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Abstract
We give a characterisation of functors whose induced functor on the level of localisations is an equivalence

and where the isomorphism inverse is induced by some kind of replacements such as projective resolutions
or cofibrant replacements.

1 Introduction
To a category C together with a set of distinguished morphisms, called denominators in C, one might attach its
(Gabriel/Zisman) localisation GZ(C), that is, the universal category where the denominators in C become in-
vertible. Given categories C and D together with sets of denominators and a functor F : C → D that maps de-
nominators in C to denominators in D, the universal property of GZ(C) yields a functor GZ(F ) : GZ(C)→ GZ(D)
such that the following quadrangle commutes, where loc denotes the canonical functor from a category with
denominators to its localisation.

C D

GZ(C) GZ(D)

F

loc loc

GZ(F )

As every functor is an equivalence if and only if it is dense, full and faithful, this in particular holds for the
induced functor GZ(F ). In this article, we focus on functors F with a particular property that ensures density
of GZ(F ), and establish a characterisation for GZ(F ) to be an equivalence.
An arbitrary morphism in the Gabriel/Zisman localisation may consist of arbitrarily but finitely many numer-
ators and denominators: Every morphism of the form Y → Y ′ in GZ(D) is represented by a diagram of the
form

Y Ỹ1 Y1 . . . Yn−1 Y ′≈ ≈

in D, where the “backward” arrows are denominators in D. In particular, density of GZ(F ) means that for every
object Y in D there exists a diagram of the form

FX Ỹ1 Y1 . . . Yn−1 Y≈ ≈

in D. Typically, in this case the “forward” arrows are also denominators in D, but in general even that is not
guaranteed.
To obtain a suitable criterion, we suppose that density of GZ(F ) is provided by single denominators in D,
so-called S-replacements: For every object Y in D there is supposed to be an object X in C and a denomina-
tor q : FX → Y in D.

FX Y≈
q

This property will be called S-density in the following. If F is S-dense and GZ(F ) is an equivalence, we call F
an S-equivalence. With this restriction, we obtain the following result.
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Theorem (characterisation of S-equivalences, see (5.25)). We suppose that the denominators in D are closed
under composition and identities. Then F is an S-equivalence if and only if it is S-dense, S-full and S-faithful.

Here, S-fullness resp. S-faithfulness of F is defined as fullness resp. faithfulness of GZ(F ) on images of S-2-arrows
in D: For all objects X and X ′ in C and every diagram of the form

FX Ỹ ′ FX ′
g

≈b

in D there is a unique morphism ϕ : X → X ′ in GZ(C) such that

loc(g) loc(b)−1 = GZ(F )ϕ

in GZ(D). So the theorem states that being an S-equivalence can be decided by investigating morphisms
in GZ(D) that consist of precisely one numerator and precisely one denominator.
This characterisation of S-equivalences is based on the S-approximation theorem (5.24), where an isomorphism
inverse Q̂S : GZ(D)→ GZ(C) to GZ(F ) : GZ(C)→ GZ(D) is explicitly constructed using a choice of an S-replace-
ment for every object in D.
A classical instance of this result is the fact that the inclusion of the category of bounded above complexes with
entries in projective modules into the category of bounded above complexes with entries in all modules induces
an equivalence between the according derived categories, where an isomorphism inverse on the derived categories
is provided by pointwise projective replacements (aka projective resolutions of complexes). More generally, the
inclusion of the full subcategory of cofibrant objects in a model category in the sense of Quillen [8, ch. I,
sec. 1, def. 1] or, even more generally, in a right derivable category in the sense of Cisinski [3, 2.22, dual of 1.1]
is always an S-equivalence, where an isomorphism inverse to the induced functor on the homotopy categories is
provided by cofibrant replacements.
Sufficient criteria for S-equivalences have been established by Rădulescu-Banu [9, th. 5.5.1] and by Kahn
and Sujatha [7, dual of th. 2.1, dual of cor. 4.4]. Many techniques used in this article are similar to the
techniques used in these two sources. In particular, to verify that GZ(F ) is an equivalence of categories in their
frameworks, Rădulescu-Banu as well as Kahn and Sujatha also constructed an explicit isomorphism inverse,
respectively. The advantage of these two sufficient approaches is their easier verifiability: Although S-fullness
and S-faithfulness are particular cases of fullness and faithfulness of the induced functor on the localisation level,
these properties still involve arbitrary morphisms in the localisation of the start category with denominators.
As it can be hard to check S-faithfulness, it would be desirable to have a “decomposition” of this axiom into a
conjunction of simpler conditions.
In his framework of left exact functors between left derivable categories, Cisinski has given in [3, th. 3.19]
a characterisation of morphisms whose right derived functor is an equivalence. Since density is (in general)
obtained by zigzags of two denominators in his theory, this approach is independent of the one presented in this
article.

Outline Some preliminaries on localisations of categories are recalled in section 2. In section 3, our main tools
for the construction of an isomorphism inverse to GZ(F ), the S-replacements, are introduced. S-equivalences
and their characterising conditions are defined in section 4. The final and main part of the article is section 5,
where an isomorphism inverse to GZ(F ) is constructed.

Conventions and notations
We use the following conventions and notations.

• To avoid set-theoretical difficulties, we (implicitly) work with Grothendieck universes [1, exp. I, sec. 0]. In
particular, every category has a set of objects and a set of morphisms.

• The composite of morphisms f : X → Y and g : Y → Z is usually denoted by fg : X → Z. The composite
of functors F : C → D and G : D → E is usually denoted by G ◦ F : C → E .

• Given objects X and Y in a category C, we denote the set of morphisms from X to Y by C(X,Y ).

• Given a functor F : C → D, we denote its map on the objects by ObF : Ob C → ObD, its map on the
morphisms by MorF : Mor C → MorD, and its maps on the hom-sets by FX,X′ : C(X,X ′)→ D(FX,FX ′)
for X,X ′ ∈ Ob C .
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inclusion of full sub-
category of cofibrant
objects in Quillen
model category [8,
ch. I, sec. 1, def. 1]

inclusion of full
subcategory of
cofibrant objects
in right derivable
category [3, 2.22]

left approxima-
tion (approach
by Rădulescu-
Banu) [9, 5.4.1]

approach by Kahn and
Sujatha [7, dual of 2.1]

S-equivalence (4.3),
multiplicativity (Cat)

S-density (4.1),
S-fullness (4.4),

S-faithfulness (4.7),
multiplicativity (Cat)

equivalence be-
tween localisations

[6, dual of 10.8],
[7, dual of 4.3 a)][9, 6.1.5]

[9, 5.5.1] [7, dual of 2.1]

(5.25)

(4.3)

Figure 1: S-equivalences: a concept for equivalences between localisations.

• If X is isomorphic to Y , we write X ∼= Y .

• Given a set X, we denote the identity map of X by idX : X → X. Likewise, given a category C, we denote
the identity functor of C by idC : C → C.

• We suppose given categories C and D. A functor F : C → D is said to be an equivalence (of categories)
if there exists a functor G : D → C such that G ◦ F ∼= idC and F ◦ G ∼= idD. Such a functor G is then
called an isomorphism inverse of F . The categories C and D are said to be equivalent, written C ' D, if
an equivalence of categories F : C → D exists.

• We use the notation N = {1, 2, 3, . . . }.

• Given a, b ∈ Z with a ≤ b+ 1, we write [a, b] := {z ∈ Z | a ≤ z ≤ b} for the set of integers lying between a
and b.

• When defining a category via its hom-sets, these are considered to be formally disjoint. In other words, a
morphism between two given objects may be formally seen as a triple consisting of an underlying morphism
and its source and target object.

A comment on the terminology The notions S-replacements, S-density, S-fullness, . . . are adapted to the
notion of an S-2-arrow, whereas the terminology of an S-2-arrow is inspired from [10, def. 4.2]: an S-2-arrow
may be interpreted as a 3-arrow whose “T-part” is trivial. The dual concepts may be named T-replacements,
T-density, T-fullness, . . . , respectively.

2 Preliminaries
In this section, we collect some preliminaries, particularly on localisations, connectedness and contractibility of
categories. Its main purpose is to fix notation and terminology.
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Categories with denominators
A category with denominators (1) consists of a category C together with a subset D of Mor C. By abuse of
notation, we refer to the said category with denominators as well as to its underlying category by C. The
elements of D are called denominators (2) in C.
Given a category with denominators C with set of denominators D, we write Den C := D. In diagrams, a
denominator d : X → Y in C will usually be depicted as

X Y≈
d

.

Given categories with denominators C and D, a morphism of categories with denominators from C to D is
a functor F : C → D that preserves denominators, that is, such that Fd is a denominator in D for every
denominator d in C.
Given morphisms of categories with denominators F,G : C → D, a 2-morphism of categories with denominators
from F to G is a transformation α : F → G.
Given categories with denominators C and D, a functor F : C → D is said to reflect denominators if every
morphism d in C such that Fd is a denominator in D is a denominator in C.

Multiplicativity and isosaturatedness
A category with denominators C is said to be multiplicative if the following holds.

(Cat) Multiplicativity. For all denominators d : X → X̃ and e : X̃ → X̄ in C, the composite de : X → X̄ is also
a denominator in C. For every object X in C, the identity 1X : X → X is a denominator in C.

A category with denominators C is said to be isosaturated if the following holds.

(Iso) Isosaturatedness. Every isomorphism in C is a denominator in C.

While multiplicativity of categories with denominators occurs quite often troughout this article, the notion of
isosaturatedness is solely used in proposition (5.4).

Localisations
We suppose given a category with denominators C. A localisation of C consists of a category L and a func-
tor L : C → L with Ld invertible in L for every denominator d in C, and such that for every category D and every
functor F : C → D with Fd invertible in D for every denominator d in C, there exists a unique functor F̂ : L → D
with F = F̂ ◦ L.

C D

L

F

L F̂

By abuse of notation, we refer to the said localisation as well as to its underlying category by L. The functor L
is called the localisation functor of L.
Given a localisation L of C with localisation functor L : C → L, we write loc = locL := L.
A localisation L also fulfils the following universal property with respect to transformations, see e.g. [11,
prop. (1.15)]: For every category D, all functors G,G′ : L → D and every transformation α : G ◦ loc → G′ ◦ loc
there exists a unique transformation α̂ : G→ G′ with α = α̂ ∗ loc.

C D

L

G ◦ loc

G′ ◦ loc

loc
G

G′

α̂

α

1Kahn and Maltsiniotis use the terminology localisateur (localisator) [6, sec. 3.1].
2Kahn and Maltsiniotis use the terminology équivalences faibles (weak equivalences) [6, sec. 3.1].

4



The Gabriel/Zisman localisation
We suppose given a category with denominators C. In [4, sec. 1.1], Gabriel and Zisman constructed a
localisation of C. We call this particular localisation the Gabriel/Zisman localisation of C and denote it by GZ(C).
As the notion of a localisation is defined by a universal property, a localisation of C is unique up to isomorphism.
We will use the following two facts about the Gabriel/Zisman localisation of a category with denominators C:
First, the localisation functor loc : C → GZ(C) is given on the objects by

Ob loc = idOb C = idObGZ(C).

Second, for every morphism ϕ : X → X ′ in GZ(C) there exist n ∈ N, morphisms fi : Xi−1 → X̃i in C for i ∈ [1, n]
and denominators ai : Xi → X̃i in C for i ∈ [1, n− 1] with X = X0, X ′ = X̃n and such that

ϕ = loc(f1) loc(a1)−1 loc(f2) . . . loc(an−1)−1 loc(fn)

in GZ(C).

X X̃1 X1 . . . Xn−1 X ′
f1 f2≈a1

fn≈

an−1

The Gabriel/Zisman localisation turns into a 2-functor from the 2-category of categories with denominators
in a Grothendieck universe to the 2-category of categories in this Grothendieck universe as follows. Given a
morphism of categories with denominators F : C → D, then GZ(F ) : GZ(C) → GZ(D) is the unique functor
with locGZ(D) ◦ F = GZ(F ) ◦ locGZ(C). Given morphisms of categories with denominators F, F ′ : C → D and a
2-morphism of categories with denominators α : F → F ′, the transformation GZ(α) : GZ(F ) → GZ(F ′) is the
unique transformation with locGZ(D) ∗ α = GZ(α) ∗ locGZ(C).

C D

GZ(C) GZ(D)

F

F ′

loc loc

GZ(F )

GZ(F ′)

GZ(α)

α

In this article, we study conditions on a morphism of categories with denominators F : C → D implying
that GZ(F ) : GZ(C)→ GZ(D) is an equivalence of categories.

S-2-arrows
We suppose given a category with denominators C. An S-2-arrow in C is a diagram

X Ỹ Y
f

≈a

in C where a is supposed to be a denominator, denoted by (f, a) : X → Ỹ ← Y .
S-2-arrows are usually used in the description of locations of well-behaved categories with denominators, see
e.g. [4, ch. I, sec. 2.2, sec. 2.3], [2, th. 1], [5, sec. III.2, lem. 8], [11, th. (2.35), th. (2.37), th. (3.128), rem. (3.129)],
where every morphism in the localisation is represented by an S-2-arrow. We will not do so in this article; instead,
we will use the notion of an S-2-arrow in the formulation of the characterising conditions for S-equivalences in
section 4.

On the construction of isomorphism inverses on localisation level
We suppose given a morphism of categories with denominators F : C → D. In corollary (2.2), we characterise
those functors G : D → GZ(C) that induce an isomorphism inverse to GZ(F ) : GZ(C) → GZ(D). This criterion
is most likely folklore.
Remark (2.1)(b)(ii) will be used in the proof of corollary (5.14)(b), (c).
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(2.1) Remark. We suppose given a morphism of categories with denominators F : C → D and a func-
tor G′ : GZ(D)→ GZ(C).

(a) (i) Given an isotransformation α′ : G′ ◦ GZ(F ) → idGZ(C), then α′ ∗ locGZ(C) is an isotransformation
from (G′ ◦ locGZ(D)) ◦ F to locGZ(C).

(ii) Given an isotransformation α : (G′ ◦ locGZ(D)) ◦F → locGZ(C), then there exists a unique transforma-
tion α̂ : G′◦GZ(F )→ idGZ(C) with α = α̂∗ locGZ(C), and this transformation α̂ is an isotransformation.

(b) (i) Given an isotransformation α′ : GZ(F ) ◦ G′ → idGZ(D), then α′ ∗ locGZ(D) is an isotransformation
from GZ(F ) ◦ (G′ ◦ locGZ(D)) to locGZ(D).

(ii) Given an isotransformation α : GZ(F ) ◦ (G′ ◦ locGZ(D))→ locGZ(D), then there exists a unique trans-
formation α̂ : GZ(F ) ◦G′ → idGZ(D) with α = α̂ ∗ locGZ(D), and this transformation α̂ is an isotrans-
formation.

Proof.

(a) (i) As α′ : G′ ◦ GZ(F )→ idGZ(C) is an isotransformation, the transformation α′ ∗ locGZ(C) is an isotrans-
formation from G′ ◦ GZ(F ) ◦ locGZ(C) = G′ ◦ locGZ(D) ◦ F to idGZ(C) ◦ locGZ(C) = locGZ(C).

(ii) As G′ ◦ locGZ(D) ◦ F = G′ ◦ GZ(F ) ◦ locGZ(C), there exists a unique transformation α̂ : G′ ◦ GZ(F )→
idGZ(C) with α = α̂ ∗ locGZ(C), see e.g. [11, prop. (1.16)]. Moreover, α̂ is an isotransformation, see
e.g. [11, cor. (1.18)].

(b) (ii) This follows e.g. from [11, prop. (1.16), cor. (1.18)].

(2.2) Corollary. We suppose given a morphism of categories with denominators F : C → D and a func-
tor G : D → GZ(C) that maps denominators in D to isomorphisms in GZ(C) and we let Ĝ : GZ(D)→ GZ(C) be the
unique functor with G = Ĝ◦locGZ(D). Moreover, we suppose given an isotransformation α : G◦F → locGZ(C) and
an isotransformation β : GZ(F )◦G→ locGZ(D) and we let α̂ : Ĝ◦GZ(F )→ idGZ(C) be the unique transformation
with α = α̂ ∗ locGZ(C) and we let β̂ : GZ(F ) ◦ Ĝ → idGZ(D) be the unique transformation with β = β̂ ∗ locGZ(D).
Then α̂ and β̂ are isotransformations. In particular, GZ(F ) and Ĝ are mutually isomorphism inverse equivalences
of categories.

Proof. The transformation α̂ is an isotransformation by remark (2.1)(a)(ii) and the transformation β̂ is an
isotransformation by remark (2.1)(b)(ii).

A construction principle for functors via choices
We recall from [11, app. A, sec. 1] a systematic method to construct a functor whose map on the objects depends
on a choice.
We suppose given a category C and a family S = (SX)X∈Ob C over Ob C. The structure category of C
with respect to S is the category CS given as follows. The set of objects of CS is given by Ob CS =
{(X,S) | X ∈ Ob C, S ∈ SX}. Given objects (X,S), (Y, T ) in CS, we have the hom-set CS((X,S), (Y, T )) =
{(f, S, T ) | f ∈ C(X,Y )}. The composite of morphisms (f, S, T ) : (X,S)→ (Y, T ) and (g, T, U) : (Y, T )→ (Z,U)
in CS is given by (f, S, T )(g, T, U) = (fg, S, U), and the identity morphism on an object (X,S) in CS is given
by 1(X,S) = (1X , S, S).
The forgetful functor of CS is the functor U: CS → C, (X,S) 7→ X, (f, S, T ) 7→ f .
Given objects (X,S) and (Y, T ) in CS, a morphism (f, S, T ) : (X,S)→ (Y, T ) in CS will usually be denoted just
by f : (X,S)→ (Y, T ). Moreover, we usually write CS((X,S), (Y, T )) = C(X,Y ) instead of CS((X,S), (Y, T )) =
{(f, S, T ) | f ∈ C(X,Y )}.
Given a functor F̄ : CS → D, we usually write F̄SX := F̄ (X,S) for (X,S) ∈ Ob CS and F̄S,T f := F (f, S, T ) for
a morphism f : (X,S)→ (Y, T ) in CS.
A choice of structures for C with respect to S is a family S = (SX)X∈Ob C over Ob C such that SX ∈ SX

for X ∈ Ob C. Given a choice of structures S = (SX)X∈Ob C for C with respect to S, the structure choice
functor with respect to S is the functor IS : C → CS given on the objects by ISX = (X,SX) for X ∈ Ob C and
on the morphisms by ISf = f : (X,SX) → (Y, SY ) for every morphism f : X → Y in C. It fulfils U ◦ IS = idC
and IS ◦ U ∼= idCS , where an isotransformation ε : IS ◦ U → idCS is given by ε(X,T ) = 1X : (X,SX) → (X,T )
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for (X,T ) ∈ Ob CS. In particular, the forgetful functor U: CS → C and the structure choice functor IS : C → CS
are mutually isomorphism inverse equivalences of categories.
To construct a functor F : C → D whose definition on the objects uses a choice of structures S for C with
respect to S, we may first construct a choice-free variant F̄ : CS → D and then define F := F̄ ◦ IS . With the
notations introduced above, we then have FX = F̄SX

X for every object X in C and Ff = F̄SX ,SX′ f for every
morphism f : X → X ′ in C.
Given a functor F̄ : CS → D and choices of structures S and S̃ for C with respect to S, then FS := F̄ ◦ IS̃
and FS̃ := F̄ ◦IS̃ are isomorphic, an isotransformation αS,S̃ : FS → FS̃ is given by (αS,S̃)X = F̄SX ,S̃X

1X : FSX →
FS̃X for X ∈ Ob C, and the inverse of αS,S̃ is given by α−1

S,S̃
= αS̃,S .

We will make use of this principle in the construction of S-replacement functors in section 5.

3 S-replacements
We suppose given a morphism of categories with denominators F : C → D. If GZ(F ) : GZ(C) → GZ(D) is an
equivalence of categories, then it is in particular dense, that is, for every object Y in D there is an object X in C
such that Y ∼= GZ(F )X = FX in GZ(D). Since the localisation functor loc : D → GZ(D) maps denominators
in D to isomorphisms in GZ(D), the easiest non-trivial situation where we have such an isomorphism in GZ(D)
is the one where we already have a denominator FX → Y (or, dually, a denominator Y → FX) in D.
Below we will often suppose that F admits for every object Y in D an object X and a denominator q : FX → Y
in D. In fact, to show that F induces an equivalence on localisation level (under certain additional conditions),
we will use such pairs (X, q) to construct an isomorphism inverse.
In the following, we will introduce terminology for these pairs and introduce a categorical setup for objects
endowed with these pairs.
Throughout this section, we suppose given a morphism of categories with denominators F : C → D. (3)

Concept
We begin with the definition of the basic concept of this article.

(3.1) Definition (S-replacement). We suppose given an object Y in D. An S-replacement of Y along F (4)
(or, if no confusion arises, just an S-replacement of Y ) is a pair (X, q) consisting of an object X in C and a
denominator q : FX → Y in D.

(3.2) Remark. In addition to the morphism of categories with denominators F : C → D, we suppose given a
morphism of categories with denominators G : D → E .

(a) Given an object Z in E and an S-replacement (X, r) of Z along G ◦ F , then (FX, r) is an S-replacement
of Z along G.

GFX

Z

≈

r

(b) We suppose that E is multiplicative. Given an object Z in E , an S-replacement (Y, r) of Z along G and
an S-replacement (X, q) of Y along F , then (X, (Gq)r) is an S-replacement of Z along G ◦ F .

GFX

GY

Z

≈

Gq

≈

r

3Some parts of this section may also make sense if C is (only) supposed to be a category, D is supposed to be a category with
denominators and F is (only) supposed to be a functor.

4Kahn and Maltsiniotis use the terminology F -résolution à gauche (left F -resolution) [6, sec. 5.11, dual of déf. 5.4].
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(3.3) Definition (having enough S-replacements). The category with denominators D is said to have enough
S-replacements along F (or, if no confusion arises, just to have enough S-replacements) if for every object Y
in D there exists an S-replacement of Y along F .

(3.4) Remark. In addition to the morphism of categories with denominators F : C → D, we suppose given a
morphism of categories with denominators G : D → E .

(a) If E has enough S-replacements along G ◦ F , then it has enough S-replacements along G.

(b) We suppose that E is multiplicative. If E has enough S-replacements along G and D has enough S-re-
placements along F , then E has enough S-replacements along G ◦ F .

Proof.

(a) We suppose that E has enough S-replacements along G ◦F . Then for every object Z in E , there exists an
S-replacement (X, r) of Z along G ◦F , which yields the S-replacement (FX, r) of Z along G. Thus E has
enough S-replacements along G.

(b) We suppose that E has enough S-replacements along G and that D has enough S-replacements along F .
Moreover, we suppose given an object Z in E . Since E has enough S-replacements along G, there exists
an S-replacement (Y, r) of Z along G, and since D has enough S-replacements along F , there exists
an S-replacement (X, q) of Y along F . But then (X, (Gq)r) is an S-replacement of Z along G ◦F . Thus E
has enough S-replacements along G ◦ F .

(3.5) Definition (having all trivial S-replacements). The category with denominators D is said to have all
trivial S-replacements along F (or, if no confusion arises, just to have all trivial S-replacements) if for every
object X in C the identity 1FX : FX → FX is a denominator in D.

FX

FX

≈

1FX

(3.6) Remark. If C or D is multiplicative, then D has all trivial S-replacements along F .

The category of objects with S-replacement
Next, we consider structures consisting of an object in D equipped with an S-replacement.

(3.7) Definition (object with S-replacement). We let R = (RY )Y ∈ObD be given by

RY = {(X, q) | (X, q) is an S-replacement of Y along F}

for Y ∈ ObD. The category of objects with S-replacement in D along F is the category with denomina-
tors DRplS(F ) whose underlying category is given by the structure category DR and whose set of denominators
is given by

DenDRplS(F ) = {e ∈ MorDRplS(F ) | Ue is a denominator in D}.

An object in DRplS(F ) is called an object with S-replacement in D along F . A morphism in DRplS(F ) is called a
morphism of objects with S-replacement in D along F . A denominator in DRplS(F ) is called a denominator of
objects with S-replacement in D along F .

(3.8) Remark. We have

ObDRplS(F ) = {(Y,X, q) | Y ∈ ObD, (X, q) is an S-replacement of Y along F}.

For objects (Y,X, q) and (Y ′, X ′, q′) in DRplS(F ), we have the hom-set

DRplS(F )
((Y,X, q), (Y ′, X ′, q′)) = D(Y, Y ′).

8



For morphisms g : (Y,X, q) → (Y ′, X ′, q′) and g′ : (Y ′, X ′, q′) → (Y ′′, X ′′, q′′) in DRplS(F ), the compo-
site gg′ : (Y,X, q) → (Y ′′, X ′′, q′′) in DRplS(F ) has the underlying morphism gg′ : Y → Y ′′ in D. For an ob-
ject (Y,X, q) in DRplS(F ), the identity morphism 1(Y,X,q) : (Y,X, q) → (Y,X, q) in DRplS(F ) has the underlying
morphism 1Y : Y → Y in D.
The forgetful functor U: DRplS(F ) → D is given on the objects by

U(X,q)Y = Y

for (Y,X, q) ∈ ObDRplS(F ), and on the morphisms by

U(X,q),(X′,q′)g = g

for every morphism g : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ).

(3.9) Remark. The forgetful functor U: DRplS(F ) → D preserves and reflects denominators.

Choices of S-replacements
Our construction of an isomorphism inverse on the localisation level in section 5 will use a choice of an S-re-
placement for every object of D. This leads us to the following notion, whose properties are just particular
cases of the more general facts on choices of structures, see section 2 or [11, app. A, sec. 1].

(3.10) Definition (choice of S-replacements). We let R = (RY )Y ∈ObD be given by

RY = {(X, q) | X ∈ Ob C, q : FX → Y is a denominator in D}

for Y ∈ ObD. A choice of S-replacements for D along F is a choice of structures with respect to R.

(3.11) Remark. A choice of S-replacements for D along F is a family ((XY , qY ))Y ∈ObD such that (XY , qY )
is an S-replacement of Y along F for Y ∈ ObD.

(3.12) Remark. There exists a choice of S-replacements for D along F if and only if D has enough S-replace-
ments along F .

Every choice of structures leads to a structure choice functor, see section 2 or [11, def. (A.8)]. In the case of a
choice of S-replacements, the structure choice functor is given as follows.

(3.13) Remark. We suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The
structure choice functor IR : D → DRplS(F ) is given on the objects by

IRY = (Y,XY , qY )

for Y ∈ ObD, and on the morphisms by

IRg = g : (Y,XY , qY )→ (Y ′, XY ′ , qY ′)

for every morphism g : Y → Y ′ in D.

(3.14) Corollary. We suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The
structure choice functor IR : D → DRplS(F ) is a morphism of categories with denominators.

Structure choice functors are isomorphism inverse to the forgetful functor from the structure category to the
category of its underlying objects. We recall this fact in the case of a structure choice functor with respect to
a choice of S-replacements and see that we obtain a pair of mutually isomorphism inverse equivalences on the
localisation level:

(3.15) Remark. We suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F .

(a) We have

U ◦ IR = idD.

9



(b) We have

IR ◦U ∼= idDRplS(F )
.

An isotransformation ᾱ : IR ◦U→ idDRplS(F )
is given by

ᾱ(Y,X′,q′) = 1Y : (Y,XY , qY )→ (Y,X ′, q′)

for (Y,X ′, q′) ∈ ObDRplS(F ).

In particular, U: DRplS(F ) → D and IR : D → DRplS(F ) are mutually isomorphism inverse equivalences of
categories.

Proof. This follows from [11, prop. (A.9)].

(3.16) Corollary. We suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F .

(a) We have

GZ(U) ◦ GZ(IR) = idGZ(D).

(b) We have

GZ(IR) ◦ GZ(U) ∼= idGZ(DRplS(F )).

An isotransformation ᾱ : GZ(IR) ◦ GZ(U)→ idGZ(DRplS(F )) is given by

ᾱ(Y,X′,q′) = 1Y : (Y,XY , qY )→ (Y,X ′, q′)

for (Y,X ′, q′) ∈ ObGZ(DRplS(F )).

In particular, GZ(U): GZ(DRplS(F )) → GZ(D) and GZ(IR) : GZ(D) → GZ(DRplS(F )) are mutually isomorphism
inverse equivalences of categories.

Proof.

(a) By remark (3.15)(a), we have

GZ(U) ◦ GZ(IR) = GZ(U ◦ IR) = GZ(idD) = idGZ(D).

(b) By remark (3.15)(b), we have an isotransformation ᾱ′ : IR ◦U→ idDRplS(F )
given by

ᾱ′(Y,X′,q′) = 1Y : (Y,XY , qY )→ (Y,X ′, q′)

for (Y,X ′, q′) ∈ ObDRplS(F ). But then ᾱ := GZ(ᾱ′) is an isotransformation from GZ(IR ◦ U) = GZ(IR) ◦
GZ(U) to GZ(idDRplS(F )

) = idGZ(DRplS(F )) by 2-functoriality, given by

ᾱ(Y,X′,q′) = locGZ(D)(ᾱ′(Y,X′,q′)) = locGZ(D)(1Y ) = 1Y : (Y,XY , qY )→ (Y,X ′, q′)

for (Y,X ′, q′) ∈ ObGZ(DRplS(F )) = ObDRplS(F ).

4 S-equivalences and the characterising conditions
Next, we introduce S-equivalences, that is, those morphisms of categories with denominators inducing equiva-
lences on the localisation level that we want to characterise in this article, as well as the characterising conditions.
Throughout this section, we suppose given a morphism of categories with denominators F : C → D.
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S-density
We begin with the restriction we put on F : C → D that ensures that GZ(F ) : GZ(C)→ GZ(D) is dense.

(4.1) Definition (S-dense). We say that F is S-dense if D has enough S-replacements along F .

So F is S-dense if and only if for every object Y in D there exists an S-replacement of Y along F .

(4.2) Remark. If F is S-dense, then GZ(F ) : GZ(C)→ GZ(D) is dense.

Proof. We suppose that F is S-dense and we suppose given an object Y in D. Then there exists an S-replace-
ment (X, q) of Y along F . As q : FX → Y is a denominator in D, it follows that loc(q) : FX → Y is an
isomorphism in GZ(D), and so we have

Y ∼= FX = GZ(F )X

in GZ(D). Thus GZ(F ) is dense.

We will give a characterisation of S-density (under additional assumptions on the degree of saturatedness of D)
via the forgetful functor U: DRplS(F ) → D in proposition (5.4).

S-equivalences
The primary objective of this article is to characterise when F is an S-equivalence in the following sense.

(4.3) Definition (S-equivalence). The morphism of categories with denominators F is called an S-equivalence
if it is S-dense and GZ(F ) : GZ(C)→ GZ(D) is an equivalence.

The characterisation of S-equivalences will be given in corollary (5.25), which is based on the S-approximation
theorem (5.24), where an isomorphism inverse to GZ(F ) : GZ(C)→ GZ(D) is constructed.

S-fullness and S-faithfulness
While S-density is already part of the definition of an S-equivalence, we will now introduce the remaining
characterising conditions – S-fullness and S-faithfulness.

(4.4) Definition (S-fullness). We say that F is S-full if for all objects X and X ′ in C and every S-2-ar-
row (g, b) : FX → Ỹ ′ ← FX ′ in D there exists a morphism ϕ : X → X ′ in GZ(C) such that

loc(g) loc(b)−1 = GZ(F )ϕ

in GZ(D).

So roughly said, S-fullness of F means “fullness of GZ(F ) on S-2-arrows”.

(4.5) Remark. If GZ(F ) : GZ(C)→ GZ(D) is full, then F is S-full.

(4.6) Proposition. We suppose that D is multiplicative and that F is S-dense. Then F is S-full if and only
if GZ(F ) : GZ(C)→ GZ(D) is full.

Proof. If GZ(F ) is full, then in particular F is S-full. Conversely, we suppose that F is S-full. To show
that GZ(F ) is full, we suppose given objects X and X ′ in C and a morphism ψ : FX → FX ′ in GZ(D).
Moreover, we choose n ∈ N, morphisms gi : Yi−1 → Ỹi in D for i ∈ [1, n] and denominators bi : Yi → Ỹi in D
for i ∈ [1, n− 1] such that FX = Y0, FX ′ = Ỹn and

ψ = loc(g1) loc(b1)−1 loc(g2) . . . loc(bn−1)−1 loc(gn).

Since D is multiplicative, the identity 1FX′ : FX
′ → FX ′ is a denominator in D. We set Yn := FX ′

and bn := 1FX′ . Moreover, since F is S-dense, for i ∈ [1, n − 1] there exists an S-replacement (Xi, qi) of Yi.
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We set (X0, q0) := (X, 1FX) and (Xn, qn) := (X ′, 1FX′). Then qibi is a denominator in D for i ∈ [1, n] by
multiplicativity.

FX Ỹ1 FX1 . . . FXn−1 FX ′ FX ′

FX Ỹ1 Y1 . . . Yn−1 FX ′ FX ′

g1

≈

1FX

q1g2

≈

q1

≈

q1b1 qn−1gn

≈ qn−1

≈

qn−1bn−1 ≈

1FX′

≈

1FX′

g1 g2≈b1
gn≈

bn−1 ≈

1FX′

Now the S-fullness of F implies that for i ∈ [1, n] there exists a morphism ϕi : Xi−1 → Xi in GZ(C) such that
loc(qi−1gi) loc(qibi)

−1 = GZ(F )ϕi. We obtain

ψ = loc(g1) loc(b1)−1 loc(g2) . . . loc(bn−1)−1 loc(gn)

= loc(q0g1) loc(q1b1)−1 loc(q1g2) . . . loc(qn−1bn−1)−1 loc(qn−1gn) loc(qnbn)−1

= (GZ(F )ϕ1)(GZ(F )ϕ2) . . . (GZ(F )ϕn) = GZ(F )(ϕ1ϕ2 . . . ϕn).

Thus GZ(F ) is full.

(4.7) Definition (S-faithfulness). We say that F is S-faithful if for all objects X and X ′ in C, every S-2-ar-
row (g, b) : FX → Ỹ ′ ← FX ′ in D and all morphisms ϕ1, ϕ2 : X → X ′ in GZ(C) such that

loc(g) loc(b)−1 = GZ(F )ϕ1 = GZ(F )ϕ2

in GZ(D), we have

ϕ1 = ϕ2

in GZ(C).

So roughly said, S-faithfulness of F means “faithfulness of GZ(F ) on S-2-arrows”.

(4.8) Remark. If GZ(F ) : GZ(C)→ GZ(D) is faithful, then F : C → D is S-faithful.

Under the (mild) additional assumption that D is multiplicative we will show that F is an S-equivalence if and
only if it is S-dense, S-full and S-faithful, see corollary (5.25).

5 S-replacement functors and the S-approximation theorem
We suppose given a morphism of categories with denominators F : C → D. The aim of this section is the
construction of an isomorphism inverse to GZ(F ) : GZ(C) → GZ(D), provided that D is multiplicative and F
fulfils the conditions of S-density, S-fullness and S-faithfulness defined in the previous section.
We give a sketch of this construction: First, we show that F lifts to the category of objects with S-replacement
in D along F , see remark (5.1), that is, we show that there exists a morphism of categories with denomi-
nators F̄ : C → DRplS(F ) such that the following triangle on the left commutes. By the functoriality of the
Gabriel/Zisman localisation, this commutative triangle on the left induces the following commutative triangle
on the right.

DRplS(F )

C DF

F̄ U

GZ(DRplS(F ))

GZ(C) GZ(D)
GZ(F )

GZ(F̄ ) GZ(U)

By remark (3.15) we already know that the forgetful functor U: DRplS(F ) → D is an equivalence of categories
if F : C → D is S-dense, where an isomorphism inverse IR : D → DRplS(F ) is constructed by a choice of an
S-replacement for each object in D, see definition (3.10) and remark (3.15). This pair of mutually inverse
equivalences induces a pair of mutually inverse equivalences on the localisation level, see corollary (3.16).
So in order to show that the functor GZ(F ) : GZ(C)→ GZ(D) is an equivalence of categories, it suffices to show
that GZ(F̄ ) : GZ(DRplS(F ))→ GZ(D) is an equivalence of categories. To this end, we construct the so-called total

12



S-replacement functor Q̄SF : DRplS(F ) → GZ(C), see proposition (5.5), which induces an isomorphism inverse
ˆ̄QSF : GZ(DRplS(F ))→ GZ(C) to GZ(F̄ ) : GZ(C)→ GZ(DRplS(F )), see corollary (5.9) and corollary (5.14).

C DRplS(F ) D

GZ(C) GZ(DRplS(F )) GZ(D)

F̄

loc

U

'

loc
Q̄SF

loc

IR

GZ(F̄ )

'

GZ(U)

'

ˆ̄QSF GZ(IR)

The proof of the S-approximation theorem (5.24) is concluded by showing that an isomorphism inverse
to GZ(F ) : GZ(C) → GZ(D) can be induced by a so-called S-replacement functor QSF : D → GZ(C) that is
given as composite QSF = Q̄SF ◦ IR, see definition (5.16).
As the structure choice functor IR : D → DRplS(F ) depends on a choice of S-replacements, this also holds
for the S-replacement functor QSF = Q̄SF ◦ IR. Thus the total S-replacement functor Q̄SF may be seen
as a uniform variant of the various possible isomorphism inverse inducing S-replacement functors, which do
necessitate choices.
Throughout this section, we suppose given a morphism of categories with denominators F : C → D.

The canonical lift
Under the assumption that D has all trivial S-replacements along F , we may lift F to the corresponding category
of objects with S-replacement:

(5.1) Remark. We suppose that D has all trivial S-replacements along F .

(a) We have a functor F̄ : C → DRplS(F ), given on the objects by

F̄X = (FX,X, 1FX)

for X ∈ Ob C, and on the morphisms by

F̄ f = Ff : (FX,X, 1FX)→ (FX ′, X ′, 1FX′)

for every morphism f : X → X ′ in C.

FX

FX

≈

1FX

FX FX ′

FX FX ′

Ff

≈

1FX

≈

1FX′

Ff

(b) We have

F = U ◦ F̄ .

DRplS(F )

C DF

F̄ U

(5.2) Definition (canonical lift). We suppose that D has all trivial S-replacements along F . The func-
tor F̄ : C → DRplS(F ) in remark (5.1) is called the canonical lift of F along U: DRplS(F ) → D.
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In fact, if F is S-dense, then one can construct several (non-canonical) lifts along the forgetful func-
tor U: DRplS(F ) → D: Every choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F leads to a
lift FR := IR ◦ F : C → DRplS(F ) as U ◦ FR = U ◦ IR ◦ F = F by remark (3.15). However, to prove
an assertion analogous to proposition (5.13)(a) below, it seems that one still (at least implicitly) needs the
canonical lift F̄ : C → DRplS(F ) for the construction of an isotransformation Q̄SF ◦ FR → locGZ(C), where
Q̄SF : DRplS(F ) → GZ(C) denotes the total S-replacement functor introduced in definition (5.6) below.

(5.3) Remark. We suppose thatD has all trivial S-replacements along F . For every object (Y,X, q) inDRplS(F ),
the pair (X, (q, (X, 1FX), (X, q))) is an S-replacement of (Y,X, q) along the canonical lift F̄ : C → DRplS(F ).

(FX,X, 1FX) (Y,X, q)≈
q

In particular, the category with denominators DRplS(F ) has enough S-replacements along F̄ .

(5.4) Proposition. We suppose that D is multiplicative. The following conditions are equivalent.

(a) The morphism of categories with denominators F is S-dense.

(b) The forgetful functor U: DRplS(F ) → D is S-dense.

(c) The forgetful functor U: DRplS(F ) → D is surjective on the objects.

If D is isosaturated, then these conditions are also equivalent to the following conditions.

(d) The forgetful functor U: DRplS(F ) → D is dense.

(e) The forgetful functor U: DRplS(F ) → D is an equivalence of categories.

Proof. First, we show that condition (a), condition (b) and condition (c) are equivalent.
By remark (5.1)(b), we have F = U ◦ F̄ , where F̄ : C → DRplS(F ) denotes the canonical lift of F along U. The
canonical lift F̄ is S-dense by remark (5.3). So as D is multiplicative, remark (3.4) implies that F is S-dense if
and only if U is S-dense, that is, condition (a) and condition (b) are equivalent.
Moreover, for every object Y in D there exists an S-replacement (X, q) of Y along F if and only if there exists
an object with S-replacement (Y,X, q) in D along F . Thus F is S-dense if and only if U is surjective on the
objects, that is, condition (a) and condition (c) are equivalent.
Thus condition (a), condition (b) and condition (c) are equivalent.
Second, we suppose that D is isosaturated and show that this premise implies that all five conditions are
equivalent.
We suppose that condition (a) holds, that is, we suppose that F is S-dense. Then there exists a choice of
S-replacements R for D along F , and U and IR are mutually isomorphism inverse equivalences by remark (3.15).
Thus condition (e) holds.
If condition (e) holds, that is, if U is an equivalence, then in particular U is dense by the dense-full-faithful
criterion, that is, condition (d) holds.
Finally, we suppose that condition (d) holds, that is, we suppose that U: DRplS(F ) → D is dense. Moreover,
we suppose given an object Y in D. As U is dense, there exists an object (Y ′, X, q) in DRplS(F ) and an
isomorphism g : U(Y ′, X, q) → Y in D. The isosaturatedness of D implies that g : Y ′ → Y is a denominator
in D, and so ((Y ′, X, q), g) is an S-replacement of Y along U. Thus U: DRplS(F ) → D is S-dense, that is,
condition (b) holds.
Thus condition (a), condition (b), condition (c), condition (d) and condition (e) are equivalent.

The total S-replacement functor
Next, we construct a functor that leads to an isomorphism inverse of the canonical lift.

(5.5) Proposition. We suppose that F is S-full and S-faithful. Then we have a functor

Q̄SF : DRplS(F ) → GZ(C),

given on the objects by

(Q̄SF )(X,q)Y = X
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for (Y,X, q) ∈ ObDRplS(F ), and on the morphisms as follows. Given a morphism g : (Y,X, q) → (Y ′, X ′, q′)
in DRplS(F ), then (Q̄SF )(X,q),(X′,q′)g : X → X ′ is the unique morphism in GZ(C) with

loc(q) loc(g) = (GZ(F )(Q̄SF )(X,q),(X′,q′)g) loc(q′)

in GZ(D).

FX FX ′

Y Y ′

GZ(F )(Q̄SF )(X,q),(X′,q′)g

loc(q)

∼=

loc(q′)

∼=

loc(g)

Proof. We define a map

Q̄0 : ObDRplS(F ) → ObGZ(C), (Y,X, q) 7→ X.

Moreover, as F : C → D is S-full and S-faithful, for all (Y,X, q), (Y ′, X ′, q′) ∈ ObDRplS(F ) we obtain a well-
defined map

Q̄(Y,X,q),(Y ′,X′,q′) : DRplS(F )
((Y,X, q), (Y ′, X ′, q′))→ GZ(C)(X,X

′),

where Q̄(Y,X,q),(Y ′,X′,q′)g ∈ GZ(C)(X,X
′) for g ∈ DRplS(F )

((Y,X, q), (Y ′, X ′, q′)) is the unique element with

loc(qg) loc(q′)−1 = GZ(F )Q̄(Y,X,q),(Y ′,X′,q′)g,

that is, with

loc(q) loc(g) = (GZ(F )Q̄(Y,X,q),(Y ′,X′,q′)g) loc(q′),

in GZ(D).
Given morphisms g : (Y,X, q)→ (Y ′, X ′, q′) and g′ : (Y ′, X ′, q′)→ (Y ′′, X ′′, q′′) in DRplS(F ), we have

loc(q) loc(gg′) = loc(q) loc(g) loc(g′) = (GZ(F )Q̄(Y,X,q),(Y ′,X′,q′)g) loc(q′) loc(g′)

= (GZ(F )Q̄(Y,X,q),(Y ′,X′,q′)g) (GZ(F )Q̄(Y ′,X′,q′),(Y ′′,X′′,q′′)g
′) loc(q′′)

= GZ(F )((Q̄(Y,X,q),(Y ′,X′,q′)g) (Q̄(Y ′,X′,q′),(Y ′′,X′′,q′′)g
′)) loc(q′′)

in GZ(D) and therefore Q̄(Y,X,q),(Y ′′,X′′,q′′)(gg
′) = (Q̄(Y,X,q),(Y ′,X′,q′)g)(Q̄(Y ′,X′,q′),(Y ′′,X′′,q′′)g

′) in GZ(C). More-
over, for (Y,X, q) ∈ ObDRplS(F ) we have

loc(q) loc(1Y ) = 1FX loc(q) = (GZ(F )1X) loc(q)

in GZ(D) and therefore Q̄(Y,X,q),(Y,X,q)(1Y ) = 1X = 1Q̄0(Y,X,q) in GZ(C).
Thus we have a functor Q̄SF : DRplS(F ) → GZ(C) given by Ob Q̄SF = Q̄0 and by (Q̄SF )(X,q),(X′,q′)g =
Q̄(Y,X,q),(Y ′,X′,q′)g for every morphism g : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ).

(5.6) Definition (total S-replacement functor). We suppose that F is S-full and S-faithful. The func-
tor Q̄SF : DRplS(F ) → GZ(C) from proposition (5.5) is called the total S-replacement functor along F .

(5.7) Remark. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we suppose
given a morphism g : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ), denominators e : Y → Ỹ and e′ : Y ′ → Ỹ ′ in D and a
morphism g̃ : Ỹ → Ỹ ′ in D such that ge′ = eg̃ in D.

FX FX ′

Y Y ′

Ỹ Ỹ ′

≈

q

≈

q′

g

≈

e

≈

e′

g̃
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Then we have

(Q̄SF )(X,qe),(X′,q′e′)g̃ = (Q̄SF )(X,q),(X′,q′)g

in GZ(C).

Proof. The pair (X, qe) is an S-replacement of Ỹ and the pair (X ′, q′e′) is an S-replacement of Ỹ ′ by the
multiplicativity of D. Thus

loc(qe) loc(g̃) = loc(q) loc(e) loc(g̃) = loc(q) loc(g) loc(e′) = (GZ(F )(Q̄SF )(X,q),(X′,q′)g) loc(q′) loc(e′)

= (GZ(F )(Q̄SF )(X,q),(X′,q′)g) loc(q′e′)

implies that

(Q̄SF )(X,qe),(X′,q′e′)g̃ = (Q̄SF )(X,q),(X′,q′)g

in GZ(C).

FX FX ′

Y Y ′

Ỹ Ỹ ′

GZ(F )(Q̄SF )(X,q),(X′,q′)g

loc(q)

∼=

loc(q′)

∼=

loc(g)

loc(e)

∼=

loc(e′)

∼=
loc(g̃)

(5.8) Corollary. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we suppose
given a denominator e : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ). Then we have

(Q̄SF )(X,q),(X′,q′)e = (Q̄SF )(X,qe),(X′,q′)1Y ′

in GZ(C).

Proof. This follows from remark (5.7).

FX FX ′

Y Y ′

Y ′ Y ′

≈

q

≈

q′

≈
e

≈

e

≈

1Y ′

≈
1Y ′

(5.9) Corollary. We suppose that D is multiplicative and that F is S-full and S-faithful. The total S-replace-
ment functor Q̄SF : DRplS(F ) → GZ(C) maps denominators in DRplS(F ) to isomorphisms in GZ(C).

Proof. We suppose given a denominator e : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ). Then we have

(Q̄SF )(X,q),(X′,q′)e = (Q̄SF )(X,qe),(X′,q′)1Y ′

in GZ(C) by corollary (5.8). In particular, (Q̄SF )(X,q),(X′,q′)e = (Q̄SF )(X,qe),(X′,q′)1Y ′ is an isomorphism
in GZ(C) since 1Y ′ : (Y ′, X, qe)→ (Y ′, X ′, q′) is an isomorphism in DRplS(F ).

(5.10) Notation. We suppose that D is multiplicative and that F is S-full and S-faithful. We denote by

ˆ̄QSF : GZ(DRplS(F ))→ GZ(C)

the unique functor with Q̄SF = ˆ̄QSF ◦ locGZ(DRplS(F )).
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(5.11) Remark. We suppose that D is multiplicative and that GZ(F ) is full and faithful. The functor
ˆ̄QSF : GZ(DRplS(F ))→ GZ(C) is given on the objects by

( ˆ̄QSF )(X,q)Y = X

for (Y,X, q) ∈ ObGZ(DRplS(F )) = ObDRplS(F ), and on the morphisms as follows. Given a morphism
ψ : (Y,X, q)→ (Y ′, X ′, q′) in GZ(DRplS(F )), then ( ˆ̄QSF )ψ : X → X ′ is the unique morphism in GZ(C) with

loc(q) (GZ(U)ψ) = (GZ(F )( ˆ̄QSF )ψ) loc(q′)

in GZ(D).

FX FX ′

Y Y ′

GZ(F )( ˆ̄QSF )ψ

loc(q)

∼=

loc(q′)

∼=

GZ(U)ψ

Proof. For (Y,X, q) ∈ ObDRplS(F ) we have

( ˆ̄QSF )(X,q)Y = (Q̄SF )(X,q)Y = X

in GZ(C) by proposition (5.5). We suppose given a morphism ψ : (Y,X, q) → (Y ′, X ′, q′) in GZ(DRplS(F ))
and we let ϕ : X → X ′ be the unique morphism in GZ(C) with loc(q) (GZ(U)ψ) loc(q′)−1 = GZ(F )ϕ, that is,
with loc(q) (GZ(U)ψ) = (GZ(F )ϕ) loc(q′) in GZ(D). There exist n ∈ N, morphisms gi : (Yi−1, Xi−1, qi−1) →
(Ỹi, X̃i, q̃i) in DRplS(F ) for i ∈ [1, n] and denominators bi : (Yi, Xi, qi)→ (Ỹi, X̃i, q̃i) in DRplS(F ) for i ∈ [1, n− 1]

with (Y,X, q) = (Y0, X0, q0), (Y ′, X ′, q′) = (Ỹn, X̃n, q̃n) and such that

ψ = locGZ(DRplS(F ))(g1) locGZ(DRplS(F ))(b1)−1 . . . locGZ(DRplS(F ))(gn)

in GZ(DRplS(F )).

(Y,X, q) (Ỹ1, X̃1, q̃1) (Y1, X1, q1) . . . (Yn−1, Xn−1, qn−1) (Y ′, X ′, q′)
g1 g2≈b1

gn≈

bn−1

By proposition (5.5) we have

locGZ(D)(q) (GZ(U)ψ)

= locGZ(D)(q) locGZ(D)(g1) locGZ(D)(b1)−1 locGZ(D)(g2) . . . locGZ(D)(bn−1)−1 locGZ(D)(gn)

= (GZ(F )(Q̄SF )(X0,q0),(X̃1,q̃1)g1) (GZ(F )(Q̄SF )(X1,q1),(X̃1,q̃1)b1)−1 (GZ(F )(Q̄SF )(X1,q1),(X̃2,q̃2)g2)

. . . (GZ(F )(Q̄SF )(Xn−1,qn−1),(X̃n,q̃n)gn) loc(q′)

= (GZ(F )(((Q̄SF )(X0,q0),(X̃1,q̃1)g1) ((Q̄SF )(X1,q1),(X̃1,q̃1)b1)−1 ((Q̄SF )(X1,q1),(X̃2,q̃2)g2)

. . . ((Q̄SF )(Xn−1,qn−1),(X̃n,q̃n)gn))) loc(q′)

in GZ(D) and therefore

( ˆ̄QSF )ψ = ( ˆ̄QSF )(locGZ(DRplS(F ))(g1) locGZ(DRplS(F ))(b1)−1 . . . locGZ(DRplS(F ))(gn))

= ((Q̄SF )(X0,q0),(X̃1,q̃1)g1) ((Q̄SF )(X1,q1),(X̃1,q̃1)b1)−1 . . . ((Q̄SF )(Xn−1,qn−1),(X̃n,q̃n)gn) = ϕ

in GZ(C).

FX FX̃1 . . . FX ′

Y Ỹ1 . . . Y ′

GZ(F )(Q̄SF )(X,q),(X̃1,q̃1)g1

loc(q)

∼=

loc(q̃1)

∼=

GZ(F )(Q̄SF )(Xn−1,qn−1),(X′,q′)gnGZ(F )(Q̄SF )(X1,q1),(X̃1,q̃1)b1

∼=

loc(q′)

∼=

loc(g1) loc(gn)loc(b1)

∼=
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The essential device in the proof of corollary (5.9) is corollary (5.8), where we use the multiplicativity of D
already for its formulation (qe has to be a denominator in D). However, corollary (5.9) is the only step in
our proof of the S-approximation theorem (5.24) that needs the closedness of the denominators in D under
composition. This leads to the following question:

(5.12) Question. Does corollary (5.9) still hold if we omit the assumption that D is multiplicative?

If there is a positive answer to question (5.12), in order to prove the S-approximation theorem (5.24), it
would suffice to replace the multiplicativity of D by the assumption that D has all trivial S-replacements, see
definition (3.5), which is needed for definition (5.2) of the canonical lift.

(5.13) Proposition. We suppose that D has all trivial S-replacements along F and we suppose that F is
S-full and S-faithful. Moreover, we let F̄ : C → DRplS(F ) be the canonical lift of F along the forgetful func-
tor U: DRplS(F ) → D.

(a) We have

Q̄SF ◦ F̄ = locGZ(C).

(b) We have

GZ(F ) ◦ Q̄SF ∼= locGZ(D) ◦U.

An isotransformation β̄ : GZ(F ) ◦ Q̄SF → locGZ(D) ◦U is given by

β̄(Y,X,q) = locGZ(D)(q) : FX → Y

for (Y,X, q) ∈ ObDRplS(F ).

(c) We suppose that F is S-dense. Then we have

GZ(F̄ ) ◦ Q̄SF ∼= locGZ(DRplS(F )).

An isotransformation β̄ : GZ(F̄ ) ◦ Q̄SF → locGZ(DRplS(F )) is given by

β̄(Y,X,q) = loc
GZ(DRplS(F ))

(X,1FX),(X,q)(q) : (FX,X, 1FX)→ (Y,X, q)

for (Y,X, q) ∈ ObDRplS(F ).

Proof.

(a) For every morphism f : X → X ′ in C, we have F̄ f = Ff : (FX,X, 1FX)→ (FX ′, X ′, 1FX′). As

loc(1FX) loc(Ff) = loc(Ff) = GZ(F )loc(f) = (GZ(F )loc(f)) loc(1FX′)

in GZ(D), we obtain

(Q̄SF )(F̄ f) = (Q̄SF )(X,1FX),(X′,1FX′ )
(Ff) = loc(f)

in GZ(C).

FX FX ′

FX FX ′

Ff

≈

1FX

≈

1FX′

Ff

FX FX ′

FX FX ′

GZ(F )loc(f)

loc(1FX)

∼=

loc(1FX′ )

∼=

loc(Ff)

Thus we have Q̄SF ◦ F̄ = locGZ(C).
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(b) For every morphism g : (Y,X, q) → (Y ′, X ′, q′) in DRplS(F ) the following quadrangle in GZ(D) commutes
by definition of Q̄SF : DRplS(F ) → GZ(C).

FX FX ′

Y Y ′

GZ(F )(Q̄SF )(X,q),(X′,q′)g

loc(q)

∼=

loc(q′)

∼=

loc(g)

Thus we have a transformation β̄ : GZ(F ) ◦ Q̄SF → locGZ(D) ◦U, given by

β̄(Y,X,q) = loc(q) : FX → Y

for (Y,X, q) ∈ ObDRplS(F ). Moreover, for every object (Y,X, q) in DRplS(F ), as (X, q) is an S-replacement
of Y , the morphism q : FX → Y is a denominator in D and hence β̄(Y,X,q) = loc(q) : FX → Y is an
isomorphism in GZ(D). Thus β̄ is an isotransformation.

(c) As F is S-dense, there exists a choice of S-replacements for D along F . Thus U: DRplS(F ) → D is an
equivalence of categories by remark (3.15) and hence GZ(U): GZ(DRplS(F )) → GZ(D) is an equivalence
of categories by 2-functoriality. In particular, GZ(U): GZ(DRplS(F ))→ GZ(D) is faithful and so for every
morphism g : (Y,X, q)→ (Y ′, X ′, q′) in DRplS(F ) the commutativity of the quadrangle

FX FX ′

Y Y ′

GZ(F )(Q̄SF )(X,q),(X′,q′)g

loc(q)

∼=

loc(q′)

∼=

loc(g)

in GZ(D) implies the commutativity of the quadrangle

(FX,X, 1FX) (FX ′, X ′, 1FX′)

(Y,X, q) (Y ′, X ′, q′)

GZ(F̄ )(Q̄SF )(X,q),(X′,q′)g

loc(X,1FX ),(X,q)(q)

∼= loc
(X′,1

FX′ ),(X
′,q′)(q

′)∼=

loc
(X,q),(X′,q′)(g)

in GZ(DRplS(F )). Thus we have a transformation β̄ : GZ(F̄ ) ◦ Q̄SF → locGZ(DRplS(F )), given by

β̄(Y,X,q) = loc(X,1FX),(X,q)(q) : (FX,X, 1FX)→ (Y,X, q)

for (Y,X, q) ∈ ObDRplS(F ). Moreover, for every object (Y,X, q) in DRplS(F ), as (X, q) is an S-replacement
of Y , the morphism q : FX → Y is a denominator in D, hence q : (FX,X, 1FX)→ (Y,X, q) is a denomina-
tor in DRplS(F ) and therefore β̄(Y,X,q) = loc(X,1FX),(X,q)(q) : (FX,X, 1FX) → (Y,X, q) is an isomorphism
in GZ(DRplS(F )). Thus β̄ is an isotransformation.

(5.14) Corollary. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we
let F̄ : C → DRplS(F ) be the canonical lift of F along the forgetful functor U: DRplS(F ) → D.

(a) We have

ˆ̄QSF ◦ GZ(F̄ ) = idGZ(C).

(b) We have

GZ(F ) ◦ ˆ̄QSF ∼= GZ(U).

An isotransformation β̄ : GZ(F ) ◦ ˆ̄QSF → GZ(U) is given by

β̄(Y,X,q) = locGZ(D)(q) : FX → Y

for (Y,X, q) ∈ ObGZ(DRplS(F )) = ObDRplS(F ).
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(c) We suppose that F is S-dense. Then we have

GZ(F̄ ) ◦ ˆ̄QSF ∼= idGZ(DRplS(F )).

An isotransformation β̄ : GZ(F̄ ) ◦ ˆ̄QSF → idGZ(DRplS(F )) is given by

β̄(Y,X,q) = loc
GZ(DRplS(F ))

(X,1FX),(X,q)(q) : (FX,X, 1FX)→ (Y,X, q)

for (Y,X, q) ∈ ObGZ(DRplS(F )) = ObDRplS(F ).

In particular, if F is S-dense, then GZ(F̄ ) : GZ(C) → GZ(DRplS(F )) and ˆ̄QSF : GZ(DRplS(F )) → GZ(C) are
mutually isomorphism inverse equivalences of categories.

Proof.

(a) By proposition (5.13)(a), we have

ˆ̄QSF ◦ GZ(F̄ ) ◦ locGZ(C) = ˆ̄QSF ◦ locGZ(DRplS(F )) ◦ F̄ = Q̄SF ◦ F̄ = locGZ(C)

and hence ˆ̄QSF ◦ GZ(F̄ ) = idGZ(C).

(b) By proposition (5.13)(b), we have an isotransformation β̄′ : GZ(F ) ◦ Q̄SF → locGZ(D) ◦U given by

β̄′(Y,X,q) = locGZ(D)(q) : FX → Y

for (Y,X, q) ∈ ObDRplS(F ). Since we have GZ(F ) ◦ Q̄SF = GZ(F ) ◦ ˆ̄QSF ◦ locGZ(DRplS(F )) and
locGZ(D) ◦ U = GZ(U) ◦ locGZ(DRplS(F )), there exists a unique transformation β̄ : GZ(F ) ◦ ˆ̄QSF → GZ(U)

with β̄′ = β̄ ∗ locGZ(DRplS(F )), given by

β̄(Y,X,q) = β̄′(Y,X,q) = locGZ(D)(q) : FX → Y

for (Y,X, q) ∈ ObGZ(DRplS(F )) = ObDRplS(F ), and this transformation is an isotransformation by re-
mark (2.1)(b)(ii).

(c) By proposition (5.13)(c), we have an isotransformation β̄′ : GZ(F̄ ) ◦ Q̄SF → locGZ(DRplS(F )) given by

β̄′(Y,X,q) = loc
GZ(DRplS(F ))

(X,1FX),(X,q)(q) : (FX,X, 1FX)→ (Y,X, q)

for (Y,X, q) ∈ ObDRplS(F ). As GZ(F̄ ) ◦ Q̄SF = GZ(F̄ ) ◦ ˆ̄QSF ◦ locGZ(DRplS(F )) there exists a unique
transformation β̄ : GZ(F̄ ) ◦ ˆ̄QSF → idGZ(DRplS(F )) with β̄′ = β̄ ∗ locGZ(DRplS(F )), given by

β̄(Y,X,q) = β̄′(Y,X,q) = loc
GZ(DRplS(F ))

(X,1FX),(X,q)(q) : (FX,X, 1FX)→ (Y,X, q)

for (Y,X, q) ∈ ObGZ(DRplS(F )) = ObDRplS(F ), and this transformation is an isotransformation by re-
mark (2.1)(b)(ii).

(5.15) Question. Do proposition (5.13)(c) and hence corollary (5.14)(c) still hold if we omit the assumption
that F is S-dense?

S-replacement functors
To conclude the proof of the S-approximation theorem (5.24), we have to compose the isomorphism inverses
induced by the structure choice functor IR : D → DRplS(F ) for a choice of S-replacements R = ((XY , qY ))Y ∈ObD
for D along F , see corollary (3.16), and by the total S-replacement functor Q̄SF : DRplS(F ) → GZ(C), see
corollary (5.14). This leads to the following definition.
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(5.16) Definition (S-replacement functor). We suppose that F is S-full and S-faithful and we suppose given
a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The composite

QSF = QS,RF := Q̄SF ◦ IR : D → GZ(C)

is called the S-replacement functor along F with respect to R.

(5.17) Remark. We suppose that F is S-full and S-faithful and we suppose given a choice of S-replace-
ments R = ((XY , qY ))Y ∈ObD for D along F . The S-replacement functor QS,RF : D → GZ(C) along F with
respect to R is given on the objects by

(QS,RF )Y = XY

for Y ∈ ObD, and on the morphisms as follows. Given a morphism g : Y → Y ′ in D, then (QS,RF )g : XY → XY ′

is the unique morphism in GZ(C) with

loc(qY ) loc(g) = (GZ(F )(QS,RF )g) loc(qY ′)

in GZ(D).

FXY FXY ′

Y Y ′

GZ(F )(QSF )g

loc(qY )

∼=

loc(qY ′ )

∼=

loc(g)

Proof. For Y ∈ ObD, we have IRY = (Y,XY , qY ) in DRplS(F ) and therefore

(QSF )Y = (Q̄SF )IRY = (Q̄SF )(XY ,qY )Y = XY

in GZ(C). We suppose given a morphism g : Y → Y ′ in D. Then (QSF )g = (Q̄SF )IRg = (Q̄SF )(XY ,qY ),(XY ′ ,qY ′ )
g

is the unique morphism in GZ(C) with

loc(qY ) loc(g) = (GZ(F )(Q̄SF )(XY ,qY ),(XY ′ ,qY ′ )
g) loc(qY ′) = (GZ(F )(QSF )g) loc(qY ′)

in GZ(D).

(5.18) Remark. We suppose that F is S-full and S-faithful and we suppose given a choice of S-replace-
ments R = ((XY , qY ))Y ∈ObD for D along F . For every object Y in D and every S-replacement (X̃, q̃) of Y
along F we have the isomorphism

(Q̄SF )(XY ,qY ),(X̃,q̃)1Y : (QS,RF )Y → X̃

in GZ(C).

Proof. Given an object Y in D and an S-replacement (X̃, q̃) of Y along F , then (Q̄SF )(XY ,qY ),(X̃,q̃)1Y is
an isomorphism from (Q̄SF )(XY ,qY )Y = (Q̄SF )IRY = (QSF )Y to (Q̄SF )(X̃,q̃)Y = X̃ in GZ(C) with in-
verse ((Q̄SF )(XY ,qY ),(X̃,q̃)1Y )−1 = (Q̄SF )(X̃,q̃),(XY ,qY )1Y .

(5.19) Remark. We suppose that F is S-full and S-faithful and we suppose given choices of S-replace-
ments R = ((XY , qY ))Y ∈ObD and R̃ = ((X̃Y , q̃Y ))Y ∈ObD for D along F . Then we have

QS,RF ∼= QS,R̃F : D → GZ(C).

An isotransformation αR,R̃ : QS,RF → QS,R̃F is given by

(αR,R̃)Y = (Q̄SF )(XY ,qY ),(X̃Y ,q̃Y )1Y : QS,RFY → QS,R̃FY

for Y ∈ ObD. The inverse of αR,R̃ is given by α−1

R,R̃
= αR̃,R.
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Proof. We have QS,RF = Q̄SF ◦ IR and QS,R̃F = Q̄SF ◦ IR̃. By [11, cor. (A.12)], we have

QS,RF = Q̄SF ◦ IR ∼= Q̄SF ◦ IR̃ = QS,R̃F,

an isotransformation αR,R̃ : QS,RF → QS,R̃F is given by

(αR,R̃)Y = Q̄SF(XY ,qY ),(X̃Y ,q̃Y )1Y : (QS,RF )Y → (QS,R̃F )Y

for Y ∈ ObD, and the inverse of αR,R̃ is given by α−1

R,R̃
= αR̃,R.

(5.20) Remark. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we
suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The S-replacement func-
tor QSF : D → GZ(C) along F with respect to R maps denominators in D to isomorphisms in GZ(C).

Proof. The structure choice functor IR : D → DRplS(F ) preserves denominators, that is, it maps denominators
in D to denominators in DRplS(F ). The total S-replacement functor Q̄SF : DRplS(F ) → GZ(C) maps denominators
in DRplS(F ) to isomorphisms in GZ(C) by corollary (5.9). Thus QSF = Q̄SF ◦ IR maps denominators in D to
isomorphisms in GZ(C).

(5.21) Notation. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we
suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . We denote by

Q̂SF = Q̂S,RF : GZ(D)→ GZ(C)

the unique functor with QS,RF = Q̂S,RF ◦ locGZ(D).

(5.22) Remark. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we suppose
given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . Then we have

Q̂S,RF = ˆ̄QSF ◦ GZ(IR).

Proof. Since

ˆ̄QSF ◦ GZ(IR) ◦ locGZ(D) = ˆ̄QSF ◦ locGZ(DRplS(F )) ◦ IR = Q̄SF ◦ IR = QS,RF,

we necessarily have Q̂S,RF = ˆ̄QSF ◦ GZ(IR).

(5.23) Remark. We suppose that D is multiplicative and that GZ(F ) is full and faithful. Moreover, we suppose
given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The functor Q̂S,RF : GZ(D)→ GZ(C) is
given on the objects by

(Q̂S,RF )Y = XY

for Y ∈ ObGZ(D) = ObD, and on the morphisms as follows. Given a morphism ψ : Y → Y ′ in GZ(D), then
(Q̂S,RF )ψ : XY → XY ′ is the unique morphism in GZ(C) with

loc(qY )ψ = (GZ(F )(Q̂S,RF )ψ) loc(qY ′)

in GZ(D).

FXY FXY ′

Y Y ′

GZ(F )(Q̂S,RF )ψ

loc(qY )

∼=

loc(qY ′ )

∼=

ψ
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Proof. For Y ∈ ObD we have

(Q̂S,RF )Y = ( ˆ̄QSF )GZ(IR)Y = ( ˆ̄QSF )(XY ,qY )Y = XY

in GZ(C) by remark (5.22) and remark (5.11). We suppose given a morphism ψ : Y → Y ′ in GZ(D) and we
let ϕ : XY → XY ′ be the unique morphism in GZ(C) with loc(qY )ψ loc(qY ′)

−1 = GZ(F )ϕ, that is,
with loc(qY )ψ = (GZ(F )ϕ) loc(qY ′) in GZ(D). Then GZ(IR)ψ : (Y,XY , qY ) → (Y ′, XY ′ , qY ′) is a morphism
in GZ(DRplS(F )) with

loc(qY ) (GZ(U)GZ(IR)ψ) = loc(qY )ψ = (GZ(F )ϕ) loc(qY ′)

in GZ(D). Thus we have

(Q̂S,RF )ψ = ( ˆ̄QSF )GZ(IR)ψ = ϕ

by remark (5.22) and remark (5.11).

The S-approximation theorem
Finally, we can state and prove the main result of this article.

(5.24) Theorem (S-approximation theorem). We suppose that D is multiplicative and that F is S-full and
S-faithful. Moreover, we suppose given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . The
functors

GZ(F ) : GZ(C)→ GZ(D),

Q̂S,RF : GZ(D)→ GZ(C)

are mutually isomorphism inverse equivalences of categories. An isotransformation α : Q̂S,RF ◦GZ(F )→ idGZ(C)
is given by

αX′ = (Q̄SF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′ : XFX′ → X ′

for X ′ ∈ ObGZ(C) = Ob C, and an isotransformation β : GZ(F ) ◦ Q̂S,RF → idGZ(D) is given by

βY = locGZ(D)(qY ) : FXY → Y

for Y ∈ ObGZ(D) = ObD.

Proof. By remark (5.1)(b), we have F = U ◦ F̄ , where F̄ : C → DRplS(F ) denotes the canonical lift of F
along the forgetful functor U: DRplS(F ) → D. By corollary (3.16), we have GZ(U) ◦ GZ(IR) = idGZ(D) and
an isotransformation ᾱ : GZ(IR) ◦ GZ(U) → idGZ(DRplS(F )) is given by ᾱ(Y,X′,q′) = 1Y : (Y,XY , qY ) → (Y,X ′, q′)

for (Y,X ′, q′) ∈ ObGZ(DRplS(F )) = ObDRplS(F ). By corollary (5.14)(a), (b), we have ˆ̄QSF ◦GZ(F̄ ) = idGZ(C) and
an isotransformation β̄ : GZ(F ) ◦ ˆ̄QSF → GZ(U) given by β̄(Y,X′,q′) = locGZ(D)(q′) : FX ′ → Y for (Y,X ′, q′) ∈
ObGZ(DRplS(F )) = ObDRplS(F ).

C D

C DRplS(F ) D

GZ(C) GZ(DRplS(F )) GZ(D)

GZ(C) GZ(D)

F

F̄

loc

U

'

loc
Q̄SF

loc

IR

GZ(F̄ )

'

GZ(U)

'

ˆ̄QSF GZ(IR)

GZ(F )

'

Q̂S,RF
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By remark (5.22), we have Q̂SF = ˆ̄QSF ◦ GZ(IR). We obtain

Q̂SF ◦ GZ(F ) = ˆ̄QSF ◦ GZ(IR) ◦ GZ(U) ◦ GZ(F̄ ) ∼= ˆ̄QSF ◦ idGZ(DRplS(F )) ◦ GZ(F̄ ) = ˆ̄QSF ◦ GZ(F̄ )

= idGZ(C),

GZ(F ) ◦ Q̂SF = GZ(F ) ◦ ˆ̄QSF ◦ GZ(IR) ∼= GZ(U) ◦ GZ(IR) = idGZ(D),

where isotransformations α : Q̂SF ◦ GZ(F ) → idGZ(C) and β : GZ(F ) ◦ Q̂SF → idGZ(D) are given by
α = ˆ̄QSF ∗ ᾱ ∗ GZ(F̄ ) and β = β̄ ∗ GZ(IR). Thus GZ(F ) : GZ(C) → GZ(D) and Q̂SF : GZ(D) → GZ(C) are
mutually isomorphism inverse equivalences of categories.
For X ′ ∈ Ob C, we have

ᾱGZ(F̄ )X′ = ᾱ(FX′,X′,1FX′ )
= 1FX′ : (FX ′, XFX′ , qFX′)→ (FX ′, X ′, 1FX′)

in GZ(DRplS(F )) and thus

αX′ = ( ˆ̄QSF )ᾱGZ(F̄ )X′ = ( ˆ̄QSF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′ = (Q̄SF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′ : XFX′ → X ′

in GZ(C). Moreover, for Y ∈ ObD, we have

βY = β̄GZ(IR)Y = β̄(Y,XY ,qY ) = locGZ(D)(qY ) : FXY → Y

in GZ(D).

(5.25) Corollary. We suppose that D is multiplicative. The morphism of categories with denomina-
tors F : C → D is an S-equivalence if and only if it is S-dense, S-full and S-faithful.

Proof. First, we suppose that F is an S-equivalence, that is, we suppose that F is S-dense and that the induced
functor GZ(F ) : GZ(C) → GZ(D) is an equivalence. Then GZ(F ) is full, so in particular F is S-full. Moreover,
GZ(F ) is faithful, so in particular F is S-faithful.
Conversely, we suppose that F is S-dense, S-full and S-faithful. As F is S-dense, there exists a choice of
S-replacements R = ((XY , qY ))Y ∈ObD for D along F . But then GZ(F ) is an equivalence of categories by the
S-approximation theorem (5.24), that is, F is an S-equivalence.

It would have been nice to replace the multiplicativity of D in theorem (5.24) and corollary (5.25) by requestingD
to have all trivial S-replacements, which is weaker. However, the closedness under composition seems to be
needed in the proof of corollary (5.9). Cf. question (5.12).
In the whole proof of corollary (5.25), including the preparing facts, we did not apply the dense-full-faithful
criterion to the induced functor GZ(F ). In fact, corollary (5.25) may be seen as a generalisation of this well-
known result, which one reobtains if the denominators in C and D are supposed to be precisely the isomorphisms,
respectively. Cf. [11, app. A, sec. 1].
We record a symmetric relationship between the isotransformations from the S-approximation theorem (5.24):

(5.26) Remark. We suppose that D is multiplicative and that F is S-full and S-faithful. Moreover, we suppose
given a choice of S-replacements R = ((XY , qY ))Y ∈ObD for D along F . We let α : Q̂S,RF ◦ GZ(F )→ idGZ(C) be
the isotransformation given by

αX′ = (Q̄SF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′ : XFX′ → X ′

for X ′ ∈ Ob C, and we let β : GZ(F ) ◦ Q̂S,RF → idGZ(D) be the isotransformation given by

βY = locGZ(D)(qY ) : FXY → Y

for Y ∈ ObD. Then we have

GZ(F ) ∗ α = β ∗ GZ(F ),

Q̂S,RF ∗ β = α ∗ Q̂S,RF.
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Proof. For X ′ ∈ Ob C we have αX′ = (Q̄SF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′ in GZ(C) and therefore

GZ(F )αX′ = (GZ(F )(Q̄SF )(XFX′ ,qFX′ ),(X
′,1FX′ )

1FX′) loc(1FX′) = loc(qFX′) loc(1FX′) = βFX′

= βGZ(F )X′

in GZ(D).

FXFX′ FX ′

FX ′ FX ′

GZ(F )(Q̄SF )(X
FX′ ,qFX′ ),(X

′,1
FX′ )

1FX′

loc(qFX′ )

∼=

loc(1FX′ )

∼=

loc(1FX′ )

Thus we have GZ(F ) ∗ α = β ∗ GZ(F ). Since GZ(F ) is an equivalence of categories by the S-approximation
theorem (5.24), it is in particular faithful, so that we also obtain Q̂SF ∗ β = α ∗ Q̂SF . (5)
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