→ F (−α)n−2 for all n ∈ N,
n ≥ 2, that is, the objects F (−α)n for n ∈ N0 together with the morphisms ∂ yield a complex F (−α) � CA.
We have embeddings

F (−α)n
ι(−α)n−−−−→ F (−α+ 1)n for each α ∈ N, n ∈ N0,

and we have

µ(−α)n = ι(−α)nι(−α+ 1)n . . . ι(−1)n.

These embeddings yield complex morphisms

F (−α)
ι(−α)−−−−→ F (−α+ 1) for all α ∈ N,

because we have commutative diagrams

F (−α)n
∂ //

ι(−α)n

��

F (−α)n−1

ι(−α)n−1

��
F (−α+ 1)n

∂ //

µ(−α+1)n

��

F (−α+ 1)n−1

µ(−α+1)n−1

��
CnA

∂ // Cn−1A

for all α, n ∈ N (the upper square commutes since µ(−α + 1)n−1 is a monomorphism). Since F (−α)n = MnA
for all α ∈ N0, α ≥ n, the complexes F (−α) for α ∈ N0 yield a pointwise finite filtration from MA to CA.
To show that this filtration is pointwise split, we consider the morphisms

An
id−dn−α+1sn−α−−−−−−−−−−→ An

for α ∈ [1, n], n ∈ N0. For k ≥ n− α+ 1, we compute

µ(−α+ 1)n(id− dn−α+1sn−α)dk = µ(−α+ 1)n(dk − dn−α+1sn−αdk)

=

{
µ(−α+ 1)n(dk − dk) if k = n− α+ 1,

µ(−α+ 1)ndk(id− dn−α+1sn−α) if k ≥ n− α+ 2

}
= 0,

that is, we have an induced morphism F (−α+ 1)n
π(−α)n−−−−−→ F (−α)n such that the diagram

F (−α+ 1)n
π(−α)n //

µ(−α+1)n

��

F (−α)n

µ(−α)n

��
An

id−dn−α+1sn−α // An

commutes. Additionally, we define F (−α+ 1)n
π(−α)n−−−−−→ F (−α)n for α > n by

π(−α)n := idMnA.

Then we have

(id− d1s0)d0 = d0 − d1s0d0 = d0 − d1.
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and

(id− dn−α+1sn−α)
∑

k∈[0,n−α]

(−1)kdk =
∑

k∈[0,n−α]

(−1)k(dk − dn−α+1sn−αdk)

=
∑

k∈[0,n−α−1]

(−1)k(dk − dkdn−αsn−α−1) + (−1)n−α(dn−α − dn−α+1)

=
∑

k∈[0,n−α−1]

(−1)kdk(id− dn−αsn−1−α) + (−1)n−αdn−α + (−1)n−α+1dn−α+1

=
∑

k∈[0,n−α+1]

(−1)kdk(id− dn−αsn−1−α)

for all α ∈ [1, n− 1], n ∈ N. This yields

π(−n)n∂µ(−n)n−1 = π(−n)nµ(−n)n∂ = π(−n)nµ(−n)nd0 = µ(−n+ 1)n(id− d1s0)d0

= µ(−n+ 1)n(d0 − d1) = µ(−n+ 1)n∂ = ∂µ(−n+ 1)n−1 = ∂π(−n)n−1µ(−n)n−1

and

π(−α)n∂µ(−α)n−1 = π(−α)nµ(−α)n∂ = π(−α)nµ(−α)n(
∑

k∈[0,n−α]

(−1)kdk)

= µ(−α+ 1)n(id− dn−α+1sn−α)(
∑

k∈[0,n−α]

(−1)kdk)

= µ(−α+ 1)n(
∑

k∈[0,n−α+1]

(−1)kdk)(id− dn−αsn−1−α)

= µ(−α+ 1)n∂(id− dn−αsn−1−α)

= ∂µ(−α+ 1)n−1(id− dn−αsn−1−α) = ∂π(−α)n−1µ(−α)n−1

whence π(−α)n∂ = ∂π(−α)n−1 for all α ∈ [1, n], n ∈ N. Since additionally π(−α)n∂ = id∂ = ∂id = ∂π(−α)n−1

for all α > n, n ∈ N, we have proven that the morphisms π(−α)n yield complex morphisms

F (−α+ 1)
π(−α)−−−−→ F (−α).

We get

ι(−α)nπ(−α)nµ(−α)n =

{
ι(−α)nµ(−α+ 1)n(id− dn−α+1sn−α) for α ≤ n,
ι(−α)nµ(−α+ 1)n for α > n

}

=

{
µ(−α)n(id− dn−α+1sn−α) for α ≤ n,
µ(−α)n for α > n

}
= µ(−α)n

for all n ∈ N0 and therefore ι(−α)π(−α) = idF (−α) for each α ∈ N.
Now we recall resp. define

MnA
ιn−→ CnA and CnA

πn−→ MnA

by

ιn = µ(−n)n = ι(−n)nι(−n+ 1)n . . . ι(−1)n and πn := π(−1)n . . . π(−n+ 1)nπ(−n)n for all n ∈ N0.

The morphisms ιn for n ∈ N0 yield a morphism of complexes by proposition (2.23). Additionally, the morphisms
πn for n ∈ N0 yield a complex morphism

CA
π−→ MA

since we have

πn∂
MA = π(−1)n . . . π(−n+ 1)nπ(−n)nd0 = π(−1)n . . . π(−n+ 1)nπ(−n)n∂

F (−n)
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= π(−1)n . . . π(−n+ 1)n∂
F (−n+1)π(−n)n−1 = ∂F (0)π(−1)n−1 . . . π(−n+ 1)n−1id = ∂CAπn−1

for all n ∈ N. Because of

ιnπn = ι(−n) . . . ι(−1)π(−1) . . . π(−n) = idMnA for all n ∈ N0

we obtain a split exact sequence

Kerπ −→ CA
π−→ MA,

and thus CA ∼= (Kerπ)⊕MA. To show the desired decomposition of CA, it remains to prove that Kerπ ∼= DA.
We let n ∈ N0 be a non-negative integer. First, we have

πnιn = π(−1) . . . π(−n)µ(−n) = π(−1) . . . π(−n+ 1)µ(−n+ 1)(id− d1s0)

= π(−1) . . . π(−n+ 2)µ(−n+ 2)(id− d2s1)(id− d1s0) = . . .

= (id− dnsn−1)(id− dn−1sn−2) . . . (id− d2s1)(id− d1s0),

so πnιn has the form πnιn = id−ϕ, where ϕ is a signed sum of morphisms that can be written as composites of
faces with at least one degeneracy. Note that if Ker(id− ϕ)

κ−→ CnA denotes a kernel of id− ϕ, then κ = κϕ.
Hence

Kerπn = Ker(πnιn) = Ker(id− ϕ) � Imϕ � DnA.

Conversely, we have

skπnιn = sk(id− dnsn−1) . . . (id− dk+2sk+1)(id− dk+1sk)(id− dksk−1) . . . (id− d1s0)

= (id− dn−1sn−2) . . . (id− dk+1sk)sk(id− dk+1sk)(id− dksk−1) . . . (id− d1s0)

= (id− dn−1sn−2) . . . (id− dk+1sk)(sk − sk)(id− dksk−1) . . . (id− d1s0) = 0,

whence Im sk � Ker(πnιn) = Kerπn for all k ∈ [0, n − 1] and thus DnA � Kerπn. Altogether, this implies
Kerπ = DA (since both are subcomplexes of CA, the pointwise proof is sufficient).
Finally, we want to show that CA ' MA. Thereto, we show that each embedding

F (−α)
ι(−α)−−−−→ F (−α+ 1)

for α ∈ N is a homotopy equivalence. More specifically, since ι(−α)π(−α) = idF (−α), we show that

π(−α)ι(−α) ∼ idF (−α+1) for all α ∈ N.

We suppose given α ∈ N and n ∈ N0 such that n ≥ α− 1. Then

µ(−α+ 1)nsn−α+1dk = µ(−α+ 1)ndk−1sn−α+1 = 0 for all k ∈ [n− α+ 3, n+ 1].

Hence we have an induced morphism h(−α)n given by the commutative diagram

F (−α+ 1)n
h(−α)n //

µ(−α+1)n

��

F (−α+ 1)n+1

µ(−α+1)n+1

��
An

(−1)n−αsn−α+1 // An+1

Additionally, we set h(−α)n := 0 for n ∈ N, n ≤ α− 2. Then we obtain

(−1)n−αs0(d0 − d1) = 0 = id− id

for n = α− 1. For n ≥ α, we get

(−1)n−αsn−α+1(
∑

k∈[0,n−α+2]

(−1)kdk) + (
∑

k∈[0,n−α+1]

(−1)kdk)(−1)n−1−αsn−α
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=
∑

k∈[0,n−α]

(−1)n−α+kdksn−α +
∑

k∈[0,n−α+1]

(−1)n−1−α+kdksn−α = dn−α+1sn−α

= id− (id− dn−α+1sn−α).

This implies

(h(−n− 1)n∂ + ∂h(−n− 1)n−1)µ(−n)n = h(−n− 1)n∂µ(−n)n = µ(−n)n(−s0(d0 − d1))

= µ(−n)n(id− id) = (id− π(−n− 1)nι(−n− 1)n)µ(−n)n

as well as

(h(−α)n∂ + ∂h(−α)n−1)µ(−α+ 1)n

= µ(−α+ 1)n

(
(−1)n−αsn−α+1(

∑
k∈[0,n−α+2]

(−1)kdk) + (
∑

k∈[0,n−α+1]

(−1)kdk)(−1)n−1−αsn−α

)
= µ(−α+ 1)n(id− (id− dn−α+1sn−α)) = (id− π(−α)nι(−α)n)µ(−α+ 1)n

for n ≥ α. Altogether,

h(−α)n∂ + ∂h(−α)n−1 = id− π(−α)nι(−α)n for all n ∈ N with n ≥ α− 1.

Since this equation also holds for n < α−1 (because of the trivial definition of hn), we see that (h(−α)n | n ∈ N0)
is a complex homotopy from idF (−α+1) to π(−α)ι(−α). Thus

F (−α)
ι(−α)−−−−→ F (−α+ 1)

is a homotopy equivalence for all α ∈ N.
Still it remains to construct a homotopy from idCA to πι. Since (h(−α)n | n ∈ N0) is a homotopy from idF (−α+1)

to π(−α)ι(−α) for every α ∈ N, by proposition (2.27) we have a complex homotopy (H(−α)n | n ∈ N0) from
idCA to π(−1) . . . π(−α)ι(−α) . . . ι(−1) given by

H(−α)n =
∑

k∈[1,α]

π(−1)n . . . π(−k + 1)nh(−k)nι(−k + 1)n+1 . . . ι(−1)n+1

for every n ∈ N0, α ∈ N. But since h(−k)n = 0 for all k ∈ [n+ 2, α], we get

H(−α)n =
∑

k∈[1,min(n+1,α)]

π(−1)n . . . π(−k + 1)nh(−k)nι(−k + 1)n+1 . . . ι(−1)n+1

for all n ∈ N0, α ∈ N, and hence

H(−α)n = H(−n− 1)n for all α ∈ N with α ≥ n+ 1, n ∈ N0.

With

Hn := H(−n− 1)n for all n ∈ N0, going from CnA to Cn+1A,

we compute

Hn∂ + ∂Hn−1 = H(−n− 1)n∂ + ∂H(−n)n−1 = H(−n− 1)n∂ + ∂H(−n− 1)n−1

= id− π(−1)n . . . π(−n)nπ(−n− 1)nι(−n− 1)nι(−n)n . . . ι(−1)1

= id− π(−1)n . . . π(−n)nι(−n)n . . . ι(−1)1 = id− πnιn

since π(−n − 1)nι(−n − 1)n = id. Thus (Hn | n ∈ N) is a complex homotopy from idCA to πι and we have
MA ' CA.
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§4 Path simplicial objects

We want to introduce the path simplicial object of a given simplicial object. Thereto, we have to study first a
certain endofunctor of the category of simplex types ∆.

(2.29) Proposition.

(a) We may define a functor

∆
Sh−→∆

by Sh[n] := [n+ 1] and

i(Shθ) :=

{
iθ i ∈ [0,m],

n+ 1 i = m+ 1

for every morphism [m]
θ−→ [n] in the category of simplex types ∆, m,n ∈ N0.

(b) We have

Shδk = δk for all k ∈ [0, n], n ∈ N, as morphisms [n] −→ [n+ 1]

and

Shσk = σk for all k ∈ [0, n], n ∈ N0, as morphisms [n+ 2] −→ [n+ 1].

(c) The cofaces [n]
δn+1

−−−→ [n+ 1] yield a natural transformation

id∆
δ•+1

−−−→ Sh.

(d) We have (Shθ)σn = σmθ for all morphisms [m]
θ−→ [n] in ∆ such that mθ = n.

Proof.

(a) We let m,n, p ∈ N0 be non-negative integers and [m]
θ−→ [n], [n]

ρ−→ [p] be morphisms in ∆. Then we
have

i(Sh(θρ)) =

{
iθρ i ∈ [0,m],

p+ 1 i = m+ 1

}
=

{
(iθ)(Shρ) i ∈ [0,m],

(n+ 1)(Shρ) i = m+ 1

}
= i(Shθ)(Shρ)

and

i(Shid[m]) =

{
iid[m] i ∈ [0,m],

m+ 1 i = m+ 1

}
=

{
i i ∈ [0,m],

m+ 1 i = m+ 1,

}
= i

for all i ∈ [0,m+ 1], that is, Sh(θρ) = (Shθ)(Shρ) and Shid[m] = idSh[m]. Hence

∆
Sh−→∆

is a functor.

(b) We have

i(Shδk) =

{
iδk i ∈ [0, n− 1],

n+ 1 i = n

}
=


i i ∈ [0, k − 1],

i+ 1 i ∈ [k, n− 1],

n+ 1 i = n

 =

{
i i ∈ [0, k − 1],

i+ 1 i ∈ [k, n]

}
= iδk
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for all i ∈ [0, n] and

i(Shσk) =

{
iσk i ∈ [0, n+ 1],

n+ 1 i = n+ 2

}
=


i i ∈ [0, k],

i− 1 i ∈ [k + 1, n+ 1],

n+ 1 i = n+ 2

 =

{
i i ∈ [0, k],

i− 1 i ∈ [k + 1, n+ 2]

}

= iσk

for all i ∈ [0, n + 2]. Hence we have Shδk = δk for all k ∈ [0, n], n ∈ N, and Shσk = σk for all k ∈ [0, n],
n ∈ N0.

(c) We let [m]
θ−→ [n] be a morphism in ∆. Then we have

iδm+1(Shθ) = i(Shθ) = iθ = iθδn+1

for all i ∈ [0,m], that is, δm+1(Shθ) = θδn+1. Hence the diagram

[m]
δm+1

//

θ

��

Sh[m]

Shθ

��
[n]

δn+1
// Sh[n]

commutes and therefore we have a natural transformation

id∆
δ•+1

−−−→ Sh.

(d) For every morphism [m]
θ−→ [n] in ∆ we get

i(Shθ)σn = iθσn = iθ = iσmθ

for all i ∈ [0,m]. Since mθ = n, we have moreover

(m+ 1)(Shθ)σn = (n+ 1)σn = n = mθ = (m+ 1)σmθ.

Altogether, (Shθ)σn = σmθ.

(2.30) Definition (path simplicial object).

(a) The endofunctor ∆
Sh−→∆ given as in proposition (2.29) by Sh[n] = [n+ 1] and

i(Shθ) =

{
iθ for i ∈ [0,m],

n+ 1 for i = m+ 1

for all i ∈ [0,m+ 1], morphisms [m]
θ−→ [n] in ∆, m,n ∈ N0, is called shift functor of ∆.

(b) For a given category C, we define the functor

sC P−→ sC

by P := ((Sh)op, C) (remember sC = (∆op, C)). Given a simplicial object X ∈ Ob sC in C, the functor P
assigns to X the simplicial object PX = X ◦ (Sh)op. It is called the path simplicial object of X.

(2.31) Proposition (classical description of the path simplicial object). We let X be a simplicial object in a
category C.

(a) We have PnX = Xn+1 for every n ∈ N0.

(b) The faces and degeneracies in the path simplicial object PX are given by dPX
k = dXk for every k ∈ [0, n],

n ∈ N, and sPX
k = sXk for every k ∈ [0, n], n ∈ N0.
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(c) The morphisms Xn+1
dn+1−−−→ Xn for n ∈ N0 form a simplicial morphism PX

d•+1−−−→ X.

Proof. This is a consequence of proposition (2.29).

The following notion is similar to that of a frontal morphism in [12], [13].

(2.32) Definition (backal morphisms). We let X be a simplicial object in a category C. A morphism Xn
f−→

Xm for m,n ∈ N0 is called backal, if there exists a morphism [m]
θ−→ [n] in the category of simplex types ∆

such that f = Xθ and mθ = n.

(2.33) Proposition. We let X be a simplicial object in a category C.

(a) If Xθ is backal, where [m]
θ−→ [n] is a morphism in ∆, then we have

snPθX = Xθsm.

(b) A morphism Xn
f−→ Xm for m,n ∈ N0 is backal if and only if there exists a representation

f = dnbu,1csmd1,te

with 0 ≤ m1 < · · · < mt < m and 0 ≤ n1 < · · · < nu < n, t, ut ∈ N0.

(c) If there exists a morphism [m− 1]
ρ−→ [n− 1] in ∆ such that f = PρX, then f is backal.

Proof.

(a) This is also a consequence of proposition (2.29).

(b) That follows from theorem (1.7) and its proof. Therein, the assertion nt 6= n is equivalent to n ∈ [0,m]θ
and since θ is a monotonically increasing map, this is equivalent to mθ = n.

(c) By our assumption, we have f = PρX = XShρ and m(Shρ) = n by the definition of the shift functor Sh.

The next theorem describes the significance of path simplicial objects in homotopy theory.

(2.34) Theorem. The path simplicial object PX of a simplicial object X in a category C is simplicially
homotopy equivalent to the constant simplicial object ConstX0.

Proof. Since dkdbn−1,0c = dbn,0c for all k ∈ [0, n], n ∈ N, and since skdbn+1,0c = dbn,0c for all k ∈ [0, n], n ∈ N0,
we have a simplicial morphism

PX
D−→ ConstX0

given by Dn = dbn,0c for all n ∈ N0. Further, we have sd0,nedk = sd0,n−1e for all k ∈ [0, n], n ∈ N, and
sd0,nesk = sd0,n+1e for all k ∈ [0, n], n ∈ N0, so that there exists a simplicial morphism

ConstX0
S−→ PX

given by Sn = sd0,ne for all n ∈ N0. We have SnDn = sd0,nedbn,0c = idX0
for all n ∈ N0. Hence D is a retraction

with coretraction S.
For each k ∈ [0, n], n ∈ N0, we define the morphism PnX

hk−→ Pn+1X by hk := dbn,k+1csdk+1,n+1e. Then we
have hndn+1 = sn+1dn+1 = idPnX and h0d0 = dbn,1csd1,n+1ed0 = dbn,0csd0,ne = DnSn for all n ∈ N0. Further,
we get

hldk = dbn,l+1csdl+1,n+1edk =


dbn,l+1cdksdl,ne for k < l,

dbn,k+1cdksdk,ne for k = l, k 6= 0

dbn,l+1csdl+1,ne for k > l + 1


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=


dkdbn−1,lcsdl,ne for k < l,

dbn,kcsdk,n+1edk for k = l, k 6= 0

dk−1dbn−1,l+1csdl+1,ne for k > l + 1

 =


dkhl−1 for k < l,

hk−1dk for k = l, k 6= 0,

dk−1hl for k > l + 1


and

hlsk = dbn,l+1csdl+1,n+1esk =

{
dbn,l+1csksdl+2,n+2e for k ≤ l,
dbn,l+1csdl+1,n+2e for k > l

}

=

{
skdbn+1,l+2csdl+2,n+2e for k ≤ l,
sk−1dbn+1,l+1csdl+1,n+2e for k > l

}
=

{
skhl+1 for k ≤ l,
sk−1hl for k > l

}

for all k ∈ [0, n+1], l ∈ [0, n], n ∈ N0. Hence (hk ∈ C(PnX,Pn+1X) | k ∈ [0, n], n ∈ N0) is a simplicial homotopy
from idPX to DS and we have proven that D is a simplicial homotopy equivalence, whence PX ' ConstX0.

§5 The classifying simplicial set of a group
As an example for the notions introduced in this chapter, the homology of a group via its classifying simplicial
set is studied now.
Throughout this section, we suppose given a group G.

(2.35) Definition (classifying simplicial set of a group). The nerve NG of G is also called the classifying
simplicial set of G; cf. definition (1.35). In this context, we write BG := NG.

Recall that BnG = G×n and that the faces and degeneracies in the simplicial set BG are given by

(gj)j∈bn−1,0cdk =


(gj)j∈bn−1,1c for k = 0,

(gj)j∈bn−1,k+1c ∪ (gkgk−1) ∪ (gj)j∈bk−2,0c for k ∈ [1, n− 1],

(gj)j∈bn−2,0c for k = n

for all (gj)j∈bn−1,0c ∈ BnG, k ∈ [0, n], n ∈ N, and

(gj)j∈bn−1,0csk = (gj)j∈bn−1,kc ∪ (1) ∪ (gj)j∈bk−1,0c

for all (gj)j∈bn−1,0c ∈ BnG, k ∈ [0, n], n ∈ N0.

(2.36) Definition (resolving simplicial set). The path simplicial set EG := PBG of the classifying simplicial
set of G is called resolving simplicial set of G.

(2.37) Proposition (classical description of the resolving simplicial set). The set of n-simplices of the resolving
simplicial set of G are given by EnG = G×(n+1) for n ∈ N0. The faces EnG

dk−→ En−1G and degeneracies
EnG

sk−→ En+1G are given by

(gj)j∈bn,0cdk =

{
(gj)j∈bn,1c for k = 0,

(gj)j∈bn,k+1c ∪ (gkgk−1) ∪ (gj)j∈bk−2,0c for k ∈ [1, n]

for all (gj)j∈bn,0c ∈ EnG, k ∈ [0, n], n ∈ N, and

(gj)j∈bn,0csk = (gj)j∈bn,kc ∪ (1) ∪ (gj)j∈bk−1,0c

for all (gj)j∈bn,0c ∈ EnG, k ∈ [0, n], n ∈ N0.

Proof. Follows from proposition (2.31) and definition (2.35).

From a homotopical point of view, the total simplicial set EG is trivial.

(2.38) Corollary. The resolving simplicial set EG of G is contractible.

Proof. Follows from theorem (2.34) and proposition (2.37).
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With the help of EG, we are able to connect the homology of G and the homology of BG, as we will see now.

(2.39) Remark. For the following facts, we refer the reader for example to [21, section 2.3].
Recall that the bar resolution of G with entries in a commutative ring R is defined by (BarG;R)n = RG⊗R(n+1)

for all n ∈ N0. It is a free resolution of the trivial RG-module R. A typical element of RG⊗R(n+1) is written by

(gi)
⊗
i∈bn,0c = gn ⊗ gn−1 ⊗ · · · ⊗ g0.

Note that RG⊗R(n+1) is free as an RG-module over the basis

{(
∏

i∈bn−1,kc

gi)
⊗
k∈bn,0c | gi ∈ G for i ∈ bn− 1, 0c}

and free as an R-module over the basis

{(
∏

i∈bn,kc

gi)
⊗
k∈bn,0c | gi ∈ G for i ∈ bn, 0c}.

The differentials

(BarG;R)n
∂−→ (BarG;R)n−1

in the bar resolution are given by

(gi)
⊗
i∈bn,0c∂ =

∑
k∈[0,n]

(−1)k(gi)
⊗
i∈bn,0c∧k.

(2.40) Proposition. We let R be a commutative ring. Then we have an isomorphism

C(EG;R) −→ BarG;R

given by

Cn(EG;R)→ (BarG;R)n, (gj)j∈bn,0c 7→ (
∏

i∈bn,jc

gi)
⊗
j∈bn,0c for all n ∈ N0.

In particular, C(EG;R) inherits the structure of a complex of RG-modules, where the multiplication with an
element g ∈ G is given by

g(gj)j∈bn,0c := (ggn) ∪ (gj)j∈bn,0c

for all (gj)j∈bn,0c ∈ EnG, n ∈ N0.

Proof. We let

ϕn : Cn(EG;R)→ (BarG;R)n, (gj)j∈bn,0c 7→ (
∏

i∈bn,jc

gi)
⊗
j∈bn,0c for all n ∈ N0.

Since these maps are bijective and linear over R, it remains to prove the compatibility with the differentials.
Indeed, we have

(gj)j∈bn,0cϕn∂ = (
∏

i∈bn,jc

gi)
⊗
j∈bn,0c∂ =

∑
k∈[0,n]

(−1)k(
∏

i∈bn,jc

gi)
⊗
j∈bn,0c∧k =

∑
k∈[0,n]

(−1)k(gj)j∈bn,0cdkϕn−1

= (gj)j∈bn,0c(
∑

k∈[0,n]

(−1)kdk)ϕn−1 = (gj)j∈bn,0c∂ϕn−1

for all (gj)j∈bn,0c ∈ EnG, n ∈ N, and since EnG is an R-linear basis of Cn(EG;R), this means ϕn∂ = ∂ϕn−1 for
all n ∈ N. Hence the morphisms ϕn for n ∈ N0 yield an isomorphism of complexes

C(EG;R)
ϕ−→ BarG;R.
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Via transfer of structure, the modules Cn(EG;R) become RG-modules and the morphisms ϕn become isomor-
phisms of RG-modules with

g(gj)j∈bn,0c = (g((gj)j∈bn,0cϕn))ϕ−1
n = (g(

∏
i∈bn,jc

gi)
⊗
j∈bn,0c)ϕ

−1
n = (g

∏
i∈bn,jc

gi)
⊗
j∈bn,0cϕ

−1
n

= (ggn) ∪ (gj)j∈bn−1,0c

for all g ∈ G, (gj)j∈bn,0c ∈ EnG, n ∈ N0. As the differentials of BarG;R are RG-linear, the differentials of
C(EG;R) become RG-linear as well and hence C(EG;R) becomes a complex of RG-modules.

We relate the complex of the classifying simplicial set with the bar resolution.

(2.41) Proposition. We let R be a commutative ring. Then we have

C(BG;R) ∼= R⊗RG C(EG;R).

Proof. Since

1⊗ (gj)j∈bn,0c = 1⊗ ((gn) ∪ (gj)j∈bn−1,0c) = 1⊗ gn((1) ∪ (gj)j∈bn−1,0c) = 1⊗ ((1) ∪ (gj)j∈bn−1,0c)

for all (gj)j∈bn,0c ∈ EnG, we obtain well-defined R-linear maps

ϕn : R⊗RG Cn(EG;R)→ Cn(BG;R),

which are given by

(1⊗ (gj)j∈bn,0c)ϕn := (gj)j∈bn−1,0c for all (gj)j∈bn,0c ∈ EnG,n ∈ N0.

An inverse R-linear map to ϕn is given by

Cn(BG;R)→ R⊗RG Cn(EG;R), (gj)j∈bn−1,0c 7→ 1⊗ ((1) ∪ (gj)j∈bn−1,0c).

Hence ϕn is an isomorphism for all n ∈ N0. So again, it remains to verify the compatibility with the differentials:
We have

(1⊗ (gj)j∈bn,0c)(R⊗RG ∂)ϕn−1 = (1⊗ ((gj)j∈bn,0c∂))ϕn−1 = (1⊗ (
∑

k∈[0,n]

(−1)k(gj)j∈bn,0cdk))ϕn−1

=
∑

k∈[0,n]

(−1)k(1⊗ ((gj)j∈bn,0cdk))ϕn−1 =
∑

k∈[0,n]

(−1)k(gj)j∈bn−1,0cdk

= (gj)j∈bn−1,0c∂ = (1⊗ (gj)j∈bn,0c)ϕn∂

for all (gj)j∈bn,0c ∈ EnG. Thus we have (R⊗RG ∂)ϕn−1 = ϕn∂ for all n ∈ N.

R⊗RG Cn(EG;R)
R⊗RG∂ //

ϕn

��

R⊗RG Cn−1(EG;R)

ϕn−1

��
Cn(BG;R)

∂ // Cn−1(BG;R)

Hence the maps ϕn for n ∈ N0 yield an isomorphism of complexes

R⊗RG C(EG;R)
ϕ−→ C(BG;R).

Now we are able to relate the (co)homology of the group G defined via Ext and Tor with the (co)homology of
its classifying simplicial set.

(2.42) Theorem (simplicial definition of homology and cohomology of groups). We let R be a commutative
ring and M be an R-module. Then we have

Hn(BG,M ;R) ∼= Hn(G,M ;R) and Hn(BG,M ;R) ∼= Hn(G,M ;R) for all n ∈ N0.
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Proof. By the propositions (2.40) and (2.41) we have

Hn(BG,M ;R) = Hn(C(BG;R)⊗RM) ∼= Hn(R⊗RG C(EG;R)⊗RM) ∼= Hn(C(EG;R)⊗RGM)

∼= Hn(BarG;R ⊗RGM) ∼= TorRGn (R,M) = Hn(G,M ;R)

and

Hn(BG,M ;R) = Hn
R(C(BG;R),M) ∼= Hn

R(R⊗RG C(EG;R),M) ∼= Hn
RG(C(EG;R),R(R,M))

∼= Hn
RG(BarG;R,M) ∼= ExtnRG(R,M) = Hn(G,M ;R)

for all n ∈ N0.
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Chapter III

Bisimplicial objects

In chapter II, §5, we associated to every group G its classifying simplicial set BG. As we will see in chapter
IV, this procedure can be applied dimensionwise to simplicial groups, and we obtain a simplicial object in the
category of simplicial sets. Such an object can be described more easily as a bisimplicial set, a notion we will
introduce now.
Furthermore, we have seen that one can associate a complex to every simplicial object in an abelian category.
This notion can be generalised to bisimplicial objects, in this case we obtain a double complex. A comparison
between the associated complex of the diagonal simplicial object and the total complex of this double complex
is given in the generalised Eilenberg-Zilber theorem in the last section of this chapter.
For further information, we refer the reader (again) to [8], [9], [17], [23], [26], [29, §8].

§1 From bisimplicial objects to simplicial objects

(3.1) Definition (bisimplicial objects and their morphisms). We let C be a category. The category of bisim-
plicial objects in C is defined to be the functor category

s2C := (((∆op ×∆op, C))).

An object in s2C is called a bisimplicial object in C, a morphism in s2C is called a morphism of bisimplicial
objects in C.

The categories s2C and ssC for a given category C are equivalent in an obvious way. Most time, we will not
distinguish both concepts and, whenever necessary or helpful, we change our point of view without any comment.

(3.2) Definition (objects and morphisms of a bisimplicial object). We suppose given a bisimplicial object X
in a category C and morphisms [m]

θ−→ [p], [n]
ρ−→ [q] in ∆, where m,n, p, q ∈ N0. In this situation, we set

Xm,n := X([m],[n]) and Xθ,ρ := X(θ,ρ). Moreover, we abbreviate Xθ,q := Xθ,id[q]
and Xp,ρ := Xid[p],ρ. Likewise

for morphisms of bisimplicial objects.

(3.3) Remark. Given a bisimplicial object X and morphisms [m]
θ−→ [p], [n]

ρ−→ [q] in ∆, where m,n, p, q ∈
N0, we have

Xθ,qXm,ρ = Xθ,ρ = Xp,ρXθ,n.

That is, the diagram

Xp,q

Xθ,q //

Xp,ρ

��

Xθ,ρ

##

Xm,q

Xm,ρ

��
Xp,n

Xθ,n // Xm,n

commutes.

41
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Proof. We have

Xθ,qXm,ρ = X(θ,id[q])X(id[m],ρ) = X(id[m],ρ)(θ,id[q]) = X(id[m]θ,ρid[q]) = Xθ,ρ

and

Xp,ρXθ,n = X(id[p],ρ)X(θ,id[n]) = X(θ,id[n])(id[p],ρ) = X(θid[p],id[n]ρ) = Xθ,ρ.

(3.4) Definition (horizontal and vertical faces and degeneracies). For every bisimplicial object X in a category
C, we define the horizontal and vertical faces

Xp,q
dh
k−→ Xp−1,q resp. Xp,q

dv
k−→ Xp,q−1

by dh
k := Xδk,q for k ∈ [0, p], p ∈ N, q ∈ N0, and dv

k := Xp,δk for k ∈ [0, q], q ∈ N, p ∈ N0. Analogously, the
horizontal and vertical degeneracies

Xp,q
shk−→ Xp+1,q resp. Xp,q

svk−→ Xp,q+1

are defined to be sh
k := Xσk,q for k ∈ [0, p], p ∈ N, q ∈ N0, and sv

k := Xp,σk for k ∈ [0, q], q ∈ N, p ∈ N0.

Our next aim is to present two different ways of obtaining a simplicial set from a given bisimplicial set.

(3.5) Definition (diagonal simplicial object). We let C be a category. The functor

s2C Diag−−−→ sC

is defined to be the induced functor Diag := Cat(∆, C) that we obtain by applying the hom-functor Cat(−, C)
to the diagonal morphism

∆op ∆−→∆op ×∆op

in Cat. For every bisimplicial object X in C, the simplicial object DiagX is called its diagonal simplicial object.

∆op ×∆op

X

��
∆op DiagX //

∆

88

C

(3.6) Proposition. The faces and degeneracies of DiagX for a bisimplicial object X in a category C are given
by dk = dh

kdv
k = dv

kdh
k for every k ∈ [0, n], n ∈ N, resp. sk = sh

ksv
k = sv

ksh
k for every k ∈ [0, n], n ∈ N0.

Proof. We have

dDiagX
k = (DiagX)δk = X∆(δk) = Xδk,δk = Xδk,nXn−1,δk = dh

kdv
k

for all k ∈ [0, n], n ∈ N, where δk ∈ ∆([n− 1], [n]), and

sDiagX
k = (DiagX)σk = X∆(σk) = Xσk,σk = Xσk,nXn+1,σk = sh

ksv
k

for all k ∈ [0, n], n ∈ N0, where σk ∈ ∆([n+ 1], [n]).

(3.7) Proposition. We let X and Y be bisimplicial objects in a category C and we let X f−→ Y be a morphism
of bisimplicial objects in C. The induced morphism

DiagX
Diag f−−−−→ Diag Y

is given by Diagn f = fn,n for all n ∈ N0.

Proof. For all n ∈ N0, we have

Diagn f = Diag[n] f = f∆([n]) = f([n],[n]) = fn,n.
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(3.8) Definition (splitting). For a morphism [m]
θ−→ [n] in ∆ we define its splitting at p ∈ [0,m] by Splp(θ) :=

(Spl≤p(θ),Spl≥p(θ)) ∈ Mor(∆×∆), where

[p]
Spl≤p(θ)
−−−−−→ [pθ] and [m− p]

Spl≥p(θ)
−−−−−→ [n− pθ]

are given by iSpl≤p(θ) := iθ for i ∈ [0, p] and iSpl≥p(θ) := (i+ p)θ − pθ for i ∈ [0,m− p].

(3.9) Lemma. We have

Splp(θρ) = Splp(θ)Splpθ(ρ)

for all morphisms [m]
θ−→ [n] and [n]

ρ−→ [l] in ∆ and all p ∈ [0,m].

Proof. We have

iSpl≤p(θρ) = i(θρ) = (iθ)ρ = (iθ)Spl≤pθ(ρ) = iSpl≤p(θ)Spl≤pθ(ρ)

for all i ∈ [0, p] as well as

iSpl≥p(θρ) = (i+ p)(θρ)− p(θρ) = ((i+ p)θ − pθ + pθ)ρ− (pθ)ρ = ((i+ p)θ − pθ)Spl≥pθ(ρ)

= iSpl≥p(θ)Spl≥pθ(ρ)

for all i ∈ [0,m− p], that is,

Splp(θρ) = (Spl≤p(θρ),Spl≥p(θρ)) = (Spl≤p(θ)Spl≤pθ(ρ),Spl≥p(θ)Spl≥pθ(ρ))

= (Spl≤p(θ),Spl≥p(θ))(Spl≤pθ(ρ),Spl≥pθ(ρ)) = Splp(θ)Splpθ(ρ).

(3.10) Remark (cf. Artin and Mazur [1]). We suppose given a bisimplicial set X. There is a simplicial set
TotX given by

TotnX := {(xq)q∈bn,0c ∈ ×
q∈bn,0c

Xq,n−q | xqdh
q = xq−1dv

0 for all q ∈ bn, 1c} for all n ∈ N0

and by (xq)q∈bn,0c TotθX = (xpθXSplp(θ))p∈bm,0c for all (xq)q∈bn,0c ∈ TotnX and for all morphisms [m]
θ−→ [n]

in ∆.

Proof. For a morphism [m]
θ−→ [n] in ∆, we have

xpθXSplp(θ)d
h
p = xpθXSpl≤p(θ),Spl≥p(θ)Xδp,m−p = xpθXδpSpl≤p(θ),Spl≥p(θ)

= xpθXSpl≤p−1(θ)δd(p−1)θ+1,pθe,Spl≥p(θ) = xpθXδd(p−1)θ+1,pθe,n−pθXSpl≤p−1(θ),Spl≥p(θ)

= xpθd
h
bpθ,(p−1)θ+1cXSpl≤p−1(θ),Spl≥p(θ)

for all p ∈ bm, 1c. Using xqdh
q = xq−1dv

0 for q ∈ bpθ, (p− 1)θ + 1c, we obtain

xpθd
h
bpθ,(p−1)θ+1c = x(p−1)θd

v
bpθ−(p−1)θ−1,0c.

Since

x(p−1)θd
v
bpθ−(p−1)θ−1,0cXSpl≤p−1(θ),Spl≥p(θ) = x(p−1)θXSpl≤p−1(θ),Spl≥p(θ)δdpθ−(p−1)θ−1,0e

= x(p−1)θXSpl≤p−1(θ),δ0Spl≥p−1(θ)

= x(p−1)θXSpl≤p−1(θ),Spl≥p−1(θ)Xp−1,δ0 = x(p−1)θXSplp−1(θ)d
v
0,

we finally have

xpθXSplp(θ)d
h
p = xpθd

h
bpθ,(p−1)θ+1cXSpl≤p−1(θ),Spl≥p(θ) = x(p−1)θd

v
bpθ−(p−1)θ−1,0cXSpl≤p−1(θ),Spl≥p(θ)

= x(p−1)θXSplp−1(θ)d
v
0
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for all p ∈ bm, 1c, that is, TotθX : TotnX → TotmX, (xq)q∈bn,0c 7→ (xpθXSplp(θ))p∈bm,0c is a well-defined map.
By lemma (3.9),

(xr)r∈bl,0c(TotθρX) = (xpθρXSplp(θρ))p∈bm,0c = (xpθρXSplp(θ)Splpθ(ρ))p∈bm,0c

= (xpθρXSplpθ(ρ)XSplp(θ))p∈bm,0c = (xqρXSplq(ρ)
)q∈bn,0c(TotθX)

= (xr)r∈bl,0c(TotρX)(TotθX)

for all (xr)r∈bl,0c ∈ TotrX and all morphisms [m]
θ−→ [n] and [n]

ρ−→ [l] in ∆ and since

(xq)q∈bn,0c(Totid[n]
X) = (xqid[n]

XSplq(id[n]))q∈bn,0c = (xqXid[q],id[n−q])q∈bn,0c = (xq)q∈bn,0c

for all (xq)q∈bn,0c ∈ TotnX, n ∈ N0, we have in fact a simplicial set.

(3.11) Definition (total simplicial set). For every bisimplicial set X, the simplicial set TotX given as in
remark (3.10) by

TotnX = {(xq)q∈bn,0c ∈ ×
q∈bn,0c

Xq,n−q | xqdh
q = xq−1dv

0 for all q ∈ bn, 1c} for all n ∈ N0

and by (xq)q∈bn,0c(TotθX) = (xpθXSplp(θ))p∈bm,0c for all (xq)q∈bn,0c ∈ TotnX and for all morphisms [m]
θ−→ [n]

in ∆, is called the total simplicial set of X.

(3.12) Proposition. We let X be a bisimplicial set. The faces in its total simplicial set TotX are given by

(xq)q∈bn,0cdk = (xqd
h
k)q∈bn,k+1c ∪ (xqd

v
k−q)q∈bk−1,0c

for (xq)q∈bn,0c ∈ TotnX, k ∈ [0, n], n ∈ N, and the degeneracies are given by

(xq)q∈bn,0csk = (xqs
h
k)q∈bn,kc ∪ (xqs

v
k−q)q∈bk,0c

for (xq)q∈bn,0c ∈ TotnX, k ∈ [0, n], n ∈ N0.

Proof. We compute

(xq)q∈bn,0cdk = (xq)q∈bn,0c(Totδk X) = (xpδkXSplp(δk))p∈bn−1,0c

= (xp+1Xδk,id[n−1−p])p∈bn−1,kc ∪ (xpXid[p],δk−p)p∈bk−1,0c

= (xpd
h
k)p∈bn,k+1c ∪ (xpd

v
k−p)p∈bk−1,0c

for (xq)q∈bn,0c ∈ TotnX, k ∈ [0, n], n ∈ N, and

(xq)q∈bn,0csk = (xq)q∈bn,0c(Totσk X) = (xpσkXSplp(σk))p∈bn−1,0c

= (xp−1Xσk,id[n+1−p])p∈bn+1,k+1c ∪ (xpXid[p],σk−p)p∈bk,0c = (xps
h
k)p∈bn,kc ∪ (xps

v
k−p)p∈bk,0c

for (xq)q∈bn,0c ∈ TotnX, k ∈ [0, n], n ∈ N0.

(3.13) Proposition.

(a) We let X f−→ Y be a bisimplicial map between bisimplicial sets X and Y . There exists an induced
simplicial map Tot f : TotX → TotY between the corresponding total simplicial sets TotX and TotY ,
given by

(xq)q∈bn,0c(Totn f) = (xqfq,n−q)q∈bn,0c for (xq)q∈bn,0c ∈ TotnX,n ∈ N0.

(b) The construction in (a) yields a functor

s2Set
Tot−−→ sSet.
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Proof.

(a) For a given (xq)q∈bn,0c ∈ TotnX, we have

xqfq,n−qd
h
q = xqd

h
qfq−1,n−q = xq−1dv

0fq−1,n−q = xq−1fq−1,n−q+1dv
0.

Thus the map

Totn f : TotnX → Totn Y, (xq)q∈bn,0c 7→ (xqfq,n−q)q∈bn,0c

is well-defined for every n ∈ N0. We let [m]
θ−→ [n] be a morphism in ∆. For (xq)q∈bn,0c ∈ TotnX, we

compute

(xq)q∈bn,0c(TotθX)(Totm f) = (xpθXSplp(θ))p∈bm,0c(Totm f) = (xpθXSplp(θ)fp,m−p)p∈bm,0c

= (xpθfpθ,n−pθYSplp(θ))p∈bm,0c = (xqfq,n−q)q∈bn,0c(Totθ Y )

= (xq)q∈bn,0c(Totn f)(Totθ Y ).

Hence we have a commutative diagram

TotnX
Totθ X //

Totn f

��

TotmX

Totm f

��
Totn(Y )

Totθ Y // Totm Y

that is, the maps Totn f for n ∈ N yield a simplicial map

TotX
Tot f−−−→ TotY.

(b) We let X, Y and Z be bisimplicial sets and we let X f−→ Y and Y g−→ Z be bisimplicial maps. Then we
have

(xq)q∈bn,0c Totn(fg) = (xq(fg)q,n−q)q∈bn,0c = (xqfq,n−qgq,n−q)q∈bn,0c = (xqfq,n−q)q∈bn,0c(Totn g)

= (xq)q∈bn,0c(Totn f)(Totn g)

and

(xq)q∈bn,0c(Totn idX) = (xq(idX)q,n−q)q∈bn,0c = (xqidXq,n−q )q∈bn,0c = (xq)q∈bn,0c

for all (xq)q∈bn,0c ∈ TotnX, n ∈ N0. Hence we have a functor

s2Set
Tot−−→ sSet.

(3.14) Lemma. We have

δdp+1,meθ = Spl≤p(θ)δ
dpθ+1,ne and δd0,p−1eθ = Spl≥p(θ)δ

d0,pθ−1e

for all θ ∈ ∆([m], [n]), where m,n, p ∈ N0 and p ≤ m.

Proof. We compute

iδdp+1,meθ = iθ = iSpl≤p(θ) = iSpl≤p(θ)δ
dpθ+1,ne

and

iδd0,p−1eθ = (i+ p)θ = (i+ p)θ − pθ + pθ = iSpl≥p(θ) + pθ = iSpl≥p(θ)δ
d0,pθ−1e

for all i ∈ [0, p].
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The following proposition states a connection between the diagonal simplicial set and the total simplicial set
construction.

(3.15) Proposition. We have a natural transformation

Diag
φ−→ Tot

between the functors

s2Set
Diag−−−→ sSet and s2Set

Tot−−→ sSet,

where the simplicial map

DiagX
φX−−→ TotX

at X ∈ Ob sSet is given by xn(φX)n = (xndh
bn,q+1cd

v
bq−1,0c)q∈bn,0c for all xn ∈ DiagnX, n ∈ N0.

Proof. We let X be a bisimplicial set. First of all,

xndh
bn,q+1cd

v
bq−1,0cd

h
q = xndh

bn,qcd
v
bq−1,0c = xndh

bn,qcd
v
bq−2,0cd

v
0

for xn ∈ DiagnX, q ∈ bn, 1c, that is, (φX)n : DiagnX → TotnX,xn 7→ (xndh
bn,q+1cd

v
bq−1,0c)q∈bn,0c is a well-

defined map for all n ∈ N0. Given a morphism θ ∈ ∆([m], [n]), lemma (3.14) yields

xn(DiagθX)(φX)m = (xnXθ,θ)(φX)m = (xnXθ,θd
h
bm,p+1cd

v
bp−1,0c)p∈bm,0c

= (xnXθ,θXδdp+1,me,δd0,p−1e)p∈bm,0c = (xnXδdp+1,meθ,δd0,p−1eθ)p∈bm,0c

= (xnXSpl≤p(θ)δdpθ+1,ne,Spl≥p(θ)δd0,pθ−1e)p∈bm,0c

= (xnXδdpθ+1,ne,δdpθ−1,0eXSpl≤p(θ),Spl≥p(θ))p∈bm,0c

= (xndh
bn,pθ+1cd

v
bpθ−1,0cXSplp(θ))p∈bm,0c = (xndh

bn,q+1cd
v
bq−1,0c)q∈bn,0c(TotθX)

= xn(φX)n(TotθX)

for all xn ∈ DiagnX. Hence the diagram

DiagnX
Diagθ X //

(φX)n

��

DiagmX

(φX)m

��
TotnX

Totθ X // TotmX

commutes and we get a simplicial map

DiagX
φX−−→ TotX.

To show naturality, we let X and Y be bisimplicial sets and X f−→ Y be a bisimplicial map. We compute

xn(φX)n(Totn f) = (xndh
bn,q+1cd

v
bq−1,0c)q∈bn,0c(Totn f) = (xndh

bn,q+1cd
v
bq−1,0cfq,n−q)q∈bn,0c

= (xnfn,ndh
bn,q+1cd

v
bq−1,0c)q∈bn,0c = xnfn,n(φY )n = xn(Diagn f)(φY )n.

for all xn ∈ DiagnX, n ∈ N0, which shows the commutativity of

DiagX
φX //

Diag f

��

TotX

Tot f

��
Diag Y

φY // TotY

Hence we have indeed a natural transformation

Diag
φ−→ Tot .

Cegarra and Remedios have proven in [7] that φX is a so-called weak homotopy equivalence for each bisim-
plicial object X (cf. theorem (4.32)).
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§2 Homotopy of double complexes

Recall the normalisation theorem (2.28), which states that the associated complex and the Moore complex of
a given simplicial object in an abelian category are homotopy equivalent. Since the corresponding notions also
exist for bisimplicial objects (cf. §3), a natural question is to ask for the analogous theorem in this case. Indeed,
there is a normalisation theorem for bisimplicial objects, cf. (3.24). In this section, the necessary notion of a
double complex homotopy is introduced (cf. [22, section 1.1.5]).
In this section, we suppose given an additive category A.

(3.16) Definition (double complex homotopy). We let C,D ∈ C2(A) be double complexes in A and we let

C
ϕ−→ D and C ψ−→ D

be morphisms of double complexes. The morphisms f and g are said to be homotopic, if for all p, q ∈ Z there
are complex morphisms

Cp,−
hh
p,−−−−→ Dp+1,− and C−,q

hv
−,q−−−→ D−,q+1

such that

hh
p,q∂

h + ∂hhh
p−1,q + hv

p,q∂
v + ∂vhv

p,q−1 = ϕp,q − ψp,q for all p, q ∈ Z.

In this case, we write ϕ ∼ ψ and we call

(hh
p,q ∈ A(Cp,q, Dp+1,q) | p, q ∈ Z) ∪ (hv

p,q ∈ A(Cp,q, Dp,q+1) | p, q ∈ Z)

a double complex homotopy from ϕ to ψ. If hv
−,q = 0 for all q ∈ Z, we say that f and g are horizontally

homotopic and we call

(hh
p,q ∈ A(Cp,q, Dp+1,q) | p, q ∈ Z)

a horizontal double complex homotopy from ϕ to ψ. Similarly, if hh
p,− = 0 for all p ∈ Z, then f and g are said

to be vertically homotopic and

(hv
p,q ∈ A(Cp,q, Dp,q+1) | p, q ∈ Z)

is called a vertical double complex homotopy from ϕ to ψ.

Given a double complex C ∈ Ob C2
q(A), recall that its total complex TotC has entries Totn C =

⊕
p∈bn,0c Cp,n−p

for n ∈ N0 and differentials Totn C
∂−→ Totn−1 C given by

∂p,q =


∂h if q = p− 1,

(−1)p∂v if q = p,

0 else

for p ∈ bn, 0c, q ∈ bn−1, 0c, n ∈ N. Moreover, given a morphism ϕ in C2
q(A), we have Totn ϕ =

⊕
p∈bn,0c ϕp,n−p

for n ∈ N0.
The total simplicial set TotX of a bisimplicial set X ∈ Ob sSet is not to be confused with the total complex
TotC of a double complex C ∈ Ob C2

q(A).

(3.17) Proposition. We let C,D ∈ Ob C2
q(A) be double complexes in A and we let

C
ϕ−→ D and C ψ−→ D

be double complex morphisms. If ϕ is homotopic to ψ, then Totϕ is homotopic to Totψ.
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Proof. We suppose that ϕ ∼ ψ via a given double complex homotopy (hh
p,q ∈ A(Cp,q, Dp+1,q) | p, q ∈ Z)∪(hv

p,q ∈
A(Cp,q, Dp,q+1) | p, q ∈ Z). Then we can define morphisms⊕

p∈bn,0c

Cp,n−p
hn−→

⊕
q∈bn+1,0c

Dq,n+1−q

by setting

(hn)p,q =


(−1)phv

p,n−p if q = p,

hh
p,n−p if q = p+ 1,

0 else,

for all p ∈ bn, 0c, q ∈ bn+ 1, 0c, that is

hn =


hh
n,0 (−1)nhv

n,0 0

hh
n−1

. . .

. . . −hv
1,n−1

0 hh
0,n hv

0,n

 .

We get

(hn∂ + ∂hn−1)p,r = (hn∂)p,r + (∂hn−1)p,r =
∑

q∈bn+1,0c

(hn)p,q∂q,r +
∑

q∈bn−1,0c

∂p,q(hn−1)q,r

= (−1)phv
p,n−p∂p,r + hh

p,n−p∂p+1,r + ∂p,r−1h
h
r−1,n−r + (−1)r∂p,rh

v
r,n−1−r

=


(−1)phv

p,n−p∂
h + (−1)p−1∂hhv

p−1,n−p if r = p− 1,

hv
p,n−p∂

v + hh
p,n−p∂

h + ∂hhh
p−1,n−p + ∂vhv

p,n−1−p if r = p,

(−1)p+1hh
p,n−p∂

v + (−1)p∂vhh
p,n−1−p if r = p+ 1,

0 else


=

{
ϕp,n−p − ψp,n−p if r = p,

0 else

}
= (Totn ϕ− Totn ψ)p,r

for all p, r ∈ bn, 0c, n ∈ N0, that is, (hn ∈ A(Totn C,Totn+1D) | n ∈ N0) is a complex homotopy from Totϕ to
Totψ.

The preceeding proposition shows that Tot is a functor from the so-called homotopy category of bounded double
complexes to the so-called homotopy category of bounded complexes. We will not introduce these categories
here, because we do not need them; however, we shall make use of one consequence of Tot being a functor
between these homotopy categories.

(3.18) Definition (double complex homotopy equivalence). Double complexes C,D ∈ C2(A) in A are said to
be (double complex ) homotopy equivalent, if there are morphisms

C
ϕ−→ D and D ψ−→ C

such that ϕψ ∼ idC and ψϕ ∼ idD. In this case, we call ϕ and ψ mutually inverse (double complex ) homotopy
equivalences.

(3.19) Proposition. If C,D ∈ Ob C2
q(A) are homotopy equivalent double complexes in A, then their total

complexes TotC and TotD are homotopy equivalent, too.

Proof. Suppose there is a double complex homotopy equivalence C ϕ−→ D with inverse D ψ−→ C, that is,
ϕψ ∼ idC and ψϕ ∼ idD. According to proposition (3.17), it follows that

(Totϕ)(Totψ) = Tot(ϕψ) ∼ Tot(idC) = idTotC and (Totψ)(Totϕ) = Tot(ψϕ) ∼ Tot(idD) = idTotD.

Thus Totϕ is a complex homotopy equivalence from TotC to TotD with inverse Totψ.
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§3 Homology of bisimplicial objects
In this section, double complexes attached to a bisimplicial object are introduced and a normalisation theorem
is proven, cf. theorem (2.28).
We note that the categories C(sA) and sC(A) for an additive category A are equivalent, and we identify them.

(3.20) Definition (associated double complex). We let A ∈ Ob s2A be a bisimplicial object in an additive
category A. The associated double complex of A is defined by C(2)A := CCA. Here, CpCqA = Ap,q for all
p, q ∈ N0.

(3.21) Definition (associated double complex to a bisimplicial set). We let R be a commutative ring. For a
bisimplicial set X, the double complex C(2)(X;R) := C(2)RX is called the double complex associated to X over
R. If R = Z, we will just speak of the double complex associated to X and we write C(2)(X) := C(2)(X;Z).

(3.22) Remark. There exists a double complex D(2)A � C(2)A for every bisimplicial object A ∈ Ob s2A in an
abelian category A with D

(2)
p,qA :=

∑
i∈[0,p−1] Im sh

i +
∑
j∈[0,q−1] Im sv

j for all p, q ∈ N0.

Proof. Analogous to remark (2.25), using remark (3.3).

(3.23) Definition (Moore double complex, degenerate double complex). We let A ∈ Ob s2A be a bisimplicial
object in an abelian category A.

(a) The Moore double complex of A is defined by M(2)A := MMA.

(b) The degenerate double complex of A is the sub-double complex D(2)A � C(2)A given as in remark (3.22)
by D

(2)
p,qA :=

∑
i∈[0,p−1] Im sh

i +
∑
j∈[0,q−1] Im sv

j for all p, q ∈ N0.

(3.24) Theorem (normalisation theorem for bisimplicial objects). We have

C(2)A ∼= D(2)A⊕M(2)A and C(2)A ' M(2)A

for each bisimplicial object A ∈ Ob s2A in an abelian category A.

Proof. We let A ∈ Ob s2A be a bisimplicial object in A. Then we have

C(2)A = CCA ' MCA ' MMA = M(2)A,

where the first homotopy equivalence is an application of the normalisation theorem (2.28) to the category
sC(A) and the second homotopy equivalence results from the fact that the additive functor M maps homotopy
equivalent complexes over sA to homotopy equivalent complexes over C(A). Furthermore, the normalisation
theorem (2.28) yields

C(2)A = CCA ∼= DCA⊕MCA ∼= DCA⊕MDA⊕MMA.

Since M(2)A = MMA, it remains to show that D(2)A = DCA⊕MDA. On the one hand, we have

DpCqA⊕MpDqA � DpCqA+ CpDqA =
∑

i∈[0,p−1]

Im sh
i +

∑
j∈[0,q−1]

Im sv
j = D(2)

p,qA

for all p, q ∈ N0. Conversely, we have

Im sh
i = (Ap−1,q)s

h
i
∼= (MqAp−1,− ⊕DqAp−1,−)sh

i � (MqAp−1,−)sh
i + (DqAp−1,−)sh

i � DpMqA+ DpDqA

for all i ∈ [0, p− 1] and analogously

Im sv
j � MpDqA+ DpDqA

for all j ∈ [0, q − 1]. Hence

D(2)
p,qA =

∑
i∈[0,p−1]

Im sh
i +

∑
j∈[0,q−1]

Im sv
j � DpMqA+ DpDqA+ MpDqA+ DpDqA = DpCqA⊕MpDqA

for all p, q ∈ N0.
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(3.25) Definition (path bisimplicial object). For a given category C, we define the functor

P(2) := ((((Sh)op × (Sh)op, C))).

Given a bisimplicial object X ∈ Ob sC in C, the functor P(2) assigns to X the bisimplicial object P(2)X =

X ◦ ((Sh)op × (Sh)op). It is called the path bisimplicial object of X. In particular, we have P
(2)
p,qX = Xp+1,q+1

for p, q ∈ N0.

§4 The generalised Eilenberg-Zilber theorem
We give a proof of the generalised Eilenberg-Zilber theorem of Dold, Puppe and Cartier [9]. The arguments
used here are adapted from the articles [12], [13] of Eilenberg and Mac Lane.
Throughout this section, we suppose given a bisimplicial object A in an abelian category A.

(3.26) Definition (shuffle). We let n ∈ N0 and p ∈ bn, 0c. A (p, n − p)-shuffle is a permutation µ ∈ S[0,n−1]

such that µ|[0,p−1] and µ|[p,n−1] are strictly monotonically increasing maps, where we write S[0,n−1] for the
symmetric group on [0, n− 1]. The set of all (p, n− p)-shuffles is denoted by Shp,n−p.

(3.27) Definition. We let n ∈ N0, p ∈ bn, 0c.

(a) The morphism

An,n
AWA

p,n−p−−−−−→ Ap,n−p

is defined by

AWp,n−p := AWA
p,n−p := dh

bn,p+1cd
v
bp−1,0c.

(b) Further, we let

Ap,n−p
∇p,n−p−−−−−→ An,n

be given by

∇p,n−p := ∇Ap,n−p :=
∑

µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ.

Our first aim is to show that these morphisms yield complex morphisms between C DiagA and Tot C(2)A.

(3.28) Remark. Defining

Cn DiagA
AWn−−→ Totn C(2)A

by AWnprp,n−p := AWp,n−p for all p ∈ bn, 0c, n ∈ N0, we obtain a complex morphism

C DiagA
AW−→ Tot C(2)A.

Proof. We have

AWn∂prp,n−1−p = AWp+1,n∂
h + (−1)pAWp,n−p∂

v

= dh
bn,p+2cd

v
bp,0c(

∑
i∈[0,p+1]

(−1)idh
i ) + (−1)pdh

bn,p+1cd
v
bp−1,0c(

∑
j∈[0,n−p]

(−1)jdv
j )

=
∑

i∈[0,p+1]

(−1)idh
bn,p+2cd

h
i dv
bp,0c +

∑
j∈[0,n−p]

(−1)j+pdh
bn,p+1cd

v
j+pd

v
bp−1,0c

=
∑

i∈[0,p+1]

(−1)idh
bn,p+2cd

h
i dv
bp,0c +

∑
j∈[p,n]

(−1)jdh
bn,p+1cd

v
jdv
bp−1,0c
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=
∑
i∈[0,p]

(−1)idh
i dv
i dh
bn−1,p+1cd

v
bp−1,0c +

∑
j∈[p+1,n]

(−1)jdh
jdv
jdh
bn−1,p+1cd

v
bp−1,0c

= (
∑

k∈[0,n]

(−1)kdh
kdv
k)dh
bn−1,p+1cd

v
bp−1,0c = (

∑
k∈[0,n]

(−1)kdDiagA
k )dh

bn−1,p+1cd
v
bp−1,0c

= ∂AWp,n−1−p = ∂AWn−1prp,n−1−p

for all p ∈ bn− 1, 0c, n ∈ N, that is, we get a commutative diagram

Cn DiagA
∂ //

AWn

��

Cn−1 DiagA

AWn−1

��
Totn C(2)A

∂ // Totn−1 C(2)A

for every n ∈ N. Thus the morphisms AWn for n ∈ N0 yield a complex morphism

C DiagA
AW−→ Tot C(2)A.

(3.29) Definition (Alexander-Whitney morphism). The complex morphism

C DiagA
AW−→ Tot C(2)A

given as in remark (3.28) by AWnprp,n−p = AWp,n−p for all p ∈ bn, 0c, that is,

AWn =
(
AWn,0 . . . AW0,n

)
as a morphism from Cn DiagA = An,n to Totn C(2)A =

⊕
p∈bn,0cAp,n−p for all n ∈ N0, is called Alexander-

Whitney morphism.

(3.30) Proposition (recursive characterisation of the shuffle morphism via path simplicial objects). We have
∇A0,0 = idA0,0

and

∇Ap,n−p =


sv
0∇P(2)A

n−1,0 if p = n,

(−1)n−psv
n−p∇P(2)A

p−1,n−p + sh
p∇P(2)A

p,n−1−p if p ∈ bn− 1, 1c,
sh
0∇P(2)A

0,n−1 if p = 0

for all p ∈ bn, 0c, n ∈ N.

Proof. We let n ∈ N. For p ∈ bn− 1, 1c we have

∇Ap,n−p =
∑

µ∈Shp,n−p

(sgnµ)sv
d0,p−1es

h
dp,n−1e

=
∑

µ∈Shp,n−p
(p−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ +
∑

µ∈Shp,n−p
(n−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ

=
∑

µ∈Shp,n−p
(p−1)µ=n−1

(sgnµ)sv
d0,p−2eµsv

n−1sh
dp,n−1eµ +

∑
µ∈Shp,n−p

(n−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−2eµsh
n−1

= sv
n−p

∑
µ∈Shp,n−p

(p−1)µ=n−1

(sgnµ)sv
d0,p−2eµsh

dp,n−1eµ + sh
p

∑
µ∈Shp,n−p

(n−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−2eµ.

Since there are bijections

{µ ∈ Shp,n−p | (p− 1)µ = n− 1} → {µ ∈ Shp−1,n−p+1 | (n− 1)µ = n− 1}, µ 7→ (p− 1, p, . . . , n− 2, n− 1)µ

and

{µ ∈ Shp,n−p | (n− 1)µ = n− 1} → Shp,n−1−p, µ 7→ µ|d0,n−2e
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we can conclude

∇Ap,n−p = sv
n−p

∑
µ∈Shp,n−p

(p−1)µ=n−1

(sgnµ)sv
d0,p−2eµsh

dp,n−1eµ + sh
p

∑
µ∈Shp,n−p

(n−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−2eµ

= (−1)n−psv
n−p

∑
µ∈Shp−1,n−p+1

(n−1)µ=n−1

(sgnµ)sv
d0,p−2eµsh

dp−1,n−2eµ + sh
p

∑
µ∈Shp,n−p

(n−1)µ=n−1

(sgnµ)sv
d0,p−1eµsh

dp,n−2eµ

= (−1)n−psv
n−p

∑
µ∈Shp−1,n−p

(sgnµ)sv
d0,p−2eµsh

dp−1,n−2eµ + sh
p

∑
µ∈Shp,n−1−p

(sgnµ)sv
d0,p−1eµsh

dp,n−2eµ

= (−1)n−psv
n−p∇P(2)A

p−1,n−p + sh
p∇P(2)A

p,n−1−p

The proof for p = n or p = 0 is easier since in this case the sum in the shuffle morphism does not split into two
sums and since the only (n, 0)-shuffle resp. (0, n)-shuffle is the identity: We have

∇An,0 = sv
d0,n−1e = sv

0sv
d0,n−2e = sv

0∇P(2)A
n−1,0

and

∇A0,n = sh
d0,n−1e = sh

0sh
d0,n−2e = sh

0∇P(2)A
0,n−1.

(3.31) Lemma. We have

∇Ap,n−psDiagA
n = sv

n−ps
h
p∇P(2)A

p,n−p

and

∇P(2)A
p,n−pd

DiagA
n+1 = dv

n+1−pd
h
p+1∇Ap,n−p

for all p ∈ bn, 0c, n ∈ N0.

Proof. We compute

∇Ap,n−psDiagA
n =

∑
µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµsv
nsh
n = sv

n−ps
h
p

∑
µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ

= sv
n−ps

h
p∇P(2)A

p,n−p

and

∇P(2)A
p,n−pd

DiagA
n+1 =

∑
µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµdv
n+1dh

n+1

= dv
n+1−pd

h
p+1

∑
µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ = dv
n+1−pd

h
p+1∇Ap,n−p

for all p ∈ bn, 0c, n ∈ N0.

(3.32) Remark. We have

∇p,n−pdDiagA
n =


dh
n∇n−1,0 if p = n,

(−1)n−pdh
p∇p−1,n−p + dv

n−p∇p,n−1−p if p ∈ bn− 1, 1c,
dv
n∇0,n−1 if p = 0

for all p ∈ bn, 0c, n ∈ N.

Proof. According to proposition (3.30) and lemma (3.31), we have

∇Ap,n−pdDiagA
n = ((−1)n−psv

n−p∇P(2)A
p−1,n−p + sh

p∇P(2)A
p,n−1−p)d

DiagA
n

= (−1)n−psv
n−p∇P(2)A

p−1,n−pd
DiagA
n + sh

p∇P(2)A
p,n−1−pd

DiagA
n
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= (−1)n−psv
n−pd

v
n+1−pd

h
p∇Ap−1,n−p + sh

pdv
n−pd

h
p+1∇Ap,n−1−p

= (−1)n−pdh
p∇Ap−1,n−p + dv

n−p∇Ap,n−1−p

for p ∈ bn− 1, 1c. The computation for p = n and p = 0 is analogous: We have

∇An,0dDiagA
n = (sv

0∇P(2)A
n−1,0)dDiagA

n = sv
0dv

1dh
n∇An−1,0 = dh

n∇An−1,0

and

∇A0,ndDiagA
n = (sh

0∇P(2)A
0,n−1)dDiagA

n = sh
0dv
ndh

1∇A0,n−1 = dv
n∇A0,n−1.

(3.33) Remark. Defining

Totn C(2)A
∇n−−→ Cn DiagA

by embp,n−p∇n := ∇p,n−p for all p ∈ bn, 0c, n ∈ N0, we obtain a complex morphism

Tot C(2)A
∇−→ C DiagA.

Proof. By the definition of the differential morphisms in Tot C(2)A, we have to show that

∇Ap,n−p∂C DiagA =


∂C(2)A,h∇An−1,0 if p = n,

∂C(2)A,h∇Ap−1,n−p + (−1)p∂C(2)A,v∇Ap,n−1−p if p ∈ bn− 1, 1c,
∂C(2)A,v∇A0,n−1 if p = 0

for all p ∈ bn, 0c, n ∈ N0. First, we consider the boundary cases: We have

∇An,0∂C DiagA = sv
d0,n−1e

∑
k∈[0,n]

(−1)kdDiagA
k = sv

d0,n−1e

∑
k∈[0,n]

(−1)kdv
kdh
k

=
∑

k∈[0,n]

(−1)ksv
d0,n−1ed

v
kdh
k =

∑
k∈[0,n]

(−1)kdh
ksv
d0,n−2e = ∂C(2)A,h∇An−1,0

and analogously

∇A0,n∂C DiagA = sh
d0,n−1e

∑
k∈[0,n]

(−1)kdDiagA
k = sh

d0,n−1e

∑
k∈[0,n]

(−1)kdv
kdh
k

=
∑

k∈[0,n]

(−1)kdv
ksh
d0,n−1ed

h
k =

∑
k∈[0,n]

(−1)kdv
ksh
d0,n−2e = ∂C(2)A,v∇A0,n−1

for all n ∈ N.
It remains to prove

∇Ap,n−p∂C DiagA = ∂C(2)A,h∇Ap−1,n−p + (−1)p∂C(2)A,v∇Ap,n−1−p

for p ∈ bn− 1, 1c, n ∈ N, n ≥ 2. Thereto, it suffices to show that

∇Ap,n−p∂C Diag P(2)A = ∂C(2)P(2)A,h∇Ap−1,n−p + (−1)p∂C(2)P(2)A,v∇Ap,n−1−p

because according to remark (3.32) this implies

∇Ap,n−p∂C DiagA = ∇Ap,n−p(∂C Diag P(2)A + (−1)ndDiagA
n ) = ∇Ap,n−p∂C Diag P(2)A + (−1)n∇Ap,n−pdDiagA

n

= ∂C(2)P(2)A,h∇Ap−1,n−p + (−1)p∂C(2)P(2)A,v∇Ap,n−1−p + (−1)n((−1)n−pdh
p∇Ap−1,n−p + dv

n−p∇Ap,n−1−p)

= ∂C(2)P(2)A,h∇Ap−1,n−p + (−1)p∂C(2)P(2)A,v∇Ap,n−1−p + (−1)pdh
p∇Ap−1,n−p + (−1)ndv

n−p∇Ap,n−1−p

= ∂C(2)A,h∇Ap−1,n−p + (−1)p∂C(2)A,v∇Ap,n−1−p.
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We proceed by induction on n ∈ N, n ≥ 2, to show the second identity involving the path bisimplicial object
P(2)A and use the recursive characterisation of proposition (3.30). However, by the induction hypothesis, we
may also use the first identity involving A during our calculations since this is implied by the second as already
shown.
First, for n = 2 and p = 1 we compute

∇A1,1∂C Diag P(2)A = (sh
1∇P(2)A

1,0 − sv
1∇P(2)A

0,1 )∂C Diag P(2)A = sh
1∇P(2)A

1,0 ∂C Diag P(2)A − sv
1∇P(2)A

0,1 ∂C Diag P(2)A

= sh
1∂

C(2)P(2)A,h∇P(2)A
0,0 − sv

1∂
C(2)P(2)A,v∇P(2)A

0,0 = sh
1∂

C(2)P(2)A,h − sv
1∂

C(2)P(2)A,v

= sh
1(dh

0 − dh
1)− sv

1(dv
0 − dv

1) = dh
0sh

0 − idA1,1 − dv
0sv

0 + idA1,1 = dh
0sh

0 − dv
0sv

0

= ∂C(2)P(2)A,h∇A0,1 − ∂C(2)P(2)A,v∇A1,0.

Next, we show the asserted formula for p = n− 1, n ∈ N, n ≥ 3:

∇An−1,1∂
C Diag P(2)A = (−sv

1∇P(2)A
n−2,1 + sh

n−1∇P(2)A
n−1,0)∂C Diag P(2)A

= −sv
1∇P(2)A

n−2,1∂
C Diag P(2)A + sh

n−1∇P(2)A
n−1,0∂

C Diag P(2)A

= −sv
1(∂C(2)P(2)A,h∇P(2)A

n−3,1 + (−1)n−2∂C(2)P(2)A,v∇P(2)A
n−2,0) + sh

n−1∂
C(2)P(2)A,h∇P(2)A

n−2,0

= −sv
1∂

C(2)P(2)A,h∇P(2)A
n−3,1 + (−1)n−1sv

1∂
C(2)P(2)A,v∇P(2)A

n−2,0 + sh
n−1∂

C(2)P(2)A,h∇P(2)A
n−2,0

= −∂C(2)P(2)A,hsv
1∇P(2)A

n−3,1 + (−1)n−1(∂C(2)P(2)A,vsv
0 − idAn−1,1

)∇P(2)A
n−2,0

+ (∂C(2)P(2)A,hsh
n−2 + (−1)n−1idAn−1,1

)∇P(2)A
n−2,0

= −∂C(2)P(2)A,hsv
1∇P(2)A

n−3,1 + (−1)n−1∂C(2)P(2)A,vsv
0∇P(2)A

n−2,0 + ∂C(2)P(2)A,hsh
n−2∇P(2)A

n−2,0

= ∂C(2)P(2)A,h(sh
n−2∇P(2)A

n−2,0 − sv
1∇P(2)A

n−3,1) + (−1)n−1∂C(2)P(2)A,vsv
0∇P(2)A

n−2,0

= ∂C(2)P(2)A,h∇An−2,1 + (−1)n−1∂C(2)P(2)A,v∇An−1,0.

Analogously, for p = 1, n ∈ N, n ≥ 3, we have

∇A1,n−1∂
C Diag P(2)A = ((−1)n−1sv

n−1∇P(2)A
0,n−1 + sh

1∇P(2)A
1,n−2)∂C Diag P(2)A

= (−1)n−1sv
n−1∇P(2)A

0,n−1∂
C Diag P(2)A + sh

1∇P(2)A
1,n−2∂

C Diag P(2)A

= (−1)n−1sv
n−1∂

C(2)P(2)A,v∇P(2)A
0,n−2 + sh

1(∂C(2)P(2)A,h∇P(2)A
0,n−2 − ∂C(2)P(2)A,v∇P(2)A

1,n−3)

= (−1)n−1sv
n−1∂

C(2)P(2)A,v∇P(2)A
0,n−2 + sh

1∂
C(2)P(2)A,h∇P(2)A

0,n−2 − sh
1∂

C(2)P(2)A,v∇P(2)A
1,n−3

= (−1)n−1(∂C(2)P(2)A,vsv
n−2 + (−1)n−1idA1,n−1

)∇P(2)A
0,n−2

+ (∂C(2)P(2)A,hsh
0 − idA1,n−1

)∇P(2)A
0,n−2 − ∂C(2)P(2)A,vsh

1∇P(2)A
1,n−3

= (−1)n−1∂C(2)P(2)A,vsv
n−2∇P(2)A

0,n−2 + ∂C(2)P(2)A,hsh
0∇P(2)A

0,n−2 − ∂C(2)P(2)A,vsh
1∇P(2)A

1,n−3

= ∂C(2)P(2)A,hsh
0∇P(2)A

0,n−2 − ((−1)n−2∂C(2)P(2)A,vsv
n−2∇P(2)A

0,n−2 + ∂C(2)P(2)A,vsh
1∇P(2)A

1,n−3)

= ∂C(2)P(2)A,hsh
0∇P(2)A

0,n−2 − ∂C(2)P(2)A,v((−1)n−2sv
n−2∇P(2)A

0,n−2 + sh
1∇P(2)A

1,n−3)

= ∂C(2)P(2)A,h∇A0,n−1 − ∂C(2)P(2)A,v∇A1,n−2.

Finally, we let p ∈ [n− 2, 2], n ∈ N, n ≥ 4. Then we get

∇Ap,n−p∂C Diag P(2)A = ((−1)n−psv
n−p∇P(2)A

p−1,n−p + sh
p∇P(2)A

p,n−1−p)∂
C Diag P(2)A

= (−1)n−psv
n−p∇P(2)A

p−1,n−p∂
C Diag P(2)A + sh

p∇P(2)A
p,n−1−p∂

C Diag P(2)A

= (−1)n−psv
n−p(∂

C(2)P(2)A,h∇P(2)A
p−2,n−p + (−1)p−1∂C(2)P(2)A,v∇P(2)A

p−1,n−1−p)

+ sh
p(∂C(2)P(2)A,h∇P(2)A

p−1,n−1−p + (−1)p∂C(2)P(2)A,v∇P(2)A
p,n−2−p)

= (−1)n−psv
n−p∂

C(2)P(2)A,h∇P(2)A
p−2,n−p + (−1)n−1sv

n−p∂
C(2)P(2)A,v∇P(2)A

p−1,n−1−p

+ sh
p∂

C(2)P(2)A,h∇P(2)A
p−1,n−1−p + (−1)psh

p∂
C(2)P(2)A,v∇P(2)A

p,n−2−p
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= (−1)n−p∂C(2)P(2)A,hsv
n−p∇P(2)A

p−2,n−p

+ (−1)n−1(∂C(2)P(2)A,vsv
n−1−p + (−1)n−pidAp,n−p)∇P(2)A

p−1,n−1−p

+ (∂C(2)P(2)A,hsh
p−1 + (−1)pidAp,n−p)∇P(2)A

p−1,n−1−p + (−1)p∂C(2)P(2)A,vsh
p∇P(2)A

p,n−2−p

= (−1)n−p∂C(2)P(2)A,hsv
n−p∇P(2)A

p−2,n−p + (−1)n−1∂C(2)P(2)A,vsv
n−1−p∇P(2)A

p−1,n−1−p

+ ∂C(2)P(2)A,hsh
p−1∇P(2)A

p−1,n−1−p + (−1)p∂C(2)P(2)A,vsh
p∇P(2)A

p,n−2−p

= ∂C(2)P(2)A,h((−1)n−psv
n−p∇P(2)A

p−2,n−p + sh
p−1∇P(2)A

p−1,n−1−p)

+ (−1)p∂C(2)P(2)A,v((−1)n−p−1sv
n−1−p∇P(2)A

p−1,n−1−p + sh
p∇P(2)A

p,n−2−p)

= ∂C(2)P(2)A,h∇Ap−1,n−p + (−1)p∂C(2)P(2)A,v∇Ap,n−1−p

By induction, we have shown that the morphisms ∇n for n ∈ N0 yield a complex morphism

Tot C(2)A
∇−→ C DiagA.

(3.34) Definition (shuffle morphism). The complex morphism

Tot C(2)A
∇−→ C DiagA

given as in remark (3.33) by embp,n−p∇n = ∇p,n−p for all p ∈ bn, 0c, that is,

∇n =

∇n,0...
∇0,n


as a morphism from Totn C(2)A =

⊕
p∈bn,0cAp,n−p to Cn DiagA = An,n for all n ∈ N0, is called (Eilenberg-Mac

Lane) shuffle morphism.

At next, we will show that the Alexander-Whitney morphism and the Eilenberg-Mac Lane shuffle morphism
restrict to well-defined morphisms on M DiagA resp. Tot M(2)A.

(3.35) Proposition.

(a) We have a morphism of split short exact sequences

D DiagA //

��

C DiagA //

AW
��

M DiagA

��
Tot D(2)A // Tot C(2)A // Tot M(2)A

By abuse of notation, the induced morphism M DiagA −→ Tot M(2)A is also denoted by AW := AWA.

(b) We have a morphism of split short exact sequences

Tot D(2)A //

��

Tot C(2)A //

∇
��

Tot M(2)A

��
D DiagA // C DiagA // M DiagA

By abuse of notation, the induced morphism Tot M(2)A −→ M DiagA is also denoted by ∇ := ∇A.

Proof.

(a) We have

sDiagA
k AWp,n−p = sh

ksv
kdh
bn,p+1cd

v
bp−1,0c = sh

kdh
bn,p+1cs

v
kdv
bp−1,0c =

{
(sh
kdh
bn,p+1cd

v
bp−1,0c)s

v
k−p if p ≤ k,

(dh
bn−1,pcs

v
kdv
bp−1,0c)s

h
k if p > k,
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for every k ∈ [0, n− 1], that is, (Im sDiagA
k )AWp,n−p = Im(sDiagA

k AWp,n−p) � D
(2)
p,n−pA for all k ∈ [0, n− 1]

and therefore (Dn DiagA)AWp,n−p � D
(2)
p,n−pA for all p ∈ bn, 0c. Hence we have an induced morphism

D DiagA −→ Tot D(2)A.

Moreover, M DiagA ∼= C DiagA/D DiagA and Tot M(2)A ∼= Tot(C(2)A/D(2)A) ∼= Tot C(2)A/Tot D(2)A
by the normalisation theorem (2.28). Hence we have an induced morphism on the cokernels

M DiagA
AW−→ Tot M(2)A.

(b) We will show that

(D
(2)
p,n−pA)∇Ap,n−p � Dn DiagA

for all p ∈ bn, 0c, n ∈ N0. Thereto, we proceed by induction on n, where for n = 0 the assertion is trivial
since D

(2)
0,0A

∼= 0 and D0 DiagA ∼= 0. So we let a natural number n ∈ N with n ≥ 1 and p ∈ bn, 0c be
given and we assume that the asserted inclusion holds for all bisimplicial sets up to dimension n− 1. By
proposition (3.30), we compute

sh
i∇Ap,n−p =

{
sh
i sv

0∇P(2)A
n−1,0 if p = n,

sh
i ((−1)n−psv

n−p∇P(2)A
p−1,n−p + sh

p∇P(2)A
p,n−1−p) if p ∈ bn− 1, 1c

}

=

{
sh
i sv

0∇P(2)A
n−1,0 if p = n,

(−1)n−psh
i sv
n−p∇P(2)A

p−1,n−p + sh
i sh
p∇P(2)A

p,n−1−p if p ∈ bn− 1, 1c

}

=

{
sv
0sh
i∇P(2)A

n−1,0 if p = n,

(−1)n−psv
n−ps

h
i∇P(2)A

p−1,n−p + sh
p−1sh

i∇P(2)A
p,n−1−p if p ∈ bn− 1, 1c

for i ∈ [0, p− 1], p ∈ bn, 1c, and therefore

Im(sh
i∇An,0) � Im(sv

0sh
i∇P(2)A

n−1,0)

for i ∈ [0, n− 1] and

Im(sh
i∇Ap,n−p) � Im((−1)n−psv

n−ps
h
i∇P(2)A

p−1,n−p + sh
p−1sh

i∇P(2)A
p,n−1−p)

� Im((−1)n−psv
n−ps

h
i∇P(2)A

p−1,n−p) + Im(sh
p−1sh

i∇P(2)A
p,n−1−p)

� Im(sv
n−ps

h
i∇P(2)A

p−1,n−p) + Im(sh
i∇P(2)A

p,n−1−p)

for i ∈ [0, p− 1], p ∈ bn− 1, 1c. Now by the induction hypothesis, we have

Im(sh
i∇P(2)A

p,n−1−p) � (D
(2)
p,n−1−pP

(2)A)∇P(2)A
p,n−1−p � Dn−1 Diag P(2)A � Dn DiagA

for i ∈ [0, p− 1], p ∈ bn− 1, 1c, and

Im(sv
n−ps

h
i∇P(2)A

p−1,n−p) � Im(sh
i∇P(2)A

p−1,n−p) � (D
(2)
p−1,n−pP

(2)A)∇P(2)A
p−1,n−p � Dn−1 Diag P(2)A

� Dn DiagA

for i ∈ [0, p− 2], p ∈ bn, 1c. Since additionally, by lemma (3.31),

Im(sv
n−ps

h
p−1∇P(2)A

p−1,n−p) = Im(∇Ap−1,n−ps
DiagA
n−1 ) � Im(sDiagA

n−1 ) � Dn DiagA

for p ∈ bn, 1c, we can conclude that Im(sh
i∇Ap,n−p) � Dn DiagA for i ∈ [0, p− 1], p ∈ bn, 1c.

Analogously, we show Im(sv
j∇Ap,n−p) � Dn DiagA for all j ∈ [0, n − 1 − p], p ∈ bn − 1, 0c. Indeed, by

proposition (3.30), we have

sv
j∇Ap,n−p =

{
sv
j ((−1)n−psv

n−p∇P(2)A
p−1,n−p + sh

p∇P(2)A
p,n−1−p) if p ∈ bn− 1, 1c,

sv
j sh

0∇P(2)A
0,n−1 if p = 0

}



§4. THE GENERALISED EILENBERG-ZILBER THEOREM 57

=

{
(−1)n−psv

j sv
n−p∇P(2)A

p−1,n−p + sv
j sh
p∇P(2)A

p,n−1−p if p ∈ bn− 1, 1c,
sv
j sh

0∇P(2)A
0,n−1 if p = 0

}

=

{
(−1)n−psv

n−1−ps
v
j∇P(2)A

p−1,n−p + sh
psv
j∇P(2)A

p,n−1−p if p ∈ bn− 1, 1c,
sh
0sv
j∇P(2)A

0,n−1 if p = 0

for j ∈ [0, n− 1− p], p ∈ bn− 1, 0c, and therefore

Im(sv
j∇Ap,n−p) � Im((−1)n−psv

n−1−ps
v
j∇P(2)A

p−1,n−p + sh
psv
j∇P(2)A

p,n−1−p)

� Im((−1)n−psv
n−1−ps

v
j∇P(2)A

p−1,n−p) + Im(sh
psv
j∇P(2)A

p,n−1−p)

� Im(sv
j∇P(2)A

p−1,n−p) + Im(sh
psv
j∇P(2)A

p,n−1−p)

for j ∈ [0, n− 1− p], p ∈ bn− 1, 1c, and

Im(sv
j∇A0,n) � Im(sh

0sv
j∇P(2)A

0,n−1)

for j ∈ [0, n− 1]. With the induction hypothesis, it follows that

Im(sv
j∇P(2)A

p−1,n−p) � (D
(2)
p−1,n−pP

(2)A)∇P(2)A
p−1,n−p � Dn−1 Diag P(2)A � Dn DiagA

for j ∈ [0, n− 1− p], p ∈ bn− 1, 1c and

Im(sh
psv
j∇P(2)A

p,n−1−p) � Im(sv
j∇P(2)A

p,n−1−p) � (D
(2)
p,n−1−pP

(2)A)∇P(2)A
p,n−1−p � Dn−1 Diag P(2)A � Dn DiagA

for j ∈ [0, n− 2− p], p ∈ bn− 1, 0c. Since additionally, by lemma (3.31),

Im(sh
psv
n−1−p∇P(2)A

p,n−1−p) = Im(∇Ap,n−1−ps
DiagA
n−1 ) � Im(sDiagA

n−1 ) � Dn DiagA

for p ∈ bn− 1, 0c. Hence Im(sv
j∇Ap,n−p) � Dn DiagA for j ∈ [0, n− 1− p], p ∈ bn− 1, 0c.

Therefore

(D
(2)
p,n−pA)∇Ap,n−p � Dn DiagA.

So we have induced morphisms

Tot D(2)A −→ D DiagA

and

Tot M(2)A
∇A−−→ M DiagA.

(3.36) Theorem (generalised Eilenberg-Zilber theorem, normalised case). The Alexander-Whitney morphism

CMA
AW−→ Tot M(2)A

and the Eilenberg-Mac Lane shuffle morphism

Tot M(2)A
∇−→ M DiagA

are mutually inverse homotopy equivalences. In particular,

M DiagA ' Tot M(2)A.

Proof. First, we want to show that ∇AAWA = idTot M(2)A. We let n ∈ N0 be given. For each p, q ∈ bn, 0c we
have

∇Ap,n−pAW
A
q,n−q = (

∑
µ∈Shp,n−p

(sgnµ)sv
d0,p−1eµsh

dp,n−1eµ)dh
bn,q+1cd

v
bq−1,0c
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=
∑

µ∈Shp,n−p

(sgnµ)(sv
d0,p−1eµdv

bq−1,0c)(s
h
dp,n−1eµdh

bn,q+1c).

By applying the simplicial identities, we recognise that each summand ends with a vertical degeneracy if
q < p resp. with a horizontal degeneracy if q > p. Since we are in the normalised case, this means that
∇Ap,n−pAW

A
q,n−q = 0 for p 6= q. It remains to consider the case q = p. Then we have

∇Ap,n−pAW
A
p,n−p =

∑
µ∈Shp,n−p

(sgnµ)(sv
d0,p−1eµdv

bp−1,0c)(s
h
dp,n−1eµdh

bn,p+1c).

Now if µ 6= id, then pµ ≤ p− 1 and hence

Im(sh
dp,n−1eµdh

bn,p+1c) = Im(sh
pµsh
dp+1,n−1eµdh

bn,p+1c) � Im(sh
pµdh
bn,p+1c) � Im sh

pµ.

Therefore

∇Ap,n−pAW
A
p,n−p = (sv

d0,p−1ed
v
bp−1,0c)(s

h
dp,n−1ed

h
bn,p+1c) = id

M
(2)
p,n−pA

since the only summand that is not trivial because it ends with a degeneracy, is the one where µ = id[0,n−1].
Thus

∇AnAW
A
n =

∇
A
n,0
...
∇A0,n

(AWA
n,0 . . . AWA

0,n

)
=


id

M
(2)
n,0A

0

. . .
0 id

M
(2)
0,nA

 = idTotn M(2)A.

Now we consider the composition fA := AWA∇A and we will show that fA ∼ idM DiagA. Thereto, we define
recursively morphisms

Cn DiagA
hAn−−→ Cn+1 DiagA

by hn := 0 for n < 0 and

hAn := hP(2)A
n−1 + (−1)nsDiagA

n fP(2)A
n for n ∈ N0.

We have to show that these morphisms induce morphisms on the entries of the normalised complex M DiagA.
Thereto, we prove that they restrict to morphisms

Dn DiagA
hAn−−→ Dn+1 DiagA for n ∈ N0.

For n = 0, this holds since D0 DiagA ∼= 0. We let n ∈ N be given. Then we get

sDiagA
k hAn = sDiagA

k (hP(2)A
n−1 + (−1)nsDiagA

n fP(2)A
n ) = sDiagA

k hP(2)A
n−1 + (−1)nsDiagA

k sDiagA
n fP(2)A

n

= sDiagA
k hP(2)A

n−1 + (−1)nsDiagA
n−1 sDiagA

k fP(2)A
n

for each k ∈ [0, n − 1]. Since AWA and ∇A restrict to morphisms on D DiagA and Tot D(2)A by proposition
(3.35), we see that

Im((−1)nsDiagA
n−1 sDiagA

k fP(2)A
n ) � Dn Diag P(2)A � Dn+1 DiagA.

For the first summand, we get by induction that

Im(sDiagA
k hP(2)A

n−1 ) � Dn Diag P(2)A � Dn+1 DiagA

if k ≤ n − 2. We consider the case k = n − 1. By definition and proposition (2.33)(c), hAn is a certain linear
combination of morphisms, each one being a composite of a horizonal backal and a vertical backal morphism.
Thus, by proposition (2.33)(a) applied vertically and horizontally, we have sDiagA

n−1 hP(2)A
n−1 = hAn−1sDiagA

n and
hence

Im(sDiagA
n−1 hP(2)A

n−1 ) � Dn+1 DiagA.
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Altogether,

Im(sDiagA
k hAn ) � Dn+1 DiagA.

It remains to show that (hn ∈ A(Mn DiagA,Mn+1 DiagA) | n ∈ N0) is a complex homotopy from idM DiagA to
fA, that is,

hAn∂
C DiagA + ∂C DiagAhAn−1 = idCn DiagA − fAn for all n ∈ N0

up to sums of morphisms whose images are in the degenerate complex. We proceed by induction on n ∈ N0.
For n = 0, we have

hA0 ∂
C DiagA = sDiagA

0 fA0 (dDiagA
0 − dDiagA

1 ) = sDiagA
0 dDiagA

0 − sDiagA
0 dDiagA

1 = idCn DiagA − idCn DiagA

= idCn DiagA − fAn .

Now we assume that n ≥ 1 and that the assumpted relation holds in all lower dimensions. Then we have

hAn∂
C Diag P(2)A = (hP(2)A

n−1 + (−1)nsDiagA
n fP(2)A

n )∂C Diag P(2)A

= hP(2)A
n−1 ∂C Diag P(2)A + (−1)nsDiagA

n fP(2)A
n ∂C Diag P(2)A

= hP(2)A
n−1 ∂C Diag P(2)A + (−1)nsDiagA

n ∂C Diag P(2)AfP(2)A
n−1

= (idCn DiagA − fP(2)A
n−1 − ∂C Diag P(2)AhP(2)A

n−2 ) + (−1)n(∂C Diag P(2)AsDiagA
n−1 + (−1)nid)fP(2)A

n−1

= idCn DiagA − fP(2)A
n−1 − ∂C Diag P(2)AhP(2)A

n−2 + (−1)n∂C Diag P(2)AsDiagA
n−1 fP(2)A

n−1 + fP(2)A
n−1

= idCn DiagA − ∂C Diag P(2)AhP(2)A
n−2 + (−1)n∂C Diag P(2)AsDiagA

n−1 fP(2)A
n−1

= idCn DiagA − ∂C Diag P(2)A(hP(2)A
n−2 + (−1)n−1sDiagA

n−1 fP(2)A
n−1 ) = idCn DiagA − ∂C Diag P(2)AhAn−1

as well as, by proposition (2.31)(c),

hAndDiagA
n+1 = (hP(2)A

n−1 + (−1)nsDiagA
n fP(2)A

n )dDiagA
n+1 = hP(2)A

n−1 dDiagA
n+1 + (−1)nsDiagA

n fP(2)A
n dDiagA

n+1

= dDiagA
n hAn−1 + (−1)nsDiagA

n dDiagA
n+1 fAn = dDiagA

n hAn−1 + (−1)nfAn .

Hence we can conclude

hAn∂
C DiagA = hAn (∂C Diag P(2)A + (−1)n+1dDiagA

n+1 ) = hAn∂
C Diag P(2)A + (−1)n+1hAndDiagA

n+1

= (idCn DiagA − ∂C Diag P(2)AhAn−1) + (−1)n+1(dDiagA
n hAn−1 + (−1)nfAn )

= idCn DiagA − ∂C Diag P(2)AhAn−1 + (−1)n+1dDiagA
n hAn−1 − fAn

= −∂C Diag P(2)AhAn−1 − (−1)ndDiagA
n hAn−1 + idCn DiagA − fAn

= −(∂C Diag P(2)A + (−1)ndDiagA
n )hAn−1 + idCn DiagA − fAn

= −∂C DiagAhAn−1 + idCn DiagA − fAn ,

that is, hAn∂C DiagA + ∂C DiagAhAn−1 = idCn DiagA − fAn .

(3.37) Theorem (generalised Eilenberg-Zilber theorem of Dold, Puppe and Cartier, cf. [9, Satz 2.9]). We
have

C DiagA ' Tot C(2)A.

Proof. By theorem (3.36), we have

M DiagA ' Tot M(2)A.

Since the normalisation theorem states a homotopy equivalence between the associated (double) complexes and
the Moore (double) complexes, cf. theorem (2.28) and theorem (3.24), and since the total complex functor
preserves homotopy equivalences due to proposition (3.19), this implies by theorem (3.36) that

C DiagA ' M DiagA ' Tot M(2)A ' Tot C(2)A.
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Quillen mentions the following corollary in [28] as well-known.

(3.38) Corollary. There exists a spectral sequence E with E1
p,n−p

∼= Hn−p(CAp,−) that converges to the
homology group Hn(C DiagA), where p ∈ [0, n], n ∈ N0.

Proof. By the generalised Eilenberg-Zilber theorem (3.37), we have C DiagA ' Tot C(2)A and hence

Hn(C DiagA) ∼= Hn(Tot C(2)A)

for all n ∈ N0. The spectral sequence E of the “columnwise” filtered double complex C(2)A has the entries

E1
p,n−p

∼= Hn−p(C
(2)
p,−A) = Hn−p(CAp,−)

for p ∈ [0, n], n ∈ N0.

(3.39) Corollary. We suppose given a bisimplicial set X, a commutative ring R and an R-module M .

(a) There exists a spectral sequence E with E1
p,n−p

∼= Hn−p(Xp,−,M ;R) that converges to the homology
group Hn(DiagX,M ;R), where p ∈ [0, n], n ∈ N0.

(b) There exists a spectral sequence E with Ep,n−p1
∼= Hn−p(Xp,−,M ;R) that converges to the cohomology

group Hn(DiagX,M ;R), where p ∈ [0, n], n ∈ N0.

Proof.

(a) We apply corollary (3.38) to RX ⊗RM . Then we obtain

Hn(C Diag(RX ⊗RM)) = Hn(C((DiagRX)⊗RM)) = Hn((C DiagRX)⊗RM)

= Hn((CRDiagX)⊗RM) = Hn(C(DiagX;R)⊗RM)

= Hn(DiagX,M ;R)

for n ∈ N0, and

Hn−p(C(RX ⊗RM)p,−) = Hn−p(C(RXp,− ⊗RM) = Hn−p((CRXp,−)⊗RM)

= Hn−p(C(Xp,−;R)⊗RM) = Hn−p(Xp,−,M ;R)

for p ∈ [0, n], n ∈ N0.

(b) By the generalised Eilenberg-Zilber theorem (3.37), we have

C(DiagX;R) = CRDiagX = C DiagRX ' Tot C(2)RX = Tot C(2)(X;R)

and hence

Hn(DiagX,M ;R) = Hn(R(C(DiagX;R),M)) ∼= Hn(R(Tot C(2)(X;R),M))

= Hn(TotR(C(2)(X;R),M))

for n ∈ N0. The spectral sequence of the “columnwise” filtered double complex R(C(2)(X;R),M) has

Ep,n−p1
∼= Hn−p(R(C

(2)
p,−(X;R),M)) = Hn−p(R(C(Xp,−;R),M)) = Hn−p(Xp,−,M ;R)

for p ∈ [0, n], n ∈ N0. (1)

1The seeming non-duality in the proofs of (a) and (b) is due to the fact that cohomology of cosimplicial objects has not been
defined.



Chapter IV

Simplicial groups

We want to define homology groups for a given simplicial group. Thereto, we generalise the classifying simplicial
set notion for groups given in chapter II, §5. Indeed, there are two known possibilities to define a classifying
simplicial set. We show that both are equivalent by an algebraic proof (cf. theorem (4.32)).
References for this chapter are [8], [17], [20], [26], [29, §8].

§1 The Moore complex of a simplicial group
The Moore complex, introduced for objects in abelian categories in chapter II, §3, can be defined in the category
of groups. Here, a complex M (bounded below at 0) of groups means a sequence

M = (. . .
∂−→M2

∂−→M1
∂−→M0)

of groups Mn for n ∈ N0 and group homomorphisms ∂ such that ∂∂ = 1, where 1 denotes the constant group
homomorphism. A morphismM

ϕ−→ N of complexes of groups consists of group homomorphisms ϕn : Mn → Nn
for n ∈ N0 such that ϕn∂ = ∂ϕn−1 for all n ∈ N. The category of complexes of groups is denoted by C(Grp).
Given a complexM of groups we define, as usual, ZnM := Ker(Mn

∂−→Mn−1) and BnM := Im(Mn+1
∂−→Mn)

for n ∈ N0, where M−1 = {1}. A complex M of groups is said to be normal if BnM is normal in ZnM , written
BnM E ZnM , for all n ∈ N0. If M is normal, we define HnM := ZnM/BnM for n ∈ N0.

(4.1) Remark. We let G be a simplicial group. There is a complex of groups

MG := (. . .
∂−→ M2G

∂−→ M1G
∂−→ M0G),

where each entry MnG is given by

MnG :=
⋂

k∈[1,n]

Ker dk for n ∈ N0

and where the differentials are given by ∂ := d0|Mn−1G
MnG

for all n ∈ N.

Proof. We have

gnd0dk = gndk+1d0 = 1d0 = 1

for all gn ∈ MnG, k ∈ [0, n − 1], n ∈ N. Hence (MnG)d0 ≤ Mn−1G for all n ∈ N and ∂∂ = 1 for all n ∈ N,
n ≥ 2.

(4.2) Definition (Moore complex of a simplicial group). We suppose given a simplicial group G. The complex

MG = (. . .
∂−→ M2G

∂−→ M1G
∂−→ M0G)

given as in remark (4.1) by MnG :=
⋂
k∈[1,n] Ker(dk) for n ∈ N0 and ∂ := d0|Mn−1G

MnG
for n ∈ N is called the

Moore complex of G.

61
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(4.3) Proposition.

(a) Given simplicial groups G and H and a simplicial group homomorphism G
ϕ−→ H, there exists an induced

complex morphism

MG
Mϕ−−→ MH

given by Mnϕ := ϕn|MnH
MnG

for all n ∈ N0.

(b) The construction in (a) yields a functor

sGrp
M−→ C(Grp).

Proof.

(a) We have

gnϕndk = gndkϕn−1 = 1ϕn−1 = 1

for all gn ∈ MnG, k ∈ [1, n], that is gnϕn ∈ MnH for all n ∈ N0.

(b) We let G, H, K be simplicial groups and we let G ϕ−→ H and H ψ−→ K be simplicial group homomor-
phisms. Then we get

(Mnϕ)(Mnψ) = (ϕn|MnH
MnG

)(ψn|MnK
MnH

) = (ϕnψn)|MnK
MnG

= (ϕψ)n|MnK
MnG

= Mn(ϕψ)

and

MnidG = (idG)n|MnG
MnG

= idGn |
MnG
MnG

= idMnG

for all n ∈ N0, that is (Mϕ)(Mψ) = M(ϕψ) and MidG = idMG.

(4.4) Lemma. For every simplicial group G, we have BnMGEGn for all n ∈ N0.

Proof. We consider group elements h ∈ BnMG and y ∈ Gn and we let g ∈ Mn+1G be such that h = g∂ = gd0.
Then we get

((ys0)g(y−1s0))dk = (ys0dk)(gdk)(y−1s0dk) = (ys0dk)(y−1s0dk) = (yy−1)s0dk = 1

for all k ∈ [1, n+ 1]. Furthermore,

((ys0)g(y−1s0))d0 = (ys0d0)(gd0)(y−1s0d0) = yhy−1.

Thus (ys0)g(y−1s0) ∈ Mn+1G is a preimage of yhy−1, that is, yhy−1 ∈ BnMG. Since h ∈ BnMG and y ∈ Gn
were chosen arbitrarily, this implies BnMGEGn for all n ∈ N0.

(4.5) Corollary. The Moore complex MG of a simplicial group G is normal.

Proof. The assertion follows directly from lemma (4.4), because if BnMG is normal in Gn, then it is in particular
normal in the subgroup ZnMG ≤ Gn for all n ∈ N0.

By the preceeding corollary, we are able to define homology groups of the Moore complex of a given simplicial
group.

(4.6) Definition (homotopy groups of a simplicial group). For n ∈ N0 we call

πn(G) := HnMG

the n-th homotopy group of a given simplicial group G.

(4.7) Lemma. We suppose given a simplicial group G and group elements x, y ∈ Gn for n ∈ N. If x ∈ Ker d0

and y ∈ MnG, then [x, y] ∈ BnMG.
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Proof. We have

((xs0)(x−1s1)(ys0)(xs1)(x−1s0)(y−1s0))dk = (xs0dk)(x−1s1dk)(ys0dk)(xs1dk)(x−1s0dk)(y−1s0dk)

=


x(x−1d0s0)y(xd0s0)x−1y−1 for k = 0,

xx−1yxx−1y−1 for k = 1,

(xd1s0)x−1(yd1s0)x(x−1d1s0)(y−1d1s0) for k = 2,

(xdk−1s0)(x−1dk−1s1)(ydk−1s0)(xdk−1s1)(x−1dk−1s0)(y−1dk−1s0) for k ∈ [3, n+ 1]


=

{
[x, y] for k = 0,

1 for k ∈ [1, n+ 1].

Hence (xs0)(x−1s1)(ys0)(xs1)(x−1s0)(y−1s0) ∈
⋂n+1
k=1 Ker dk = Mn+1G and thus

[x, y] = ((xs0)(x−1s1)(ys0)(xs1)(x−1s0)(y−1s0))∂ ∈ BnMG.

(4.8) Corollary. Given a simplicial group G, its n-th homotopy group πn(G) for n ∈ N is abelian.

Proof. By lemma (4.7), we have [x, y] ∈ BnMG and hence (xBnMG)(yBnMG) = (yBnMG)(xBnMG) for all
x, y ∈ ZnMG, n ∈ N.

§2 Semidirect product decomposition

Given a simplicial group G, the group Gn, n ∈ N0, can be decomposed as a certain iterated semidirect product
of the Moore complex entries in dimension less or equal then n.
For further information, we refer to the article [5] by Carrasco and Cegarra.

(4.9) Lemma. We let G be a simplicial group. Then we have a split short exact sequence

⋂
i∈[k,n]

Ker di −→
⋂

i∈[k+1,n]

Ker di
dk−→

⋂
i∈[k,n−1]

Ker di

for all n ∈ N, k ∈ [1, n], where the middle term is a subgroup of Gn.

Proof. We let n ∈ N and k ∈ [1, n] be given. Furthermore, we suppose given gn ∈
⋂
i∈[k+1,n] Ker di. Then

gndkdj = gndj+1dk = 1dk = 1

for all j ∈ [k, n− 1], that is, gndk ∈
⋂
i∈[k,n−1] Ker di and thus

⋂
i∈[k+1,n] Ker di →

⋂
i∈[k,n−1] Ker di, gn 7→ gndk

is a well-defined group homomorphism. Its kernel is given by
⋂
i∈[k,n] Ker di.

Now for every gn−1 ∈
⋂
i∈[k,n−1] Ker di, we have

gn−1sk−1di = gn−1di−1sk−1 = 1sk−1 = 1

for i ∈ [k + 1, n] as well as

gn−1sk−1dk = gn−1,

that is,
⋂
i∈[k+1,n] Ker di →

⋂
i∈[k,n−1] Ker di, gn 7→ gndk is a retraction with coretraction

⋂
i∈[k,n−1] Ker di →⋂

i∈[k+1,n] Ker di, gn−1 7→ gn−1sk−1.
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(4.10) Remark. If G is a simplicial group, we have a (non commutative) diagram

. . .
d1 // MnG

��
. . .

d2 // ⋂
i∈[2,n] Ker di

d1 //

��

Mn−1G

��
. . .

d3 // ⋂
i∈[3,n] Ker di

d2 //

��

⋂
i∈[2,n−1] Ker di

d1 //

��

Mn−2G

��
...

��

...

��

...

��

. . .

. . .
dn−1 // ⋂

i∈[n−1,n] Ker di
dn−2 //

��

⋂
i∈[n−2,n−1] Ker di

dn−3 //

��

⋂
i∈[n−3,n−2] Ker di

dn−4 //

��

. . .
d1 // M2G

��
. . .

dn // Ker dn
dn−1 //

��

Ker dn−1

dn−2 //

��

Ker dn−2

dn−3 //

��

. . .
d2 // Ker d2

d1 //

��

M1G

��
. . .

dn+1 // Gn
dn // Gn−1

dn−1 // Gn−2

dn−2 // . . .
d3 // G2

d2 // G1
d1 // G0

In this diagram, every composition of a vertical inclusion with a horizontal morphism forms a split short exact
sequence. We call this the decomposition diagram of G.

(4.11) Corollary. We let G be a simplicial group and n ∈ N0 a non-negative integer. Then the group of
n-simplices Gn is isomorphic to an iterated semidirect product with 2n factors that all derive from the Moore
complex.

(4.12) Example. From the decomposition diagram for some simplicial group G we can read off:

G0
∼= M0G,

G1
∼= M1Go M0G,

G2
∼= Ker d2oG1

∼= (M2Go M1G)o (M1Go M0G),

G3
∼= Ker d3oG2

∼= ((M3Go M2G)o (M2Go M1G))o ((M2Go M1G)o (M1Go M0G)).

To obtain the decomposition of Ker dn from that of Gn−1, one has to increase every index in the decomposition
of Gn−1 by 1. Since Gn = Ker dnoGn−1, one has to “concatenate” both iterated semidirect products to obtain
the decomposition of Gn. Thus the “sequence of the indices” is given by

0, 10, 2110, 32212110, 4332322132212110, 54434332433232214332322132212110, . . .

(4.13) Remark. We let G, H be simplicial groups and G ϕ−→ H a simplicial group homomorphism. Further-
more, we suppose given n ∈ N. If Mnϕ is an isomorphism and ϕk is an isomorphism for all k ∈ [0, n− 1], then
ϕn is also an isomorphism.

Proof. Since ϕk is an isomorphism for all k ∈ [0, n− 1], we have induced isomorphisms on the kernels and their
intersections, that is

⋂
i∈[k,n−1] Ker di →

⋂
i∈[k,n−1] Ker di, gn−1 7→ gn−1ϕn−1 is an isomorphism for all k ∈ [1, n].

We will show that the induced morphism
⋂
i∈[k,n] Ker di →

⋂
i∈[k,n] Ker di, gn 7→ gnϕn for k ∈ [1, n+1] has to be

an isomorphism, too. Thereto, we proceed by induction on k ∈ [1, n+1]. The induction basis is our assumption
that Mnϕ is an isomorphism. So we let k ∈ [1, n] be given and we assume

⋂
i∈[k,n] Ker di →

⋂
i∈[k,n] Ker di, gn 7→

gnϕn to be an isomorphism. By lemma (4.9), we have a morphism of short exact sequences⋂
i∈[k,n] Ker di //

ϕn

��

⋂
i∈[k+1,n] Ker di

dk //

ϕn

��

⋂
i∈[k,n−1] Ker di

ϕn−1

��⋂
i∈[k,n] Ker di // ⋂

i∈[k+1,n] Ker di
dk // ⋂

i∈[k,n−1] Ker di
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The five lemma yields the assertion. By induction,
⋂
i∈[k,n] Ker di →

⋂
i∈[k,n] Ker di, gn 7→ gnϕn is an isomor-

phism for all k ∈ [1, n+ 1], and in particular ϕn : Gn → Hn is an isomorphism.

(4.14) Lemma. We let G, H be simplicial groups and G ϕ−→ H be a simplicial group homomorphism. Then
Mϕ is an isomorphism if and only if ϕ is an isomorphism.

Proof. If ϕ is an isomorphism, then Mϕ is an isomorphism by the functoriality of the Moore complex functor.
So let us assume that Mϕ is an isomorphism of complexes. We show by induction on n ∈ N0 that ϕn is an
isomorphism of groups. For n = 0, this holds since ϕ0 = M0ϕ. Now we suppose given n ∈ N and we assume that
ϕk is an isomorphism for k ∈ [0, n − 1]. Since Mnϕ is an isomorphism, too, by remark (4.13) we can conclude
that ϕn has to be an isomorphism. Thus, by induction, ϕn is an isomorphism for all n ∈ N0 and so ϕ is an
isomorphism of simplicial groups.

§3 The coskeleton of a group
Every group P can be interpreted as the constant simplicial group ConstP . We show that the functor Const
has a left adjoint.

(4.15) Proposition. The functor sGrp
π0−→ Grp is left adjoint to Grp

Const−−−−→ sGrp and

π0 ◦ Const ∼= idGrp.

Proof. Given P ∈ Ob Grp, we have

M(ConstP ) = (. . . −→ {1} −→ {1} −→ P )

and therefore

π0ConstP = H0M(ConstP ) = Z0M(ConstP )/B0M(ConstP ) = P/{1}.

For a group homomorphism f : P → Q, we furthermore have

π0Const f = H0M(Const f) = (p{1} 7→ (pf){1}).

To construct the counit π0 ◦ Const
η−→ idGrp, we let ηP : P/{1} → P, p{1} 7→ p for every P ∈ Ob Grp. Thus

π0 ◦ Const
η−→ idGrp is a natural isotransformation, since ηP is an isomorphism of groups for all P ∈ Ob Grp

and since for all morphism P
f−→ Q in Grp we obtain a commutative diagram

P/{1}
ηP //

π0Const f

��

P

f

��
Q/{1}

ηQ // Q

In particular, π0 ◦ Const ∼= idGrp.
In order to show that π0 a Const , we have to construct the unit idsGrp

ε−→ Const ◦ π0. For this we let
G ∈ Ob sGrp be a simplicial group and we denote by ν = νG : G0 → π0G the canonical epimorphism. We define
for all n ∈ N0 a group homomorphism (εG)n : Gn → π0G by (εG)n := dbn,1cν. To show that G εG−→ Constπ0G
is a simplicial group homomorphism, we have to prove the commutativity of the diagrams

Gn
dk //

(εG)n

��

Gn−1

(εG)n−1

��
π0G

idπ0G // π0G

for all k ∈ [0, n], n ∈ N, and

Gn+1

(εG)n+1

��

Gn
skoo

(εG)n

��
π0G π0G

idπ0Goo
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for all k ∈ [0, n], n ∈ N0.
First, we consider the faces and proceed by an induction on n ∈ N. We consider the case n = 1. Since the
assertion holds trivially for d1, we have to show that d0(εG)0 = (εG)1, that is, that d0ν = d1ν. But for all
g1 ∈ G1 we have g1(g−1

1 d1s0) ∈ M1G, since

(g1(g−1
1 d1s0))d1 = (g1d1)(g−1

1 d1s0d1) = (g1d1)(g−1
1 d1) = 1,

and (g1d0)(g−1
1 d1) = (g1(g−1

1 d1s0))d0 ∈ B0MG, so that

g1d0ν = (g1d0)B0MG = (g1d1)B0MG = g1d1ν.

Now we consider a natural number n ∈ N with n > 1 and we assume that (εG)n−1 = dk(εG)n−2 holds for all
k ∈ [0, n− 1]. This implies

dk(εG)n−1 = dkdn−1(εG)n−2 = dndk(εG)n−2 = dn(εG)n−1 = dndbn−1,1cν = dbn,1cν = (εG)n

for all k ∈ [0, n − 1], and for k = n the commutativity holds for trivial reasons. By induction we get the
desired commutativity for all diagrams with the faces. But now the commutativity of the diagrams with the
degeneracies follows as well since

sk(εG)n+1 = skdk(εG)n = (εG)n

for all k ∈ [0, n], n ∈ N0.
To show naturality of (εG)G∈Ob sGrp, we let G ϕ−→ H be a morphism of simplicial groups. We obtain

ϕn(εH)n = ϕndbn,1cν = dbn,1cϕ0ν = dbn,1cν(π0ϕ) = (εG)n(π0ϕ) for all n ∈ N0

and thus a commutative diagram

G
εG //

ϕ

��

Constπ0G

Constπ0ϕ

��
H

εH // Constπ0H

Thus we have a natural transformation idsGrp
ε−→ Const ◦ π0.

Finally, we have to show that ε and η are unit and counit. Indeed,

(εConstP )n(Const ηP )n = idP νConstP ηP = νConstP ηP = idP = (idConstP )n

holds for all n ∈ N0, P ∈ Ob Grp, as well as

(g0B0MG)(π0εG)(ηπ0G) = ((g0(εG)0)B0M(Constπ0G))ηπ0G = (g0νG{1})ηπ0G = g0νG = g0B0MG

for all G ∈ Ob sGrp, g0 ∈ G0.

(4.16) Definition (0th coskeleton). For every group P we define the coskeleton of P to be the simplicial group
CoskP := ConstP . The functor

Grp
Cosk−−−→ sGrp

is called the (0th) coskeleton.

§4 The Kan classifying functor
We have already seen that we can define the homology of a group as the homology of the classifying simplicial
set. In this section, we want to generalise this procedure to simplicial groups, introducing Kan’s classifying
functor

sGrp
W−→ sSet,

which generalises the classifying simplicial set functor

Grp
B−→ sSet

in the sense that B = W ◦ Cosk. After this, we construct Kan’s loop group functor G as a left adjoint to W.
The reader is refered to [20].
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(4.17) Definition (nerve of a simplicial group). We define the nerve NG of a simplicial group G to be the
bisimplicial set which corresponds to the nerve of the group object in sSet arising from G. Analogously for the
morphisms in sGrp.

sGrp
N //

OO
∼=
��

s2SetOO
∼=
��

Grp(sSet)
N // s(sSet)

(4.18) Remark (the nerve of a simplicial group is build componentwise). The nerve of a simplicial group G is
given by Nm,−G = NGm for all m ∈ N0 and Nθ,−G = NGθ for all morphisms θ ∈ Mor ∆.

Proof. Follows from example (1.27)(c) and definition (1.32).

(4.19) Remark. There is a functor

sGrp
W−→ sSet

isomorphic to Tot ◦N that is given on objects by WnG :=×j∈bn−1,0cGj and

(gj)j∈bn−1,0cWθG := (
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

)i∈bm−1,0c

for (gj)j∈bn−1,0c ∈ WnG, where θ ∈ ∆([m], [n]), m,n ∈ N0, G ∈ Ob sGrp, and on morphisms by Wnϕ :=

×j∈bn−1,0c ϕj for n ∈ N0, ϕ ∈ sGrp(G,H), G,H ∈ Ob sGrp.

Proof. We let G be a simplicial group and compute Tot NG. The set of n-simplices is given by

Totn NG = {(xq)q∈bn,0c ∈ ×
q∈bn,0c

Nq,n−qG | xqdh
q = xq−1dv

0 for q ∈ bn, 1c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | (gq,j)j∈bn−q−1,0cd

h
q = (gq−1,j)j∈bn−q,0cd

v
0 for q ∈ bn, 1c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | (gq,jdq)j∈bn−q−1,0c = (gq−1,j+1)j∈bn−q−1,0c for q ∈ bn, 1c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | gq,jdq = gq−1,j+1 for j ∈ bn− q − 1, 0c, q ∈ bn, 1c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | gq,j = gq+1,j−1dq+1 for j ∈ bn− q − 1, 1c, q ∈ bn− 1, 0c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | gq,j = gq+j,0dbq+j,q+1c for j ∈ bn− q − 1, 1c, q ∈ bn− 1, 0c}

= {((gq,j)j∈bn−q−1,0c)q∈bn,0c ∈ ×
q∈bn,0c

G×(n−q)
q | gq,j = gq+j,0dbq+j,q+1c for j ∈ bn− q − 1, 0c, q ∈ bn, 0c}

= {((gq+j,0dbq+j,q+1c)j∈bn−q−1,0c)q∈bn,0c | gq+j,0 ∈ Gq+j for j ∈ bn− q − 1, 0c, q ∈ bn, 0c}

= {((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c | gj ∈ Gj for j ∈ bn− 1, qc, q ∈ bn, 0c}

for n ∈ N0. For an element ((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c ∈ Totn NG, we compute

((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c(Totθ NG) = ((gq+jdbq+j,q+1c)j∈bn−q−1,0c)q∈bn,0c(Totθ NG)

= ((gpθ+jdbpθ+j,pθ+1c)j∈bn−pθ−1,0c(NG)Splp(θ))p∈bm,0c

= ((gpθ+jdbpθ+j,pθ+1c)j∈bn−pθ−1,0c(NG)Spl≤p(θ),n−pθ(NG)p,Spl≥p(θ))p∈bm,0c

= ((gpθ+jdbpθ+j,pθ+1cGSpl≤p(θ))j∈bn−pθ−1,0c(NG)p,Spl≥p(θ))p∈bm,0c

= ((
∏

j∈b(i+1)Spl≥p(θ)−1,iSpl≥p(θ)c

gpθ+jdbpθ+j,pθ+1cGSpl≤p(θ))i∈bm−p−1,0c)p∈bm,0c
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= ((
∏

j∈b(i+1+p)θ−pθ−1,(i+p)θ−pθc

gpθ+jGδdpθ+1,pθ+jeGSpl≤p(θ))i∈bm−p−1,0c)p∈bm,0c

= ((
∏

j∈b(i+1)θ−pθ−1,iθ−pθc

gpθ+jGSpl≤p(θ)δdpθ+1,pθ+je)i∈bm−1,pc)p∈bm,0c

= ((
∏

j∈b(i+1)θ−1,iθc

gjGSpl≤p(θ)δdpθ+1,je)i∈bm−1,pc)p∈bm,0c = ((
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[p]

)i∈bm−1,pc)p∈bm,0c

= ((
∏

j∈b(i+1)θ−1,iθc

gjGδdp+1,ieθ|[j]
[i]

)i∈bm−1,pc)p∈bm,0c = ((
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

Gδdp+1,ie)i∈bm−1,pc)p∈bm,0c

= ((
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

dbi,p+1c)i∈bm−1,pc)p∈bm,0c

for θ ∈ ∆([m], [n]), m,n ∈ N0.
Thus, by transport of structure, WG with WnG =×j∈bn−1,0cGj for all n ∈ N0 becomes a reduced simplicial
set isomorphic to Tot NG via the bijections

(fG)n : Totn NG→WG, ((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c 7→ (gj)j∈bn−1,0c.

To prove the formula for WG on the morphisms of ∆, we suppose given θ ∈ ∆([m], [n]) for m,n ∈ N0. We
obtain

(gj)j∈bn−1,0cWθG = (gj)j∈bn−1,0c(fG)−1
n (Totθ NG)(fG)m = ((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c(Totθ NG)(fG)m

= ((
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

dbi,p+1c)i∈bm−1,pc)p∈bm,0c(fG)m

= (
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

)i∈bm−1,0c.

Furthermore, given another simplicial group H and a simplicial group homomorphism G
ϕ−→ H, we have, again

by transport of structure,

(gj)j∈bn−1,0c(Wnϕ) = (gj)j∈bn−1,0c(fG)−1
n (Totn Nϕ)(fH)n

= ((gjdbj,q+1c)j∈bn−1,qc)q∈bn,0c(Totn Nϕ)(fH)n

= ((gjdbj,q+1c)j∈bn−1,qcNq,n−qϕ)q∈bn,0c(fH)n

= ((gjdbj,q+1cϕq)j∈bn−1,qc)q∈bn,0c(fH)n

= ((gjϕjdbj,q+1c)j∈bn−1,qc)q∈bn,0c(fH)n = (gjϕj)j∈bn−1,0c

for all (gj)j∈bn−1,0c ∈WnG, that is,

Wnϕ = ×
j∈bn−1,0c

ϕj for all n ∈ N0.

Altogether, we have constructed a functor sGrp
W−→ sSet and a natural isotransformation Tot ◦N f−→W.

(4.20) Definition (Kan classifying simplicial set). We let G be a simplicial group. The reduced simplicial set
WG given as in remark (4.19) by

WnG = ×
j∈bn−1,0c

Gj for every n ∈ N0

and (gj)j∈bn−1,0cWθG = (
∏
j∈b(i+1)θ−1,iθc gjGθ|[j]

[i]

)i∈bm−1,0c for (gj)j∈bn−1,0c ∈WnG, θ ∈ ∆([m], [n]), is called

the Kan classifying simplicial set of G.

(4.21) Proposition. We let G be a simplicial group. The faces and degeneracies of its Kan classifying simplicial
set WG are given by

(gj)j∈bn−1,0cdk =


(gj+1d0)j∈bn−2,0c if k = 0,

(gj+1dk)j∈bn−2,kc ∪ ((gkdk)gk−1) ∪ (gj)j∈bk−2,0c if k ∈ [1, n− 1],

(gj)j∈bn−2,0c if k = n,
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for (gj)j∈bn−1,0c ∈WnG, k ∈ [0, n], n ∈ N, and

(gj)j∈bn−1,0csk = (gj−1sk)j∈bn,k+1c ∪ (1) ∪ (gj)j∈bk−1,0c

for (gj)j∈bn−1,0c ∈WnG, k ∈ [0, n], n ∈ N0.

Proof. We have

((gj)j∈bn−1,0cdk)i = ((gj)j∈bn−1,0cWδkG)i =
∏

j∈b(i+1)δk−1,iδkc

gjGδk|[j]
[i]

=


∏
j∈b(i+1)δk−1,iδkc gjGδk|[j]

[i]

for i ∈ bn− 2, kc,∏
j∈bkδk−1,(k−1)δkc gjGδk|[j]

[k−1]

for i = k − 1,∏
j∈b(i+1)δk−1,iδkc gjGδk|[j]

[i]

for i ∈ bk − 2, 0c


=


∏
j∈bi+2−1,i+1c gjGδk|[j]

[i]

for i ∈ bn− 2, kc,∏
j∈bk+1−1,k−1c gjGδk|[j]

[k−1]

for i = k − 1,∏
j∈bi+1−1,ic gjGδk|[j]

[i]

for i ∈ bk − 2, 0c


=


gi+1Gδk|[i+1]

[i]

for i ∈ bn− 2, kc,

(gkGδk|[k]
[k−1]

)(gk−1Gδk|[k−1]

[k−1]

) for i = k − 1,

giGδk|[i]
[i]

for i ∈ bk − 2, 0c


=


gi+1Gδk for i ∈ bn− 2, kc,
(gkGδk)(gk−1Gid[k−1]

) for i = k − 1,

giGid[i]
for i ∈ bk − 2, 0c

 =


gi+1dk for i ∈ bn− 2, kc,
(gkdk)gk−1 for i = k − 1,

gi for i ∈ bk − 2, 0c

for (gj)j∈bn−1,0c ∈WnG, i ∈ bn− 2, 0c, k ∈ [0, n], n ∈ N, and

((gj)j∈bn−1,0csk)i = ((gj)j∈bn−1,0cWσkG)i =
∏

j∈b(i+1)σk−1,iσkc

gjGσk|[j]
[i]

=


∏
j∈b(i+1)σk−1,iσkc gjGσk|[j]

[i]

for i ∈ bn, k + 1c,∏
j∈b(k+1)σk−1,kσkc gjGσk|[j]

[k]

for i = k,∏
j∈b(i+1)σk−1,iσkc gjGσk|[j]

[i]

for i ∈ bk − 1, 0c


=


∏
j∈bi+1−1−1,i−1c gjGσk|[j]

[i]

for i ∈ bn, k + 1c∏
j∈bk+1−1−1,kc gjGσk|[j]

[k]

for i = k,∏
j∈bi+1−1,ic gjGσk|[j]

[i]

for i ∈ bk − 1, 0c


=


gi−1Gσk|[i−1]

[i]

for i ∈ bn, k + 1c,

1 for i = k,

giGσk|[i]
[i]

for i ∈ bk − 1, 0c

 =


gi−1Gσk for i ∈ bn, k + 1c,
1 for i = k,

giGid[i]
for i ∈ bk − 1, 0c


=


gi−1sk for i ∈ bn, k + 1c,
1 for i = k,

gi for i ∈ bk − 1, 0c

for (gj)j∈bn−1,0c ∈WnG, i ∈ bn, 0c, k ∈ [0, n], n ∈ N0.

(4.22) Example. For a group G, we have W CoskG = BG and hence

Hn(W CoskG,M ;R) = Hn(BG,M ;R) ∼= Hn(G,M ;R)
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resp.

Hn(W CoskG,M ;R) = Hn(BG,M ;R) ∼= Hn(G,M ;R)

for n ∈ N0 and a module M over a commutative ring R.

Now we want to construct a left adjoint for W.

(4.23) Remark. We let X be a reduced simplicial set and we let X −→ X be a simplicial bijection given by
Xn → Xn, xn 7→ xn for all n ∈ N0. For every n ∈ N0, we let GnX be the free group

GnX := 〈xn+1 | xn+1 ∈ Xn+1, xnsn = 1 for all xn ∈ Xn〉Grp
∼= 〈xn+1 | xn+1 ∈ Xn+1 \ (Im sn)〉Grp.

Further, for θ ∈ ∆([m], [n]),m,n ∈ N0, we define a group homomorphism GθX : GnX → GmX on the generating
set Xn+1 of GnX by setting

xn+1(GθX) := xn+1(PθX)(xn+1dn+1sn(PθX))−1 for all xn+1 ∈ Xn+1.

Then GX is a simplicial group.

Proof. First of all, we note that if xn+1 = xnsn for some xn ∈ Xn, then

xn+1(PθX)(xn+1dn+1sn(PθX))−1 = xnsn(PθX)(xnsndn+1sn(PθX))−1 = xnsn(PθX)(xnsn(PθX))−1 = 1

for θ ∈ ∆([m], [n]), m,n ∈ N0. Now, given morphisms θ ∈ ∆([m], [n]), ρ ∈ ∆([n], [p]) for m,n, p ∈ N0, we note
that (PρX)dn+1 = dp+1Xρ by proposition (2.31)(c) and obtain thus

xp+1(GρX)(GθX) = (xp+1(PρX)(xp+1dp+1sp(PρX))−1)(GθX)

= xp+1(PρX)(GθX)(xp+1dp+1sp(PρX)(GθX))−1

= xp+1(PρX)(PθX)(xp+1(PρX)dn+1sn(PθX))−1

· (xp+1dp+1sp(PρX)(PθX)(xp+1dp+1sp(PρX)dn+1sn(PθX))−1)−1

= xp+1(PρX)(PθX)(xp+1(PρX)dn+1sn(PθX))−1

· xp+1dp+1sp(PρX)dn+1sn(PθX)(xp+1dp+1sp(PρX)(PθX))−1

= xp+1(PθρX)(xp+1dp+1Xρsn(PθX))−1

· xp+1dp+1spdp+1Xρsn(PθX)(xp+1dp+1sp(PθρX))−1

= xp+1(PθρX)(xp+1dp+1sp(PθρX))−1 = xp+1(GθρX)

for xp+1 ∈ Xp+1 as well as

xn+1(Gid[n]
X) = xn+1(Pid[n]

X)(xn+1dn+1sn(Pid[n]
X))−1 = xn+1idPnX(xn+1dn+1snidPnX)−1 = xn+1

for xn+1 ∈ Xn+1. Hence GX is a simplicial group.

(4.24) Definition (Kan loop group). We let X be a reduced simplicial set and we let X −→ X be a simplicial
bijection given by Xn → Xn, xn 7→ xn for all n ∈ N0. The simplicial group GX given as in remark (4.23) by

GnX = 〈xn+1 | xn+1 ∈ Xn+1, xnsn = 1 for all xn ∈ Xn〉Grp

and

GθX : GnX → GmX,xn+1 7→ xn+1(PθX)(xn+1dn+1sn(PθX))−1

for θ ∈ ∆([m], [n]), m,n ∈ N0, is called the (Kan) loop group of X.

In the following, we always assume given a simplicial bijection X 7−→ X when referring to the construction GX.
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(4.25) Proposition. We let X be a reduced simplicial set. The faces dk : GnX → Gn−1X for k ∈ [0, n], n ∈ N,
and the degeneracies sk : GnX → Gn+1X for k ∈ [0, n], n ∈ N0, in the loop group GX are given by

xn+1dk =

{
xn+1dk for k ∈ [0, n− 1],

xn+1dn(xn+1dn+1)−1 for k = n

and

xn+1sk = xn+1sk for k ∈ [0, n],

where xn+1 ∈ Xn+1.

Proof. We have

xn+1dk = xn+1(GδkX) = xn+1PδkX(xn+1dn+1snPδkX)−1 = xn+1dk(xn+1dn+1sndk)−1

=

{
xn+1dk(xn+1dn+1dksn−1)−1 for k ∈ [0, n− 1],

xn+1dn(xn+1dn+1)−1 for k = n

}

=

{
xn+1dk for k ∈ [0, n− 1],

xn+1dn(xn+1dn+1)−1 for k = n

}
for xn+1 ∈ Xn+1, n ∈ N, and

xn+1sk = xn+1(GσkX) = xn+1PσkX(xn+1dn+1snPσkX)−1 = xn+1sk(xn+1dn+1snsk)−1

= xn+1sk(xn+1dn+1sksn+1)−1 = xn+1sk

for xn+1 ∈ Xn+1, n ∈ N0.

(4.26) Definition (simplicial free group). A simplicial group F is called a simplicial free group, if Fn is a free
group with a free generating system Xn ⊆ Fn for every n ∈ N0 and Xnsk ⊆ Xn+1 for every n ∈ N0, k ∈ [0, n].

(4.27) Proposition. The Kan loop group GX of a reduced simplicial set X is a simplicial free group.

Proof. This follows from proposition (4.25).

(4.28) Proposition.

(a) We let X f−→ Y be a simplicial map between reduced simplicial sets X and Y . Then we have an induced
morphism

GX
Gf−−→ GY,

given by

xn+1(Gnf) = xn+1(Pnf) = xn+1fn+1 for xn+1 ∈ Xn+1, n ∈ N0.

(b) The construction in (a) yields a functor

sSet0
G−→ sGrp.

Proof.

(a) We have

xn+1(GθX)(Gmf) = (xn+1(PθX)(xn+1dn+1sn(PθX))−1)(Gmf)

= (xn+1(PθX)(Gmf))(xn+1dn+1sn(PθX)(Gmf))−1

= xn+1(PθX)(Pmf)(xn+1dn+1sn(PθX)(Pmf))−1

= xn+1(Pnf)(PθY )(xn+1(Pnf)dn+1sn(PθY ))−1

= xn+1(Pnf)(GθY ) = xn+1(Gnf)(GθY ),

for xn+1 ∈ Xn+1 and thus (GθX)(Gmf) = (Gnf)(GθY ) for θ ∈ ∆([m], [n]). Hence Gf is a simplicial
group homomorphism GX −→ GY .
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(b) We let X, Y , Z be reduced simplicial sets and X f−→ Y , Y g−→ Z be simplicial maps. Then

xn+1(Gnf)(Gng) = xn+1(Pnf)(Gng) = xn+1(Pnf)(Png) = xn+1(Pn(fg)) = xn+1(Gn(fg))

and

xn+1(GnidX) = xn+1(PnidX) = xn+1idPnX = xn+1

for all xn+1 ∈ Xn+1, n ∈ N0. Thus (Gf)(Gg) = G(fg) and GidX = idGX , and hence G is a functor.

(4.29) Theorem (cf. [20, Proposition 10.5]). The functor sSet0
G−→ sGrp is left adjoint to sGrp

W−→ sSet0.

Proof. We let X ∈ Ob sSet0 be a reduced simplicial set, H ∈ Ob sGrp a simplicial group and GX
ϕ−→ H a

simplicial group homomorphism. We define (ϕΦX,H)n : Xn →WnH,xn 7→ (xndbn,j+2cϕj)j∈bn−1,0c for n ∈ N0.
We suppose given θ ∈ ∆([m], [n]) for m,n ∈ N0. Then

xn(ϕΦX,H)n(WθH) = (xndbn,j+2cϕj)j∈bn−1,0c(WθH) = (
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2cϕjHθ|[j]
[i]

))i∈bm−1,0c

= (
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2c(Gθ|[j]
[i]

X)ϕi))i∈bm−1,0c

= ((
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2c(Gθ|[j]
[i]

X)))ϕi)i∈bm−1,0c

= ((
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2c(Pθ|[j]
[i]

X)(xndbn,j+2cdj+1sj(Pθ|[j]
[i]

X))−1))ϕi)i∈bm−1,0c

= ((
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2cXSh(θ|[j]
[i]

)
(xndbn,j+1cXσjXSh(θ|[j]

[i]
)
)−1))ϕi)i∈bm−1,0c

= ((
∏

j∈b(i+1)θ−1,iθc

(xndbn,j+2cXSh(θ|[j]
[i]

)
(xndbn,j+1cXSh(θ|[j]

[i]
)σj

)−1))ϕi)i∈bm−1,0c

= (((
∏

j∈b(i+1)θ−1,iθ+1c

(xndbn,j+2cXSh(θ|[j]
[i]

)
(xndbn,j+1cXSh(θ|[j]

[i]
)σj

)−1))

· (xndbn,iθ+2cXSh(θ|[iθ]
[i]

)
(xndbn,iθ+1cXSh(θ|[iθ]

[i]
)σiθ

)−1))ϕi)i∈bm−1,0c

= (((
∏

j∈b(i+1)θ−1,iθ+1c

(xndbn,j+2cXSh(θ|[j]
[i]

)
(xndbn,j+1cXSh(θ|[j−1]

[i]
)
)−1))

· (xndbn,iθ+2cXSh(θ|[iθ]
[i]

)
(xndbn,iθ+1cXSh(θ|[iθ]

[i]
)σiθ

)−1))ϕi)i∈bm−1,0c

= ((xndbn,(i+1)θ−1+2cXSh(θ|[(i+1)θ−1]

[i]
)
(xndbn,iθ+1cXSh(θ|[iθ]

[i]
)σiθ

)−1)ϕi)i∈bm−1,0c

= ((xnXδd(i+1)θ+1,neX
θ|[(i+1)θ]

[i+1]

(xndbn,iθ+1cXσi(θ|[iθ]
[i]

)
)−1)ϕi)i∈bm−1,0c

= ((xnXθ|[(i+1)θ]

[i+1]
δd(i+1)θ+1,ne(xndbn,iθ+1cXθ|[iθ]

[i]

Xσi)
−1)ϕi)i∈bm−1,0c

= ((xnXθ|[(i+1)θ]

[i+1]
δd(i+1)θ+1,ne(xndbn,iθ+1c(Xθ|[iθ]

[i]

)si)
−1)ϕi)i∈bm−1,0c

= ((xnXθ|[(i+1)θ]

[i+1]
δd(i+1)θ+1,ne)ϕi)i∈bm−1,0c = (xnXδdi+2,meθϕi)i∈bm−1,0c

= (xnXθXδdi+2,meϕi)i∈bm−1,0c = (xnXθdbm,i+2cϕi)i∈bm−1,0c = xnXθ(ϕΦX,H)m

for all xn ∈ Xn, that is, the diagram

Xn
Xθ //

(ϕΦX,H)n

��

Xm

(ϕΦX,H)m

��
WnH

WθH //WmH



§4. THE KAN CLASSIFYING FUNCTOR 73

commutes. Thus the maps (ϕΦX,H)n for n ∈ N0 yield a simplicial map

X
ϕΦX,H−−−−→WH.

Since ϕ ∈ sGrp(GX,H) was arbitrary, we have a well-defined map

ΦX,H : sGrp(GX,H)→ sSet0(X,WH).

We claim that the maps ΦX,H for X ∈ Ob sSet0, H ∈ Ob sGrp, yield a natural transformation

sGrp(G−,=) −→ sSet0(−,W=).

Indeed, given reduced simplicial sets X,Y ∈ Ob sSet0, simplicial groups H,K ∈ Ob sGrp, a simplicial map
Y

e−→ X and a simplicial group homomorphism H
ψ−→ K, we have

ynen(ϕΦX,H)n(Wnψ) = (ynendbn,j+2cϕj)j∈bn−1,0c(Wnψ) = (ynendbn,j+2cϕjψj)j∈bn−1,0c

= (yndbn,j+2cej+1ϕjψj)j∈bn−1,0c = (yndbn,j+2c(Gje)ϕjψj)j∈bn−1,0c

= (yndbn,j+2c((Ge)ϕψ)j)j∈bn−1,0c = yn(((Ge)ϕψ)ΦY,K)n

for yn ∈ Yn, n ∈ N0. Hence the diagram

sGrp(GX,H)
ΦX,H //

(Ge)(−)ψ

��

sSet0(X,WH)

e(−)(Wψ)

��
sGrp(GY,K)

ΦY,K //
sSet0(X,WK)

commutes, and we have a natural transformation

sGrp(G−,=)
Φ−→ sSet0(−,W=).

It remains to show that Φ is an isomorphism. To this end, for a given reduced simplicial set X, a given simplicial
group H and a given simplicial map X f−→WH, we define a group homomorphisms (fΨX,H)n : GnX → H by
xn+1(fΨX,H)n := (xn+1fn+1)n for xn+1 ∈ Xn+1, n ∈ N0. Given θ ∈ ∆([m], [n]) for m,n ∈ N0, we obtain

xn+1(GθX)(fΨX,H)m = (xn+1(PθX)(xn+1dn+1sn(PθX))−1)(fΨX,H)m

= (xn+1XShθfm+1)m(xn+1dn+1snXShθfm+1)−1
m

= (xn+1fn+1(WShθH))m(xn+1fn+1dn+1sn(WShθH))−1
m

= (
∏

j∈b(m+1)(Shθ)−1,m(Shθ)c

(xn+1fn+1)jH(Shθ)|[j]
[m]

)

· (
∏

j∈b(m+1)(Shθ)−1,m(Shθ)c

(xn+1fn+1dn+1sn)jH(Shθ)|[j]
[m]

)−1

= (
∏

j∈bn,mθc

(xn+1fn+1)jHθ|[j]
[m]

)(
∏

j∈bn,mθc

(xn+1fn+1dn+1sn)jHθ|[j]
[m]

)−1

= (
∏

j∈bn,mθc

(xn+1fn+1)jHθ|[j])(
∏

j∈bn−1,mθc

(xn+1fn+1)jHθ|[j])
−1

=
∏

j∈bn,mθc

(xn+1fn+1)jHθ|[j]
∏

j∈bmθ,n−1c

(xn+1fn+1)−1
j Hθ|[j]

= (xn+1fn+1)nHθ|[n] = (xn+1fn+1)nHθ = xn+1(fΨX,H)nHθ

for xn+1 ∈ Xn+1, that is, the diagram

GnX
GθX //

(fΨX,H)n

��

GmX

(fΨX,H)m

��
Hn

Hθ // Hm



74 CHAPTER IV. SIMPLICIAL GROUPS

commutes. Hence the group homomorphisms (fΨX,H)n for n ∈ N0 yield a simplicial group homomorphism

fΨX,H : GX → H,

and since f ∈ sSet0(X,WH) was arbitrary, we have a well-defined map

ΨX,H : sSet0(X,WH)→ sGrp(GX,H).

We have to show that ΦX,H and ΨX,H are mutually inverse maps for each reduced simplicial set X ∈ Ob sSet0

and each simplicial group H ∈ Ob sGrp. Indeed, it holds that

xn+1(ϕΦX,HΨX,H)n = (xn+1(ϕΦX,H)n+1)n = xn+1dbn+1,n+2cϕn = xn+1ϕn

for all xn+1 ∈ Xn+1, n ∈ N0, that is, ϕΦX,HΨX,H = ϕ for every simplicial group homomorphism ϕ ∈
sGrp(GX,H). Moreover,

xn(fΨX,HΦX,H)n = (xndbn,j+2c(fΨX,H)j)j∈bn−1,0c = ((xndbn,j+2cfj+1)j)j∈bn−1,0c

= ((xnfndbn,j+2c)j)j∈bn−1,0c = xnfn

for all xn ∈ Xn, n ∈ N0, that is, fΨX,HΦX,H = f for every simplicial map f ∈ sSet0(X,WH). This implies

ΦX,HΨX,H = id
sGrp(GX,H) and ΨX,HΦX,H = id

sSet0
(X,WH) for all X ∈ Ob sSet0, H ∈ Ob sGrp,

and hence the maps ΨX,H for X ∈ Ob sSet0, H ∈ Ob sGrp yield a natural transformation

sSet0(−,W=)
Ψ−→ sGrp(G−,=)

inverse to Φ. Thus sGrp(G−,=) ∼= sSet0(−,W=), that is, G aW.

§5 The classifying simplicial set of a simplicial group
Here we introduce the second possible notation for a classifying simplicial set of a simplicial group, namely the
diagonal of its nerve. It will be shown that the Kan classifying simplicial set and the diagonal nerve construction
are simplicially homotopy equivalent.

(4.30) Proposition (diagonal of the nerve of a simplicial group). The diagonal of the nerve of a given simplicial
group G is a simplicial set with Diagn NG = G×nn and where the faces and degeneracies are given by

dk = ×
i∈bn−1,k+1c

dk × (dk × dk)m × ×
i∈bk−2,0c

dk for all k ∈ [0, n], n ∈ N,

and

sk = ×
i∈bn−1,kc

sk × n × ×
i∈bk−1,0c

sk for all k ∈ [0, n], n ∈ N0.

Proof. Follows from proposition (1.36) and proposition (3.6).

(4.31) Proposition.

(a) We have a natural transformation

Diag ◦N D−→W

given by (DG)n =×i∈bn−1,0c dbn,i+1c : G
×n
n →×i∈bn−1,0cGi for all n ∈ N0, G ∈ Ob sGrp.

(b) The natural transformation D is a retraction. A corresponding coretraction is given by

W
S−→ Diag ◦N,
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where SG is recursively given by

(SG)n : ×
i∈bn−1,0c

Gi → G×nn , (gi)i∈bn−1,0c 7→ (yi)i∈bn−1,0c

with

yi :=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) ∈ Gn

for each i ∈ bn− 1, 0c, n ∈ N0, G ∈ Ob sGrp.

Proof.

(a) First, we have to show that for a simplicial group G the maps (DG)n for n ∈ N0 are compatible with the
faces and degeneracies of G. In fact, we obtain

dk(DG)n−1 = ( ×
i∈bn−1,k+1c

dk × (dk × dk)m × ×
i∈bk−2,0c

dk)( ×
i∈bn−2,0c

dbn−1,i+1c)

= ×
i∈bn−1,k+1c

dkdbn−1,ic × (dk × dk)mdbn−1,kc × ×
i∈bk−2,0c

dkdbn−1,i+1c

= ×
i∈bn−1,k+1c

dkdbn−1,ic × (dk × dk)dbn−1,kcm × ×
i∈bk−2,0c

dkdbn−1,i+1c

= ×
i∈bn−1,k+1c

dbn,i+1cdk × (dbn,k+1cdk × dbn,kc)m × ×
i∈bk−2,0c

dbn,i+1c

= ( ×
i∈bn−1,0c

dbn,i+1c)( ×
i∈bn−1,k+1c

dk × (dk × id)m × ×
i∈bk−2,0c

id) = (DG)ndk

for all k ∈ [0, n], n ∈ N, and

sk(DG)n+1 = ( ×
i∈bn−1,kc

sk × n × ×
i∈bk−1,0c

sk)( ×
i∈bn,0c

dbn+1,i+1c)

= ×
i∈bn−1,kc

skdbn+1,i+2c × n × ×
i∈bk−1,0c

skdbn+1,i+1c

= ×
i∈bn−1,kc

dbn,i+1csk × n × ×
i∈bk−1,0c

dbn,i+1c

= ( ×
i∈bn−1,0c

dbn,i+1c)( ×
i∈bn−1,kc

sk × n × ×
i∈bk−1,0c

id) = (DG)nsk

for all k ∈ [0, n], n ∈ N0, that is

Diag NG
DG−−→WG

is a simplicial map for each G ∈ Ob sGrp.(1)

Diagn+1 NG

(DG)n+1

��

Diagn NG
dk //skoo

(DG)n

��

Diagn−1G

(DG)n−1

��
Wn+1G WnG

dk //skoo Wn−1G

Now we let G and H be simplicial groups and we let G ϕ−→ H be a simplicial group homomorphism. We
get

(DG)n(Wϕ) = ( ×
i∈bn−1,0c

dbn,i+1c)( ×
i∈bn−1,0c

ϕi) = ×
i∈bn−1,0c

dbn,i+1cϕi = ×
i∈bn−1,0c

ϕndbn,i+1c

1The morphism DG can be obtained as composite DG = φNGfG, where φ is the natural transformation between the functors
Diag and Tot from s2Set to sSet, cf. (3.15), and where f is the isomorphism from Tot ◦N to W, cf. remark (4.19). This yields an
alternative proof of the fact that DG is a simplicial map.
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= ϕ×nn ( ×
i∈bn−1,0c

dbn,i+1c) = (Diagn Nϕ)(DH)n

for all n ∈ N0. This implies that we have a commutative diagram

Diag NG
DG //

Diag Nϕ

��

WG

Wϕ

��
Diag NH

DH //WH

that is, (DG)G∈Ob sGrp is natural in G and thus Diag ◦N D−→W is a natural transformation.

(b) Again, we have to show that the maps (SG)n for n ∈ N0 commute with the faces and degeneracies of a
simplicial group G.

First, we consider the faces: We let n ∈ N and k ∈ [0, n]. For an n-tuple (gi)i∈bn−1,0c ∈×i∈bn−1,0cGi we
compute

(gi)i∈bn−1,0cdk(SG)n−1 = (fi)i∈bn−2,0c(SG)n−1 = (xi)i∈bn−2,0c,

where

fi :=


gi+1dk for i ∈ bn− 2, kc,
(gkdk)gk−1 for i = k − 1,

gi for i ∈ bk − 2, 0c

and

xi :=
∏

j∈di+1,n−2e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−2,ic

(fjdbj,i+1csdi,n−2e) for each i ∈ bn− 2, 0c.

On the other hand, we get

(gi)i∈bn−1,0c(SG)ndk = (yi)i∈bn−1,0cdk = (x′i)i∈bn−2,0c

with

yi :=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) for i ∈ bn− 1, 0c

and

x′i :=


yi+1dk for i ∈ bn− 2, kc,
(ykdk)(yk−1dk) for i = k − 1,

yidk for i ∈ bk − 2, 0c.

We have to show that xi = x′i for all i ∈ bn− 2, 0c. To this end, we proceed by induction on i.

For i ∈ bn− 2, kc, we calculate

xi =
∏

j∈di+1,n−2e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(y−1
j+1dkdbj,i+1csdi,j−1e)

∏
j∈bn−2,ic

(gj+1dkdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(y−1
j+1dbj+1,i+2cdksdi,j−1e)

∏
j∈bn−2,ic

(gj+1dbj+1,i+2cdksdi,n−2e)
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=
∏

j∈di+1,n−2e

(y−1
j+1dbj+1,i+2csdi+1,jedk)

∏
j∈bn−2,ic

(gj+1dbj+1,i+2csdi+1,n−1edk)

=
( ∏
j∈di+1,n−2e

(y−1
j+1dbj+1,i+2csdi+1,je)

∏
j∈bn−2,ic

(gj+1dbj+1,i+2csdi+1,n−1e)
)

dk

=
( ∏
j∈di+2,n−1e

(y−1
j dbj,i+2csdi+1,j−1e)

∏
j∈bn−1,i+1c

(gjdbj,i+2csdi+1,n−1e)
)

dk = yi+1dk.

For i = k − 1, we have

xk−1 =
∏

j∈dk,n−2e

(x−1
j dbj,kcsdk−1,j−1e)

∏
j∈bn−2,k−1c

(fjdbj,kcsdk−1,n−2e)

=
∏

j∈dk,n−2e

(x′j
−1

dbj,kcsdk−1,j−1e)
∏

j∈bn−2,k−1c

(fjdbj,kcsdk−1,n−2e)

=
∏

j∈dk,n−2e

(y−1
j+1dkdbj,kcsdk−1,j−1e)

∏
j∈bn−2,kc

(gj+1dkdbj,kcsdk−1,n−2e) · ((gkdk)gk−1)sdk−1,n−2e

=
∏

j∈dk,n−2e

(y−1
j+1dbj+1,kcsdk−1,j−1e)

∏
j∈bn−2,k−2c

(gj+1dbj+1,kcsdk−1,n−2e)

=
∏

j∈dk+1,n−1e

(y−1
j dbj,kcsdk−1,j−2e)

∏
j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−2e)

= (ykdk)
∏

j∈dk,n−1e

(y−1
j dbj,kcsdk−1,j−2e)

∏
j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−2e)

= (ykdk)
∏

j∈dk,n−1e

(y−1
j dbj,kcsdk−1,j−1edk)

∏
j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−1edk)

= (ykdk)
( ∏
j∈dk,n−1e

(y−1
j dbj,kcsdk−1,j−1e)

∏
j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−1e)
)

dk

= (ykdk)(yk−1dk).

For i ∈ bk − 2, 0c, we finally get

xi =
∏

j∈di+1,n−2e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

= (
∏

j∈di+1,k−2e

(y−1
j dkdbj,i+1csdi,j−1e))((ykyk−1)−1dkdbk−1,i+1csdi,k−2e)

· (
∏

j∈dk,n−2e

(y−1
j+1dkdbj,i+1csdi,j−1e))(

∏
j∈bn−2,kc

(yj+1dkdbj,i+1csdi,n−2e))

· (((gkdk)gk−1)dbk−1,i+1csdi,n−2e)(
∏

j∈bk−2,ic

(gjdbj,i+1csdi,n−2e))

= (
∏

j∈di+1,k−2e

(y−1
j dkdbj,i+1csdi,j−1e))(y

−1
k−1dkdbk−1,i+1csdi,k−2e)(y

−1
k dbk,i+1csdi,k−2e)

· (
∏

j∈dk,n−2e

(y−1
j+1dbj+1,i+1csdi,j−1e))(

∏
j∈bn−2,kc

(gj+1dbj+1,i+1csdi,n−2e))

· (gkdbk,i+1csdi,n−2e)(gk−1dbk−1,i+1csdi,n−2e)(
∏

j∈bk−2,ic

(gjdbj,i+1csdi,n−2e))

=
∏

j∈di+1,k−1e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈dk−1,n−2e

(y−1
j+1dbj+1,i+1csdi,j−1e)

·
∏

j∈bn−2,k−1c

(gj+1dbj+1,i+1csdi,n−2e)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,n−2e)
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=
∏

j∈di+1,k−1e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−2e)

·
∏

j∈bn−1,kc

(gjdbj,i+1csdi,n−2e)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1cdk−j+isdi,j−1e)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−2e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1edk)

=
( ∏
j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

dk = yidk.

Hence

xi =


yi+1dk for i ∈ bn− 2, kc,
(ykdk)(yk−1dk) for i = k − 1,

yidk for i ∈ bk − 2, 0c

 = x′i

for i ∈ bn− 2, 0c, and therefore

(gi)i∈bn−1,0cdk(SG)n−1 = (gi)i∈bn−1,0c(SG)ndk.

We conclude that dk(SG)n−1 = (SG)ndk for all k ∈ [0, n], n ∈ N.
Next, we come to the degeneracies.

We let n ∈ N0, k ∈ [0, n] and (gi)i∈bn−1,0c ∈×i∈bn−1,0cGi. We compute

(gi)i∈bn−1,0csk(SG)n+1 = (hi)i∈bn,0c(SG)n+1 = (zi)i∈bn,0c,

where

hi :=


gi−1sk for i ∈ bn, k + 1c,
1 for i = k,

gi for i ∈ bk − 1, 0c

and

zi :=
∏

j∈di+1,ne

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bn,ic

(hjdbj,i+1csdi,ne) for each i ∈ bn, 0c.

Further, we get

(gi)i∈bn−1,0c(SG)nsk = (yi)i∈bn−1,0csk = (z′i)i∈bn,0c

with

yi :=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) for i ∈ bn− 1, 0c

and

z′i :=


yi−1sk for i ∈ bn, k + 1c,
1 for i = k,

yisk for i ∈ bk − 1, 0c.

Thus we have to show that zi = z′i for every i ∈ bn, 0c. To this end, we perform an induction on i ∈ bn, 0c.
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For i ∈ bn, k + 1c, we have

zi =
∏

j∈di+1,ne

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(y−1
j−1skdbj,i+1csdi,j−1e)

∏
j∈bn,ic

(gj−1skdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(y−1
j−1dbj−1,icsksdi,j−1e)

∏
j∈bn,ic

(gj−1dbj−1,icsksdi,ne)

=
∏

j∈di+1,ne

(y−1
j−1dbj−1,icsdi−1,j−2esk)

∏
j∈bn,ic

(gj−1dbj−1,icsdi−1,n−1esk)

=
∏

j∈di,n−1e

(y−1
j dbj,icsdi−1,j−1esk)

∏
j∈bn−1,i−1c

(gjdbj,icsdi−1,n−1esk)

=
( ∏
j∈di,n−1e

(y−1
j dbj,icsdi−1,j−1e)

∏
j∈bn−1,i−1c

(gjdbj,icsdi−1,n−1e)
)

sk = yi−1sk.

For i = k, we compute

zk =
∏

j∈dk+1,ne

(z−1
j dbj,k+1csdk,j−1e)

∏
j∈bn,kc

(hjdbj,k+1csdk,ne)

=
∏

j∈dk+1,ne

(z′j
−1

dbj,k+1csdk,j−1e)
∏

j∈bn,kc

(hjdbj,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1
j−1skdbj,k+1csdk,j−1e)

∏
j∈bn,k+1c

(gj−1skdbj,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1
j−1dbj−1,k+1csdk,j−1e)

∏
j∈bn,k+1c

(gj−1dbj−1,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1
j−1skdbj,k+2csdk+1,j−1e)

∏
j∈bn,k+1c

(gj−1skdbj,k+2csdk+1,ne)

=
∏

j∈dk+1,ne

(z′j
−1

dbj,k+2csdk+1,j−1e)
∏

j∈bn,k+1c

(hjdbj,k+2csdk+1,ne)

= z−1
k+1

∏
j∈dk+2,ne

(z−1
j dbj,k+2csdk+1,j−1e)

∏
j∈bn,k+1c

(hjdbj,k+2csdk+1,ne) = z−1
k+1zk+1 = 1.

For i ∈ bk − 1, 0c, we get

zi =
∏

j∈di+1,ne

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

= (
∏

j∈di+1,k−1e

(z′j
−1

dbj,i+1csdi,j−1e))(z
′
k
−1

dbk,i+1csdi,k−1e)(
∏

j∈dk+1,ne

(z′j
−1

dbj,i+1csdi,j−1e))

· (
∏

j∈bn,k+1c

(hjdbj,i+1csdi,ne))(hkdbk,i+1csdi,ne)(
∏

j∈bk−1,ic

(hjdbj,i+1csdi,ne))

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈dk+1,ne

(y−1
j−1skdbj,i+1csdi,j−1e)

·
∏

j∈bn,k+1c

(gj−1skdbj,i+1csdi,ne)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,ne)

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈dk,n−1e

(y−1
j skdbj+1,i+1csdi,je)
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·
∏

j∈bn−1,kc

(gjskdbj+1,i+1csdi,ne)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,ne)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csk−j+isdi,j−1e)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,je)

·
∏

j∈bn−1,kc

(gjdbj,i+1csdi,ne)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,ne)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,ne)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1esk)

=
( ∏
j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

sk = yisk.

Hence

zi =


yi−1sk for i ∈ bn, k + 1c,
1 for i = k,

yisk for i ∈ bk − 1, 0c

 = z′i

for i ∈ bn, 0c, and therefore

(gi)i∈bn−1,0csk(SG)n+1 = (gi)i∈bn−1,0c(SG)nsk.

We conclude that sk(SG)n+1 = (SG)nsk for all k ∈ [0, n], n ∈ N0.
Thus (SG)n∈N yields a simplicial map

WG
SG−−→ Diag NG.

Now we shall show that (SG)G∈Ob sGrp is a natural transformation. We let G, H be simplicial groups
and G ϕ−→ H be a simplicial group homomorphism. Further, we let n ∈ N0 be a non-negative integer and
(gi)i∈bn−1,0c ∈WnG be an element. We write (yi)i∈bn−1,0c for the image of (gi)i∈bn−1,0c under (SG)n and
we write (zi)i∈bn−1,0c for the image of (giϕi)i∈bn−1,0c = (gi)i∈bn−1,0c(Wnϕ) ∈ WnH under (SH)n. By
induction on i ∈ bn− 1, 0c, we get

zi =
∏

j∈di+1,n−1e

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjϕjdbj,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

(y−1
j ϕndbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjϕjdbj,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1eϕn)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1eϕn)

=
( ∏
j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)
ϕn = yiϕn.

Hence

(gi)i∈bn−1,0c(Wnϕ)(SH)n = (giϕi)i∈bn−1,0c(SH)n = (zi)i∈bn−1,0c = (yiϕn)i∈bn−1,0c

= (yi)i∈bn−1,0cDiagn Nϕ = (gi)i∈bn−1,0c(SG)n Diagn Nϕ.

Since (gi)i∈bn−1,0c ∈WnG and n ∈ N0 were chosen arbitrarily, this implies the commutativity of

WG
SG //

Wϕ

��

Diag NG

Diag Nϕ

��
WH

SH // Diag NH
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Finally, we have to prove that DG is a retraction with coretraction SG, that is

(SG)n(DG)n = idWnG
for all n ∈ N0.

Again, we let (yi)i∈bn−1,0c denote the image of an element (gi)i∈bn−1,0c ∈ ×i∈bn−1,0cGi under (SG)n.
Then we have

(gi)i∈bn−1,0c(SG)n(DG)n = (yi)i∈bn−1,0c(DG)n = (yidbn,i+1c)i∈bn−1,0c.

Induction on i ∈ bn− 1, 0c shows that

yidbn,i+1c =
( ∏
j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

dbn,i+1c

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1edbn,i+1c)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1edbn,i+1c)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1cdbn−j+i,j+1−j+icsdi,j−1edbj,i+1c)

∏
j∈bn−1,ic

(gjdbj,i+1c)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1cdbn−j+i,i+1c)

∏
j∈bn−1,ic

(gjdbj,i+1c)

=
∏

j∈di+1,n−1e

(y−1
j dbn,i+1c)

∏
j∈bn−1,ic

(gjdbj,i+1c)

=
∏

j∈di+1,n−1e

(g−1
j dbj,i+1c)

∏
j∈bn−1,ic

(gjdbj,i+1c) = gi.

This implies that (SG)n(DG)n = idWnG
for all n ∈ N0.

(4.32) Theorem. For each simplicial group G, the Kan classifying simplicial set WG is a strong simplicial
deformation retract of Diag NG. A strong simplicial deformation retraction is given by

Diag NG
DG−−→WG,

where (DG)n =×i∈bn−1,0c dbn,i+1c for every n ∈ N0, G ∈ Ob sGrp; cf. proposition (4.31)(a).

Proof. For n ∈ N0, we define Hn : Diagn NG×∆1
n → Diagn NG, ((gn,i)i∈bn−1,0c, τ

n+1−k) 7→ (yi)i∈bn−1,0c, where
k ∈ [0, n+ 1] and, recursively defined,

yi :=

{
gn,i for i ∈ bn− 1, k − 2c ∩ N0,∏
j∈di+1,k−2e(y

−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−1,ic(gn,jdbk−1,i+1csdi,k−2e) for i ∈ bk − 2, 0c.

Cf. definition (2.3).
We will show that these maps yield a simplicial homotopy from DGSG to idDiag NG, where SG is given as in
proposition (4.31), which is constant along SG.
First, we show the compatibility with the faces. For k ∈ [0, n], l ∈ [0, n+1], n ∈ N0, (gn,i)i∈bn−1,0c ∈ Diagn NG,
we have

((gn,i)i∈bn−1,0c, τ
n+1−l)dkHn−1 = ((gn,i)i∈bn−1,0cdk, τ

n+1−ldk)Hn−1 = ((fi)i∈bn−2,0c, δ
kτn+1−l)Hn−1

=

{
((fi)i∈bn−2,0c, τ

n−l)Hn−1 for k ≥ l,
((fi)i∈bn−2,0c, τ

n+1−l)Hn−1 for k < l

}
= (xi)i∈bn−2,0c,

where

fi :=


gn,i+1dk for i ∈ bn− 2, kc,
(gn,kdk)(gn,k−1dk) for i = k − 1,

gn,idk for i ∈ bk − 2, 0c
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for all i ∈ bn− 2, 0c and

xi :=




fi for i ∈ bn− 2, l − 1c,∏
j∈di+1,l−2e(x

−1
j dbj,i+1csdi,j−1e)

·
∏
j∈bl−2,ic(fjdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

 if k ≥ l,


fi for i ∈ bn− 2, l − 2c,∏
j∈di+1,l−3e(x

−1
j dbj,i+1csdi,j−1e)

·
∏
j∈bl−3,ic(fjdbl−2,i+1csdi,l−3e) for i ∈ bl − 3, 0c

 if k < l

for all i ∈ bn− 2, 0c. On the other hand, we have

((gn,i)i∈bn−1,0c, τ
n+1−l)Hndk = (yi)i∈bn−1,0cdk = (x′i)i∈bn−2,0c

with

yi :=

{
gn,i for i ∈ bn− 1, l − 1c,∏
j∈di+1,l−2e(y

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(gn,jdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

for i ∈ bn− 1, 0c and

x′i :=


yi+1dk for i ∈ bn− 2, kc,
(ykdk)(yk−1dk) for i = k − 1,

yidk for i ∈ bk − 2, 0c

for i ∈ bn− 2, 0c. We have to show that xi = x′i for all i ∈ bn− 2, 0c. To this end, we consider three cases and
we handle each one by induction on i ∈ bn− 2, 0c.
We suppose that k ∈ bn, lc.
For i ∈ bn− 2, kc, we have

xi = fi = gn,i+1dk = yi+1dk = x′i.

For i = k − 1, we get

xk−1 = fk−1 = (gn,kdk)(gn,k−1dk) = (ykdk)(yk−1dk) = x′k−1.

For i ∈ bk − 2, l − 1c, we get

xi = fi = gn,idk = yidk = x′i

Finally, for i ∈ bl − 2, 0c, we calculate

xi =
∏

j∈di+1,l−2e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(fjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(fjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jdkdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2edk)

=
( ∏
j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

dk = yidk = x′i.

Next, we suppose that k = l − 1.
For i ∈ bn− 2, kc, we have

xi = fi = gn,i+1dk = yi+1dk = x′i.
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For i = k − 1, we compute

xk−1 = fk−1 = (gn,kdk)(gn,k−1dk) = (gn,kdk)(gn,k−1dksk−1dk) = (ykdk)(yk−1dk) = x′k−1.

For i ∈ bk − 2, 0c, we get

xi =
∏

j∈di+1,k−2e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(fjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bk−2,ic

(fjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(gn,jdkdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bk−1,ic

(gn,jdbk,i+1csdi,k−1edk)

=
( ∏
j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−1,ic

(gn,jdbk,i+1csdi,k−1e)
)

dk = yidk = x′i.

Finally, we suppose that k ∈ bl − 2, 0c.
For i ∈ bn− 2, l − 2c, we see that

xi = fi = gn,i+1dk = yi+1dk = x′i.

For i ∈ bl − 3, kc, we have

xi =
∏

j∈di+1,l−3e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(y−1
j+1dkdbj,i+1csdi,j−1e)

∏
j∈bl−3,ic

(gn,j+1dkdbl−2,i+1csdi,l−3e)

=
∏

j∈di+2,l−2e

(y−1
j dkdbj−1,i+1csdi,j−2e)

∏
j∈bl−2,i+1c

(gn,jdkdbl−2,i+1csdi,l−3e)

=
∏

j∈di+2,l−2e

(y−1
j dbj,i+2cdksdi,j−2e)

∏
j∈bl−2,i+1c

(gn,jdbl−1,i+2cdksdi,l−3e)

=
∏

j∈di+2,l−2e

(y−1
j dbj,i+2csdi+1,j−1edk)

∏
j∈bl−2,i+1c

(gn,jdbl−1,i+2csdi+1,l−2edk)

=
( ∏
j∈di+2,l−2e

(y−1
j dbj,i+2csdi+1,j−1e)

∏
j∈bl−2,i+1c

(gn,jdbl−1,i+2csdi+1,l−2e)
)

dk = yi+1dk = x′i.

For i = k − 1, we have

xk−1 =
∏

j∈dk,l−3e

(x−1
j dbj,kcsdk−1,j−1e)

∏
j∈bl−3,k−1c

(fjdbl−2,kcsdk−1,l−3e)

=
∏

j∈dk,l−3e

(x′j
−1

dbj,kcsdk−1,j−1e)
∏

j∈bl−3,k−1c

(fjdbl−2,kcsdk−1,l−3e)

= (
∏

j∈dk,l−3e

(yj+1dkdbj,kcsdk−1,j−1e))(
∏

j∈bl−3,kc

(gn,j+1dkdbl−2,kcsdk−1,l−3e))

· (gn,kdkdbl−2,kcsdk−1,l−3e)(gn,k−1dkdbl−2,kcsdk−1,l−3e)

=
∏

j∈dk,l−3e

(yj+1dkdbj,kcsdk−1,j−1e)
∏

j∈bl−3,k−2c

(gn,j+1dkdbl−2,kcsdk−1,l−3e)

=
∏

j∈dk+1,l−2e

(yjdkdbj−1,kcsdk−1,j−2e)
∏

j∈bl−2,k−1c

(gn,jdkdbl−2,kcsdk−1,l−3e)
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=
∏

j∈dk+1,l−2e

(y−1
j dbj,kcsdk−1,j−2e)

∏
j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−3e)

= (ykdk)
∏

j∈dk,l−2e

(y−1
j dbj,kcsdk−1,j−2e)

∏
j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−3e)

= (ykdk)
∏

j∈dk,l−2e

(y−1
j dbj,kcsdk−1,j−1edk)

∏
j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−2edk)

= (ykdk)
( ∏
j∈dk,l−2e

(y−1
j dbj,kcsdk−1,j−1e)

∏
j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−2e)
)

dk = (ykdk)(yk−1dk)

= x′k−1.

At last, for i ∈ bk − 2, 0c, we get

xi =
∏

j∈di+1,l−3e

(x−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

= (
∏

j∈di+1,k−2e

(x′j
−1

dbj,i+1csdi,j−1e))(x
′
k−1
−1

dbk−1,i+1csdi,k−2e)(
∏

j∈dk,l−3e

(x′j
−1

dbj,i+1csdi,j−1e))

· (
∏

j∈bl−3,kc

(fjdbl−2,i+1csdi,l−3e))(fk−1dbl−2,i+1csdi,l−3e)(
∏

j∈bk−2,ic

(fjdbl−2,i+1csdi,l−3e))

= (
∏

j∈di+1,k−2e

(y−1
j dkdbj,i+1csdi,j−1e))(y

−1
k−1dkdbk−1,i+1csdi,k−2e)(y

−1
k dkdbk−1,i+1csdi,k−2e)

· (
∏

j∈dk,l−3e

(y−1
j+1dkdbj,i+1csdi,j−1e))(

∏
j∈bl−3,kc

(gn,j+1dkdbl−2,i+1csdi,l−3e))(gn,kdkdbl−2,i+1csdi,l−3e)

· (gn,k−1dkdbl−2,i+1csdi,l−3e)(
∏

j∈bk−2,ic

(gn,jdkdbl−2,i+1csdi,l−3e))

=
∏

j∈di+1,k−1e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈dk−1,l−3e

(y−1
j+1dkdbj,i+1csdi,j−1e)

·
∏

j∈bl−3,k−1c

(gn,j+1dkdbl−2,i+1csdi,l−3e)
∏

j∈bk−1,ic

(gn,jdkdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,k−1e

(y−1
j dkdbj,i+1csdi,j−1e)

∏
j∈dk,l−2e

(y−1
j dkdbj−1,i+1csdi,j−2e)

∏
j∈bl−2,ic

(gn,jdkdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1cdk−j+isdi,j−1e)

∏
j∈dk,l−2e

(y−1
j dbj,i+1csdi,j−2e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−3e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈dk,l−2e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2edk)

=
∏

j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1edk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2edk)

=
( ∏
j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

dk = yidk = x′i.

Hence xi = x′i for all i ∈ bn− 2, 0c, regardless of k and l, and therefore

((gn,i)i∈bn−1,0c, τ
n+1−l)dkHn−1 = ((gn,i)i∈bn−1,0c, τ

n+1−l)Hndk

for all k ∈ [0, n], l ∈ [0, n+ 1], n ∈ N0. We conclude that

dkHn−1 = Hndk for all k ∈ [0, n], n ∈ N0.
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Now we consider the degeneracies. We let n ∈ N0, k ∈ [0, n], l ∈ [0, n+ 1], and (gn,i)i∈bn−1,0c ∈ Diagn NG. We
compute

((gn,i)i∈bn−1,0c, τ
n+1−l)skHn+1 = ((gn,i)i∈bn−1,0csk, τ

n+1−lsk)Hn+1 = ((hi)i∈bn−1,0c,σ
kτn+1−l)Hn+1

=

{
((hi)i∈bn−1,0c, τ

n+2−l)Hn+1 for k ≥ l,
((hi)i∈bn−1,0c, τ

n+1−l)Hn+1 for k < l

}
= (zi)i∈bn,0c,

where

hi :=


gn,i−1sk for i ∈ bn, k + 1c,
1 for i = k,

gn,isk for i ∈ bk − 1, 0c

and

zi :=



{
hi for i ∈ bn, l − 1c,∏
j∈di+1,l−2e(z

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(hjdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

}
if k ≥ l,{

hi for i ∈ bn, lc,∏
j∈di+1,l−1e(z

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic(hjdbl,i+1csdi,l−1e) for i ∈ bl − 1, 0c

}
if k < l.

Furthermore, we have

((gn,i)i∈bn−1,0c, τ
n+1−l)Hnsk = (yi)i∈bn−1,0csk = (z′i)i∈bn,0c,

where

yi :=

{
gn,i for i ∈ bn− 1, l − 1c,∏
j∈di+1,l−2e(y

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(gn,jdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

and

z′i :=


yi−1sk for i ∈ bn, k + 1c,
1 for i = k,

yisk for i ∈ bk − 1, 0c.

Thus we have to show that zi = z′i for every i ∈ bn, 0c. Again, we distinguish three cases, and in each one, we
perform an induction on i ∈ bn, 0c.
We suppose that k ∈ bn, lc.
For i ∈ bn, k + 1c, we calculate

zi = hi = gn,i−1sk = yi−1sk = z′i.

Moreover, for i = k, we get

zk = hk = 1 = z′k.

For i ∈ bk − 1, l − 1c, we have

zi = hi = gn,isk = yisk = z′i.

Finally, for i ∈ bl − 2, 0c, we get

zi =
∏

j∈di+1,l−2e

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(hjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(hjdbl−1,i+1csdi,l−2e)
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=
∏

j∈di+1,l−2e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jskdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(y−1
j dbj,i+1csk−j+isdi,j−1e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csk−l+i+1sdi,l−2e)

=
∏

j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2esk)

=
( ∏
j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

sk = yisk.

Now we suppose that k = l − 1.
For i ∈ bn, k + 1c, we calculate

zi = hi = gn,i−1sk = yi−1sk = z′i.

Moreover, for i = k, we get

zk = hkdk+1sk = 1 = z′k.

For i ∈ bk − 1, 0c, we get

zi =
∏

j∈di+1,ke

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bk,ic

(hjdbk+1,i+1csdi,ke)

=
∏

j∈di+1,ke

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bk,ic

(hjdbk+1,i+1csdi,ke)

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈bk−1,ic

(gn,jskdbk+1,i+1csdi,ke)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bk−1,ic

(gn,jdbk,i+1csdi,ke)

=
( ∏
j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−1,ic

(gn,jdbk,i+1csdi,k−1e)
)

sk = yisk.

At last, we suppose that k ∈ bl − 2, 0c.
For i ∈ bn, lc, we have

zi = hi = gn,i−1sk = yi−1sk = z′i.

For i ∈ bl − 1, k + 1c, we get

zi =
∏

j∈di+1,l−1e

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(y−1
j−1skdbj,i+1csdi,j−1e)

∏
j∈bl−1,ic

(gn,j−1skdbl,i+1csdi,l−1e)

=
∏

j∈di,l−2e

(y−1
j skdbj+1,i+1csdi,je)

∏
j∈bl−2,i−1c

(gn,jskdbl,i+1csdi,l−1e)

=
∏

j∈di,l−2e

(y−1
j dbj,icsksdi,je)

∏
j∈bl−2,i−1c

(gn,jdbl−1,icsksdi,l−1e)

=
∏

j∈di,l−2e

(y−1
j dbj,icsdi−1,j−1esk)

∏
j∈bl−2,i−1c

(gn,jdbl−1,icsdi−1,l−2esk)

= (
∏

j∈di,l−2e

(y−1
j dbj,icsdi−1,j−1e)

∏
j∈bl−2,i−1c

(gn,jdbl−1,icsdi−1,l−2e))sk = yi−1sk = z′i.
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For i = k, we have

zk =
∏

j∈dk+1,l−1e

(z−1
j dbj,k+1csdk,j−1e)

∏
j∈bl−1,kc

(hjdbl,k+1csdk,l−1e)

=
∏

j∈dk+1,l−1e

(z′j
−1

dbj,k+1csdk,j−1e)
∏

j∈bl−1,kc

(hjdbl,k+1csdk,l−1e)

=
∏

j∈dk+1,l−1e

(y−1
j−1skdbj,k+1csdk,j−1e)

∏
j∈bl−1,k+1c

(gn,j−1skdbl,k+1csdk,l−1e)

=
∏

j∈dk,l−2e

(y−1
j skdbj+1,k+1csdk,je)

∏
j∈bl−2,kc

(gn,jskdbl,k+1csdk,l−1e)

= (y−1
k skdk+1sk)(

∏
j∈dk+1,l−2e

(y−1
j skdbj+1,k+1csdk,je))(

∏
j∈bl−2,kc

(gn,jskdbl,k+1csdk,l−1e))

= (y−1
k sk)(

∏
j∈dk+1,l−2e

(y−1
j dbj,k+1csdk,je))(

∏
j∈bl−2,kc

(gn,jdbl−1,k+1csdk,l−1e))

= (y−1
k sk)(

∏
j∈dk+1,l−2e

(y−1
j dbj,k+1csdk,j−1esk))(

∏
j∈bl−2,kc

(gn,jdbl−1,k+1csdk,l−2esk))

= (y−1
k sk)

(( ∏
j∈dk+1,l−2e

(y−1
j dbj,k+1csdk,j−1e)

∏
j∈bl−2,kc

(gn,jdbl−1,k+1csdk,l−2e)
)

sk

)
= (y−1

k sk)(yksk) = 1

= z′k.

For i ∈ bk − 1, 0c, we get

zi =
∏

j∈di+1,l−1e

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈dk+1,l−1e

(y−1
j−1skdbj,i+1csdi,j−1e)

·
∏

j∈bl−1,k+1c

(gn,j−1skdbl,i+1csdi,l−1e)
∏

j∈bk−1,ic

(gn,jskdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈dk,l−2e

(y−1
j skdbj+1,i+1csdi,je)

·
∏

j∈bl−2,kc

(gn,jskdbl,i+1csdi,l−1e)
∏

j∈bk−1,ic

(gn,jskdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(y−1
j skdbj,i+1csdi,j−1e)

∏
j∈dk,l−2e

(y−1
j skdbj+1,i+1csdi,je)

∏
j∈bl−2,ic

(gn,jskdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csk−j+isdi,j−1e)

∏
j∈dk,l−2e

(y−1
j dbj,i+1csdi,je)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈dk,l−2e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2esk)

=
∏

j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1esk)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2esk)

=
( ∏
j∈di+1,l−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

sk = yisk = z′i.

Hence zi = z′i for all i ∈ bn, 0c, regardless of k and l, and therefore

((gn,i)i∈bn−1,0c, τ
n+1−l)skHn+1 = ((gn,i)i∈bn−1,0c, τ

n+1−l)Hnsk.



88 CHAPTER IV. SIMPLICIAL GROUPS

We conclude that skHn+1 = Hnsk.
Altogether, we obtain a simplicial map

Diag NG×∆1 H−→ Diag NG.

We have

(gn,i)i∈bn−1,0c(DG)n(SG)n = (gn,idbn,i+1c)i∈bn−1,0c(SG)n = (yi)i∈bn−1,0c

for all (gn,i)i∈bn−1,0c ∈ Diagn NG, n ∈ N0, where

yi :=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gn,jdbn,j+1cdbj,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gn,jdbn,i+1csdi,n−1e)

for all i ∈ bn− 1, 0c. Hence the simplicial map H fulfills

((gn,i)i∈bn−1,0c, τ
0)Hn = (gn,i)i∈bn−1,0c(DG)n(SG)n

and

((gn,i)i∈bn−1,0c, τ
n+1)Hn = (gn,i)i∈bn−1,0c

for each (gn,i)i∈bn−1,0c ∈ Diagn NG, n ∈ N0, that is, H is a simplicial homotopy from DGSG to idDiag NG.
In order to prove that WG is a strong deformation retract of Diag NG, it remains to show that H is constant
along SG.
Concretely, this means the following. For (gi)i∈bn−1,0c ∈WnG, we have

((gi)i∈bn−1,0c(SG)n, τ
n+1−k)Hn = ((yi)i∈bn−1,0c, τ

n+1−k)Hn = (zi)i∈bn−1,0c,

where

yi :=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)

and

zi :=

{
yi for i ∈ bn− 1, k − 1c ∩ N0,∏
j∈di+1,k−2e(z

−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic(yjdbk−1,i+1csdi,k−2e) for i ∈ bk − 2, 0c.

Now, we have to show that zi = yi for all i ∈ bn− 1, 0c, k ∈ [0, n+ 1]. For k ∈ {n+ 1, 0}, this follows since H
is a simplicial homotopy from DGSG to idDiag NG and since SGDGSG = SG. So we may assume that k ∈ bn, 1c
and have to show that zi = yi for every i ∈ bk − 2, 0c. But we have

yidbk−1,i+1csdi,k−2e =
( ∏
j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

dbk−1,i+1csdi,k−2e

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1edbk−1,i+1csdi,k−2e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1edbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1csdi,j−1edbk−1,j+1cdbj,i+1csdi,k−2e)

·
∏

j∈dk,n−1e

(y−1
j dbj,i+1csdi,k−1esdk,j−1edbk−1,i+1csdi,k−2e)

·
∏

j∈bn−1,ic

(gjdbj,i+1csdi,k−1esdk,n−1edbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1cdbi+k−1−j,i+1csdi,j−1edbj,i+1csdi,k−2e)
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·
∏

j∈dk,n−1e

(y−1
j dbj,i+1csdi,k−1edbk−1,i+1csdi+1,i+j−kesdi,k−2e)

·
∏

j∈bn−1,ic

(gjdbj,i+1csdi,k−1edbk−1,i+1csdi+1,i+n−kesdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbj,i+1cdbi+k−1−j,i+1csdi,k−2e)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csisdi+1,i+j−kesdi,k−2e)

·
∏

j∈bn−1,ic

(gjdbj,i+1csisdi+1,i+n−kesdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1
j dbk−1,i+1csdi,k−2e)

∏
j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e),

and this implies, by induction on i ∈ bk − 2, 0c, that

zi =
∏

j∈di+1,k−2e

(z−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(yjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(yjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bk−2,i+1c

(yjdbk−1,i+1csdi,k−2e)
∏

j∈di+1,k−1e

(y−1
j dbk−1,i+1csdi,k−2e)

·
∏

j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)

= (
∏

j∈di+1,k−2e

(y−1
j dbj,i+1csdi,j−1e))(y

−1
k−1dbk−1,i+1csdi,k−2e)

· (
∏

j∈dk,n−1e

(y−1
j dbj,i+1csdi,j−1e))(

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e))

=
∏

j∈di+1,n−1e

(y−1
j dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) = yi

for all i ∈ bk − 2, 0c.

Now we have to fix one of both notions. Since the diagonal nerve construction has a bisimplicial set as an
intermediate result, we will define this to be the classifying simplicial set of a given simplicial group. The usage
of this choice will be shown in the next section.

(4.33) Definition (classifying (bi)simplicial set of a simplicial group). We let G be a simplicial group. We call
B(2)G := NG the classifying bisimplicial set of G and BG := Diag NG the classifying simplicial set of G.

(4.34) Definition (homology and cohomology of simplicial groups). We let G be a simplicial group, R be a
commutative ring, M be an R-module and n ∈ N0 be a non-negative integer. The n-th homology group of G
with coefficients in M over R is defined to be the n-th homology group of its classifying simplicial set, that is

Hn(G,M ;R) := Hn(BG,M ;R).

Dually, we let

Hn(G,M ;R) := Hn(BG,M ;R)

be the n-th cohomology group of G with coefficients in M over R. As in definition (2.18), we abbreviate

Hn(G;R) := Hn(G,R;R),

Hn(G,M) := Hn(G,M ;Z),

Hn(G) := Hn(G,Z;Z),
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and

Hn(G;R) := Hn(G,R;R),

Hn(G,M) := Hn(G,M ;Z),

Hn(G) := Hn(G,Z;Z).

We note that here, Hn(G,M ;R) does not denote the homology of the underlying simplicial set of G; similarly
for cohomology.

(4.35) Corollary. Suppose given a simplicial group G, a commutative ring R and an R-module M . Homology
and cohomology of G can be computed as

Hn(G,M ;R) ∼= Hn(WG,M ;R) resp. Hn(G,M ;R) ∼= Hn(WG,M ;R) for all n ∈ N0.

Proof. Since BG = Diag NG 'WG by theorem (4.32), we have

Hn(G,M ;R) = Hn(BG,M ;R) ∼= Hn(WG,M ;R)

resp.

Hn(G,M ;R) = Hn(BG,M ;R) ∼= Hn(WG,M ;R)

for all n ∈ N0.

§6 The Jardine spectral sequence
In this section we show a connection between the (co)homology of groups and the (co)homology of simplicial
groups found by Jardine [19, Lemma 4.1.3].

(4.36) Theorem. We suppose given a simplicial group G, a commutative ring R and an R-module M .

(a) There exists a spectral sequence E with E1
p,n−p

∼= Hn−p(Gp,M ;R) that converges to the homology group
Hn(G,M ;R) of the simplicial group G, where p ∈ [0, n], n ∈ N0.

(b) There exists a spectral sequence E with Ep,n−p1
∼= Hn−p(Gp,M ;R) that converges to the cohomology

group Hn(G,M ;R) of the simplicial group G, where p ∈ [0, n], n ∈ N0.

Proof. We apply corollary (3.39) to B(2)G.

(a) For n ∈ N0, we have

Hn(Diag B(2)G,M ;R) = Hn(BG,M ;R) = Hn(G,M ;R),

and for p ∈ [0, n], n ∈ N0, we obtain

Hn−p(B
(2)
p,−G,M ;R) = Hn−p(Np,−G,M ;R) = Hn−p(NGp,M ;R) = Hn−p(BGp,M ;R)

= Hn−p(Gp,M ;R).

(b) Dually.

(4.37) Definition (Jardine spectral sequences). We let G be a simplicial group. The spectral sequences
exhibited in theorem (4.36) are called Jardine spectral sequences of G (in the case of homology resp. in the case
of cohomology).

We obtain the following proposition as an immediate application of the Jardine spectral sequence in the case of
cohomology.

(4.38) Proposition. We suppose given a simplicial group G such that Gn is finite for every n ∈ N0. Moreover,
we let R be a commutative ring such that the additive group of R is a torsion-free abelian group. Then
H1(G;R) ∼= 0.

Proof. Since Gn is finite for all n ∈ N0, the first cohomology group H1(Gn;R) is trivial for all n ∈ N0 (cf. [21,
Aufgabe 49 (4)]). Hence H0H1(C(2)(B(2)G;R)) ∼= 0. Furthermore, the “vertically” taken cohomology

H0(C(2)(B(2)G;R)) ∼= (R
0−→ R

id−→ R
0−→ R

id−→ . . . )

and thus H1H0(C(2)(B(2)G;R)) ∼= 0. This implies H1(G;R) ∼= 0 by theorem (4.36).



Chapter V

Crossed modules and categorical groups

In this chapter, we introduce the notion of a crossed module, which has been the starting point of this diploma
thesis. We study some purely algebraic properties of crossed modules and introduce a second algebraic object,
that of a categorical group. At the end, we give a proof of the Brown-Spencer theorem, which states that the
categories of crossed modules resp. categorical groups are equivalent.

§1 Crossed Modules
A standard introduction is the survey [3].

(5.1) Definition (crossed modules and their morphisms).

(a) A crossed module consists of a group G, a (left) G-group M and a group homomorphism µ : M → G, such
that the following two axioms hold.

(CM1) We have (gm)µ = g(mµ) for all m ∈M , g ∈ G (that is, µ is a morphism of G-groups).

(CM2) We have nµm = nm for all m,n ∈M (the so called Peiffer identity).

Here, the action of the elements of G on G resp. of M on M denotes in each case the conjugation. We
call G resp. M the group part resp. the module part of the crossed module. The group homomorphism
µ : M → G is said to be the structure morphism of the crossed module.

Given a crossed module V with group part G, module part M and structure morphism µ, we write
GpV := G, MpV := M and µ := µV := µ.

(b) We let V andW be crossed modules. A morphism of crossed modules between V andW is a pair of group
homomorphisms ϕ0 : GpV → GpW and ϕ1 : MpV → MpW such that the diagram

MpV
µV //

ϕ1

��

GpV

ϕ0

��
MpW

µW // GpW

commutes, that is, ϕ1µ
W = µV ϕ0, and such that (gm)ϕ1 = gϕ0(mϕ1) holds for all m ∈ MpV , g ∈ GpV .

The group homomorphism ϕ0 resp. ϕ1 is said to be the group part resp. the module part of the morphism
of crossed modules.

Given a crossed module morphism V
ϕ−→W with group part ϕ0 and module part ϕ1, we write Gpϕ := ϕ0

and Mpϕ := ϕ1 .

Composition of morphisms of crossed modules is defined by the composition on the group parts and on
the module parts.

(c) The category of crossed modules consisting of crossed modules as objects and morphisms of crossed modules
as morphisms will be denoted by CrMod.

91
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(5.2) Example.

(a) We let G be a group and N E G a normal subgroup. Then the inclusion N ↪→ G with the conjugation
action of G on N is a crossed module.

(b) We suppose given a group H. The inner automorphism homomorphism H → AutH,h 7→ (−)h, which
assigns to every h ∈ H the conjugation action of h on H, is a crossed module, where the action of AutH
on H is given by applying the inverse of an automorphism to the group elements of H.

(c) The trivial homomorphism M → G,m 7→ 1, where G is a group and M is an (abelian) G-module, yields
a crossed module.

(d) Given a group G and a central extension E of G, the surjection π : E → G yields a crossed module, where
the action of G on E is given by fπe := fe for e, f ∈ E.

Proof.

(a) We denote the inclusion by ι : N → G. Then we have

(gn)ι = gn = g(nι) for all n ∈ N, g ∈ G,

and

n′ιn = n′n for all n, n′ ∈ N.

(b) The inner automorphism homomorphism of H is denoted by κ : H → AutH,h 7→ (−)h. The automor-
phism group AutH acts on H from the right by hα = hα and hence it acts on H from the left by
αh = hα−1. This turns H into a (AutH)-group. We verify the crossed module axioms by elementwise
argumentation. We have

x((αh)κ) = x((hα−1)κ) = xhα
−1

= (hα−1)−1x(hα−1) = (h−1α−1)x(hα−1) = (h−1(xα)h)α−1

= (xα)hα−1 = xα(hκ)α−1 = x(α(hκ))

for all x ∈ H, that is (αh)κ = α(hκ) for all h ∈ H, α ∈ AutH, and

kκh = h(kκ)−1 = h(k−1κ) = hk
−1

= kh

for all h, k ∈ H.

(c) We write µ : M → G,m 7→ 1. Then we have

(gm)µ = 1 = g1 = g(mµ) for all m ∈M, g ∈ G,

and

nµm = 1m = m = nmn−1 = nm for all m,n ∈M

since M is abelian.

(d) We let f, f ′ ∈ E such that fπ = f ′π. Then ff ′−1 ∈ Kerπ ⊆ Z(E) and hence

fe = ff ′−1f ′e = ff ′−1

(f
′
e) = f ′e for all e ∈ E,

where Z(E) denotes the center of E. Since π : E → G is surjective, this implies that the definition fπe := fe
for e, f ∈ E is well-defined. Moreover, since

fπ(f
′πe) = f (f

′
e) = ff ′e = (ff ′)πe = (fπ)(f ′π)e

and

1πe = 1e = e
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and

fπ(ee′) = f (ee′) = (fe)(fe′) = (fπe)(fπe′)

for all e, e′, f, f ′ ∈ E, this defines a G-group action on E. Since the definition of this action is just the
second crossed module axiom, it remains to show the first one. Indeed, we have

fπ(eπ) = (fe)π = (fπe)π for all e, f ∈ E.

(5.3) Proposition (simple properties of crossed modules). For a crossed module V the following identities
hold.

(a) We have ImµV E GpV .

(b) We have KerµV ≤ Z(MpV ).

(c) The restricted action of ImµV E GpV on KerµV E MpV is trivial, that is, an action of CokerµV on
KerµV is induced.

Proof.

(a) Given h ∈ ImµV , say, h = mµV for some m ∈ MpV , and g ∈ GpV , we get

gh = g(mµV ) = (gm)µV ∈ ImµV ,

and thus ImµV is a normal subgroup in GpV .

(b) For n ∈ KerµV and m ∈ MpV , we have

nm = nµVm = 1m = m

and thus nm = mn. Hence n ∈ Z(MpV ) and thus KerµV ≤ Z(MpV ).

(c) We let h ∈ ImµV , say, h = mµV for some m ∈ MpV , and n ∈ KerµV . Using (b), we obtain

hn = mµV n = mn = n.

For some examples, where the group part resp. the module part of a crossed module are given by presentations
with generators and relations, it would be hard to check the crossed module axioms for all elements of these
groups. We will show that it is enough to verify the axioms for the generators in this case.

(5.4) Lemma. We let G be a group, M be a G-group and µ : M → G be a group homomorphism.

(a) We let g1, g2 ∈ G such that (g1m)µ = g1(mµ) and (g2m)µ = g2(mµ) for all m ∈M . Then

(g1g
−1
2 m)µ = g1g

−1
2 (mµ)

for all m ∈M .

(b) We let n1, n2 ∈M such that n1µm = n1m and n2µm = n2m for all m ∈M . Then

(n1n
−1
2 )µm = n1n

−1
2 m

for all m ∈M .
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Proof.

(a) We have

(g
−1
2 m)µ = g−1

2 g2((g
−1
2 m)µ) = g−1

2 (g2((g
−1
2 m)µ)) = g−1

2 ((g2(g
−1
2 m))µ) = g−1

2 ((g2g
−1
2 m)µ) = g−1

2 (mµ)

and hence

(g1g
−1
2 m)µ = (g1(g

−1
2 m))µ = g1((g

−1
2 m)µ) = g1(g

−1
2 (mµ)) = g1g

−1
2 (mµ)

for all m ∈M .

(b) We compute

n−1
2 µm = n−1

2 n2(n
−1
2 µm) = n−1

2 (n2(n
−1
2 µm)) = n−1

2 (n2µ(n
−1
2 µm)) = n−1

2 ((n2µ)(n−1
2 µ)m)

= n−1
2 ((n2n

−1
2 )µm) = n−1

2 m

and thus we obtain

(n1n
−1
2 )µm = (n1µ)(n−1

2 µ)m = n1µ(n
−1
2 µm) = n1µ(n

−1
2 m) = n1(n

−1
2 m) = n1n

−1
2 m

for all m ∈M .

(5.5) Corollary. We let G be a group, M be a G-group and µ : M → G be a group homomorphism. Further-
more, we let A ⊆ G and B ⊆M be generating subsets, that is, G = 〈A〉 andM = 〈B〉. If we have (ab)µ = a(bµ)
and cµb = cb for all a ∈ A, b, c ∈ B, then there exists a crossed module V with GpV = G, MpV = M and
µV = µ.

Proof. We suppose given a ∈ A and c ∈ B. Since M = 〈B〉 and (ab)µ = a(bµ) and cµb = cb for all b ∈ B,
the composites a(−)µ and µ a(−) coincide as maps on the generating subset B. Hence, they coincide as group
homomorphism on M = 〈B〉, that is, we have

(am)µ = a(mµ) and cµm = cm for m ∈M.

But G = 〈A〉 and M = 〈B〉 then imply

(gm)µ = g(mµ) and nµm = nm for all g ∈ G,m, n ∈M

by lemma (5.4)(a) and (b), that is, there is a crossed module V with GpV = G, MpV = M and µV = µ.

(5.6) Example. We let G := 〈a | a4 = 1〉 ∼= C4 and M := 〈b | b4 = 1〉 ∼= C4 be cyclic groups of order 4.
Since (a2)4 = 1, there exists a group homomorphism µ : M → G given on the generator b ∈ M by bµ := a2.
Moreover, M has a non-trivial group automorphism of order 2 sending b to the other element of M that has
order 4, namely b−1. Thus M is a G-group via ab := b−1. We show that these data deliver a crossed module V
with module part MpV = M , group part GpV = G and structure morphism µV = µ. Indeed, we have

(ab)µ = b−1µ = (bµ)−1 = (a2)−1 = a2 = bµ = a(bµ)

and

bµb = a2b = a(ab) = a(b−1) = (ab)−1 = (b−1)−1 = b = bb.

In the following, we denote the isomorphy type of this crossed module by C2,−1
4,4 .

(5.7) Notation. If V is a crossed module, then the module part MpV acts on the group part GpV by

mg := (mµV )g and gm := g(mµV ) for all m ∈ MpV, g ∈ GpV.

We get for example

(mg)n = (mµV )gn = mµV (gn) = m(gn)
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and

gm = g(mµV ) = g(mµV )g = ((gm)µV )g = (gm)g

for m,n ∈ MpV , g ∈ GpV . Also note that (mg)n = m(gn) for m,n ∈ MpV , g ∈ GpV .
Moreover, given another crossed module W and a morphism of crossed modules V ϕ−→ W , we often write mϕ
and gϕ instead of m(Mpϕ) and g(Gpϕ). Using this, we get

(mg)ϕ = (mg)(Gpϕ) = ((mµV )g)(Gpϕ) = ((mµV )(Gpϕ))(g(Gpϕ)) = (m(µV (Gpϕ)))(g(Gpϕ))

= (m((Mpϕ)µW ))(g(Gpϕ)) = ((m(Mpϕ))µW )(g(Gpϕ)) = (m(Mpϕ))(g(Gpϕ)) = (mϕ)(gϕ)

for m ∈ MpV , g ∈ GpV .

§2 Categorical groups
We introduce the concept of an categorical group (cf. [16], [24]).

(5.8) Definition (categorical groups and their morphisms).

(a) A categorical group is a (small) category C, such that ObC and MorC are groups and such that the

multiplication maps mObC on ObC and mMorC on MorC give a functor C × C mC

−−→ C.

(b) We let C and D be categorical groups. A categorical group homomorphism is a functor C ϕ−→ D such
that Obϕ and Morϕ are group homomorphisms.
Composition of categorical group homomorphisms is given by the ordinary composition of functors.

(c) The category of categorical groups consisting of categorical groups as objects and categorical group homo-
morphisms as morphisms will be denoted by cGrp.

Given categorical groups C and D and a categorical group homomorphism C
ϕ−→ D, we often abbreviate

oϕ := o(Obϕ) for o ∈ ObC and mϕ := m(Morϕ) for m ∈ MorC.

(5.9) Lemma. We let C be a categorical group.

(a) The source map sC : MorC → ObC, the target map tC : MorC → ObC, the identity map eC : ObC →
MorC and the composition map cC : MorC t×s MorC → MorC of C are group homomorphisms.

(b) The maps arising from the neutral resp. inverse elements nObC resp. iObC in ObC and nMorC resp. iMorC

in MorC yield functors C×0 nC−−→ C resp. C iC−→ C.

Proof.

(a) Since C × C mC

−−→ C is a functor, we have

mMorCsC = (Mor mC)sC = sC×C(Ob mC) = (sC × sC)mObC

and

mMorCtC = (Mor mC)tC = tC×C(Ob mC) = (tC × tC)mObC

as well as

mObCeC = (Ob mC)eC = eC×C(Mor mC) = (eC × eC)mMorC .

By considering the canonical isomorphism

α : (MorC t×s MorC)× (MorC t×s MorC)→ (MorC ×MorC) t×s (MorC ×MorC),

we also have

mMorCt×sMorC cC = α(mMorC
t×s mMorC)cC = α((Mor mC) t×s (Mor mC))cC

= αcC×C(Mor mC) = (cC × cC)(Mor mC).

Thus sC , tC , eC and cC are group homomorphisms.
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(b) According to (a), the structure maps sC : MorC → ObC, tC : MorC → ObC, eC : ObC → MorC
and cC : MorC t×s MorC → MorC, which arise from the underlying category structure of C, are group
homomorphisms. Hence we have

nMorCsC = (sC)×0nObC = sC
×0

nObC ,

nMorCtC = (tC)×0nObC = tC
×0

nObC ,

nObCeC = (eC)×0nObC = eC
×0

nMorC

and

(nMorC
t×s nMorC)cC = nMorCt×sMorCcC = (cC)×0nMorC = cC

×0

nMorC ,

that is, nC with Ob nC := nObC and Mor nC := nMorC is a functor. Analogously we have

iMorCsC = sC iObC ,

iMorCtC = tC iObC ,

iObCeC = eC iMorC

and

(iMorC
t×s iMorC)cC = iMorCt×sMorCcC = cC iMorC ,

hence iC with Ob iC := iObC and Mor iC := iMorC is a functor.

(5.10) Corollary. The categories cGrp, GrpCat and CatGrp are isomorphic.

Proof.

(a) We begin by constructing an isofunctor

cGrp
GrpCat−−−−→ GrpCat.

We let C be a categorical group. Then ObC and MorC are groups, that is, we have

(idG ×mG)mG = (mG × idG)mG,

(nG × idG)mG = pr2 and (idG × nG)mG = pr1,

( idG iG ) mG = ∗nG = ( iG idG ) mG

for G ∈ {ObC,MorC}, cf. definition (1.26). Furthermore, by the definition of a categorical group (5.8),
we have a functor mC given by Ob mC = mObC and Mor mC = mMorC . Additionally, lemma (5.9)(b)
tells us that there are functors nC and iC , where Ob nC = nObC , Mor nC = nMorC , Ob iC = iObC and
Mor iC = iMorC . This implies

(idC ×mC)mC = (mC × idC)mC ,

(nC × idC)mC = pr2 and (idC × nC)mC = pr1,

( idC iC ) mC = ∗nC = ( iC idC ) mC ,

that is, C together with the functors mC , nC and iC is a group object in Cat. Further, given categorical
groups C and D and a categorical group homomorphism C

ϕ−→ D, we have group homomorphisms Obϕ
and Morϕ. Hence

mObC(Obϕ) = (Obϕ×Obϕ)mObD and mMorC(Morϕ) = (Morϕ×Morϕ)mMorD.

But since mC and ϕ are functors, we already get

mCϕ = (ϕ× ϕ)mD,
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that is, ϕ is a group homomorphism in Cat by proposition (1.29). Altogether, we obtain a functor

cGrp
GrpCat−−−−→ GrpCat

given on a categorical group C by GrpCat(C) := C and on a categorical group homomorphism ϕ by
GrpCat(ϕ) := ϕ.

Conversely, given a group object C in Cat, we have functors mC , nC and iC such that

(idC ×mC)mC = (mC × idC)mC ,

(nC × idC)mC = pr2 and (idC × nC)mC = pr1,

( idC iC ) mC = ∗nC = ( iC idC ) mC .

In particular, we have

(idObC × (Ob mC))(Ob mC) = ((Ob mC)× idObC)(Ob mC),

((Ob nC)× idObC)(Ob mC) = pr2 and (idObC × (Ob nC))(Ob mC) = pr1,

( idObC Ob iC ) (Ob mC) = ∗(Ob nC) = ( Ob iC idObC ) (Ob mC)

and

(idMorC × (Mor mC))(Mor mC) = ((Mor mC)× idMorC)(Mor mC),

((Mor nC)× idMorC)(Mor mC) = pr2 and (idMorC × (Mor nC))(Mor mC) = pr1,

( idMorC Mor iC ) (Mor mC) = ∗(Mor nC) = ( Mor iC idMorC ) (Mor mC),

that is, ObC and MorC are groups with mObC := Ob mC , nObC := Ob nC , iObC := Ob iC and mMorC :=
Mor mC , nMorC := Mor nC , iMorC := Mor iC . Hence the underlying category of C together with the group
structures on ObC and MorC and the functor mC is a categorical group. Moreover, given group objects
C and D in Cat and a group homomorphism C

ϕ−→ D in Cat, we have a functor ϕ such that

mCϕ = (ϕ× ϕ)mD.

Then in particular

mObC(Obϕ) = (Ob mC)(Obϕ) = (Obϕ×Obϕ)(Ob mD) = (Obϕ×Obϕ)mObD

and

mMorC(Morϕ) = (Mor mC)(Morϕ) = (Morϕ×Morϕ)(Mor mD) = (Morϕ×Morϕ)mMorD,

that is, the maps Obϕ and Morϕ are group homomorphisms. Altogether, the functor GrpCat is invertible
with inverse

GrpCat
cGrp−−−→ cGrp,

where cGrp is given on a group object C in Cat by cGrp(C) := C and on a group homomorphism ϕ in
Cat by cGrp(ϕ) := ϕ.

(b) As above, we construct an isofunctor

cGrp
CatGrp−−−−→ CatGrp.

We suppose given a categorical group C. Then in particular C is a category such that ObC and MorC
are groups. According to lemma (5.9)(a), the categorical structure maps sC , tC , eC and cC are group
homomorphisms. Now having a commutative diagram in Grp just means having a commutative diagram
in Set, where all maps are group homomorphisms. Therefore, the groups ObC and MorC together
with the group homomorphisms sC , tC , eC , cC define a category object C in Grp. Additionally, every



98 CHAPTER V. CROSSED MODULES AND CATEGORICAL GROUPS

categorical group homomorphism C
ϕ−→ D between categorical groups C and D is a functor such that

Obϕ and Morϕ are group homomorphisms, that is, a functor in Grp. Thus we have a functor

cGrp
CatGrp−−−−→ CatGrp

given on a categorical group C by CatGrp(C) := C and on a categorical group homomorphism ϕ by
CatGrp(ϕ) := ϕ.

Let us conversely assume that we have a category object C in Grp. Then C is in particular a category
object in Set, that is, an ordinary category. Since the structure maps sC : MorC → ObC, tC : MorC →
ObC, eC : ObC → MorC and cC : MorC t×s MorC → MorC are group homomorphisms, we have

mMorCsC = (sC × sC)mObC = sC×CmObC ,

mMorCtC = (tC × tC)mObC = tC×CmObC ,

mObCeC = (eC × eC)mMorC = eC×CmObC .

By considering the canonical isomorphism

α : (MorC t×s MorC)× (MorC t×s MorC)→ (MorC ×MorC) t×s (MorC ×MorC),

we also get

(mMorC
t×s mMorC)cC = αmMorCt×sMorCcC = α(cC × cC)mMorC = cC×CmMorC .

Hence we have a functor mC defined by Ob mC := mObC and Mor mC := mMorC . Thus C is a categorical
group. Additionally, every functor C ϕ−→ D in Grp between category objects C and D in Grp is
an ordinary functor, where Obϕ and Morϕ are group homomorphisms, that is, a categorical group
homomorphism. Hence we have shown that CatGrp is an isofunctor with inverse

CatGrp
cGrp−−−→ cGrp,

where cGrp is given on a category object C in Grp by cGrp(C) := C and on a functor ϕ in Grp by
cGrp(ϕ) := ϕ.

(5.11) Convention. In the following, we will often identify cGrp, GrpCat and CatGrp along the isofunctors
given in corollary (5.10).

(5.12) Proposition. We let C be a categorical group.

(a) The composition in C is given by

(m,n)c = m(mte)−1n = m(nse)−1n = n(mte)−1m = n(nse)−1m

for all composable morphisms m,n ∈ MorC.

(b) Every morphism m in C is an isomorphism. Its inverse is given by (mte)m−1(mse).

(c) We have [Ker t,Ker s] ∼= 1.

Proof.

(a) We let m,n ∈ MorC be composable morphisms, that is, such that mt = ns holds. This condition implies
that it suffices to show the equality of the first and the second resp. of the first and the last term. But
since c and e are group homomorphisms, we get

(m,n)c = (m · 1, 1 · n)c = (m(1e), (mte)(mte)−1n)c = (m,mte)c (1e, (mte)−1n)c = m(mte)−1n

and analogously

(m,n)c = (1 ·m,n · 1)c = ((nse)(nse)−1m,n(1e))c = (nse, n)c ((nse)−1m, 1e)c = n(nse)−1m.
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(b) We suppose given a morphism m ∈ MorC. Since

((mte)m−1(mse))s = (mt)(m−1s)(ms) = mt

and

((mte)m−1(mse))t = (mt)(m−1t)(ms) = ms,

the morphisms m and (mte)m−1(mse) are composable in both directions. With (a) we compute

(m, (mte)m−1(mse))c = m(mte)−1(mte)m−1(mse) = mse

and

((mte)m−1(mse),m)c = (mte)m−1(mse)(mse)−1m = mte,

that is, (mte)m−1(mse) is the inverse of m with respect to the composition c.

(c) We let m ∈ Ker t and n ∈ Ker s be given. Then we have mt = 1 = ns, that is, (m,n) is a pair of
composable morphisms in C. According to (a), it follows that

mn = m(mte)−1n = n(mte)−1n = nm.

Thus [m,n] = 1 and since m and n were chosen arbitrary we get [Ker t,Ker s] = {1}.

(5.13) Corollary. The underlying category of a categorical group is a groupoid.

Proof. This follows from proposition (5.12)(b).

(5.14) Lemma. We let O, M be groups and s : M → O, t : M → O be retractions with common coretraction
e : O → M . If [Ker s,Ker t] = {1}, then there exists a categorical group C with ObC := O, MorC := M , and
categorical structure maps sC = s, tC = t, eC = e.

Proof. For elements m,n ∈M with mt = ns we define their composite

(m,n)c := m(mte)−1n = m(nse)−1n.

Then c : M t×Os M →M is a group homomorphism since

((m,n)(m′, n′))c = (mm′, nn′)c = (mm′)((mm′)te)−1(nn′) = mm′(m′te)−1(mte)−1nn′

= m(m′(m′te)−1)((nse)−1n)n′ = m((nse)−1n)(m′(m′te)−1)n′ = (m,n)c (m′, n′)c

for all m,n,m′, n′ ∈M with mt = ns and m′t = n′s. Now we have to verify that these data fulfill the category
axioms given in definition (1.24):

(STC) We have

(m,n)cs = (m(nse)−1n)s = (ms)(nses)−1(ns) = (ms)(ns)−1(ns) = ms

and

(m,n)ct = (m(mte)−1n)t = (mt)(mtet)−1(nt) = (mt)(mt)−1(nt) = nt

for all m,n ∈M with mt = ns.

(STI) The identities es = et = idG0
are given by assumption.

(AC) The composition is associative since

(k, (m,n)c)c = (k,m(mte)−1n)c = k(kte)−1m(mte)−1n = k(mse)−1m(nse)−1n = (k(mse)−1m,n)c

= ((k,m)c, n)c

for all k,m, n ∈M with kt = ms and mt = ns.
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(CI) We have

(mse,m)c = (mse)(mse)−1m = m

and

(m,mte)c = m(mte)−1(mte) = m

for m ∈M .

Thus C with ObC := O, MorC := M and sC := s, tC := t, eC := e, cC := c is a category object in Grp.

(5.15) Lemma. We let C and D be categorical groups and we let ϕ0 : ObC → ObD and ϕ1 : MorC → MorD
be group homomorphisms with ϕ1s = sϕ0, ϕ1t = tϕ0 and eϕ1 = ϕ0e. Then there exists a categorical group
homomorphism C

ϕ−→ D with Obϕ = ϕ0 and Morϕ = ϕ1.

Proof. Since ϕ0 and ϕ1 interchange with s, t and e, it suffices to show the compatibility with the composition
c. And indeed, proposition (5.12)(a) implies

(m,n)cϕ1 = (m(mte)−1n)ϕ1 = (mϕ1)((mte)−1ϕ1)(nϕ1) = (mϕ1)(mteϕ1)−1(nϕ1)

= (mϕ1)(mtϕ0e)−1(nϕ1) = (mϕ1)(mϕ1te)−1(nϕ1) = (mϕ1, nϕ1)c

for m,n ∈ MorC with mt = ns.

(5.16) Lemma. We let C and D be categorical groups and we let C ϕ−→ D be a categorical group homomor-
phism such that Obϕ and Morϕ are group isomorphisms. Then ϕ is a categorical group isomorphism with
Ob(ϕ−1) = (Obϕ)−1 and Mor(ϕ−1) = (Morϕ)−1.

Proof. Since Obϕ and Morϕ are group isomorphisms, their inverses ψ0 := (Obϕ)−1 and ψ1 := (Morϕ)−1 are
group homomorphisms, too. Furthermore, the fact that ϕ is a categorical group homomorphism implies

(Morϕ)s = s(Obϕ), (Morϕ)t = t(Obϕ) and e(Morϕ) = (Obϕ)e

and hence

ψ1s = sψ0, ψ1t = tψ0 and eψ1 = ψ0e.

Due to lemma (5.15), there exists a categorical group homomorphism D
ψ−→ C with Obψ = ψ0 and Morψ = ψ1.

But then we have

(Obϕ)(Obψ) = (Obϕ)ψ0 = (Obϕ)(Obϕ)−1 = idObC

and

(Morϕ)(Morψ) = (Morϕ)ψ0 = (Morϕ)(Morϕ)−1 = idMorC ,

that is, ϕψ = idC , and analogously ψϕ = idD. Thus ϕ is invertible with inverse ϕ−1 = ψ.

§3 The equivalence of crossed modules and categorical groups

Our aim is to show that the categories CrMod and cGrp are equivalent (cf. [16]).

(5.17) Convention. Given a crossed module V , the semidirect product MpVoGpV is formed using the ation
of GpV on MpV the crossed module provides. Hence we have (m, g)(m′, g′) = (m gm′, gg′) and (m, g)−1 =

(g
−1

(m−1), g−1) for (m, g), (m′, g′) ∈ MpV o GpV . The identity in MpV o GpV is given by (1, 1).
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(5.18) Remark. For every crossed module V we have a categorical group C, in which the objects and mor-
phisms are given by

ObC := GpV and MorC := MpV o GpV,

source object, target object and identity morphisms are given by

(m, g)s := mg and (m, g)t := g for (m, g) ∈ MorC and ge := (1, g) for g ∈ ObC,

the group of composable morphisms is {((m2,m1g), (m1, g)) ∈ MorC ×MorC | m1,m2 ∈ MpV, g ∈ GpV } and
the composition in C is given by

((m2,m1g), (m1, g))c := (m2m1, g) for m1,m2 ∈ MpV, g ∈ GpV.

Proof. Since ObC = GpV and MorC = MpV oGpV are groups, we begin the proof by showing that s, t and
e are group homomorphisms. We have

((m, g), (m′, g′))s = (m gm′, gg′)s = m gm′gg′ = mgm′g′ = (m, g)s(m′, g′)s

and

((m, g), (m′, g′))t = (m gm′, gg′)t = gg′ = (m, g)t(m′, g′)t

for (m, g), (m′, g′) ∈ MorC as well as

(gg′)e = (1, gg′) = (1, g)(1, g′) = (ge)(g′e)

for g, g′ ∈ ObC. The group of composable morphisms can be computed as follows.

MorC t×s MorC = {((m2, g2), (m1, g1)) ∈ MorC ×MorC | (m2, g2)t = (m1, g1)s}
= {((m2, g2), (m1, g1)) ∈ MorC ×MorC | g2 = m1g1}
= {((m2,m1g1), (m1, g1)) ∈ MorC ×MorC | m1,m2 ∈ MpV, g1 ∈ GpV }.

Thus c is a group homomorphism since

(((m2,m1g), (m1, g))((m′2,m
′
1g
′), (m′1, g

′)))c = (((m2,m1g)(m′2,m
′
1g
′), (m1, g)(m′1, g

′)))c

= ((m2
m1gm′2,m1gm

′
1g
′), (m1

gm′1, gg
′))c = ((m2

m1gm′2,m1
gm′1gg

′), (m1
gm′1, gg

′))c

= (m2
m1gm′2m1

gm′1, gg
′) = (m2m1

gm′2
gm′1, gg

′) = (m2m1
g(m′2m

′
1), gg′)

= (m2m1, g)(m′2m
′
1, g
′) = (((m2,m1g), (m1, g))c)(((m′2,m

′
1g
′), (m′1, g

′))c)

for all m1,m2,m
′
1,m

′
2 ∈ MpV , g, g′ ∈ GpV .

At last, we have to show that C satisfies the axioms for a category object given in definition (1.24).

(STI) We have

ges = (1, g)s = g and get = (1, g)t = g for g ∈ ObC,

that is, s and t are retractions with common coretraction e.

(STC) Given a pair of composable morphisms ((m2,m1g), (m1, g)) in C, we have

((m2,m1g), (m1, g))cs = (m2m1, g)s = m2m1g = (m2,m1g)s

and

((m2,m1g), (m1, g))ct = (m2m1, g)t = g = (m1, g)t.

(AC) We have

((m3,m2m1g), ((m2,m1g), (m1, g))c)c = ((m3,m2m1g), (m2m1, g))c = (m3m2m1, g)

= ((m3m2,m1g), (m1, g))c = (((m3,m2m1g), (m2,m1g))c, (m1, g))c

for m1,m2,m3 ∈ MpV , g ∈ GpV , that is, the composition in C is associative.



102 CHAPTER V. CROSSED MODULES AND CATEGORICAL GROUPS

(CI) We get

((m, g)se, (m, g))c = (mge, (m, g))c = ((1,mg), (m, g))c = (m, g),

and

((m, g), (m, g)te)c = ((m, g), ge)c = ((m, g), (1, g))c = (m, g)

for (m, g) ∈ MorC.

Thus C is a category object in Grp.

(5.19) Definition (associated categorical group). We let V be a crossed module. The categorical group C
given as in remark (5.18) by

ObC := GpV and MorC := MpV o GpV,

(m, g)s := mg and (m, g)t := g for (m, g) ∈ MorC,

ge := (1, g) for all g ∈ ObC and
((m2,m1g), (m1, g))c := (m2m1, g) for m1,m2 ∈ MpV, g ∈ GpV,

will be called the associated categorical group to V and will be denoted by cGrp(V ) := C.

(5.20) Proposition.

(a) We let V andW be crossed modules. Given a morphism of crossed modules V ϕ−→W , we have an induced
morphism

cGrp(V )
cGrp(ϕ)−−−−−→ cGrp(W )

given on the objects by Ob cGrp(ϕ) := Gpϕ and on the morphisms by Mor cGrp(ϕ) := (Mpϕ)o (Gpϕ),
where (m, g)((Mpϕ)o (Gpϕ)) := (mϕ, gϕ) for (m, g) ∈ Mor cGrp(V ).

(b) The construction in (a) yields a functor

CrMod
cGrp−−−→ cGrp.

Proof.

(a) We have

((m, g)(m′, g′))((Mpϕ)o (Gpϕ)) = (m gm′, gg′)((Mpϕ)o (Gpϕ)) = ((m gm′)ϕ, (gg′)ϕ)

= ((mϕ)((gm′)ϕ), (gϕ)(g′ϕ)) = ((mϕ) gϕ(m′ϕ), (gϕ)(g′ϕ))

= (mϕ, gϕ)(m′ϕ, g′ϕ)

= (m, g)((Mpϕ)o (Gpϕ))(m′, g′)((Mpϕ)o (Gpϕ))

for (m, g), (m′, g′) ∈ Mor cGrp(V ) = MpV o GpV , that is, the map (Mpϕ)o (Gpϕ) : Mor cGrp(V ) →
Mor cGrp(W ) is a group homomorphism.

Thus we have to show that the group homomorphisms Gpϕ and (Mpϕ)o (Gpϕ) are compatible with s,
t and e. Indeed, we obtain

(m, g)((Mpϕ)o (Gpϕ))s = (mϕ, gϕ)s = (mϕ)(gϕ) = (mg)ϕ = (m, g)s(Gpϕ)

and

(m, g)((Mpϕ)o (Gpϕ))t = (mϕ, gϕ)t = gϕ = (m, g)t(Gpϕ)

as well as

(ge)((Mpϕ)o (Gpϕ)) = (1, g)((Mpϕ)o (Gpϕ)) = (1, gϕ) = g(Gpϕ)e

for m ∈ MpV , g ∈ GpV .
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(b) We let V , W , X be crossed modules and we let V ϕ−→W andW ψ−→ X be morphisms of crossed modules.
Then we have

(m, g)((Mpϕ)o (Gpϕ))((Mpψ)o (Gpψ)) = (mϕ, gϕ)((Mpψ)o (Gpψ)) = (mϕψ, gϕψ)

= (m, g)((Mp(ϕψ))o (Gp(ϕψ)))

and

(m, g)((Mp idV )o (Gp idV )) = (midV , gidV ) = (m, g)

for (m, g) ∈ Mor cGrp(V ). Thus

((Mpϕ)o (Gpϕ))((Mpψ)o (Gpψ)) = (Mp(ϕψ))o (Gp(ϕψ))

and

(Mp idV )o (Gp idV ) = idMpVoGpV .

Because the validity of the functor axioms on the objects follows since Gp(ϕψ) = (Gpϕ)(Gpψ) and
Gp idV = idGpV , we have a functor

CrMod
cGrp−−−→ cGrp.

(5.21) Example. We consider the crossed module V ∼= C2,−1
4,4 introduced in example (5.6). Recall that it

has group part GpV = 〈a | a4 = 1〉, module part MpV = 〈b | b4 = 1〉, structure morphism µV : MpV →
GpV, b 7→ a2 and action ab = b−1. Its associated categorical group has the group of objects 〈a〉 and the group
of morphisms 〈b〉o 〈a〉. The source object morphism is given by

(b, 1)s = a2 and (1, a)s = a,

while the target object morphism is given by

(b, 1)t = 1 and (1, a)t = a.

The identity morphism of a is given by

ae = (1, a).

(5.22) Remark. For every categorical group C there is a crossed module V with group part and module part
given by

GpV := ObC and MpV := Ker t,

structure morphism µV := s|Ker t , where the action of the group part on the module part is given by om := oem
for o ∈ GpV , m ∈ MpV .

Proof. Since MorC is a group and s is a group homomorphism, the kernel Ker t is a group and s|Ker t is a group
homomorphism, too, and since the conjugation turns M into an M -group and e is a group homomorphism, we
have a well defined (ObC)-group action on Ker t. It remains to show (CM1) and (CM2).

(CM1) We have

(oem)s = oes(ms) = o(ms)

for o ∈ ObC and all m ∈ MorC, and hence in particular

(oem)(s|Ker t) = o(m(s|Ker t))

for o ∈ ObC, m ∈ Ker t.
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(CM2) Since (n−1(nse))s = (n−1s)(ns) = 1, we have (n−1(nse)) ∈ Ker s for all n ∈ MorC. Hence proposition
(5.12)(c) implies (n−1(nse))m = m(n−1(nse)) for all m ∈ Ker t, n ∈ MorC, whence (nse)m(nse)−1 =
nmn−1, and therefore

n(s|Ker t )m = nsm = nsem = (nse)m(nse)−1 = nmn−1 = nm

for all m,n ∈ Ker t.

Altogether, there is a well-defined crossed module V with GpV = ObC, MpV = Ker t, µV = s|Ker t and
operation om = oem for o ∈ GpV , m ∈ MpV .

(5.23) Definition (associated crossed module). We let C be a categorical group. The crossed module V with
group part and module part given as in remark (5.22) by

GpV := ObC and MpV := Ker t,

structure morphism µV := s|Ker t and action om := oem for all o ∈ GpV , m ∈ MpV , is called the associated
crossed module to C and will be denoted by CrMod(C) := V .

(5.24) Proposition.

(a) We let C, D be categorical groups. If C ϕ−→ D is a categorical group homomorphism, then we have an
induced morphism of crossed modules

CrMod(C)
CrMod(ϕ)−−−−−→ CrMod(D)

given on the group part by Gp CrMod(ϕ) := Obϕ and given on the module part by Mp CrMod(ϕ) :=

(Morϕ)|Mp CrMod(D)
Mp CrMod(C) .

(b) The construction in (a) yields a functor

cGrp
CrMod−−−→ CrMod.

Proof.

(a) Since the categorical group homomorphism ϕ is in particular a functor, we have sC(Obϕ) = (Morϕ)sD

and tC(Obϕ) = (Morϕ)tD. Hence we have

m(Morϕ)|Mp CrMod(C)t
D = m(Morϕ)tD = mtC(Obϕ) = 1(Obϕ) = 1

for all m ∈ Mp CrMod(C) = Ker tC and therefore Im(Morϕ)|Mp CrMod(C) ⊆ Ker tD = Mp CrMod(D). Addi-
tionally, we get a commutative diagram

Ker tC
µCrMod(C)

//

(Morϕ)|Ker tD

Ker tC

��

ObC

Obϕ

��
Ker tD

µCrMod(D)

// ObD

because

µCrMod(C)(Obϕ) = sC |Ker tC (Obϕ) = (Morϕ)|Ker tD

Ker tC sD|Ker tD = (Morϕ)|Mp CrMod(D)
Mp CrMod(C)µ

CrMod(D).

Finally, we have

(om)(Morϕ)|Mp CrMod(D)
Mp CrMod(C) = (oem)(Morϕ) = oe(Morϕ)(m(Morϕ)) = o(Obϕ)e(m(Morϕ))

= o(Obϕ)(m(Morϕ)|Mp CrMod(D)
Mp CrMod(C))

for all o ∈ Gp CrMod(C), m ∈ Mp CrMod(C). Since Obϕ and (Morϕ)|Mp CrMod(D)
Mp CrMod(C) are group homomor-

phisms, we have a morphism of crossed modules CrMod(ϕ) with group part Gp CrMod(ϕ) = Obϕ and
module part Mp CrMod(ϕ) = (Morϕ)|Mp CrMod(D)

Mp CrMod(C) .
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(b) We let C, D, E be categorical groups and C ϕ−→ D, D ψ−→ E categorical group homomorphisms. Then
we have

Gp CrMod(ϕψ) = Ob(ϕψ) = (Obϕ)(Obψ) = (Gp CrMod(ϕ))(Gp CrMod(ψ))

and

Mp CrMod(ϕψ) = (Mor(ϕψ))|Mp CrMod(E)
Mp CrMod(C) = ((Morϕ)(Morψ))|Mp CrMod(E)

Mp CrMod(C)

= (Morϕ)|Mp CrMod(D)
Mp CrMod(C)(Morψ)|Mp CrMod(E)

Mp CrMod(D) = (Mp CrMod(ϕ))(Mp CrMod(ψ))

as well as

Gp CrMod(idC) = Ob idC = idObC = idGp CrMod(C)

and

Mp CrMod(idC) = (Mor idC)|Mp CrMod(C)
Mp CrMod(C) = (idMorC)|Mp CrMod(C)

Mp CrMod(C) = idMp CrMod(C),

that is, CrMod(ϕψ) = CrMod(ϕ)CrMod(ψ) and CrMod(idC) = idCrMod(C).

(5.25) Theorem (Brown-Spencer theorem). The category CrMod of crossed modules and the category cGrp
of categorical groups are equivalent.

Proof. We show that the functors

CrMod
cGrp−−−→ cGrp and cGrp

CrMod−−−→ CrMod

are equivalences of categories, mutually inverse up to isomorphy.
First, we let V ∈ Ob CrMod be a crossed module. Then we obtain

Gp CrMod(cGrp(V )) = Ob cGrp(V ) = GpV

and

Mp CrMod(cGrp(V )) = Ker t = {(m, g) ∈ Mor cGrp(V ) | (m, g)t = 1}
= {(m, g) ∈ MpV o GpV | g = 1} = MpV o {1}.

Furthermore, the structure morphism of CrMod(cGrp(V )) is given by

(m, 1)µCrMod(cGrp(V )) = (m, 1)s|Ker t = (m, 1)s = mµV

for (m, 1) ∈ Mp CrMod(cGrp(V )). The action of Gp CrMod(cGrp(V )) is given by

g(m, 1) = ge(m, 1) = (1, g)(m, 1)(1, g−1) = (gm, 1)

for g ∈ Gp CrMod(cGrp(V )), (m, 1) ∈ Mp CrMod(cGrp(V )). Additionally, given a crossed module W and a
morphism of crossed modules V ϕ−→W , we have

Gp CrMod(cGrp(ϕ)) = Ob cGrp(ϕ) = Gpϕ

and

Mp CrMod(cGrp(ϕ)) = (Mor cGrp(ϕ))|Mp CrMod(cGrp(W ))
Mp CrMod(cGrp(V )) = ((Mpϕ)o (Gpϕ))|MpWo{1}

MpVo{1} = (Mpϕ)o {1}.

Thus we have

CrMod ◦ cGrp ∼= idCrMod.

Conversely, we let C be a categorical group. The categorical group associated to the crossed module that is
associated to C has objects

Ob cGrp(CrMod(C)) = Gp CrMod(C) = ObC
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and morphisms

Mor cGrp(CrMod(C)) = (Mp CrMod(C))o (Gp(CrMod(C))) = (Ker t)o (ObC).

The source object and the target object of a morphism (m, o) ∈ Mor cGrp(CrMod(C)) are given by

(m, o)s = mµCrMod(C)o = ms|Ker to = (ms)o

and

(m, o)t = o,

while the identity of an object o ∈ Ob cGrp(CrMod(C)) has the form

oe = (1, o).

We define maps ObαC : ObC → Ob cGrp(CrMod(C)) and MorαC : MorC → Mor cGrp(CrMod(C)) by setting
ObαC := idObC and m(MorαC) := (m(mte)−1,mt) for all m ∈ MorC, which is well-defined since

(m(mte)−1)t = (mt)(mtet)−1 = (mt)(mt)−1 = 1.

Then ObαC is a group homomorphism and we have

(m(MorαC))(n(MorαC)) = (m(mte)−1,mt)(n(nte)−1, nt) = (m(mte)−1 mt(n(nte)−1), (mt)(nt))

= (m(mte)−1 mte(n(nte)−1), (mt)(nt))

= (m(mte)−1(mte)n(nte)−1(mte)−1, (mt)(nt)) = (mn((mn)te)−1, (mn)t)

= (mn)(MorαC)

for m,n ∈ MorC, that is, MorαC is a group homomorphism, too. To prove that ObαC and MorαC yield a
categorical group homomorphism

C
αC−−→ cGrp(CrMod(C))

it remains to show the compatibility with s, t and e. Indeed, we have

m(MorαC)s = (m(mte)−1,mt)s = (m(mte)−1)s(mt) = (ms)(mtes)−1(mt) = (ms)(mt)−1(mt) = ms

= ms(ObαC).

and

m(MorαC)t = (m(mte)−1,mt)t = mt = mt(ObαC)

for m ∈ MorC as well as

oe(MorαC) = ((oe)(oete)−1, oet) = ((oe)(oe)−1, o) = (1, o) = oe = o(ObαC)e

for o ∈ ObC, that is, (MorαC)s = s(ObαC), (MorαC)t = t(ObαC) and e(MorαC) = (ObαC)e. Given a
categorical group D and a categorical group homomorphism C

ϕ−→ D, we obtain

(ObαC)(Ob cGrp(CrMod(ϕ))) = idObC(Gp CrMod(ϕ)) = Obϕ = (Obϕ)idObD = (Obϕ)(ObαD)

and

m(MorαC)(Mor cGrp(CrMod(ϕ))) = (m(mte)−1,mt)((Mp CrMod(ϕ))o (Gp CrMod(ϕ)))

= ((m(mte)−1)(Mp CrMod(ϕ)), (mt)(Gp CrMod(ϕ)))

= ((m(mte)−1)(Morϕ)|Mp CrMod(D)
Mp CrMod(C) ,mt(Obϕ))

= ((m(mte)−1)(Morϕ),mt(Obϕ))

= ((m(Morϕ))((m(Morϕ))te)−1,m(Morϕ)t) = m(Morϕ)(MorαD)
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for m ∈ MorC. Hence the diagram

C
αC //

ϕ

��

cGrp(CrMod(C))

cGrp(CrMod(ϕ))

��
D

αD // cGrp(CrMod(D))

commutes and we have a natural transformation

idcGrp
α−→ cGrp ◦ CrMod.

To show that cGrp ◦ CrMod ∼= idcGrp, it remains to show that each categorical group homomorphism C
αC−−→

cGrp(CrMod(C)) is an isomorphism. Thereto, we define categorical group homomorphisms

cGrp(CrMod(C))
βC−−→ C

by setting ObβC := idObC and (m, o)(MorβC) := m(oe) for all (m, o) ∈ Mor cGrp(CrMod(C)), C ∈ Ob cGrp.
Then ObβC = (ObαC)−1 and

m(MorαC)(MorβC) = (m(mte)−1,mt)(MorβC) = m(mte)−1(mte) = m

for all m ∈ MorC and

(m, o)(MorβC)(MorαC) = (m(oe))(MorαC) = ((m(oe))((m(oe))te)−1, (m(oe))t)

= (m(oe)((mte)(oete))−1, (mt)(oet)) = (m(oe)(oe)−1, o) = (m, o)

for all (m, o) ∈ Mor cGrp(CrMod(C)), that is, MorβC = (MorαC)−1. Hence each αC is invertible with inverse
βC , that is, α is a natural isotransformation and we obtain

cGrp ◦ CrMod ∼= idcGrp.

Thus the functors cGrp and CrMod are category equivalences between CrMod and cGrp, mutually inverse up
to isomorphy.
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Chapter VI

Homology of crossed modules

In this last chapter we associate to a crossed module a simplicial group, its coskeleton. This construction
proceeds by associating to the given crossed module its category object in Grp via Brown-Spencer and then
applying the nerve functor to that category object. We start by studying this nerve functor and construct its
left adjoint, which will give us later a left adjoint for the coskeleton, again via Brown-Spencer. At the end,
the (co)homology groups of a crossed module will be defined as the (co)homology groups for its coskeleton,
using the definition for simplicial groups as in (4.34). Moreover, we consider the Jardine spectral sequences of
a crossed module and compute some examples.

§1 Fundamental groupoid and categorical nerve
(6.1) Definition (categorical nerve of a categorical group). The categorical nerve functor

cGrp
NCat−−−→ sGrp

is defined as the composition of the isofunctor cGrp
CatGrp−−−−→ CatGrp with the nerve functor of CatGrp. (1)

cGrp
NCat //

CatGrp

��

sGrp

CatGrp

N

99

(6.2) Definition. The full subcategory of sGrp with objects G that fulfill MnG ∼= 1 for n ≥ 2, will be denoted
by sGrpb1,0c.

In the following, we use the morphisms cbj1,j0c and tj as defined in (1.30).

(6.3) Proposition. We let C be a categorical group.

(a) The categorical nerve NCatC of C is given by (NCatC)n = (MorC)t×sn for all n ∈ N0 and

(NCatC)θ =

{
t0θ if m = 0,

(cb(i+1)θ,iθc)i∈bm−1,0c if m > 0

}

for a morphism θ ∈ ∆([m], [n]). The faces dk : (NCatC)n → (NCatC)n−1 are given by

dk =


(prj)j∈bn−1,1c if k = 0,

(prj)j∈bn−1,k+1c ∪ (cbk+1,k−1c) ∪ (prj)j∈bk−2,0c if k ∈ [1, n− 1],

(prj)j∈bn−2,0c if k = n

1Analogously, the groupical nerve functor cGrp
NGrp−−−−→ sCat can be defined as the composition of the isofunctor cGrp

GrpCat−−−−→
GrpCat with the nerve functor from GrpCat to sCat.

109
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for all k ∈ [0, n], n ∈ N, n ≥ 2, resp.

dk =

{
s if k = 0,

t if k = 1

for n = 1. The degeneracies sk : (NCatC)n → (NCatC)n+1 are given by

sk = (prj)j∈bn−1,kc ∪ (tke) ∪ (prj)j∈bk−1,0c

for all k ∈ [0, n], n ∈ N0.

(b) The Moore complex of NCatC is given by

MnNCatC =


ObC for n = 0,

(Ker t)×1 for n = 1,

{1} for n ≥ 2,

while the differential morphism M1NCatC
∂−→ M0NCatC is given by

(m)∂ = ms for all (m) ∈ M1NCatC.

In particular, NCat takes values in sGrpb1,0c.

Proof.

(a) This follows from definition (1.32) and proposition (1.33).

(b) We have

M0NCatC = (NCatC)0 = (MorC)t×s0 = ObC

and

M1NCatC = Ker d1 = {(m0) ∈ (NCatC)1 | (m0)d1 = 1} = {(m0) ∈ (MorC)t×
ObC
s 1 | (m0t) = 1}

= (Ker t)×1.

For n ≥ 2, we suppose given an element (mi)i∈bn−1,0c ∈ MnNCatC. Then we have

1 = (mi)i∈bn−1,0cdn = (mi)i∈bn−2,0c

and

1 = (mi)i∈bn−1,0cd1 = (mn−1, . . . ,m2, (m1,m0)c) = (mn−1, . . . ,m2,m1(m0se)−1m0),

cf. proposition (5.12)(a). For n ≥ 3, we see directly from the second equation that mn−1 = 1; for n = 2
we have

1 = m1(m0se)−1m0 = m1(1se)−11 = m1 = mn−1.

Thus we have (mi)i∈bn−1,0c = 1 in each case and hence MnNCatC = {1} for n ≥ 2.

The differential morphism M1NCatC
∂−→ M0NCatC is given by

(m)∂ = (m)d0 = ms for (m) ∈ M1NCatC.

(6.4) Example. We suppose given a categorical group C. An element of (NCatC)3 = (MorC) t×s (MorC) t×s

(MorC) is a tuple (m2,m1,m0) ∈ (MorC) × (MorC) × (MorC) such that m2t = m1s and m1t = m0s. We
write o0 := m0t, o1 := m1t, o2 := m2t and o3 := m2s.

o3
m2 // o2

m1 // o1
m0 // o0
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Its images under the faces are given by

(m2,m1,m0)d0 = (m2,m1),

(m2,m1,m0)d1 = (m2, (m1,m0)c) = (m2,m1(o1e)−1m0),

(m2,m1,m0)d2 = ((m2,m1)c,m0) = (m2(o2e)−1m1,m0),

(m2,m1,m0)d3 = (m1,m0),

its images under the degeneracies by

(m2,m1,m0)s0 = (m2,m1,m0, o0e),

(m2,m1,m0)s1 = (m2,m1, o1e,m0),

(m2,m1,m0)s2 = (m2, o2e,m1,m0),

(m2,m1,m0)s3 = (o3e,m2,m1,m0).

We suppose [4]
θ−→ [3] to be given by 0θ := 0, 1θ := 0, 2θ := 2, 3θ := 2, 4θ := 3, and [0]

ρ−→ [3] to be given by
0ρ := 2. Then we have

(m2,m1,m0)(NCatC)θ = (m2, o2e, (m1,m0)c, o0e) = (m2, o2e,m1(o1e)−1m0, o0e)

and

(m2,m1,m0)(NCatC)ρ = o2.

We want to construct a left adjoint for the categorical nerve NCat (cf. [4]).

(6.5) Remark. For every simplicial group G there exists a categorical group FG with group of objects Ob FG =
G0, group of morphisms Mor FG = G1/B1MG and where the categorical structure maps s, t and e are induced
by d0, d1 and s1 respectively:

s : Mor FG→ Ob FG, g1B1MG 7→ g1d0,

t : Mor FG→ Ob FG, g1B1MG 7→ g1d1,

e : Ob FG→ Mor FG, g0 7→ (g0s0)B1MG.

Proof. According to lemma (4.4), B1MG is a normal subgroup of G1 and so G1/B1MG is a well-defined group.
Since B1MG ⊆ Z1MG = (Ker d0) ∩ (Ker d1), we obtain induced group homomorphisms s : G1/B1MG →
G0, g1B1MG → g1d0 and t : G1/B1MG → G0, g1B1MG → g1d1. We define e : G0 → G1/B1MG, g0 7→
(g0s0)B1MG. As composition of s0 and the canonical epimorphism G1 → G1/B1MG, this is obviously a
group homomorphism with

g0es = (g0s0B1MG)s = g0s0d0 = g0

and

g0et = (g0s0B1MG)t = g0s0d1 = g0

for every g0 ∈ G0. Thus s and t are retractions with common coretraction e. Since [Ker d0,Ker d1] ⊆ B1MG by
lemma (4.7), we have [Ker s,Ker t] = {1}, and lemma (5.14) implies that C is a category object in Grp with
ObC = G0, MorC = G1/B1MG and s, t, e defined as above.

(6.6) Definition (fundamental groupoid). We let G be a simplicial group. The categorical group FG given as
in remark (6.5) with objects Ob FG = G0, morphisms Mor FG = G1/B1MG and categorical structure maps

s : Mor FG→ Ob FG, g1B1MG 7→ g1d0,

t : Mor FG→ Ob FG, g1B1MG 7→ g1d1,

e : Ob FG→ Mor FG, g0 7→ (g0s0)B1MG,

is called the fundamental groupoid of G.
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(6.7) Proposition.

(a) If G and H are simplicial groups and G
ϕ−→ H is a simplicial group homomorphism, then we have an

induced categorical group homomorphism

FG
Fϕ−−→ FH

on the fundamental groupoids given on the objects by Ob Fϕ = ϕ0 and on the morphisms by

Mor Fϕ : Mor FG→ Mor FH, g1B1MG 7→ (g1ϕ1)B1MH.

(b) The construction in (a) yields a functor

sGrp
F−→ cGrp.

Proof.

(a) For every g2 ∈ M2G we have

g2∂ϕ1 = g2∂(M1ϕ) = g2(M2ϕ)∂ ∈ B1MH.

This implies B1MG ⊆ Kerϕ1ν, where ν denotes the canonical epimorphism H1 → H1/B1MH, and thus
we get a well-defined group homomorphism

ϕ1 : Mor FG→ Mor FH, g1B1MG 7→ (g1ϕ1)B1MH.

Now we get

(g1B1MG)sϕ0 = g1d0ϕ0 = g1ϕ1d0 = ((g1ϕ1)B1MH)s = (g1B1MG)ϕ1s

and

(g1B1MG)tϕ0 = g1d1ϕ0 = g1ϕ1d1 = ((g1ϕ1)B1MH)t = (g1B1MG)ϕ1t

for g1 ∈ G1 as well as

g0eϕ1 = ((g0s0)B1MG)ϕ1 = (g0s0ϕ1)B1MH = (g0ϕ0s0)B1MH = (g0ϕ0)e

for g0 ∈ G0. Thus we get a categorical group homomorphism Fϕ with Ob Fϕ = ϕ0 and Mor Fϕ = ϕ1.

(b) We let G, H, K be simplicial groups and G ϕ−→ H, H ψ−→ K be simplicial group homomorphisms. Then
we compute

(g1B1MG)(Mor F(ϕψ)) = (g1ϕ1ψ1)B1MK = ((g1ϕ1)B1MH)(Mor Fψ)

= (g1B1MG)(Mor Fϕ)(Mor Fψ)

and

(g1B1MG)(Mor F(idG)) = (g1idG)B1MG = g1B1MG

for all g1 ∈ G1. Hence we have Mor F(ϕψ) = (Mor Fϕ)(Mor Fψ) and Mor F(idG) = idMor F. Since

Ob F(ϕψ) = (ϕψ)0 = ϕ0ψ0 = (Ob Fϕ)(Ob Fψ)

and

Ob F(idG) = (idG)0 = idG0
= idOb FG,

this implies that F is a functor from the category of simplicial groups to the category of categorical
groups.
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(6.8) Remark.

(a) We let C and D be categorical groups and C ϕ−→ D be a categorical group homomorphism.

(i) The fundamental groupoid of the categorical nerve of C has objects Ob FNCatC = ObC and mor-
phisms Mor FNCatC = (MorC)×1/{1}. The categorical structure maps are given by

s : Mor FNCatC → Ob FNCatC, (m){1} 7→ ms,

t : Mor FNCatC → Ob FNCatC, (m){1} 7→ mt,

e : Ob FNCatC → Mor FNCatC, o 7→ (oe){1},
c : (Mor FNCatC) t×s (Mor FNCatC)→ Mor FNCatC, ((m){1}, (n){1}) 7→ ((m,n)c){1}.

(ii) The categorical group homomorphism FNCatϕ induced by ϕ is given on the objects by Ob FNCatϕ =
Obϕ and on the morphisms by ((m){1})(FNCatϕ) = (mϕ){1} for all m ∈ MorC.

(b) We let G and H be simplicial groups and G ϕ−→ H be a simplicial group homomorphism.

(i) The group of n-simplices in the categorical nerve of the fundamental groupoid of G is

(NCatFG)n = {(g1,iB1MG)i∈bn−1,0c | g1,i+1d1 = g1,id0 for all i ∈ bn− 2, 0c}

for every n ∈ N0. The faces and degeneracies of NCatFG are given by

((g1,jB1MG)j∈bn−1,0cdk)i =


g1,i+1B1MG if i ∈ bn− 2, kc,
(g1,k(g−1

1,kd1s0)g1,k−1)B1MG if i = k − 1,

g1,iB1MG if i ∈ bk − 2, 0c

for i ∈ bn− 2, 0c, (g1,jB1MG)j∈bn−1,0c ∈ (NCatFG)n, k ∈ [0, n], n ∈ N, n ≥ 2, and

((g1,jB1MG)j∈bn−1,0csk)i =


g1,i−1B1MG if i ∈ bn, k + 1c,
g1,kd1s0B1MG if i = k, k ∈ [0, n− 1],

g1,k−1d0s0B1MG if i = k, k ∈ [1, n],

g1,iB1MG if i ∈ bk − 1, 0c

for i ∈ bn, 0c, (g1,jB1MG)j∈bn−1,0c ∈ (NCatFG)n, k ∈ [0, n], n ∈ N. The faces d0 : (NCatFG)1 →
(NCatFG)0 and d1 : (NCatFG)1 → (NCatFG)0 are given by

(g1B1MG)d0 = g1d0 and (g1B1MG)d1 = g1d1

for (g1B1MG) ∈ (NCatFG)1, while the degeneracy s0 : (NCatFG)0 → (NCatFG)1 is given by

g0s0 = g0s0B1MG

for g0 ∈ (NCatFG)0.

(ii) The simplicial group homomorphism NCatFϕ induced by ϕ is given by (NCatFϕ)0 = ϕ0 and

(g1,iB1MG)i∈bn−1,0c(NCatFϕ)n = ((g1,iϕ1)B1MH)i∈bn−1,0c

for (g1,iB1MG)i∈bn−1,0c ∈ (NCatFG)n, n ∈ N.
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Proof.

(a) (i) According to proposition (6.3), the Moore complex of the categorical nerve NCatC is given by

M(NCatC) = (. . . −→ {1} −→ (Ker t)×1 ∂−→ ObC),

with (m)∂ = ms|Ker t for all m ∈ Ker t. Hence the fundamental groupoid FNCatC has objects

Ob FNCatC = (NCatC)0 = ObC

and morphisms

Mor FNCatC = (NCatC)1/B1MNCatC = (MorC)×1/{1}.

The categorical structure maps are given by

((m){1})s = (m)d0 = ms and (m{1})t = (m)d1 = mt

for m ∈ MorC as well as

oe = os0 = (oe){1}

for o ∈ ObC and

((m){1}, (n){1})c = ((m)((m)d1s0)−1(n)){1} = ((m)((mt)s0)−1(n)){1} = ((m)(mte)−1(n)){1}
= (m(mte)−1n){1} = ((m,n)c){1}

for m,n ∈ MorC with mt = ns.
(ii) We have Ob FNCatϕ = (NCatϕ)0 = Obϕ and

((m){1})(FNCatϕ) = ((m)(NCatϕ)){1} = (mϕ){1} for all m ∈ MorC.

(b) (i) The group of n-simplices of NCatFG is given by

(NCatFG)n = (Mor FG)t×sn = (G1/B1MG)t×sn for all n ∈ N0.

The faces dk : (NCatFG)n → (NCatFG)n−1 are given by

((g1,jB1MG)j∈bn−1,0cdk)i =


g1,i+1B1MG if i ∈ bn− 2, kc,
(g1,kB1MG, g1,k−1B1MG)c if i = k − 1,

g1,iB1MG if i ∈ bk − 2, 0c


=


g1,i+1B1MG, if i ∈ bn− 2, kc,
(g1,kB1MG)(g1,kB1MG)−1te(g1,k−1B1MG) if i = k − 1,

g1,iB1MG if i ∈ bk − 2, 0c


=


g1,i+1B1MG if i ∈ bn− 2, kc,
(g1,k(g−1

1,kd1s0)g1,k−1)B1MG if i = k − 1,

g1,iB1MG if i ∈ bk − 2, 0c

for i ∈ bn− 2, 0c, (g1,jB1MG)j∈bn−1,0c ∈ (NCatFG)n, k ∈ [0, n], n ∈ N, n ≥ 2, resp.

(g1B1MG)d0 = (g1B1MG)s = g1d0 and (g1B1MG)d1 = (g1B1MG)t = g1d1

for (g1B1MG) ∈ (NCatFG)1. Similarly, the degeneracies sk : (NCatFG)n → (NCatFG)n+1 are given
by

((g1,jB1MG)j∈bn−1,0csk)i =


g1,i−1B1MG if i ∈ bn, k + 1c,
(g1,kB1MG)te if i = k, k ∈ [0, n− 1],

(g1,k−1B1MG)se if i = k, k ∈ [1, n],

g1,iB1MG if i ∈ bk − 1, 0c,
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=


g1,i−1B1MG if i ∈ bn, k + 1c,
g1,kd1s0B1MG if i = k, k ∈ [0, n− 1],

g1,k−1d0s0B1MG if i = k, k ∈ [1, n],

g1,iB1MG if i ∈ bk − 1, 0c

for i ∈ bn, 0c, (g1,jB1MG)j∈bn−1,0c ∈ (NCatFG)n, k ∈ [0, n], n ∈ N, resp.

g0s0 = g0e = g0s0B1MG

for g0 ∈ (NCatFG)0.

(ii) For (g1,iB1MG)i∈bn−1,0c ∈ (NCatFG)n, n ∈ N, we have

(g1,iB1MG)i∈bn−1,0c(NCatFϕ)n = (g1,iB1MG)i∈bn−1,0c(Mor Fϕ)×n

= ((g1,iB1MG)(Fϕ))i∈bn−1,0c = ((g1,iϕ1)B1MH)i∈bn−1,0c,

and for g0 ∈ (NCatFG)0, we have

g0(NCatFϕ)0 = g0(Mor Fϕ)t×s0 = g0(Fϕ) = g0ϕ0,

cf. definition (1.30).

(6.9) Proposition. The functor sGrp
F−→ cGrp is left adjoint to cGrp

NCat−−−→ sGrp, and we have

F ◦NCat
∼= idcGrp.

Proof. We let C,D ∈ Ob cGrp be categorical groups and C
ϕ−→ D be a categorical group homomorphism.

According to remark (6.8)(a) we have Ob FNCatC = ObC and Mor FNCatC = (MorC)×1/{1}, while the
categorical structure maps are given by

s : Mor FNCatC → Ob FNCatC, (m){1} 7→ ms,

t : Mor FNCatC → Ob FNCatC, (m){1} 7→ mt,

e : Ob FNCatC → Mor FNCatC, o 7→ (oe){1},
c : (Mor FNCatC) t×s (Mor FNCatC)→ Mor FNCatC, ((m){1}, (n){1}) 7→ ((m,n)c){1}.

Further, the categorical group homomorphism FNCatϕ induced by ϕ is given on the objects by Ob FNCatϕ =
Obϕ and on the morphisms by ((m){1})(FNCatϕ) = (mϕ){1} for all m ∈ MorC. Thus we obtain

F ◦NCat
∼= idcGrp

by the natural isotransformation

FNCat
η−→ idcGrp,

which is defined by Ob ηC := idObC and Mor ηC : Mor FNCatC → MorC, (m){1} 7→ m at a categorical group
C ∈ Ob cGrp.
To show F a NCat, we construct the unit idsGrp

ε−→ NCat ◦ F. Thereto, we let G be a simplicial group. Since

(gndbn,0c∧i+2∧i+1B1MG)t = gndbn,0c∧i+2∧i+1d1 = gndbn,0c∧i+1 = gndbn,0c∧i+1∧id0

= (gndbn,0c∧i+1∧iB1MG)s

for i ∈ bn− 1, 0c, gn ∈ Gn, we have a well-defined map (εG)n : Gn → (NCatFG)n given by

gn(εG)n :=

{
g0 if n = 0,

(gndbn,0c∧i+1∧iB1MG)i∈bn−1,0c if n > 0

for gn ∈ Gn, which is a group homomorphism for every n ∈ N0 because all faces in G and the canonical
epimorphism G1 → G1/B1MG are group homomorphisms.
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We want to show that G εG−→ NCatFG is even a simplicial group homomorphism. Thereto, we have to show the
commutativity of the diagrams

Gn
dk //

(εG)n

��

Gn−1

(εG)n−1

��
(NCatFG)n

dk // (NCatFG)n−1

for k ∈ [0, n], n ∈ N, and

Gn+1

(εG)n+1

��

Gn
skoo

(εG)n

��
(NCatFG)n+1 (NCatFG)n

skoo

for k ∈ [0, n], n ∈ N0.
First, we consider the faces. We let n ∈ N be a natural number, k ∈ [0, n] and gn ∈ Gn a group element. If
n ≥ 2, then we obtain by remark (6.8)(b)(i)

(gn(εG)ndk)i = ((gndbn,0c∧j+1∧jB1MG)j∈bn−1,0cdk)i

=


gndbn,0c∧i+2∧i+1B1MG if i ∈ bn− 2, kc,
((gndbn,0c∧k+1∧k)(gndbn,0c∧k+1∧k)−1d1s0(gndbn,0c∧k∧k−1))B1MG if i = k − 1,

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 2, 0c


=


gndbn,0c∧i+2∧i+1B1MG if i ∈ bn− 2, kc,
((gndbn,0c∧k+1∧k)(g−1

n dbn,0c∧ks0)(gndbn,0c∧k∧k−1))B1MG if i = k − 1,

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 2, 0c



=



gndbn,0c∧i+2∧i+1B1MG if i ∈ bn− 2, kc,
(gndbn,1c∧2B1MG)((g−1

n dbn,1c∧2s0)

·(gndbn,3c)(g
−1
n dbn,2cs1)(gndbn,2cs0))d0B1MG if i = k − 1, k = 1,

(gndbn,0c∧k+1∧k−1B1MG)((g−1
n dbn,1c∧k+1∧k−1)

·(gndbn,1c∧k+1∧k)(g−1
n dbn,1c∧ks1)(gndbn,1c∧k∧k−1))d0B1MG if i = k − 1, k ∈ [2, n− 1],

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 2, 0c


=


gndbn,0c∧i+2∧i+1B1MG if i ∈ bn− 2, kc,
(gndbn,1c∧2)B1MG if i = k − 1, k = 1,

(gndbn,0c∧k+1∧k−1)B1MG if i = k − 1, k ∈ [2, n− 1],

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 2, 0c


=


gndbn,0c∧i+2∧i+1B1MG if i ∈ bn− 2, kc,
gndbn,0c∧i+2∧iB1MG if i = k − 1,

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 2, 0c

 = gndkdbn−1,0c∧i+1∧iB1MG = (gndk(εG)n−1)i

for all i ∈ bn− 2, 0c, that is, gn(εG)ndk = gndk(εG)n−1. If n = 1, we have

g1(εG)1dk = (g1B1MG)dk = g1dk = g1dk(εG)0.

Thus we have (εG)ndk = dk(εG)n−1 for all n ∈ N, k ∈ [0, n].
Next, we show the compability with the degeneracies. Thereto, we let n ∈ N0, k ∈ [0, n] and gn ∈ Gn. For
n ≥ 1 we get, by remark (6.8)(b)(i)

(gn(εG)nsk)i = ((gndbn,0c∧j+1∧jB1MG)j∈bn−1,0csk)i

=


gndbn,0c∧i∧i−1B1MG if i ∈ bn, k + 1c,
gndbn,0c∧k+1∧kd1s0B1MG if i = k, k ∈ [0, n− 1],

gndbn,0c∧k∧k−1d0s0B1MG if i = k, k ∈ [1, n],

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 1, 0c


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=


gndbn,0c∧i∧i−1B1MG if i ∈ bn, k + 1c,
gndbn,0c∧ks0B1MG if i = k,

gndbn,0c∧i+1∧iB1MG if i ∈ bk − 1, 0c


=


gnskdbn+1,0c∧i+1∧iB1MG if i ∈ bn, k + 1c,
gnskdbn+1,0c∧k+1∧kB1MG if i = k,

gnskdbn+1,0c∧i+1∧iB1MG if i ∈ bk − 1, 0c

 = gnskdbn+1,0c∧i+1∧iB1MG

= (gnsk(εG)n+1)i

for all i ∈ bn, 0c, that is, gn(εG)nsk = gnsk(εG)n+1. If n = 0, we have

g0(εG)0s0 = g0s0 = (g0s0B1MG) = g0s0(εG)1.

Hence (εG)nsk = sk(εG)n+1 for all n ∈ N, k ∈ [0, n], and we have shown that we have a simplicial group
homomorphism

G
εG−→ NCatFG.

Next, we show the naturality of (εG)G∈Ob sGrp. We let G ϕ−→ H be a simplicial group homomorphism for
G,H ∈ Ob sGrp. Then, by remark (6.8)(b)(ii), we have

gn(εG)n(NCatFϕ)n = (gndbn,0c∧i+1∧iB1MG)i∈bn−1,0c(NCatFϕ)n = ((gndbn,0c∧i+1∧iϕ1)B1MH)i∈bn−1,0c

= ((gnϕndbn,0c∧i+1∧i)B1MH)i∈bn−1,0c = gnϕn(εH)n

for gn ∈ Gn, n ∈ N, and

(εG)0(NCatFϕ)0 = idG0
ϕ0 = ϕ0 = ϕ0idH0

= ϕ0(εH)0.

Hence the diagram

G
εG //

ϕ

��

NCatFG

NCatFϕ

��
H

εH // NCatFH

commutes and the morphisms εG for G ∈ Ob sGrp yield a natural transformation

idsGrp
ε−→ NCat ◦ F.

It remains to show that ε resp. η yield a unit resp. a counit of an adjunction. But indeed we have

(mi)i∈bn−1,0c(εNCatC)n(NCatηC)n = ((mj)j∈bn−1,0cdbn−1,0c∧i+1∧iB1MNCatC)i∈bn−1,0c(NCatηC)n

= ((mi){1})i∈bn−1,0c(NCatηC)n = ((mi){1}ηC)i∈bn−1,0c

= (mi)i∈bn−1,0c

for all (mi)i∈bn−1,0c ∈ (NCatC)n, n ∈ N, and

(εNCatC)0(NCatηC)0 = id(NCatC)0(Ob ηC) = idObC idObC = idObC = (idNCatC)0,

that is,

εNCatC(NCatηC) = idNCatC for every C ∈ Ob cGrp.

Furthermore, we have

(Ob FεG)(Ob ηFG) = (εG)0idOb FG = idOb FG = Ob idFG

and

(g1B1MG)(FεG)ηFG = ((g1(εG)1){1})ηFG = ((g1B1MG){1})ηFG = g1B1MG

for g1B1MG ∈ Mor FG, and thus

(FεG)ηFG = idFG for every G ∈ Ob sGrp.
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(6.10) Corollary. The categories CrMod, cGrp and sGrpb1,0c are equivalent.

Proof. The equivalence of CrMod and cGrp is the assertion of the Brown-Spencer theorem (5.25).
We let idsGrp

ε−→ NCat ◦F denote the unit from the proof of proposition (6.9) and we let G ∈ Ob sGrpb1,0c be
a simplicial group with MnG ∼= 1 for n ≥ 2. Then we have (εG)0 = idG0 and g1(εG)1 = (g1B1MG) = (g1{1}) for
all g1 ∈ G1, whence (εG)0 and (εG)1 are group isomorphisms. Hence M0εG and M1εG are group isomorphisms,
and since MnG ∼= {1} for all n ≥ 2, the morphisms MnεG for n ≥ 2 are necessarily group isomorphisms as well.
This is sufficient for MεG being an isomorphism in C(Grp), and with lemma (4.14), this implies that εG is an
isomorphism of simplicial groups. By abuse of notation, we have

NCat ◦ F|sGrpb1,0c
∼= idsGrpb1,0c ,

that is, the fundamental groupoid functor restricts to a category equivalence sGrpb1,0c −→ cGrp.

§2 Truncation and coskeleton
In this section, we want to transfer our results of §1 on categorical groups to get equivalent facts for crossed
modules.

(6.11) Definition (truncation). The truncation functor

sGrp
Trunc−−−−→ CrMod

is defined to be the composition Trunc := CrMod ◦ F.

sGrp
F //

Trunc %%

cGrp

CrMod

��
CrMod

Given a simplicial group G ∈ Ob sGrp, we call TruncG the crossed module truncated from G.

(6.12) Proposition. We let G,H ∈ Ob sGrp be simplicial groups and G
ϕ−→ H be a simplicial group

homomorphism.

(a) The crossed module TruncG is given by Gp TruncG = G0, Mp TruncG = M1G/B1MG and

(g1B1MG)µTruncG = g1∂ = g1d0 for g1B1MG ∈ Mp TruncG,

where Gp TruncG acts on Mp TruncG by
g0(g1B1MG) = g0s0g1B1MG for g0 ∈ Gp TruncG, g1B1MG ∈ Mp TruncG.

(b) We have Gp Truncϕ = ϕ0 and (g1B1MG)(Truncϕ) = (g1ϕ1)B1MH for g1B1MG ∈ Mp TruncG.

Proof.

(a) We have

Gp TruncG = Gp CrMod(FG) = Ob FG = G0

and

Mp TruncG = Mp CrMod(FG) = Ker t = {g1B1MG ∈ Mor FG | (g1B1MG)t = 1}
= {g1B1MG ∈ Mor FG | g1d1 = 1} = {g1B1MG ∈ G1/B1MG | g1 ∈ M1G} = M1G/B1MG.

Furthermore, we have

(g1B1MG)µTruncG = (g1B1MG)µCrMod(FG) = (g1B1MG)s|Ker t = g1d0 = g1∂

and
g0(g1B1MG) = g0e(g1B1MG) = g0s0B1MG(g1B1MG) = g0s0g1B1MG

for g0 ∈ Gp TruncG, g1B1MG ∈ Mp TruncG.
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(b) We have

Gp Truncϕ = Gp CrMod(Fϕ) = Ob Fϕ = ϕ0

and

(g1B1MG)(Truncϕ) = (g1B1MG)(CrMod(Fϕ)) = (g1B1MG)(Mor Fϕ)|Mp CrMod(FG)

= (g1B1MG)(Fϕ) = g1ϕ1B1MH

for g1B1MG ∈ Mp TruncG.

(6.13) Definition. We let V be a crossed module. For every n ∈ N0, we define the n-fold semidirect product

MpV no GpV := (MpV )×n ×GpV.

The elements in MpV no GpV are denoted by

(mi, g)i∈bn−1,0c := (mi)i∈bn−1,0c ∪ (g) = (mn−1, . . . ,m0, g).

We equip MpV no GpV with the multiplication that is given by

(mi, g)i∈bn−1,0c(m
′
i, g
′)i∈bn−1,0c := (mi

(
∏
k∈bi−1,0cmk)gm′i, gg

′)i∈bn−1,0c

for (mi, g)i∈bn−1,0c, (m
′
i, g
′)i∈bn−1,0c ∈ MpV no GpV .

(6.14) Remark. There exists a functor

CrMod
(Mp−)∗o(Gp−)−−−−−−−−−−→ sGrp

isomorphic to NCat ◦ cGrp such that ((Mp−) ∗o (Gp−))nV = MpV noGpV , equipped with the multiplication
in definition (6.13), and such that

(mj , g)j∈bn−1,0c(MpV θo GpV ) := (mj , g)j∈bn−1,0c((Mp− ∗o Gp−)θV )

= (
∏

k∈b(i+1)θ−1,iθc

mk, (
∏

k∈b0θ−1,0c

mk)g)i∈bm−1,0c

for V ∈ Ob CrMod, θ ∈ ∆([m], [n]), m,n ∈ N0. In particular, the n-fold semidirect product MpV no GpV
with the multiplication given in definition (6.13) is a well-defined group for all n ∈ N0. Furthermore, given a
morphism V

ϕ−→W between crossed modules V and W , we have

(mj , g)j∈bn−1,0c(Mpϕ no Gpϕ) := (mj , g)j∈bn−1,0c((Mp− ∗o Gp−)nϕ) = (mjϕ, gϕ)j∈bn−1,0c

for all (mj , g)j∈bn−1,0c ∈ MpV no GpV , n ∈ N0.

Proof. We let V ∈ Ob CrMod be a crossed module. Then we have

(NCatcGrp(V ))n = (Mor cGrp(V ))t×sn

=

{
GpV if n = 0,

{((mi, (
∏
k∈bi−1,0cmk)g))i∈bn−1,0c | mi ∈ MpV for i ∈ bn− 1, 0c, g ∈ GpV } if n ≥ 1.

The multiplication in (NCatcGrp(V ))n is given by

((mi, (
∏

k∈bi−1,0c

mk)g))i∈bn−1,0c((m
′
i, (

∏
k∈bi−1,0c

m′k)g′))i∈bn−1,0c

= ((mi, (
∏

k∈bi−1,0c

mk)g)(m′i, (
∏

k∈bi−1,0c

m′k)g′))i∈bn−1,0c

= ((mi
(
∏
k∈bi−1,0cmk)gm′i, (

∏
k∈bi−1,0c

mk)g(
∏

k∈bi−1,0c

m′k)g′))i∈bn−1,0c
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for ((mi, (
∏
k∈bi−1,0cmk)g))i∈bn−1,0c, ((m

′
i, (
∏
k∈bi−1,0cm

′
k)g′))i∈bn−1,0c ∈ (NCatcGrp(V ))n, n ∈ N0.

We wish to compute the morphism (NCatcGrp(V ))θ for a morphism θ ∈ ∆([m], [n]), where m,n ∈ N0. If m 6= 0,
then

((mj , (
∏

l∈bj−1,0c

ml)g))j∈bn−1,0c(NCatcGrp(V ))θ = (((mj , (
∏

l∈bj−1,0c

ml)g))j∈bn−1,0ccb(i+1)θ,iθc)i∈bm−1,0c

= ((
∏

k∈b(i+1)θ−1,iθc

mk, (
∏

k∈biθ−1,0c

mk)g))i∈bm−1,0c

for ((mj , (
∏
l∈bj−1,0cml)g))j∈bn−1,0c ∈ (NCatcGrp(V ))n, n ∈ N0. If m = 0, then

((mj , (
∏

l∈bj−1,0c

ml)g))j∈bn−1,0c(NCatcGrp(V ))θ = ((mj , (
∏

l∈bj−1,0c

ml)g))j∈bn−1,0ct0θ

=

{
(m0θ, (

∏
k∈b0θ−1,0cmk)g)t if 0θ ∈ [0, n− 1],

(mn−1, (
∏
k∈bn−2,0cmk)g)s if 0θ = n

}
=

{
(
∏
k∈b0θ−1,0cmk)g if 0θ ∈ [0, n− 1],

mn−1(
∏
k∈bn−2,0cmk)g if 0θ = n

}
= (

∏
k∈b0θ−1,0c

mk)g

for ((mj , (
∏
l∈bj−1,0cml)g))j∈bn−1,0c ∈ (NCatcGrp(V ))n, n ∈ N0.

By transport of structure, the sets MpV no GpV for n ∈ N0 fit into a simplicial group that is isomorphic to
NCatcGrp(V ) via the natural isotransformation

NCatcGrp(V )
ψV−−→ MpV no GpV

given by

g(ψV )0 := (g) and ((mi, (
∏

k∈bi−1,0c

mk)g))i∈bn−1,0c(ψV )n := (mi, g)i∈bn−1,0c for n ≥ 1.

Note that the second entry of the image of (ψV )n for n ≥ 1 is obtained by reading off the second entry of the
argument at i = 0. Thus ψV is compatible with the multiplication on (NCatcGrp(V ))n and the multiplication
on MpV no GpV defined in definition (6.13), as one can take from the computation of the product above.
Given a morphism θ ∈ ∆([m], [n]), we have

(mj , g)j∈bn−1,0c(MpV θo GpV ) = (mj , g)j∈bn−1,0c(ψV )−1
n (NCatcGrp(V ))θ(ψV )m

= ((mj , (
∏

l∈bj−1,0c

ml)g))j∈bn−1,0c(NCatcGrp(V ))θ(ψV )m

=

{
((
∏
k∈b0θ−1,0cmk)g)(ψV )0 if m = 0,

((
∏
k∈b(i+1)θ−1,iθcmk, (

∏
k∈biθ−1,0cmk)g))i∈bm−1,0c(ψV )m if m ≥ 1,

}
= (

∏
k∈b(i+1)θ−1,iθc

mk, (
∏

k∈b0θ−1,0c

mk)g)i∈bm−1,0c

for (mj , g)j∈bn−1,0c ∈ MpV no GpV .
Furthermore, given a morphism V

ϕ−→W between crossed modules V and W , we have

(mj , g)j∈bn−1,0c((Mpϕ) no (Gpϕ)) = (mj , g)j∈bn−1,0c(ψV )−1
n (NCatcGrp(ϕ))n(ψW )n

=

{
g(NCatcGrp(ϕ))0(ψW )0 if n = 0,

((mj , (
∏
l∈bj−1,0cml)g))j∈bn−1,0c(NCatcGrp(ϕ))n(ψW )n if n ≥ 1

}

=

{
(gcGrp(ϕ))(ψW )0 if n = 0,

((mj , (
∏
l∈bj−1,0cml)g)cGrp(ϕ))j∈bn−1,0c(ψW )n if n ≥ 1

}

=

{
gϕ(ψW )0 if n = 0,

((mjϕ, ((
∏
l∈bj−1,0cml)g)ϕ))j∈bn−1,0c(ψW )n if n ≥ 1

}
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=

{
gϕ(ψW )0 if n = 0,

((mjϕ, (
∏
l∈bj−1,0c(mlϕ))(gϕ)))j∈bn−1,0c(ψW )n if n ≥ 1

}
= (mjϕ, gϕ)j∈bn−1,0c.

(6.15) Definition (1st coskeleton). For a crossed module V , we call CoskV := MpV ∗o GpV the coskeleton
of V . The functor

CrMod
Cosk−−−→ sGrp

given by Cosk := (Mp−) ∗o (Gp−) is called the (1st) coskeleton.

(6.16) Proposition. We let V be a crossed module. The faces and degeneracies of CoskV are given by

(mj , g)j∈bn−1,0cdk =


(mj ,m0g)j∈bn−1,1c if k = 0,

(mj)j∈bn−1,k+1c ∪ (mkmk−1) ∪ (mj , g)j∈bk−2,0c if k ∈ [1, n− 1],

(mj , g)j∈bn−2,0c if k = n

for (mj , g)j∈bn−1,0c ∈ Coskn V , k ∈ [1, n], n ∈ N, and

(mj , g)j∈bn−1,0csk = (mj)j∈bn−1,kc ∪ (1) ∪ (mj , g)j∈bk−1,0c

for (mj , g)j∈bn−1,0c ∈ Coskn V , k ∈ [0, n], n ∈ N0.

Proof. We compute

(mj , g)j∈bn−1,0cdk = (mj , g)j∈bn−1,0c(MpV δko GpV ) = (
∏

r∈b(i+1)δk−1,iδkc

mr, (
∏

r∈b0δk−1,0c

mr)g)i∈bn−2,0c

=


(
∏
r∈bi+2−1,i+1cmr, (

∏
r∈b1−1,0cmr)g)i∈bn−2,0c if k = 0,

(
∏
r∈bi+2−1,i+1cmr)i∈bn−2,kc ∪ (

∏
r∈bk+1−1,k−1cmr)

∪(
∏
r∈bi+1−1,icmr, (

∏
r∈b0−1,0cmr)g)i∈bk−2,0c if k ∈ [1, n− 1],

(
∏
r∈bi+1−1,icmr, (

∏
r∈b0−1,0cmr)g)i∈bn−2,0c if k = n


=


(mi+1,m0g)i∈bn−2,0c if k = 0,

(mi+1)i∈bn−2,kc ∪ (mkmk−1) ∪ (mi, g)i∈bk−2,0c if k ∈ [1, n− 1],

(mi, g)i∈bn−2,0c if k = n


=


(mj ,m0g)j∈bn−1,1c if k = 0,

(mj)j∈bn−1,k+1c ∪ (mkmk−1) ∪ (mj , g)j∈bk−2,0c if k ∈ [1, n− 1],

(mj , g)j∈bn−2,0c if k = n

for (mj , g)j∈bn−1,0c ∈ Coskn V , k ∈ [0, n], n ∈ N, and

(mj , g)j∈bn−1,0csk = (mj , g)j∈bn−1,0c(MpV σko GpV )

= (
∏

r∈b(i+1)σk−1,iσkc

mr, (
∏

r∈b0σk−1,0c

mr)g)i∈bn−2,0c

= (
∏

r∈bi+1−1−1,i−1c

mr)i∈bn,k+1c ∪ (
∏

r∈bk−1,kc

mr) ∪ (
∏

r∈bi+1−1,ic

mr, (
∏

r∈b0−1,0c

mr)g)i∈bk−1,0c

= (mi−1)i∈bn,k+1c ∪ (1) ∪ (mi, g)i∈bk−1,0c = (mj)j∈bn−1,kc ∪ (1) ∪ (mj , g)j∈bk−1,0c

for (mj , g)j∈bn−1,0c ∈ Coskn V , k ∈ [0, n], n ∈ N0.

(6.17) Proposition. The functor sGrp
Trunc−−−−→ CrMod is left adjoint to CrMod

Cosk−−−→ sGrp, and we have

Trunc ◦Cosk ∼= idCrMod.
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Proof. Since CrMod and cGrp are mutually inverse category equivalences, they fulfill in particular CrMod a cGrp
and CrMod ◦ cGrp ∼= idCrMod. Hence F a NCat implies

Trunc = CrMod ◦ F a NCat ◦ cGrp ∼= Cosk,

and from F ◦NCat
∼= idcGrp we can conclude that

Trunc ◦Cosk ∼= CrMod ◦ F ◦NCat ◦ cGrp ∼= CrMod ◦ idcGrp ◦ cGrp ∼= idCrMod.

We collect some examples and further properties of the n-fold semidirect product and the coskeleton functor.

(6.18) Example. If V is a crossed module with MpV ∼= 1, then CoskV ∼= Cosk(GpV ); cf. definition (6.15)
and definition (4.16).

(6.19) Example. We consider the crossed module V ∼= C2,−1
4,4 introduced in example (5.6). Recall that it has

group part GpV = 〈a | a4 = 1〉, module part MpV = 〈b | b4 = 1〉, structure morphism µV : MpV → GpV, b 7→
a2 and action ab = b−1. Its coskeleton is given by

Coskn V = 〈b〉 no 〈a〉.

Hence it consists of elements (bfj , ae)j∈bn−1,0c, where e, fj ∈ {0, 1, 2, 3} for j ∈ bn− 1, 0c. The multiplication of
two elements (bfj , ae)j∈bn−1,0c, (b

f ′j , ae
′
)j∈bn−1,0c ∈ Coskn V is given by

(bfj , ae)j∈bn−1,0c(b
f ′j , ae

′
)j∈bn−1,0c = (bfj+(−1)ef ′j , ae+e

′
)

for e, fj , e′, f ′j ∈ {0, 1, 2, 3}, j ∈ bn− 1, 0c.

(6.20) Remark. We let G be a group and M be a G-group. Then we have

(
∏

j∈bn−1,0c

mj)
g(

∏
j∈bn−1,0c

m′j) =
∏

j∈bn−1,0c

(mj
(
∏
l∈bj−1,0cml)(gm′j))

for all mj ,m
′
j ∈M , i ∈ bn− 1, 0c, g ∈ G, n ∈ N0.

Proof. We proceed by induction on n ∈ N0. For n = 0, there is nothing to show. We let n ∈ N be given and we
assume that the asserted formula holds for n− 1. This implies

(
∏

i∈bn−1,0c

mj)
g(

∏
i∈bn−1,0c

m′j) = mn−1(
∏

i∈bn−2,0c

mj)(
gm′n−1) g(

∏
i∈bn−2,0c

m′j)

= mn−1
(
∏
i∈bn−2,0cmj)(gm′n−1)(

∏
i∈bn−2,0c

mj)
g(

∏
i∈bn−2,0c

m′j)

= mn−1
(
∏
i∈bn−2,0cmj)(gm′n−1)

∏
i∈bn−2,0c

(mj
(
∏
j∈bi−1,0cml)(gm′j))

=
∏

i∈bn−1,0c

(mj
(
∏
j∈bi−1,0cml)(gm′j)).

(6.21) Proposition. We let V be a crossed module. Then MpV becomes a (MpV no GpV )-group by

(mj ,g)j∈bn−1,0cm :=
∏
j∈bn−1,0cmg (gm) for all m ∈ MpV, (mj , g)j∈bn−1,0c ∈ MpV no GpV

and we have

MpV n+1o GpV ∼= MpV o (MpV no GpV )

for all n ∈ N0.
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Proof. We fix some n ∈ N0. Remark (6.20) shows that

(mj ,g)j∈bn−1,0c((m′j ,g
′)j∈bn−1,0cm) = (

∏
j∈bn−1,0cmj)g((

∏
j∈bn−1,0cm

′
j)g
′
m) = (

∏
j∈bn−1,0cmj)

g(
∏
j∈bn−1,0cm

′
j)gg

′
m

=
∏
j∈bn−1,0c(mj

(
∏
l∈bj−1,0cml)(gm′j))(gg

′
m)

= (mj
(
∏
l∈bj−1,0cml)gm′j ,gg

′)j∈bn−1,0cm = ((mj ,g)j∈bn−1,0c(m
′
j ,g
′)j∈bn−1,0c)m

for (mj , g)j∈bn−1,0c, (m
′
j , g
′)j∈bn−1,0c ∈ MpV no GpV , m ∈ MpV , and

(1,1)j∈bn−1,0cm = m

for m ∈ MpV . Furthermore, we have

(mj ,g)j∈bn−1,0c(mm′) = (
∏
j∈bn−1,0cmj)g(mm′) =

∏
j∈bn−1,0cmj (g(mm′)) =

∏
j∈bn−1,0cmj (gm gm′)

=
∏
j∈bn−1,0cmj (gm)

∏
j∈bn−1,0cmj (gm′) = (

∏
j∈bn−1,0cmj)gm (

∏
j∈bn−1,0cmj)gm′

= (mj ,g)j∈bn−1,0cm (mj ,g)j∈bn−1,0cm′

for (mj , g)j∈bn−1,0c ∈ MpV noGpV , m,m′ ∈ MpV . Thus MpV becomes a (MpV noGpV )-group and we can
form the semidirect product

MpV o (MpV no GpV ).

Since the multiplication in MpV o (MpV no GpV ) is given by

(mn, (mj , g)j∈bn−1,0c)(m
′
n, (m

′
j , g
′)j∈bn−1,0c)

= (mn
(mj ,g)j∈bn−1,0cm′n, (mj , g)j∈bn−1,0c(m

′
j , g
′)j∈bn−1,0c)

= (mn
(
∏
l∈bn−1,0cml)gm′n, (mj

(
∏
l∈bj−1,0cml)gm′j , gg

′))j∈bn−1,0c,

for (mn, (mj , g)j∈bn−1,0c), (m
′
n, (m

′
j , g
′)j∈bn−1,0c) ∈ MpVo(MpV noGpV ), we have a group isomorphism given

by

MpV o (MpV no GpV )→ MpV n+1o GpV, (mn, (mj , g)j∈bn−1,0c) 7→ (mj , g)j∈bn,0c.

§3 Homotopy groups of a crossed module
(6.22) Proposition. We suppose given a crossed module V . Then CoskV ∈ sGrpb1,0c and we have

M ◦ Cosk ∼= U,

where U denotes the forgetful functor CrMod
U−→ C(Grp) that sends the crossed module V to the complex

of groups MpV
µV−−→ GpV , concentrated in dimensions 1 and 0, and forgets the action of GpV on MpV .

Proof. We let V be a crossed module. For n ≥ 2, we obtain

Mn CoskV =
⋂

k∈[1,n]

Ker dk ⊆ Ker d1 ∩Ker dn

= {(mj , g)j∈bn−1,0c ∈ MpV no GpV | (mj , g)j∈bn−1,0cd1 = 1 and (mj , g)j∈bn−1,0cdn = 1}
= {(mj , g)j∈bn−1,0c ∈ MpV no GpV | (mn−1, . . . ,m2,m1m0, g) = 1 and (mn−2, . . . ,m0, g) = 1}
= {(mj , g)j∈bn−1,0c ∈ MpV no GpV | mj = 1 for all j ∈ bn− 1, 0c and g = 1} = {1}.

Furthermore, we have

M1 CoskV = Ker d1 = {(m0, g) ∈ MpV 1o GpV | (m0, g)d1 = 1} = {(m0, g) ∈ MpV 1o GpV | (g) = 1}
= {(m, 1) ∈ MpV o GpV | m ∈ MpV } = MpV o {1}.
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and M0 CoskV = MpV 0o GpV = (GpV )×1. Moreover, we have

(m, 1)∂ = (m, 1)d0 = (m1) = (mµV )

for all m ∈ MpV . Hence

M(CoskV ) = (. . . −→ {1} −→ MpV o {1} ∂−→ (GpV )×1),

where (m, 1)∂ = (m, 1)d0 = (mµV ) for m ∈M .
Now, we let W also be a crossed module and V ϕ−→W be a morphism of crossed modules. Then we have

(m, 1)(M1 Coskϕ) = (m, 1)(Mpϕ 1o Gpϕ) = (mϕ, 1) for m ∈ Mpϕ

and

(g)(M0 Coskϕ) = (g)(Mpϕ 0o Gpϕ) = (gϕ) for g ∈ GpV.

Consequently, we obtain the isomorphy

M ◦ Cosk ∼= U

via

M ◦ Cosk
α−→ U,

where M CoskV
αV−−→ V is given by (m, 1)αV := m for m ∈ MpV and by (g)αV := g for g ∈ GpV , V ∈

Ob CrMod.

(6.23) Corollary. We let V,W ∈ Ob CrMod be crossed modules and V
ϕ−→ W be a morphism of crossed

modules.

(a) We have

πn(CoskV ) ∼=


CokerµV for n = 0,

KerµV for n = 1,

{1} for n ≥ 2.

(b) The induced morphisms π1(Coskϕ) resp. π0(Coskϕ) are the induced morphisms on the kernels resp.
cokernels of µV and µW .

Proof. By proposition (6.22), we have

πn ◦ Cosk = Hn ◦M ◦ Cosk ∼= Hn ◦U for all n ∈ N0.

This implies all assertions.

(6.24) Definition (homotopy groups of a crossed module). The homotopy groups of a crossed module V are
defined by

πn(V ) :=


CokerµV for n = 0,

KerµV for n = 1,

{1} for n ≥ 2.

Moreover, if V ϕ−→ W is a morphism of crossed module, then we define π0(ϕ) resp. π1(ϕ) to be the induced
morphisms on the cokernels resp. kernels of µV and µW ; the morphisms πn(ϕ) for n ≥ 2 are defined to be
trivial.

π1(V ) //

π1(ϕ)

��

MpV
µV //

Mpϕ

��

GpV //

Gpϕ

��

π0(V )

π0(ϕ)

��
π1(W ) // MpW

µW // GpW // π0(W )
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(6.25) Proposition. The homotopy group functors π0 and π1 for simplicial groups fulfill

πn = πn ◦ Trunc for n ∈ {0, 1}.

Proof. We let G be a simplicial group. Due to proposition (6.12), we have

π1(TruncG) = KerµTruncG = {g1B1MG ∈ Mp TruncG | (g1B1MG)µTruncG = 1}
= {g1B1MG ∈ M1G/B1MG | g1∂ = 1} = {g1B1MG ∈ M1G/B1MG | g1 ∈ Z1MG}
= Z1MG/B1MG = H1MG = π1(G),

and

π0(TruncG) = CokerµTruncG = (Gp TruncG)/ ImµTruncG = G0/ Im ∂ = Z0MG/B0MG = H0MG

= π0(G).

Furthermore, given a simplicial group homomorphism G
ϕ−→ H, where H ∈ Ob sGrp, then we have

(g1B1MG)(π1(Truncϕ)) = (g1B1MG)(Truncϕ) = (g1ϕ1)B1MH = (g1(M1ϕ))B1MH

= (g1B1MG)(H1Mϕ) = (g1B1MG)π1(ϕ)

for g1B1MG ∈ π1(TruncG) and

(g0 ImµTruncG)π0(Truncϕ) = (g0(Trunc0 ϕ)) ImµTruncH = (g0ϕ0)B0MH = (g0(M0ϕ))B0MH

= (g0B0MG)(H0Mϕ) = (g0 ImµTruncG)π0(ϕ)

for g0 ImµTruncG ∈ π0(TruncG).

(6.26) Theorem. If G is a simplicial group with πn(G) ∼= 1 for all n ≥ 2, then there exists a simplicial
group homomorphism G −→ Cosk TruncG that induces an isomorphism πn(G) −→ πn(Cosk TruncG) for each
n ∈ N0.

Proof. First, we remark that

Cosk TruncG ∼= NCatcGrp(CrMod(FG)) ∼= NCatFG

by remark (6.14) and definition (6.15).
We let idsGrp

ε−→ NCat ◦ F denote the unit and F ◦ NCat
η−→ idcGrp denote the counit from the proof of

proposition (6.9) and we let G ∈ Ob sGrp be a simplicial group with πn(G) ∼= 1 for n ≥ 2. Then we have

(FεG)ηFG = idFG

and ηFG is an isomorphism. Therefore, FεG = η−1
FG is an isomorphism as well. For n ∈ {0, 1}, this implies by

proposition (6.25) that

πn(εG) = πn(Trunc εG) = πn(CrMod(FεG)) = πn(CrMod(η−1
FG)).

Thus πn(εG) is an isomorphism for n ∈ {0, 1}. Hence πn(G) ∼= 1 ∼= πn(NCatFG) for n ≥ 2. Thus, the induced
homomorphisms πn(εG) for n ≥ 2 have to be trivial and, in particular, they have to be isomorphisms, too.

§4 The classifying simplicial set of a crossed module: an example
In this last section, we compute some homology and cohomology groups in low dimensions for the crossed
module C2,−1

4,4 .

(6.27) Definition (classifying (bi)simplicial set of a crossed module). We define BV := B CoskV resp. B(2)V :=
B(2) CoskV to be the classifying simplicial set resp. the classifying bisimplicial set of a crossed module V ∈
Ob CrMod.
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(6.28) Example. The classifying bisimplicial set of the crossed module V ∼= C2,−1
4,4 , given as in example (5.6)

by GpV = 〈a | a4 = 1〉, MpV = 〈b | b4 = 1〉, µV : Mp→ GpV, b 7→ a2 and action ab = b−1, is given by

. . . // ∗ // ∗ // ∗ // ∗

. . . // 〈b〉 3o 〈a〉

OO

// 〈b〉 2o 〈a〉

OO

// 〈b〉 1o 〈a〉

OO

// 〈b〉 0o 〈a〉

OO

. . . // (〈b〉 3o 〈a〉)×2

OO

// (〈b〉 2o 〈a〉)×2

OO

// (〈b〉 1o 〈a〉)×2

OO

// (〈b〉 0o 〈a〉)×2

OO

. . . // (〈b〉 3o 〈a〉)×3

OO

// (〈b〉 2o 〈a〉)×3

OO

// (〈b〉 1o 〈a〉)×3

OO

// (〈b〉 0o 〈a〉)×3

OO

. . . // (〈b〉 3o 〈a〉)×4

OO

// (〈b〉 2o 〈a〉)×4

OO

// (〈b〉 1o 〈a〉)×4

OO

// (〈b〉 0o 〈a〉)×4

OO

...

OO

...

OO

...

OO

...

OO

Here, the arrows denote the direction of the faces (for better readability we have omitted the degeneracies) and
∗ denotes a set with a single element (we have (〈b〉 po 〈a〉)×0 ∼= ∗ for all p ∈ N0). In the p-th column, where
p ∈ N0, one can see the classifying simplicial set of Coskp V = 〈b〉 po 〈a〉, that is,

. . . −→ (〈b〉 po 〈a〉)×4 −→ (〈b〉 po 〈a〉)×3 −→ (〈b〉 po 〈a〉)×2 −→ (〈b〉 po 〈a〉)×1 −→ (〈b〉 po 〈a〉)×0.

(6.29) Definition (homology and cohomology of crossed modules). We let V be a crossed module, R be a
commutative ring, M be an R-module and n ∈ N0 be a non-negative integer. The n-th homology group of V
with coefficients in M over R is defined to be

Hn(V,M ;R) := Hn(BV,M ;R).

The nth cohomology group of V with coefficients in M over R is defined to be

Hn(V,M ;R) := Hn(BV,M ;R).

As in definition (2.18), we abbreviate

Hn(V ;R) := Hn(V,R;R),

Hn(V,M) := Hn(V,M ;Z),

Hn(V ) := Hn(V,Z;Z),

and

Hn(V ;R) := Hn(V,R;R),

Hn(V,M) := Hn(V,M ;Z),

Hn(V ) := Hn(V,Z;Z).

(6.30) Remark. We let V be a crossed module, R be a commutative ring, M be an R-module. Then

Hn(V,M ;R) = Hn(CoskV,M ;R) and Hn(V,M ;R) = Hn(CoskV,M ;R) for all n ∈ N0.

Proof. We have

Hn(V,M ;R) = Hn(BV,M ;R) = Hn(B CoskV,M ;R) = Hn(CoskV,M ;R)

and, analogously,

Hn(V,M ;R) = Hn(BV,M ;R) = Hn(B CoskV,M ;R) = Hn(CoskV,M ;R)

for all n ∈ N0.
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(6.31) Proposition. Suppose given a crossed module V , a commutative ring R and an R-module M .

(a) There exists a spectral sequence E with E1
p,n−p

∼= Hn−p(MpV po GpV,M ;R) that converges to the
homology group Hn(V,M ;R), where p ∈ [0, n], n ∈ N0.

(b) There exists a spectral sequence E with Ep,n−p1
∼= Hn−p(MpV po GpV,M ;R) that converges to the

cohomology group Hn(V,M ;R), where p ∈ [0, n], n ∈ N0.

Proof. Follows from remark (6.30) and theorem (4.36); concerning the coskeleton cf. definition (6.15).

(6.32) Definition (Jardine spectral sequences of crossed modules). We let V be a crossed module. The spectral
sequences in proposition (6.31) will be called Jardine spectral sequences of V (in the case of homology resp. in
the case of cohomology).

(6.33) Example. We want to compute some homology and cohomology groups of the crossed module V ∼= C2,−1
4,4

introduced in example (5.6). For the notation and the classifying bisimplicial set B(2)V , see example (6.28).

(a) The associated double complex over the ring of integers Z is isomorphic to

. . . // Z1×1 // Z1×1 // Z1×1 // Z1×1

. . . // Z1×44

OO

// Z1×43

OO

// Z1×42

OO

// Z1×4

OO

. . . // Z1×48

OO

// Z1×46

OO

// Z1×44

OO

// Z1×42

OO

. . . // Z1×412

OO

// Z1×49

OO

// Z1×46

OO

// Z1×43

OO

. . . // Z1×416

OO

// Z1×412

OO

// Z1×48

OO

// Z1×44

OO

...

OO

...

OO

...

OO

...

OO

where the morphisms are given by multiplication with suitable matrices from the right. Thus linear
algebra over Z allows us to compute homology with respect to the vertical differentials and the associated
morphisms. We obtain, using Maple,

. . . //
(
Z
) ·( 0 ) //

(
Z
) ·( 1 ) //

(
Z
) ·( 0 ) //

(
Z
)

. . . //
(
Z/2 Z/2 Z/4

) ·( 0 0
0 0
0 1

)
//
(
Z/2 Z/4

) ·( 2
0 )
//
(
Z/4

)

. . . //
(
Z/2

) ·( 0 ) //
(
0
)

. . . //
(
Z/4

)
where, for example, the elements of

(
Z/2 Z/2 Z/4

)
are row vectors

(
a2 a1 a0

)
with a2, a1 ∈ Z/2

and a0 ∈ Z/4.
Here, the dots at the left should, except in the first row, not indicate any regularity in the appearing
complexes - here the entries of C(2)(B(2)V ) were just too large to compute with.
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Taking homology (in horizontal direction) yields the following homology groups:

H0H0(C(2)(B(2)V )) ∼= Z,

H0H1(C(2)(B(2)V )) ∼= Z/2, H1H0(C(2)(B(2)V )) ∼= 0,

H0H2(C(2)(B(2)V )) ∼= 0, H1H1(C(2)(B(2)V )) ∼= 0, H2H0(C(2)(B(2)V )) ∼= 0.

By the Jardine spectral sequence, we know that H0(V ) is isomorphic to a subquotient of Z, H1(V ) is
isomorphic to a subquotient of Z/2 and H2(V ) ∼= 0.

To compute Hn(V ) for n ∈ {0, 1, 2} directly, it is possible to use the Kan classifying simplicial set according
to corollary (4.35):

Hn(V ) = Hn(CoskV ) ∼= Hn(W CoskV ).

The Kan classifying simplicial set of CoskV is given by

. . . −→ ×
j∈b2,0c

(〈b〉 jo 〈a〉) −→ ×
j∈b1,0c

(〈b〉 jo 〈a〉) −→ ×
j∈b0,0c

(〈b〉 jo 〈a〉) −→ ∗.

(For the arrows, cf. example (6.28).) Its associated complex C(W CoskV ) is isomorphic to

. . . −→ Z1×46

−→ Z1×43

−→ Z1×4 −→ Z1×1.

Computing homology via Maple yields

H0(V ) ∼= Z,
H1(V ) ∼= Z/2,
H2(V ) ∼= 0.

(b) To compute cohomology groups over Z, one has to dualise the double complex C(2)(B(2)V ) resp. the
complex C(W CoskV ) by applying Z(−,Z) pointwise and taking homology after that. This means to
deal with column vectors resp. matrix multiplications from the left instead of row vectors resp. matrix
multiplications from the right.

...
...

...
...

Z44×1

OO

// Z48×1

OO

// Z412×1

OO

// Z416×1

OO

// . . .

Z43×1

OO

// Z46×1

OO

// Z49×1

OO

// Z412×1

OO

// . . .

Z42×1

OO

// Z44×1

OO

// Z46×1

OO

// Z48×1

OO

// . . .

Z4×1

OO

// Z42×1

OO

// Z43×1

OO

// Z44×1

OO

// . . .

Z1×1

OO

// Z1×1

OO

// Z1×1

OO

// Z1×1

OO

// . . .

We obtain

H0H0(C(2)(B(2)V )) ∼= Z,

H1H0(C(2)(B(2)V )) ∼= 0, H0H1(C(2)(B(2)V )) ∼= 0,



§4. THE CLASSIFYING SIMPLICIAL SET OF A CROSSED MODULE: AN EXAMPLE 129

H2H0(C(2)(B(2)V )) ∼= 0, H1H1(C(2)(B(2)V )) ∼= 0, H0H2(C(2)(B(2)V )) ∼= Z/2

and, using the Kan classifying simplicial set,

H0(V ) ∼= Z,
H1(V ) ∼= 0,

H2(V ) ∼= Z/2.

(c) Taking the field with two elements F2 as ground ring for homology resp. cohomology yields

H0H0(C(2)(B(2)V ;F2)) ∼= F2,

H0H1(C(2)(B(2)V ;F2)) ∼= F2, H1H0(C(2)(B(2)V ;F2)) ∼= 0,

H0H2(C(2)(B(2)V ;F2)) ∼= F2, H1H1(C(2)(B(2)V ;F2)) ∼= F2, H2H0(C(2)(B(2)V ;F2)) ∼= 0

and

H0(V ;F2) ∼= F2,

H1(V ;F2) ∼= F2,

H2(V ;F2) ∼= F2

resp.

H0H0(C(2)(B(2)V ;F2)) ∼= F2,

H1H0(C(2)(B(2)V ;F2)) ∼= 0, H0H1(C(2)(B(2)V ;F2)) ∼= F2,

H2H0(C(2)(B(2)V ;F2)) ∼= 0, H0H2(C(2)(B(2)V ;F2)) ∼= 0, H1H1(C(2)(B(2)V ;F2)) ∼= F2

and

H0(V ;F2) ∼= F2,

H1(V ;F2) ∼= F2,

H2(V ;F2) ∼= F2.

(6.34) Remark. Since, in example (6.33)(c),

H2(V ;F2) ∼= F2

6∼= F2 ⊕ F2 ⊕ 0

∼= H0H2(C(2)(B(2)V ;F2))⊕H1H1(C(2)(B(2)V ;F2))⊕H2H0(C(2)(B(2)V ;F2)),

we can conclude that the Jardine spectral sequence in the case of homology (cf. definition (6.32)) does not
degenerate in general.
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