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Abstract
We develop a localisation theory for certain categories, yielding a 3-arrow calculus: Every morphism in

the localisation is represented by a diagram of length 3, and two such diagrams represent the same morphism
if and only if they can be embedded in a 3-by-3 diagram in an appropriate way. The method we use to
construct this localisation is similar to the Ore localisation for a 2-arrow calculus; in particular, we do not
have to use zigzags of arbitrary length. Applications include the localisation of an arbitrary Quillen model
category with respect to its weak equivalences as well as the localisation of its full subcategories of cofibrant,
fibrant and bifibrant objects, giving the homotopy category in all four cases. In contrast to the approach of
Dwyer, Hirschhorn, Kan and Smith, the Quillen model category under consideration does not need to
admit functorial factorisations. Moreover, it follows that the derived category of any abelian (or idempotent
splitting exact) category admits a 3-arrow calculus if we localise the category of complexes instead of its
homotopy category.

1 Introduction
Localisations of categories occur in homological and homotopical algebra. Prominent examples are the con-
struction of the derived category of an abelian category [34, ch. II, §1, not. 1.1] (as localisation of the homotopy
category of complexes) and – more generally – localisations of Verdier triangulated categories with respect
to thick subcategories [34, ch. I, §2, déf. 3-3], localisations of abelian categories with respect to thick subcate-
gories [33, ch. I, sec. 2] [15, sec. 1.11] and the definition of the homotopy category of a Quillen model category [29,
ch. I, sec. 1, def. 6]. Usually, the construction of the first three examples is done by a procedure known under
the name of Ore localisation, which can only be applied in the special case where the denominator set, that is,
the subset of morphisms to be formally inverted, fulfills some additional properties. Let us call such a special
denominator set a classical denominator set for the moment. The basic ideas of this method have their historical
origin in ring theory, in particular in the works of Ore [28, sec. 2] and Asano [2, Satz 1], while the categorical
version comes from the Grothendieck school, see Verdier [34, ch. I, §2, sec. 3.2] and Grothendieck and
Hartshorne [18, ch. I, §3, prop. 3.1], based on the work of Serre [33, ch. I, sec. 2]. In contrast, the construc-
tion of the homotopy category of a Quillen model category is usually done by a formal construction working
for arbitrary denominator sets, which is commonly called Gabriel-Zisman localisation (1). Of course, if the
denominator set under consideration is classical, then the Ore localisation and the Gabriel-Zisman localisation
are isomorphic since localisation of categories is defined by a universal property.
The advantage of Ore localisation is in the manageability of morphisms in the localisation: We suppose given a
category C and a denominator setD ⊆ Mor C. The morphisms in the Gabriel-Zisman localisation are represented
by zigzags

. . .≈ ≈

of finite but arbitrary length, where the “backward” arrows are in D. In contrast, if D is a classical denominator
set, then every morphism in the Ore localisation is represented by a diagram

≈ .
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Furthermore, in the Gabriel-Zisman localisation one has, in general, no convenient criterion to decide whether
two zigzags represent the same morphism in the localisation, while already from the construction of the Ore
localisation it follows that two of these diagrams represent the same morphism if and only if they can be
embedded as the top and the bottom row in a commutative diagram of the following form.

≈

≈

≈

≈

Unfortunately, the set of weak equivalences in a Quillen model category M is not a classical denominator set
in general, and the homotopy category HoM, that is, the localisation of M with respect to its set of weak
equivalences, does in general not fulfill a 2-arrow calculus in the above sense. Instead, Dwyer, Hirschhorn,
Kan and Smith developed in [9, sec. 10, sec. 36] a 3-arrow calculus for the homotopy category ofM, provided
M admits functorial factorisations (cf. [9, sec. 9.1, ax. MC5]). That is, they showed that each morphism in
HoM is represented by a diagram

≈ ≈ ,

and, moreover, that two of these diagrams represent the same morphism if and only if they can be embedded
as the top and the bottom row in a commutative diagram of the following form.

≈ ≈
≈

≈

≈

≈

≈

≈

≈ ≈

≈

≈ ≈

≈

To do this, they introduced the notion of a homotopical category admitting a 3-arrow calculus [9, sec. 33.1, 36.1]
and developed a 3-arrow calculus in this context [9, sec. 36.3].
In this article, we introduce the concept of a uni-fractionable category, see definition (3.1)(a). Our main result
is the construction of a localisation of a uni-fractionable category (with respect to its set of denominators) that
satisfies a 3-arrow calculus in the sense described above, see theorem (5.18). In contrast to [9], we will not make
use of the Gabriel-Zisman localisation. Instead, we will give an elementary ad hoc construction of a localisation
of a uni-fractionable category, in the spirit of the Ore localisation for a 2-arrow calculus. (2)
Both in the approach of [9, sec. 36.1] and in our uni-fractionable categories, one has three distinguished kinds
of morphisms, which, in our terminology, are called denominators, S-denominators and T-denominators. The
denominators are the morphisms to be formally inverted, while the S- and T-denominators are particular denom-
inators. The essential stipulations in [9, sec. 36.1] are that every denominator factors functorially into an S-de-
nominator followed by a T-denominator (3) and that one has functorial Ore completions along S-denominators
resp. T-denominators. For uni-fractionable categories, we omit the stipulations of functoriality; instead, we
require the existence of weakly universal Ore completions along S-denominators resp. T-denominators.
The advantage of uni-fractionable categories is that functoriality of factorisations is not needed. On the one
hand, this is convenient for applications. On the other hand, the theory developed here can be applied to
arbitrary Quillen model categories. Moreover, it can also be applied to the full subcategories of the cofibrant,
fibrant resp. bifibrant objects of a Quillen model category. As a consequence, all of them admit a 3-arrow
calculus.

2It is easy to show that every morphism in the Gabriel-Zisman localisation of a uni-fractionable category can be represented by
a diagram of length 3 (cf. the definition of the composition in proposition (5.4)). However, the author does not know how to prove
in that context that two of these diagrams represent the same morphism if and only if they can be embedded in a 3-by-3 diagram
as above.

3The S resp. the T should remind us of the fact that the S-denominator resp. the T-denominator in a factorisation has the same
source resp. the same target as the factorised morphism.
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Furthermore, a derivable category in the sense of Cisinski [7, sec. 2.25] (4), which is a self-dual generalisation of
a category of fibrant objects in the sense of K. Brown [4, sec. 1], admits a 3-arrow calculus, provided stronger
variants of the factorisation axioms and the axioms which ensure stability of acyclic cofibrations under pushouts
resp. of acyclic fibrations under pullbacks hold. For the relationship of Cisinski’s approach with other axiom
systems, see [31, sec. 2].
A further example of a uni-fractionable category structure is provided by the category of complexes in an
arbitrary abelian category, where the denominators are given by the quasi-isomorphisms, that is, by those
morphisms inducing isomorphisms on the homology objects. To obtain the derived category, instead of localising
the homotopy category of complexes, we may directly localise the category of complexes itself. The price to
pay is that instead of a 2-arrow calculus, we obtain a 3-arrow calculus. Similarly for the derived category of an
idempotent splitting exact category.
One feature of this 3-arrow approach is its self-duality. This might be a reason why 3-arrows occurred implicitly
in Grothendieck’s construction of a localisation of an abelian category with respect to a thick subcategory [15,
sec. 1.11, p. 138], cf. example (7.7)(b), although a 2-arrow approach is of course sufficient.

Outline We recall in section 2 some notions of localisation theory and indicate how quotients of (ordered)
graphs with respect to so-called graph congruences can be constructed. In section 3, uni-fractionable categories
are introduced. Recall that the aim of this article is to construct a localisation of a uni-fractionable category
with respect to its set of denominators. To this end, we proceed in two steps: In section 4, we assign to a uni-
fractionable category a certain graph, its 3-arrow graph, and introduce a graph congruence on this graph. Then,
in section 5, it turns out that the quotient graph has a canonically given category structure, and we will show
that this category is a localisation of the uni-fractionable category we started with. Our main theorem (5.18)
then gives a criterion on when two 3-arrows represent the same morphism in the localisation. In section 6, we
give a sufficient criterion for the localisation and the localisation functor being additive. Finally, in section 7,
we show how Quillen model categories, derivable categories (under additional conditions), complexes and some
further classical examples fit into this framework. The example of complexes with entries in an idempotent
splitting exact category is best understood when generalised; this requires a little theory of formal cones as
provided in appendix A.

Acknowledgements I thank Matthias Künzer for many useful discussions on this article, in particular
for his ideas leading to example (7.5).
This article will be part of my forthcoming doctoral thesis. I thank the RWTH Aachen Graduiertenförderung
for financial support.

Conventions and notations
We use the following conventions and notations.

• The composite of morphisms f : X → Y and g : Y → Z is usually denoted by fg : X → Z. The composite
of functors F : C → D and G : D → E is usually denoted by G ◦ F : C → E .

• Isomorphy of objects X and Y is denoted by X ∼= Y . Equivalence between categories C and D is denoted
by C ' D.

• Given a category C and objects X and Y in C, we write C(X,Y ) for the set of morphisms from X to Y .

• Given a subobject U of an object X, we denote by inc = incU : U → X the inclusion. Dually, given a
quotient object Q of an object X, we denote by quo = quoQ : X → Q the quotient morphism.

• Given a coproduct C of X1 and X2, the embedding Xk → C is denoted by embk = embCk for k ∈ {1, 2}.

Given morphisms fk : Xk → Y for k ∈ {1, 2}, the induced morphism C → Y is denoted by
(
f1

f2

)
=

(
f1

f2

)C
.

Dually for products: We write prk = prPk for the projections of a product of X1 and X2 and ( f1 f2 ) =

( f1 f2 )
P for the induced morphism Y → P of morphisms fk : Y → Xk, k ∈ {1, 2}.

4Also called an Anderson-Brown-Cisinski premodel category by Rădulescu-Banu [31, def. 1.1.3].
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• By a sum of objects X1 and X2, we understand an object S such that S carries the structure of a coproduct
and a product of X1 and X2, and such that embkprl = δk,l for k, l ∈ {1, 2}, where δ denotes the Kronecker
delta.

• Given an initial object I, the unique morphism I → X to an objectX will be denoted by ini = iniX = iniIX .
Dually, given a terminal object T , the unique morphism X → T from an object T will be denoted by
ter = terX = terTX . Given a zero object N , the unique morphism X → Y that factors over N will be
denoted by 0.

• Given a category admitting finite coproducts and objectsX1, X2, we denote byX1qX2 a chosen coproduct
and by ¡ a chosen initial object. Analogously, given morphisms fk : Xk → Yk for k ∈ {1, 2}, the coproduct
of f1 and f2 is denoted by f1 q f2. Analogously for finite products resp. finite sums, where we write
X1 Π X2 and f1 Π f2 for a chosen product and ! for a chosen terminal object resp. X1 ⊕X2 and f1 ⊕ f2

for a chosen sum and 0 for a chosen zero object.

• Given a category admitting finite coproducts C and a category D, we say that a functor F : C → D preserves
finite coproducts if F ¡ is an initial object in D, and if, given X1, X2 ∈ Ob C, the object F (X1 q X2) is
a coproduct of FX1 and FX2, where the embeddings are given by emb

F (X1qX2)
1 = F (embX1qX2

1 ) and
emb

F (X1qX2)
2 = F (embX1qX2

2 ). Dually for finite products and analogously for finite sums.

• Given a category admitting kernels, we denote by Ker f a chosen kernel of a morphism f . Given a category
admitting cokernels, we denote by Coker f a chosen cokernel of a morphism f .

• The opposite category of a category C is denoted by Cop.

• By a weak pushout rectangle (resp. weak pullback rectangle) we understand a quadrangle having the
universal property of a pushout rectangle (resp. pullback rectangle) except for the uniqueness of the
induced morphism.

• The category of complexes in an additive category A is denoted by C(A), its homotopy category by K(A).
The derived category of an exact category E is denoted by D(E).

• Arrows a and b in an (oriented) graph are called parallel if Source a = Source b and Target a = Target b.

• In an exact category E , the distinguished short exact sequences in E will be called pure short exact se-
quences. Likewise, the monomorphisms occurring in a pure short exact sequence are called pure monomor-
phisms, and the epimorphisms occurring in a pure short exact sequence are called pure epimorphisms.

• We use the notations N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

• Given integers a, b ∈ Z, we write [a, b] := {z ∈ Z | a ≤ z ≤ b} for the set of integers lying between a and b.

A remark on Grothendieck universes To avoid set-theoretical difficulties, we work with Grothendieck
universes [1, exp. I, sec. 0] in this article. In particular, every category has an object set and a morphism set.
Given a Grothendieck universe U, we say that a category C is a U-category if Ob C and Mor C are elements of U.
The category of U-categories, whose object set consists of all U-categories and whose morphism set consists of all
functors between U-categories (and source, target, composition and identities given by ordinary source, target,
composition of functors and the identity functors, respectively), will be denoted Cat = Cat(U).
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2 Preliminaries
In this section, we give some preliminaries on localisations of categories and quotient graphs with respect to
graph congruences.

Localisations of categories
We suppose given a category C. A denominator set in C is a subset D ⊆ Mor C. We will consider denominator
sets with special properties later in this article, but at the moment, a denominator set D is just an arbitrary
subset of Mor C. Informally, it is a subset singled out with the “intention of localising with respect to it”, in the
following sense.
A localisation of C with respect to a denominator set D in C consists of a category L and a functor L : C → L
such that the following axioms hold.

(Inv) Invertibility. For all d ∈ D, the morphism Ld is invertible.

(1-uni) 1-universality. Given a category D and a functor F : C → D such that Fd is invertible for all d ∈ D, there
exists a unique functor F̂ : L → D with F = F̂ ◦ L.

(2-uni) 2-universality. We suppose given a category D and functors F,G : C → D such that Fd and Gd are
invertible for all d ∈ D, and we denote by F̂ : L → D resp. Ĝ : L → D the unique functor with F = F̂ ◦ L
resp. G = Ĝ ◦L. Given a transformation α : F → G, there exists a unique transformation α̂ : F̂ → Ĝ such
that α̂LX = αX for all X ∈ Ob C.

L D

C

F̂

Ĝ

L
F

G

α̂

α

By abuse of notation, we refer to the localisation as well as to its underlying category just by L. The functor L
is said to be the localisation functor of the localisation L. Given a localisation L of C with respect to D with
localisation functor L : C → L, we write loc = locL := L.
Gabriel and Zisman have shown in [12, sec. 1.1] that there exists a localisation of every category C with respect
to an arbitrary denominator set D in C. We will not make use of this result. Rather, given a uni-fractionable
category, see definition (3.1), we construct a localisation directly, cf. propositions (5.4) and (5.7).

Saturatedness
We suppose given a category C, a denominator set D in C, and a localisation L of C with respect to D. By
definition of a localisation, loc(d) is invertible for every d ∈ D. But in general, not every morphism f in C for
which loc(f) is invertible in L has to be an element of D. The denominator set D is said to be saturated if
f ∈ D for all f ∈ Mor C with loc(f) invertible in L. We use the following notions to indicate how far D is away
from this property.
The denominator set D is said to be multiplicative if it fulfills:

(Cat) Multiplicativity. For all d, e ∈ D with Target d = Source e, their composite de is in D, and for every object
X in C, the identity 1X is in D.

The denominator set D is said to be semi-saturated if it is multiplicative and fulfills:

(2 of 3) 2 out of 3 axiom. We suppose given morphisms f and g in C with Target f = Source g. If two out of the
morphisms f , g, fg are in D, then so is the third.

Finally, the denominator set D is said to be weakly saturated if it is multiplicative and fulfills:

(2 of 6) 2 out of 6 axiom. We suppose given morphisms f , g, h in C with Target f = Source g and Target g =
Sourceh. If fg, gh ∈ D, then f, g, h, fgh ∈ D.

Saturatedness implies weak saturatedness, weak saturatedness implies semi-saturatedness, and semi-saturated-
ness implies multiplicativity (the last impliciation holds by definition).
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Categories with denominators
A category with denominators consists of a category C together with a denominator set D in C. By abuse
of notation, we refer to the category with denominators as well as to its underlying category just by C. The
elements of D are called denominators in C.
Given a category with denominators C with set of denominators D, we write Den C := D. In diagrams, a
denominator d in C will usually be depicted as

≈
d

.

We suppose given categories with denominators C and D. A morphism of categories with denominators from C
to D is a functor F : C → D that preserves denominators, that is, such that Fd is a denominator in D for every
denominator d in C.
We suppose given a Grothendieck universe U. A category with denominators is said to be a U-category with
denominators if its underlying category is in U. The category CatD = CatD(U) consisting of the set of
U-categories with denominators as set of objects and the set of morphisms of categories with denominators
between U-categories with denominators as set of morphisms (and categorical structure maps induced from
Cat(U)) is called the category of categories with denominators (more precisely, the category of U-categories with
denominators).
Given a category with denominators C, a localisation of C is defined to be a localisation of (the underlying
category of) C with respect to its set of denominators Den C.
A category with denominators C is said to be multiplicative resp. semi-saturated resp. weakly saturated resp.
saturated if its set of denominators Den C is multiplicative resp. semi-saturated resp. weakly saturated resp.
saturated denominator set in the category C.

Graph congruences and quotient graphs
We suppose given an (oriented) graph G. An equivalence relation ≡ on ArrG is said to be a graph congruence on
G if Source a = Source ã and Target a = Target ã for all a, ã ∈ ArrG with a ≡ ã. Given a graph congruence ≡ on
G, the quotient graph of G with respect to ≡ is the graph G/≡ with ObG/≡ := ObG, ArrG/≡ := (ArrG)/≡ and
Source [a]≡ := Source a, Target [a]≡ := Target a for a ∈ ArrG. The graph morphism quo = quoG/≡ : G → G/≡
given by quo(X) := X and quo(a) := [a]≡ is called the quotient graph morphism.
The quotient graph of G with respect to a graph congrunce ≡ fulfills the following universal property. Given
a, ã ∈ ArrG with a ≡ ã, we have quo(a) = quo(ã). For every graph H and every graph morphism F : G → H
with Fa = F ã for a, ã ∈ ArrG with a ≡ ã, there exists a unique graph morphism F : G/≡ → H with F = F ◦quo.

G H

G/≡

F

quo F

3 Uni-fractionable categories
(3.1) Definition (uni-fractionable categories, morphisms of uni-fractionable categories).

(a) A uni-fractionable category (5) consists of a semi-saturated category with denominators C together with
multiplicative subsets S, T ⊆ Den C such that the following axioms hold.

(WU) Weakly universal Ore completions. Given morphisms i and f in C with i ∈ S and Source i = Source f ,
there exists a weak pushout rectangle

f ′

f
i i′

5There exists also the notion of a fractionable category, cf. the author’s forthcoming doctoral thesis.
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in C such that i′ ∈ S. Dually, given morphisms p and f in C with p ∈ T and Target p = Target f ,
there exists a weak pullback rectangle

f ′

p′ p

f

in C such that p′ ∈ T .
(Fac) Factorisations. For every denominator d in C, there exist i ∈ S and p ∈ T with d = ip.

p

d

i

By abuse of notation, we refer to the uni-fractionable category as well as to its underlying category with
denominators just by C. The elements of S are called S-denominators in C, and the elements of T are
called T-denominators in C.
Given a uni-fractionable category C with set of S-denominators S and set of T-denominators T , we write
SDen C := S and TDen C := T . In diagrams, an S-denominator i resp. a T-denominator p in C will usually
be depicted as

i resp.
p

.

(b) We suppose given uni-fractionable categories C and D. A morphism of uni-fractionable categories from
C to D is a morphism of categories with denominators F : C → D that preserves S-denominators and
T-denominators, that is, such that Fi is an S-denominator in D for every S-denominator i in C and such
that Fp is a T-denominator in D for every T-denominator p in C.

Some examples of uni-fractionable categories can be found in section 7.
Since the composite of composable morphisms of uni-fractionable categories is again a morphism of uni-
fractionable categories and the identity functor on a uni-fractionable category is a morphism of uni-fractionable
categories, we get a category of uni-fractionable categories:

(3.2) Definition (uni-fractionable category in a Grothendieck universe). We suppose given a Grothendieck
universe U. A uni-fractionable category C is said to be a U-uni-fractionable category if its underlying category
with denominators is a category with denominators in U.

(3.3) Remark.

(a) We suppose given a Grothendieck universe U. A uni-fractionable category C is a U-uni-fractionable category
if and only if it is an element of U.

(b) For every uni-fractionable category C there exists a Grothendieck universe U such that C is in U.

(3.4) Definition (category of uni-fractionable categories). We suppose given a Grothendieck universe U.

(a) The category UFrCat = UFrCat(U) consisting of the set of U-uni-fractionable categories as set of objects
and the set of morphisms of uni-fractionable categories between U-uni-fractionable categories as set of mor-
phisms (and categorical structure maps induced from CatD(U)) is called the category of uni-fractionable
categories (more precisely, the category of U-uni-fractionable categories).

(b) We denote by UFr(CatD(U)) the full subcategory of CatD(U) with

Ob UFr(CatD(U)) = {C ∈ Ob CatD(U) | there exist S, T ⊆ Den C such that C becomes a
uni-fractionable category with SDen C = S and TDen C = T},

the category of categories with denominators admitting the structure of a uni-fractionable category (more
precisely, the category of U-categories with denominators admitting the structure of a uni-fractionable
category).
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4 The 3-arrow graph
We want to construct a localisation Frac C of a uni-fractionable category C (with respect to its set of denominators
Den C). To this end, we begin in this section by introducing its 3-arrow graph AG C and a graph congruence ≡
on AG C.
In this section, we suppose given a uni-fractionable category C.

(4.1) Definition (3-arrow shape). The graph

0 1 2 3
ντ σ

is said to be the 3-arrow shape and will be denoted by Θ.

Recall that a diagram of shape Θ in C is just a graph morphism D : Θ → C. Given a diagram D of shape Θ
in C, we write Di := D(i) for i ∈ Ob Θ and Da := D(a) for a ∈ Arr Θ. Given diagrams D and E, a diagram
morphism from D to E is a family f = (fi)i∈Ob Θ in Mor C with Dafj = fiEa for all arrows a : i→ j in Θ. The
category consisting of diagrams of shape Θ in C as objects and diagram morphisms between those diagrams as
morphisms will be denoted by CΘ. (6)

(4.2) Definition (3-arrow graph). The 3-arrow graph of C is defined to be the graph AG C with object set

Ob AG C := Ob C

and arrow set

Arr AG C := {A ∈ Ob CΘ | Aσ, Aτ ∈ Den C}.

The source resp. the target of A ∈ Arr AG C are defined by SourceA := A0 resp. TargetA := A3.
An arrow A in AG C is called a 3-arrow in C. Given a denominator b : X̃ → X, a morphism f : X̃ → Ỹ and a
denominator a : Y → Ỹ in C, we abuse notation and denote the unique 3-arrow A with Aτ = b, Aν = f , Aσ = a
by (b, f, a) := A. Moreover, we use the notation (b, f, a) : X ← X̃ → Ỹ ← Y .

X X̃ Ỹ Y
f

≈b ≈a

(4.3) Remark. We suppose given a Grothendieck universe U such that Θ is in U. If C is in U, then its 3-arrow
graph AG C is in U.

Proof. We suppose that C is in U. Then Ob C and Mor C are in U and hence Map(Arr Θ,Mor C) is in U. But
then Ob AG C and Arr AG C are in U, that is, AG C is in U.

Our next step will be the introduction of an equivalence relation on the arrow set of the 3-arrow graph.

(4.4) Definition (fraction equality). The equivalence relation ≡ on Arr AG C is defined to be generated by
the following relation on Arr AG C: Given (b, f, a) ∈ Arr AG C and c ∈ Mor C with ac ∈ Den C, the 3-arrow
(b, f, a) is in relation to the 3-arrow (b, fc, ac); and given (b, f, a) ∈ Arr AG C and c ∈ Mor C with cb ∈ Den C,
the 3-arrow (b, f, a) is in relation to the 3-arrow (cb, cf, a).

f

≈b

c

≈a

fc

≈b ≈ac

f

≈b ≈a

cf

≈cb

c

≈a

Given (b, f, a), (b̃, f̃ , ã) ∈ Arr AG C with (b, f, a) ≡ (b̃, f̃ , ã), we say that (b, f, a) and (b̃, f̃ , ã) are fraction equal.

In practice, it is sometimes convenient to work with different generating sets for fraction equality. These are
stated in the following remark.

6By the adjunction “free category on a graph – underlying graph of a category”, diagrams of shape Θ in C correspond in a unique
way to functors from the free category on Θ to C, and diagram morphisms correspond to transformations.
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(4.5) Remark.

(a) The fraction equality relation ≡ on Arr AG C is generated by the following relation: Given (b, f, a) ∈
Arr AG C and c, c′ ∈ Mor C with ac, c′b ∈ Den C, the 3-arrow (b, f, a) is in relation to the 3-arrow
(c′b, c′fc, ac).

f

≈b

c

≈a

c′fc

≈c
′b

c′

≈ac

(b) The fraction equality relation ≡ on Arr AG C is generated by the following relation: Given (b, f, a), (b̃, f̃ , ã)
∈ Arr AG C, the 3-arrow (b, f, a) is in relation to the 3-arrow (b̃, f̃ , ã) if there exist c, c′ ∈ Mor C with b = c′b̃,
fc = c′f̃ , ac = ã.

f

c′

≈b

c

≈a

f̃

≈b̃ ≈ã

As C is semi-saturated, the morphisms c and c′ in definition (4.4) and remark (4.5) are automatically denomi-
nators in C.

(4.6) Remark. We suppose given 3-arrows (b, f, a) and (b̃, f̃ , ã) in C. If (b, f, a) ≡ (b̃, f̃ , ã), then f is a
denominator in C if and only if f̃ is a denominator in C.

Proof. This follows by the definition of fraction equality (4.4) and by the semi-saturatedness of C.

Before we study a further property of the fraction equality relation, we will show that fraction equality respects
the graph structure on the 3-arrow graph.

(4.7) Remark. The fraction equality relation ≡ on Arr AG C defines a graph congruence on AG C. In particular,
the quotient graph (AG C)/≡ is defined.

Proof. For (b, f, a) ∈ Arr AG C, c, c′ ∈ Mor C with ac, c′b ∈ Den C, we have

Source (c′b, c′fc, ac) = Target(c′b) = Target b = Source (b, f, a) and
Target (c′b, c′fc, ac) = Source(ac) = Source a = Target (b, f, a).

Thus the assertion follows from remark (4.5)(a).

(4.8) Definition (double fraction). Given a 3-arrow (b, f, a) in C, its equivalence class in the quotient graph
(AG C)/≡ is denoted by b\f/a := [(b, f, a)]≡ and is said to be the double fraction of (b, f, a).

Now we will present a certain reduced form for 3-arrows. We will see that every 3-arrow is fraction equal to
such a reduced form.

(4.9) Definition (normal 3-arrows). A 3-arrow (p, f, i) in C is said to be normal if i is an S-denominator and
p is a T-denominator in C.

fp i

The following lemma and its proof is (essentially) taken from [9, sec. 36.5].

(4.10) Lemma (normalisation lemma). Every 3-arrow in C is fraction equal to a normal 3-arrow in C.

Proof. We suppose given an arbitrary 3-arrow (b, f, a) in C. There exist an S-denominator i and a T-denominator
p in C with b = ip, and there exist an S-denominator i′ and a morphism f ′ in C with if ′ = fi′. By multiplicativity,
ai′ is a denominator in C. Thus there exist an S-denominator j and a T-denominator q in C with ai′ = jq,
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and there exist a T-denominator q′ and a morphism f ′′ in C with f ′′q = q′f ′. By multiplicativity, q′p is a
T-denominator.

f

i

≈b

i′

≈a

f ′p

≈ai
′

f ′′q′p
q′ q

j

Altogether, (b, f, a) ≡ (p, f ′, ai′) ≡ (q′p, f ′′, j), and since j is an S-denominator and q′p is a T-denominator, the
3-arrow (q′p, f ′′, j) is normal.

(4.11) Corollary. We suppose given a uni-fractionable category C and 3-arrows (b1, f1, a1) and (b2, f2, a2) in C.

(a) If Source (b1, f1, a1) = Source (b2, f2, a2), then there exist normal 3-arrows (p, f̃1, i1) and (p, f̃2, i2) in C
with (b1, f1, a1) ≡ (p, f̃1, i1) and (b2, f2, a2) ≡ (p, f̃2, i2).

(b) If Target (b1, f1, a1) = Target (b2, f2, a2), then there exist normal 3-arrows (p1, f̃1, i) and (p2, f̃2, i) in C
with (b1, f1, a1) ≡ (p1, f̃1, i) and (b2, f2, a2) ≡ (p2, f̃2, i).

(c) If (b1, f1, a1) and (b2, f2, a2) are parallel, then there exist normal 3-arrows (p, f̃1, i) and (p, f̃2, i) in C with
(b1, f1, a1) ≡ (p, f̃1, i) and (b2, f2, a2) ≡ (p, f̃2, i).

Proof. By the normalisation lemma (4.10), there exist normal 3-arrows (pk, gk, ik) in C with (bk, fk, ak) ≡
(pk, gk, ik) for k ∈ {1, 2}. In particular, we have Source (pk, gk, ik) = Source (bk, fk, ak) and Target (pk, gk, ik) =
Target (bk, fk, ak) for k ∈ {1, 2}. Hence Source (b1, f1, a1) = Source (b2, f2, a2) implies that Source (p1, g1, i1) =
Source (p2, g2, i2) and Target (b1, f1, a1) = Target (b2, f2, a2) implies that Target (p1, g1, i1) = Target (p2, g2, i2).

(a) There exist a T-denominator p′2 and a morphism p′1 in C with p′2p1 = p′1p2. We define p := p′2p1 = p′1p2,
f̃1 := p′2g1, f̃2 := p′1g2.

g1p1 i1

p′1

p

p′2 f̃1

f̃2

g2p2 i2

By multiplicativity, p = p′2p1 is a T-denominator in C, and we have

(p, f̃1, i1) = (p′2p1, p
′
2g1, i1) ≡ (p1, g1, i1) ≡ (b1, f1, a1) and

(p, f̃2, i2) = (p′1p2, p
′
1g2, i2) ≡ (p2, g2, i2) ≡ (b2, f2, a2).

(b) This is dual to (a).

(c) There exist a T-denominator p′2 and a morphism p′1 in C with p′2p1 = p′1p2, and there exist an S-denomina-
tor i′1 and a morphism i′2 in C with i1i′2 = i2i

′
1. We define p := p′2p1 = p′1p2, i := i1i

′
2 = i2i

′
1, f̃1 := p′2g1i

′
2,

f̃2 := p′1g2i
′
1.

g1p1

i′2

i1

p′1

p

p′2
f̃1

f̃2

i

g2p2

i′1
i2

The assertion now follows as in (a) and (b).
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5 The fraction category
In this section, our main theorem (5.18) will be proven. We begin by constructing a localisation of a uni-
fractionable category C (with respect to its set of denominators Den C), see proposition (5.4) and proposi-
tion (5.7). To this end, we consider the quotient graph (AG C)/≡ of its 3-arrow graph AG C with respect to
fraction equality ≡. The crucial point in the construction will be the following lemma and its corollaries.

(5.1) Lemma (factorisation lemma). We suppose given a uni-fractionable category C, denominators d, e and
morphisms f , g in C with fe = dg. Moreover, we suppose given S-denominators i, j and T-denominators p, q
in C with d = ip and e = jq.

(a) There exist S-denominators j̃, k, a T-denominator q̃ and a morphism h in C such that e = j̃q̃, f j̃ = ih,
pg = hq̃, j̃ = jk, q = kq̃.

≈
d

f

i

g

≈
e

j̃

≈
e

j

p

h

q̃

q

k

(b) There exist an S-denominator ĩ, T-denominators p̃, r and a morphism h in C such that d = ĩp̃, fj = ĩh,
p̃g = hq, i = ĩr, p̃ = rp.

≈
d

i

≈
d

f

ĩ

g

≈
e

j

p

p̃

h

r

q

Proof.

(a) We let

i

fj h̃

i′

be a weak pushout rectangle in C such that i′ is an S-denominator in C. Since

ipg = dg = fe = fjq,
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there exists an induced morphism a with q = i′a and pg = h̃a. By semi-saturatedness, a is a denominator
in C, and thus there exist an S-denominator k̃ and a T-denominator q̃ with a = k̃q̃.

i

fj

pg
h̃

i′

q

≈a

k̃

q̃

We set h := h̃k̃, k := i′k̃, j̃ := ji′k̃ and get e = j̃q̃, f j̃ = ih, pg = hq̃, j̃ = jk, q = kq̃. Moreover, k = i′k̃
and j̃ = ji′k̃ are S-denominators in C by multiplicativity.

(b) This is dual to (a).

(5.2) Corollary. We suppose given a uni-fractionable category C, denominators d, e and morphisms f , g in C
with fe = dg.

(a) Given an S-denominator i and a T-denominator p in C with d = ip, there exist an S-denominator j, a
T-denominator q and a morphism h in C such that e = jq, fj = ih, pg = hq.

≈
d

f

i

g

≈
e

j

p

h

q

(b) Given an S-denominator j and a T-denominator q in C with e = jq, there exist an S-denominator i, a
T-denominator p and a morphism h in C such that d = ip, fj = ih, pg = hq.

≈
d

f

i

g

≈
e

j

p

h

q

Proof. This follows from the factorisation axiom and the factorisation lemma (5.1).

(5.3) Corollary. We suppose given a uni-fractionable category C, denominators d, e and morphisms f , g in
C with fe = dg. There exist S-denominators i, j, T-denominators p, q and a morphism h in C with d = ip,
e = jq, fj = ih, pg = hq.

≈
d

f

i

g

≈
e

j

p

h

q
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Proof. This follows from the factorisation axiom and corollary (5.2).

The following proposition will essentially prove the first part of our main theorem (5.18), cf. also proposition (5.9)
below.

(5.4) Proposition. For every uni-fractionable category C, there is a category structure on (AG C)/≡, where
the composition is constructed by the following procedure.
We suppose given (b1, f1, a1), (b2, f2, a2) ∈ Arr AG C with Target (b1, f1, a1) = Source (b2, f2, a2), that is, with
Source a1 = Target b2. First, we choose an S-denominator j and a T-denominator q in C with b2a1 = jq. Second,
we choose a T-denominator q′ and a morphism f ′1 in C with f ′1q = q′f1, and we choose an S-denominator j′ and
a morphism f ′2 in C with jf ′2 = f2j

′.

f ′1

q′

f ′2

qf1

≈
b1

f2

≈
b2

j j′

≈a1 ≈a2

Then

(b1\f1/a1)(b2\f2/a2) = q′b1\f ′1f ′2/a2j
′.

The identity of X ∈ Ob (AG C)/≡ is given by

1X = 1X\1X/1X .

Proof. We suppose given a uni-fractionable category C. Our first aim is to show that the construction described
above is independent of all choices. To this end, we first consider the particular case of choosing a weak pullback
of f1 and q and a weak pushout of f2 and j to obtain a T-denominator q′, an S-denominator j′ and morphisms
f ′1, f ′2 in C.
We suppose given (bl, fl, al), (b̃l, f̃l, ãl) ∈ Arr AG C and cl, c

′
l ∈ Mor C with bl = clb̃l, flc′l = clf̃l, alc′l = ãl for

l ∈ {1, 2}, and such that Target (b1, f1, a1) = Source (b2, f2, a2).

f1

c1

≈b1

c′1

≈a1 f2

c2

≈b2

c′2

≈a2

f̃1≈b̃1 ≈ã1 f̃2≈b̃2 ≈ã2

We choose S-denominators j, j̃ and T-denominators q, q̃ in C such that b2a1 = jq and b̃2ã1 = j̃q̃. By the
factorisation lemma (5.1)(a), there exist an S-denominator k, a T-denominator r and morphisms c, c̃ in C with
b̃2ã1 = kr, qc′1 = cr, c2k = jc, q̃ = c̃r, k = j̃c̃. Next, we choose weak pullback rectangles

f ′1

q′ q

f1 and

g1

r′ r

f̃1 and

f̃ ′1

q̃′ q̃

f̃1

in C such that q′, r′, q̃′ are T-denominators, and we choose weak pushout rectangles

f ′2

f2

j j′

and

g2

f̃2

k k′

and

f̃ ′2

f̃2

j̃ j̃′

in C such that j′, k′, j̃′ are S-denominators. We obtain induced morphisms c′ and c̃′ on the weak pullbacks,
that is, with q′c1 = c′r′, f ′1c = c′g1 and q̃′ = c′r′, f̃ ′1c̃ = c̃′g1, and induced morphisms c′′ and c̃′′ on the weak

13



pushouts, that is, with c′2k′ = j′c′′, cg2 = f ′2c
′′ and k′ = j̃′c̃′′, c̃g2 = f̃ ′2c̃

′′.

f ′1

c′

q′

f ′2

c

q

c′′

g1

r′

g2

r

f̃ ′1

q̃′

c̃′

f̃ ′2

q̃

c̃ c̃′′

f1

c1

≈

b1

c′1

f2

c2

b2a1≈

j

c′2

j′

≈a2

f̃1

≈

b̃1

f̃2b̃2ã1≈

k k′

≈ã2

f̃1

≈

b̃1

f̃2≈b̃2ã1

j̃ j̃′

≈ã2

Hence we have q′b1 = c′r′b̃1, f ′1f ′2c′′ = c′g1g2, a2j
′c′′ = ã2k

′ and therefore (q′b1, f
′
1f
′
2, a2j

′) ≡ (r′b̃1, g1g2, ã2k
′),

and we get q̃′b̃1 = c̃′r′b̃1, f̃ ′1f̃ ′2c̃′′ = c̃′g1g2, ã2j̃
′c̃′′ = ã2k

′ and therefore (r′b̃1, g1g2, ã2k
′) ≡ (q̃′b̃1, f̃

′
1f̃
′
2, ã2j̃

′).

f ′1f
′
2

c′

≈

q′b1

c′′

≈

a2j
′

g1g2≈r′b̃1 ≈ã2k
′

f̃ ′1f̃
′
2≈

q̃′b̃1

c̃′ c̃′′

≈

ã2 j̃
′

Altogether, we have (q′b1, f
′
1f
′
2, a2j

′) ≡ (q̃′b̃1, f̃
′
1f̃
′
2, ã2j̃

′) in AG C, that is, we have

q′b1\f ′1f ′2/a2j
′ = q̃′b̃1\f̃ ′1f̃ ′2/ã2j̃

′

in (AG C)/≡.
In the special case where c1 = 1, c′1 = 1, c2 = 1, c′2 = 1, we see that different choices of constructions via weak
pullback and weak pushout rectangles lead to the same double fraction q′b1\f ′1f ′2/a2j

′ = q̃′b1\f̃ ′1f̃ ′2/ã2j̃
′. Hence

we obtain a well-defined map

c : Arr AG C Target×Source Arr AG C → Arr (AG C)/≡,
((b1, f1, a1), (b2, f2, a2)) 7→ q′b1\f ′1f ′2/a2j

′,

where q′, f ′1, f ′2, j′ are constructed as described above. Now the general case shows that c is independent of the
choice of the representatives in the equivalence classes with respect to ≡, and thus we obtain an induced map

c : Arr (AG C)/≡ Target×Source Arr (AG C)/≡ → Arr (AG C)/≡

given by

c(b1\f1/a1, b2\f2/a2) = c((b1, f1, a1), (b2, f2, a2)) = q′b1\f ′1f ′2/a2j
′

for (b1, f1, a1), (b2, f2, a2) ∈ Arr AG C with Target (b1, f1, a1) = Source (b2, f2, a2).
We claim that arbitrary commutative quadrangles may be used instead of weak pullback and weak pushout
rectangles to compute c. Indeed, given a weak pullback rectangle

f ′1

q′ q

f1

14



and a weak pushout rectangle

f ′2

f2

j j′

and arbitrary commutative quadrangles

f̃ ′1

q̃′ q

f1 and

f̃ ′2

f2

j j̃′

such that q′, q̃′ are T-denominators and j′, j̃′ are S-denominators in C, we obtain induced morphisms c and c′
such that q̃′ = cq′, f̃ ′1 = cf ′1, f̃ ′2 = f ′2c

′, j̃′ = j′c′.

f̃ ′1

c
q̃′ f ′1

q′

f ′2

q

f̃ ′2

c′

f1

≈
b1

f2

≈
b2

j j′

j̃′

≈a1 ≈a2

Hence (q̃′b1, f̃
′
1f̃
′
2, a2j̃

′) = (cq′b1, cf
′
1f
′
2c
′, a2j

′c′) ≡ (q′b1, f
′
1f
′
2, a2j

′) and therefore

c(b1\f1/a1, b2\f2/a2) = q′b1\f ′1f ′2/a2j
′ = q̃′b1\f̃ ′1f̃ ′2/a2j̃

′.

This proves the claim.
In addition to c, we define the map

e : Ob (AG C)/≡ → Arr (AG C)/≡, X 7→ 1X\1X/1X .

To show that (AG C)/≡ is a category with composition c and identity map e, it remains to verify the category
axioms. By the definitions of c and e, we have

Source c(b1\f1/a1, b2\f2/a2) = Source q′b1\f ′1f ′2/a2j
′ = Target(q′b1) = Target b1 = Source b1\f1/a1

and analogously Target c(b1\f1/a1, b2\f2/a2) = Target b2\f2/a2 for all (b1, f1, a1), (b2, f2, a2) ∈ Arr AG C with
Target b1\f1/a1 = Source b2\f2/a2, as well as

Source e(X) = Source 1X\1X/1X = Target 1X = X

and analogously Target e(X) = X for all X ∈ Ob (AG C)/≡.
For the associativity of c, we suppose given (bl, fl, al) ∈ Arr AG C for l ∈ {1, 2, 3} such that Target b1\f1/a1 =
Source b2\f2/a2 and Target b2\f2/a2 = Source b3\f3/a3. We choose S-denominators j, j̃ and T-denominators
q, q̃ with b2a1 = jq and b3a2 = j̃q̃. Then we choose T-denominators q′, q̃′ and morphisms f ′1, f̃ ′2 in C with
f ′1q = q′f1 and f̃ ′2q̃ = q̃′f2, and we choose S-denominators j′, j̃′ and morphisms f ′2, f̃ ′3 in C with jf ′2 = f2j

′ and
j̃f̃ ′3 = f3j̃

′. By definition of c, we obtain

c(b1\f1/a1, b2\f2/a2) = q′b1\f ′1f ′2/a2j
′,

c(b2\f2/a2, b3\f3/a3) = q̃′b2\f̃ ′2f̃ ′3/a3j̃
′.

Moreover, we have q̃′jf ′2 = f̃ ′2q̃j
′, and thus by corollary (5.3) there exist S-denominators k, k̃, T-denominators

r, r̃ and a morphism f ′′2 in C with q̃j′ = kr, q̃′j = k̃r̃, r̃f ′2 = f ′′2 r, f̃ ′2k = k̃f ′′2 . We choose a T-denominator r̃′
and a morphism f ′′1 in C with f ′′1 r̃ = r̃′f ′1, and we choose an S-denominator k′ and a morphism f ′′3 in C with
kf ′′3 = f̃ ′3k

′. Then we obtain r̃′f ′1f ′2 = f ′′1 f
′′
2 r, j̃kf ′′3 = f3j̃

′k′, f̃ ′2f̃ ′3k′ = k̃f ′′2 f
′′
3 , f ′′1 r̃q = r̃′q′f1, and therefore

c(c(b1\f1/a1, b2\f2/a2), b3\f3/a3) = c(q′b1\f ′1f ′2/a2j
′, b3\f3/a3) = r̃′q′b1\f ′′1 f ′′2 f ′′3 /a3j̃

′k′
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= c(b1\f1/a1, q̃
′b2\f̃ ′2f̃ ′3/a3j̃

′) = c(b1\f1/a1, c(b2\f2/a2, b3\f3/a3)).

Thus c is associative.

f ′′1

r̃′

f ′′2

r̃

f ′′3

r
f ′1

q′ q

f ′2

q̃′

k̃
f̃ ′2 f̃ ′3

q̃

k k′

f1

≈

b1

f2

≈

b2

j j′

f3

≈

b3

j̃ j̃′

≈a1 ≈a2 ≈a3

Finally, we suppose given (b, f, a) ∈ Arr AG C. We want to show that c(b\f/a, e(Target b\f/a)) = b\f/a. By
the normalisation lemma (4.10), there exists a normal arrow (p, g, i) ∈ Arr AG C with (b, f, a) ≡ (p, g, i). Since
a factorisation of i into an S-denominator followed by a T-denominator is given by i = i1, we obtain

c(b\f/a, e(Target b\f/a)) = c(p\g/i, 1\1/1) = 1p\g1/1i = p\g/i = b\f/a.

Analogously, we have c(e(Source b\f/a), b\f/a) = b\f/a.

g

g

p

i i

i

p

g

p g

p i

Altogether, (AG C)/≡ becomes a category with (b1\f1/a1)(b2\f2/a2) = c(b1\f1/a1, b2\f2/a2) for (b1, f1, a1),
(b2, f2, a2) ∈ Arr AG C with Target b1\f1/a1 = Source b2\f2/a2 and 1X = e(X) for X ∈ Ob (AG C)/≡.

(5.5) Definition (fraction category). The fraction category of a uni-fractionable category C is defined to be
the category Frac C, whose underlying graph is given by the quotient graph (AG C)/≡ and whose composition
and identities are given as in proposition (5.4).

Our next aim is to show that the fraction category of a uni-fractionable category is a localisation, which is going
to be the second part of our main theorem (5.18).

(5.6) Remark. Given a uni-fractionable category C, we have

(b1\f1/1)(1\f2/a2) = b1\f1f2/a2

for all 3-arrows (b1, f1, 1) and (1, f2, a2) in C.

Proof. This follows using the definition of the composition in proposition (5.4).

f1 f2

f1

≈
b1

f2

≈a2

(5.7) Proposition (universal property of the fraction category). The fraction category Frac C of a uni-
fractionable category C is a localisation of C, where the localisation functor loc : C → Frac C is given on the
objects by

loc(X) = X

for X ∈ Ob C and on the morphisms by

loc(f) = 1\f/1

for f ∈ Mor C. The inverse of loc(d) for d ∈ Den C is given by

(loc(d))−1 = d\1/1 = 1\1/d.
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Given a category D and a functor F : C → D such that Fd is invertible for all d ∈ Den C, the unique functor
F̂ : Frac C → D with F = F̂ ◦ loc is given by

F̂ (b\f/a) = (Fb)−1(Ff)(Fa)−1.

Given a category D and functors F,G : C → D such that Fd and Gd are invertible for all d ∈ Den C and a
transformation α : F → G, the unique transformation α̂ : F̂ → Ĝ with αX = α̂loc(X) for X ∈ Ob C is given by
α̂X = αX for X ∈ Ob Frac C = Ob C.

Proof. We suppose given a uni-fractionable category C. We define a graph morphism L : C → Frac C on the
objects by LX := X for X ∈ Ob C and on the arrows by Lf := 1\f/1 for f ∈ Mor C. By remark (5.6), we get

L(fg) = 1\fg/1 = (1\f/1)(1\g/1) = (Lf)(Lg)

for all f, g ∈ Mor C with Target f = Source g and

L1X = 1X\1X/1X = 1LX

for all X ∈ Ob C, that is, L is a functor.
We want to show that Frac C is a localisation of C with localisation functor L.

(Inv) We let d ∈ Den C be given. By remark (5.6), we have

(Ld)(1\1/d) = (1\d/1)(1\1/d) = 1\d/d = 1\1/1 = 1 and
(d\1/1)(Ld) = (d\1/1)(1\d/1) = d\d/1 = 1\1/1 = 1,

that is, Ld has a right inverse 1\1/d and a left inverse d\1/1. But then Ld is invertible and the left and
the right inverse coincide as the unique inverse of Ld, that is,

(Ld)−1 = d\1/1 = 1\1/d.

(1-uni) We let D be a category and F : C → D be a functor such that Fd is invertible for all d ∈ Den C. Since

Source((Fb)−1(Ff)(Fa)−1) = Source (Fb)−1 = Target(Fb) = F (Target b) = F (Source (b, f, a)),

Target((Fb)−1(Ff)(Fa)−1) = Target (Fa)−1 = Source(Fa) = F (Source a) = F (Target (b, f, a))

for (b, f, a) ∈ Arr AG C, there is a graph morphism F ′ : AG C → D given on the objects by F ′X = FX for
X ∈ Ob AG C and on the arrows by F ′(b, f, a) = (Fb)−1(Ff)(Fa)−1 for (b, f, a) ∈ Arr AG C. Moreover,
given (b, f, a) ∈ Arr AG C and c, c′ ∈ Den C with Target c′ = Source b, Source c = Target a, we obtain

F ′(c′b, c′fc, ac) = (F (c′b))−1(F (c′fc))(F (ac))−1 = ((Fc′)(Fb))−1((Fc′)(Ff)(Fc))((Fa)(Fc))−1

= (Fb)−1(Fc′)−1(Fc′)(Ff)(Fc)(Fc)−1(Fa)−1 = (Fb)−1(Ff)(Fa)−1 = F ′(b, f, a).

Hence F ′ maps fraction equal 3-arrows to the same morphism and we obtain an induced graph morphism
F̂ : (AG C)/≡ → D with F ′ = F̂ ◦ quo.

AG C D

(AG C)/≡

F ′

quo F̂

Given (b1, f1, a1), (b2, f2, a2) ∈ Arr AG C with Target (b1, f1, a1) = Source (b2, f2, a2), we have

F̂ ((b1\f1/a1)(b2\f2/a2)) = F̂ (q′b1\f ′1f ′2/a2j
′) = (F (q′b1))−1(F (f ′1f

′
2))(F (a2j

′))−1

= (Fb1)−1(Fq′)−1(Ff ′1)(Ff ′2)(Fj′)−1(Fa2)−1

= (Fb1)−1(Ff1)(Fq)−1(Fj)−1(Ff2)(Fa2)−1

= (Fb1)−1(Ff1)(Fa1)−1(Fb2)−1(Ff2)(Fa2)−1

17



= F̂ (b1\f1/a1)F̂ (b2\f2/a2),

where j, j′, q, q′, f ′1, f ′2 are supposed to be constructed as in proposition (5.4).

f ′1

q′

f ′2

qf1

≈
b1

f2

≈
b2

j j′

≈a1 ≈a2

Moreover, we have

F̂ (1X) = F̂ (1X\1X/1X) = (F1X)−1(F1X)(F1X)−1 = 1−1
FX1FX1−1

FX = 1FX = 1F̂X

for X ∈ Ob Frac C. This implies that F̂ : Frac C → D is a functor, given by

F̂ (b\f/a) = F ′(b, f, a) = (Fb)−1(Ff)(Fa)−1

for every (b, f, a) ∈ Arr AG C. In particular,

F̂Lf = F̂ (1\f/1) = (F1)−1(Ff)(F1)−1 = 1−1(Ff)1−1 = Ff

for all f ∈ Mor C, that is, F̂ ◦ L = F .

Conversely, given an arbitrary functor G : Frac C → D with F = G ◦L, we conclude by remark (5.6) that

G(b\f/a) = G((b\1/1)(1\f/1)(1\1/a)) = G((Lb)−1(Lf)(La)−1) = (GLb)−1(GLf)(GLa)−1

= (Fb)−1(Ff)(Fa)−1

for (b, f, a) ∈ Arr AG C.

(2-uni) We suppose given a category D and functors F,G : C → D such that Fd and Gd are invertible for all
d ∈ Den C, and we let F̂ , Ĝ : Frac C → D be the unique functors with F = F̂ ◦ L resp. G = Ĝ ◦ L.
Moreover, we suppose given a transformation α : F → G. We define a family α̂ := (α̂X)X∈Ob Frac C
by α̂X := αX for X ∈ Ob Frac C = Ob C. Then α̂LX = α̂X = αX for X ∈ Ob C. Moreover, α̂ is a
transformation from F̂ to Ĝ since for every 3-arrow (b, f, a) : X ← X̃ → Ỹ ← Y in C, we have

α̂X(Ĝ(b\f/a)) = αX(Gb)−1(Gf)(Ga)−1 = (Fb)−1αX̃(Gf)(Ga)−1 = (Fb)−1(Ff)αỸ (Ga)−1

= (Fb)−1(Ff)(Fa)−1αY = (F̂ (b\f/a))α̂Y .

Conversely, given an arbitrary transformation β : F̂ → Ĝ such that βLX = αX for all X ∈ Ob C, we
necessarily have βX = βLX = αX for all X ∈ Ob Frac C = Ob C.

Altogether, Frac C is a localisation of C with localisation functor locFrac C = L.

(5.8) Corollary (splitting double fractions). Given a uni-fractionable category C, we have

b\f/a = (loc(b))−1loc(f)(loc(a))−1

for each 3-arrow (b, f, a) in C.

Proof. By proposition (5.7), the fraction category Frac C is a localisation of C. In particular, loc(d) is invertible
for all d ∈ Den C, and hence there exists a unique functor L̂ : Frac C → Frac C with loc = L̂ ◦ loc, which is given
by

L̂(b\f/a) = (loc(b))−1loc(f)(loc(a))−1

for all (b, f, a) ∈ Arr AG C. But since loc = idFrac C ◦ loc, we necessarily must have L̂ = idFrac C and therefore
the assertion holds.

In the construction of the composition of the fraction category in proposition (5.4), the occurring morphisms j,
j′ were S-denominators, and q, q′ were T-denominators. We shall now show that it suffices to have a diagram
with arbitrary denominators at their places to get the correct composite.
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(5.9) Proposition. We suppose given a uni-fractionable category C.

(a) We suppose given 3-arrows (b1, f1, a1) and (b2, f2, a2) in C with Target (b1, f1, a1) = Source (b2, f2, a2).
Moreover, we suppose given denominators d, d′, e, e′ and morphisms g1, g2 in C with b2a1 = de, g1e = e′f1,
dg2 = f2d

′.

g1

≈
e′

g2

≈
ef1

≈
b1

f2

≈
b2

≈d ≈d′

≈a1 ≈a2

Then we have

(b1\f1/a1)(b2\f2/a2) = e′b1\g1g2/a2d
′.

(b) Given a 3-arrow (b, d, a) in C with a denominator d, the double fraction b\d/a is invertible in Frac C, and
the inverse of b\d/a can be constructed as follows. We choose denominators d1, d′1, d2, d′2, a′, b′ in C with
d = d1d2, d1b

′ = bd′1, a′d2 = d′2a (7).

≈ d2

≈b
′

≈ d′2

≈a
′

≈d′1
≈
d≈b
≈d1

≈a

Then we have

(b\d/a)−1 = d′2\a′b′/d′1.

Proof.

(a) We compute

(b1\f1/a1)(b2\f2/a2) = (loc(b1))−1loc(f1)(loc(a1))−1(loc(b2))−1loc(f2)(loc(a2))−1

= (loc(b1))−1loc(f1)(loc(e))−1(loc(d))−1loc(f2)(loc(a2))−1

= (loc(b1))−1(loc(e′))−1loc(g1)loc(g2)(loc(d′))−1(loc(a2))−1

= (loc(e′b1))−1loc(g1g2)(loc(a2d
′))−1 = e′b1\g1g2/a2d

′.

(b) The double fraction b\d/a = (loc(b))−1loc(d)(loc(a))−1 is invertible in Frac C since the localisation functor
loc : C → Frac C maps denominators in C to isomorphisms in Frac C.
Given denominators d1, d′1, d2, d′2, a′, b′ in C with d = d1d2, d1b

′ = bd′1, a′d2 = d′2a, we obtain

(b\d/a)−1 = ((loc(b))−1loc(d)(loc(a))−1)−1 = loc(a)(loc(d))−1loc(b) = loc(a)(loc(d1d2))−1loc(b)

= loc(a)(loc(d2))−1(loc(d1))−1loc(b) = (loc(d′2))−1loc(a′)loc(b′)(loc(d′1))−1

= (loc(d′2))−1loc(a′b′)(loc(d′1))−1 = d′2\a′b′/d′1.

The preceding proposition shows that the fraction category of a uni-fractionable category does not depend on
the choice of S-denominators and T-denominators, as to be expected by the universal property of a localisation,
cf. proposition (5.7):

(5.10) Corollary. Given uni-fractionable categories C and C′ such that their underlying categories with de-
nominators coincide, we have Frac C = Frac C′.

Proof. By the definition of the category structure of Frac C, see proposition (5.4), only the definition of the com-
position depends on the definition of SDen C and TDen C, and proposition (5.9)(a) shows that this composition
is in fact independent of SDen C and TDen C. Analogously for C′, and thus we have Frac C = Frac C′.

Next, we want to turn the construction of the fraction category into a functor.
7For example, one can factorise d into a composite of an S-denominator d1 and a T-denominator d2 and then construct weakly

universal Ore completions.
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(5.11) Remark. We suppose given a Grothendieck universe U such that Θ is in U and a uni-fractionable
category C. If C is in U, then its fraction category Frac C is in U.

Proof. Since the underlying graph of Frac C is AG C/≡ and this graph is a quotient of AG C, the assertion follows
from remark (4.3).

(5.12) Proposition.

(a) Given uni-fractionable categories C and D and a morphism of categories with denominators F : C → D,
there exists a unique induced functor

FracF : Frac C → FracD

with locFracD ◦ F = (FracF ) ◦ locFrac C . It is given on the objects by

(FracF )X = FX

for X ∈ Ob Frac C and on the morphisms by

(FracF )(b\f/a) = Fb\Ff/Fa

for (b, f, a) ∈ Arr AG C.

(b) We suppose given a Grothendieck universe U such that Θ is in U. The construction in (a) yields functors

Frac: UFrCat(U) → Cat(U) and
Frac: UFr(CatD(U))→ Cat(U).

Proof.

(a) Since F preserves denominators and locFracD maps denominators in D to isomorphisms in FracD, the
composite locFracD ◦ F maps denominators in C to isomorphisms in FracD. Hence, by the universal
property of Frac C, there exists a unique functor FracF : Frac C → FracD with locFracD ◦ F = (FracF ) ◦
locFrac C . It follows that

(FracF )X = (FracF )loc(X) = loc(FX) = FX

for X ∈ Ob C as well as

(FracF )(b\f/a) = (FracF )((loc(b))−1loc(f)(loc(a))−1)

= ((FracF )loc(b))−1((FracF )loc(f))((FracF )loc(a))−1

= (loc(Fb))−1loc(Ff)(loc(Fa))−1 = Fb\Ff/Fa

for (b, f, a) ∈ Arr AG C.

(b) We suppose given uni-fractionable categories C, D, E in U and morphisms of categories with denominators
F : C → D and G : D → E . Then we have

locFrac E ◦G ◦ F = (FracG) ◦ locFracD ◦ F = (FracG) ◦ (FracF ) ◦ locFrac C and

locFrac C ◦ idC = locFrac C = idFrac C ◦ locFrac C ,

so by the uniqueness of the induced functor in (a), we obtain Frac(G ◦ F ) = (FracG) ◦ (FracF ) and
Frac idC = idFrac C . Since every morphism of uni-fractionable categories is in particular a morphism of
categories with denominators, we have a functor

Frac: UFrCat→ Cat.

Moreover, since the fraction category of a uni-fractionable category does not depend on the choice of
S-denominators and T-denominators by corollary (5.10), we even have a functor

Frac: UFr(CatD)→ Cat.
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Here is another elementary property of the fraction category, which will be needed in section 6, when we deal
with (co)products.

(5.13) Proposition. We suppose given a uni-fractionable category C and morphisms ϕ1 and ϕ2 in Frac C.

(a) If Sourceϕ1 = Sourceϕ2, then there exist normal 3-arrows (p, f1, i1) and (p, f2, i2) in C with ϕ1 = p\f1/i1
and ϕ2 = p\f2/i2.

(b) If Targetϕ1 = Targetϕ2, then there exist normal 3-arrows (p1, f1, i) and (p2, f2, i) in C with ϕ1 = p1\f1/i
and ϕ2 = p2\f2/i.

(c) If ϕ1 and ϕ2 are parallel, then there exist normal 3-arrows (p, f1, i) and (p, f2, i) in C with ϕ1 = p\f1/i
and ϕ2 = p\f2/i.

Proof. This follows from corollary (4.11).

Our next aim is to give a sufficient (and necessary) criterion for saturatedness.

(5.14) Proposition (cf. [9, sec. 36.4]). A uni-fractionable category C is saturated if and only if it is weakly
saturated.

Proof. We suppose given a uni-fractionable category C. Since saturatedness always implies weak saturatedness,
it suffices to show that if C is weakly saturated, then it is already saturated. So we suppose that C is weakly
saturated and we suppose given a morphism f in C such that loc(f) is invertible in Frac C. We let (p, g, i) be a
normal 3-arrow in C with (loc(f))−1 = p\g/i. Moreover, we choose a T-denominator p′ and a morphism f ′ in
C with f ′p = p′f , and we choose an S-denominator i′ and a morphism f ′′ in C with if ′′ = fi′.

f ′

p′

g

p

f ′′

f g

p

fi i′

i

Then we have

1\1/1 = (1\f/1)(p\g/i) = p′\f ′g/i and
1\1/1 = (p\g/i)(1\f/1) = p\gf ′′/i′.

We conclude that f ′g and gf ′′ must be denominators by remark (4.6). Hence (2 of 6) implies that f ′ and thus
f is a denominator. Altogether, C is saturated.

(5.15) Corollary. The set of isomorphisms in the fraction category of a weakly saturated uni-fractionable
category C is given by

Iso Frac C = {b\f/a | (b, f, a) ∈ Arr AG C with f ∈ Den C}.

Proof. Given a 3-arrow (b, f, a) ∈ Arr AG C with f ∈ Den C, we have loc(b), loc(f), loc(a) ∈ Iso Frac C and hence
b\f/a = (loc(b))−1loc(f)(loc(a))−1 ∈ Iso Frac C. Conversely, we suppose given an isomorphism ϕ ∈ Iso Frac C
and we choose a 3-arrow (b, f, a) ∈ Arr AG C with ϕ = b\f/a. Since a, b ∈ Den C, we also have loc(b), loc(a) ∈
Iso Frac C and thus loc(f) = loc(b)ϕ loc(a) ∈ Iso Frac C. But C is saturated by proposition (5.14), whence
f ∈ Den C follows.

Now we come to the last part of the main theorem of this article, that is, we want to show that the uni-
fractionable category C admits a 3-arrow calculus. It can be found in proposition (5.17). The key step of its
proof is treated in the following lemma.

(5.16) Lemma (flipping lemma). We suppose given a uni-fractionable category C. Moreover, we suppose given
3-arrows (b1, f1, a1), (b2, f2, a2), (v1, h1, u1), (v2, h2, u2), morphisms g1, g′1, g′′1 , g2, g′2, g′′2 , denominators d, e, an
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S-denominator i2 and a T-denominator p1 in C, fitting into the following commutative diagram in C.

f1

g′′2

≈b1

g′2 g2

≈a1

h1≈v1 ≈u1

g1

p1

h2

g′1

≈v2

≈ d

g′′1

≈ e

≈u2

i2

f2≈b2 ≈a2

Then there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1), (p̃2, g̃2, ĩ2) in C, fitting into
the following commutative diagram in C.

f1≈b1 ≈a1

g1

p1

f̃1

g̃1

≈b̃1

p̃1

g̃2

p̃2

g2

≈ã1

f̃2≈b̃2 ≈ã2

f2≈b2

ĩ1 ĩ2

≈a2

i2

Proof. By corollary (5.2)(a), there exist S-denominators j1, j̃2, T-denominators q1, q̃2 and morphisms b, ã in C
with d = j1q1, e = j̃2q̃2, q1v1 = bp1, v2 = j1b, u1 = ãq̃2, u2j̃2 = i2ã.

h1≈v1 ≈u1

p1

h2≈v2

j1

≈ d

j̃2 ≈ e

≈u2

i2

i2

p1 q1

≈b

q̃2

≈ã

Next, using the factorisation lemma (5.1)(a), there exist an S-denominator j2, a T-denominator q2, a morphism
f and a denominator ã′ in C with e = j2q2, q1h1 = fq2, j1f = h2j2, q̃2 = ã′q2, j2 = j̃2ã

′.

h1

h2

j1 ≈ d j2 ≈ e j̃2

≈ e
f

q1 q2 q̃2

≈ã
′

We set a := ãã′ and obtain u1 = aq2 and u2j2 = i2a.
Next, we choose weak pullback rectangles

g̃′1

p̃1 q1
g′′2 and

g̃′2

p̃2 q2
g′2

in C such that p̃1 and p̃2 are T-denominators, and we choose weak pushout rectangles

g̃′′1

g′1

j1 ĩ1

and

g̃′′2

g′′1

j2 ĩ2
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in C such that ĩ1 and ĩ2 are S-denominators. We obtain induced morphisms b̃1, f̃1, ã1 on the weak pullbacks,
that is, with p̃1b1 = b̃1p1, b̃1 = g̃′1b, p̃1f1 = f̃1p̃2, f̃1g̃

′
2 = g̃′1f , a1 = ã1p̃2, ã1g̃

′
2 = g2a, and induced morphisms b̃2,

f̃2, ã2 on the weak pushouts, that is, with bg1 = g̃′′1 b̃2, ĩ1b̃2 = b2, fg̃′′2 = g̃′′1 f̃2, ĩ1f̃2 = f2ĩ2, ag̃′′2 = ã2, i2ã2 = a2ĩ2.

f1

g′′2

≈b1

g′2

g2

≈a1

h1≈v1 ≈u1

g1

p1

h2

g′1

≈v2

j1 ≈ d

g′′1

j2 ≈ e

≈u2

i2

i2

f2≈b2

ĩ1 ĩ2

≈a2

i2

p1

f̃1

g̃′1

≈b̃1

p̃1

g̃′2

p̃2

g2

≈ã1

g1

p1

f

g̃′′1

≈b

q1

g̃′′2

q2

≈a

f̃2≈b̃2 ≈ã2

Setting g̃1 := g̃′1g̃
′′
1 and g̃2 := g̃′2g̃

′′
2 yields b̃1g1 = g̃1b̃2, f̃1g̃2 = g̃1f̃2, ã1g̃2 = g2ã2. Moreover, ã1, ã2, b̃1, b̃2 are

denominators in C by semi-saturatedness.

(5.17) Proposition (3-arrow calculus, cf. [9, sec. 36.3]). We suppose given a uni-fractionable category C.

(a) Given parallel 3-arrows (b1, f1, a1) and (b2, f2, a2) in C, we have

b1\f1/a1 = b2\f2/a2

in Frac C if and only if there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p1, d1, i1),
(p2, d2, i2) with denominators d1, d2, fitting into the following commutative diagram in C.

f1≈b1 ≈a1

f̃1

≈

d1

≈b̃1

p1

≈

d2

p2

≈ã1

f̃2≈b̃2 ≈ã2

f2≈b2

i1 i2

≈a2

If (b1, f1, a1) and (b2, f2, a2) are normal 3-arrows, then (b̃1, f̃1, ã1) and (b̃2, f̃2, ã2) can be chosen to be
normal, too.

(b) Given 3-arrows (b1, f1, a1), (b2, f2, a2) and normal 3-arrows (p1, g1, i1), (p2, g2, i2) in C, we have

(b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2)

in Frac C if and only if there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1),
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(p̃2, g̃2, ĩ2), fitting into the following commutative diagram in C.

f1≈b1 ≈a1

g1

p1

f̃1

g̃1

≈b̃1

p̃1

g̃2

p̃2

g2

≈ã1

p2

f̃2≈b̃2 ≈ã2

i1
f2≈b2

ĩ1 ĩ2

≈a2

i2

Proof.

(a) If we have a commutative diagram as stated, then we have

(b1, f1, a1) ≡ (b̃1, f̃1, ã1) ≡ (b̃2, f̃2, ã2) ≡ (b2, f2, a2)

and thus b1\f1/a1 = b2\f2/a2 in Frac C.
So we suppose conversely that b1\f1/a1 = b2\f2/a2 in Frac C, that is, we suppose that (b1, f1, a1) ≡
(b2, f2, a2) in AG C. By remark (4.5)(b), there exist n ∈ N0, (vl, hl, ul) ∈ Arr AG C for l ∈ [0, 2n +
1], cl, c′l ∈ Mor C for l ∈ [0, n], wl, w′l ∈ Mor C for l ∈ [0, n − 1], with (v0, h0, u0) = (b1, f1, a1) and
(v2n+1, h2n+1, u2n+1) = (b2, f2, a2) as well as v2l = clv2l+1, h2lc

′
l = clh2l+1, u2lc

′
l = u2l+1 for l ∈ [0, n] and

v2l+2 = wlv2l+1, wlh2l+1 = h2l+2w
′
l, u2l+2w

′
l = u2l+1 for l ∈ [0, n− 1].

h2l

cl

≈v2l

c′l

≈u2l

h2l+1≈
v2l+1 ≈

u2l+1

h2l+2≈

v2l+2

wl w′l

≈

u2l+2

By semi-saturatedness, cl and c′l are denominators for all l ∈ [0, n] and wl, w′l are denominators for all
l ∈ [0, n− 1]. Using the flipping lemma (5.16) and induction on n ∈ N0 yields the first assertion.

Now let us suppose that (b1, f1, a1) and (b2, f2, a2) are normal 3-arrows. By multiplicativity, b̃1 = p1b1
is a T-denominator and ã2 = a2i2 is an S-denominator in C. We choose S-denominators j1, j2 and
T-denominators q1, q2 with ã1 = j1q1 and b̃2 = j2q2. Moreover, we choose a T-denominator q′1 and a
morphism f̃ ′1 in C with f̃ ′1q1 = q′1f̃1, and we choose an S-denominator j′2 and a morphism f̃ ′2 in C with
j2f̃
′
2 = f̃2j

′
2.

f̃ ′1

q′1 q1

f̃1

≈

ã1

j1

f̃ ′2

q2

f̃2

≈

b̃2

j2 j′2
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We obtain the following commutative diagram.

f1b1 a1

f̃1b̃1

p1 p2

≈ã1

f̃ ′1

q′1

q′1b̃1

q′1

q1

q1

j1

f̃1

≈

d1

b̃1

≈

d2

≈ã1

f̃2

j2

≈b̃2

j′2

ã2

f̃ ′2q2 ã2j
′
2

f̃2≈b̃2

j2 j′2
ã2

f2b2

i1 i2
a2

By multiplicativity, q′1b̃1 = q′1p1b1, q′1p1, q1p2 are T-denominators and ã2j
′
2 = a2i2j

′
2, i1j2, i2j′2 are

S-denominators in C. Altogether, the diagram

f1b1 a1

f̃ ′1

≈ q
′
1d1j2

q′1b̃1

q′1p1

≈ q1d2j
′
2

q1p2

j1

f̃ ′2q2 ã2j
′
2

f2b2

i1j2 i2j
′
2

a2

commutes, and (q′1b̃1, f̃
′
1, j1), (q2, f̃

′
2, ã2j

′
2), (q′1p1, q

′
1d1j2, i1j2), (q1p2, q1d2j

′
2, i2j

′
2) are normal 3-arrows.

(b) If we have a commutative diagram as stated, then proposition (5.9)(a) implies that

(b1\f1/a1)(p2\g2/i2) = p̃1b1\f̃1g̃2/i2ã2 = b̃1p1\g̃1f̃2/a2ĩ2 = (p1\g1/i1)(b2\f2/a2).

So we suppose conversely that (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2). We construct the composites
(b1\f1/a1)(p2\g2/i2) = q′b1\f ′1g′2/i2j′ and (p1\g1/i1)(b2\f2/a2) = q̃′p1\g′1f ′2/a2j̃

′ as in proposition (5.4).

f1≈b1 ≈a1

f ′1

q′

g′2

q

g2

j

p2

j′

i2

g1

p1

g′1

q̃′

f ′2q̃

i1
f2≈b2

j̃ j̃′

≈a2
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Hence the following diagrams commute.

f1≈b1 ≈a1

f ′1≈

q′b1

q′

g′2

q

g2

j

p2

f ′1g
′
2≈

q′b1 j′

f ′1g
′
2≈

q′b1 i2j
′

i2

g′1f
′
2q̃′p1 ≈

a2 j̃
′

g1

p1

g′1f
′
2

g′1

q̃′

≈

a2 j̃
′

f ′2q̃

≈

a2 j̃
′

i1
f2≈b2

j̃ j̃′

≈a2

By (a), since

q′b1\f ′1g′2/i2j′ = (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2) = q̃′p1\g′1f ′2/a2j̃
′,

there exist 3-arrows (v1, h1, u1), (v2, h2, u2) and normal 3-arrows (r1, d1, k1), (r2, d2, k2) in C with denom-
inators d1, d2, fitting into the following commutative diagram.

f ′1g
′
2≈

q′b1 i2j
′

h1

≈

d1

≈v1

r1

≈

d2

r2

≈u1

h2≈v2 ≈u2

g′1f
′
2q̃′p1

k1 k2

≈

a2 j̃
′

Altogether, the following diagram commutes.

f1≈b1 ≈a1

f ′1≈

q′b1

q′

g′2

q

g2

j

p2

f ′1g
′
2≈

q′b1 j′

h1

≈

d1

≈v1

r1

≈

d2

r2

≈u1

i2

h2≈v2 ≈u2

g1

p1

g′1f
′
2

g′1

q̃′
k1 k2

≈

a2 j̃
′

f ′2q̃

≈

a2 j̃
′

i1
f2≈b2

j̃ j̃′

≈a2
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Applying the flipping lemma (5.16) twice and composing yields the assertion:

f1≈b1 ≈a1

≈

g2

p2

≈

≈

≈

≈

≈

i2

≈ ≈

g1

p1

≈

≈

i1

f2

≈

b2

≈

a2

f1≈

b1 ≈

a1

≈

p2

≈ ≈

g2

≈ ≈

≈ ≈

i2

g1

p1

≈

≈

i1

f2

≈

b2

≈

a2

f1≈b1 ≈a1

≈ ≈

g2

p2

≈ ≈

g1

p1

≈

i2

≈

i1

f2

≈

b2

≈

a2

f1≈

b1 ≈

a1

≈ ≈

p2

g1

p1

≈

g2

≈

≈ ≈

≈

i2

i1

f2

≈

b2

≈

a2

f1≈b1 ≈a1

g1

p1

≈

g2

≈

p2

≈ ≈

i1

f2

≈

b2

≈

a2

i2

Altogether, we have proven the following main theorem of this article.

(5.18) Theorem. The fraction category Frac C of a uni-fractionable category C (see definition (3.1)(a)) fulfills
the following properties.

(a) The object set of Frac C is the object set of C. The morphism set of Frac C consists of double fractions, that
is, equivalence classes of 3-arrows with respect to fraction equality, where a 3-arrow (b, f, a) is a diagram

f

≈b ≈a

in C with denominators a and b. For every 3-arrow (b, f, a) in C, source and target of the double fraction
b\f/a are given by Source b\f/a = Target b and Target b\f/a = Source a. Given 3-arrows (b1, f1, a1) and
(b2, f2, a2) in C with Target b1\f1/a1 = Source b2\f2/a2, the composite of the double fractions can be
constructed as follows: One chooses denominators d, d′, e, e′ and morphisms g1, g2 in C with b2a1 = de,
g1e = e′f1, dg2 = f2d

′. Then (b1\f1/a1)(b2\f2/a2) = e′b1\g1g2/a2d
′.

g1

≈
e′

g2

≈
ef1

≈
b1

f2

≈
b2

≈d ≈d′

≈a1 ≈a2

The identity of an object X in Frac C is given by 1X = 1X\1X/1X .

(b) The fraction category Frac C is a localisation of C, where the localisation functor loc : C → Frac C is given
on the objects by loc(X) = X for X ∈ Ob C and on the morphisms by loc(f) = 1\f/1 for f ∈ Mor C. The
inverse of loc(d) for d ∈ Den C is given by (loc(d))−1 = d\1/1 = 1\1/d.
Given a functor F : C → D such that Fd is invertible for all d ∈ Den C, the unique functor F̂ : Frac C → D
with F = F̂ ◦ loc is given by F̂ (b\f/a) = (Fb)−1(Ff)(Fa)−1.

Given functors F,G : C → D such that Fd and Gd are invertible for all d ∈ Den C, and given a transfor-
mation α : F → G, the unique transformation α̂ : F̂ → Ĝ with αX = α̂loc(X) for X ∈ Ob C is given by
α̂X = αX for X ∈ Ob Frac C = Ob C.

(c) Given 3-arrows (b1, f1, a1), (b2, f2, a2) and normal 3-arrows (p1, g1, i1), (p2, g2, i2) in C, we have

(b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2)

if and only if there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1), (p̃2, g̃2, ĩ2) in C,
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fitting into the following commutative diagram in C.

f1≈b1 ≈a1

g1

p1

f̃1

g̃1

≈b̃1

p̃1

g̃2

p̃2

g2

≈ã1

p2

f̃2≈b̃2 ≈ã2

i1
f2≈b2

ĩ1 ĩ2

≈a2

i2

Proof. This follows from propositions (5.4) and (5.9)(a), proposition (5.7) and proposition (5.17)(b).

As a consequence of 3-arrow calculus, we get the following criterion. For a related 2-arrow version of this result,
cf. [34, ch. 1, §2, th. 4-2] and [13, III.2.10].

(5.19) Proposition. We suppose given a uni-fractionable category C and a category with denominators U
such that U is a full subcategory of C and DenU = (Den C)∩ (MorU). Moreover, we suppose that U fulfills one
of the following two dual conditions.

(a) For every object X in C, there exist an object X̃ in U and a denominator d : X̃ → X in C. Moreover, for
every S-denominator i : U → Ũ with U in U , it follows that Ũ is in U .

(b) For every object X in C, there exist an object X̃ in U and a denominator d : X → X̃ in C. Moreover, for
every T-denominator p : Ũ → U with U in U , it follows that Ũ is in U .

Then the inclusion functor inc : U → C induces an equivalence Frac inc : FracU → Frac C.

Proof. We suppose that U fulfills (a), the other case follows by duality. To show that Frac inc is an equivalence of
categories, we will verify that Frac inc is full, faithful and dense. Since for every X ∈ Ob C there exist X̃ ∈ ObU
and a denominator d : X̃ → X in C, we have X ∼= X̃ = (Frac inc)X̃ in Frac C. Hence Frac inc is dense. To prove
that Frac inc is full and faithful, we have to show that the map

FracU (U, V )→ Frac C(U, V ), ϕ 7→ (Frac inc)ϕ

is bijective for U, V ∈ ObU .
To show surjectivity, we suppose given a morphism ψ ∈ Frac C(U, V ) and a normal 3-arrow (p, f, i) : U ← X →
Y ← V in C with ψ = p\f/i. Since i is an S-denominator and V is an object in U , it follows that Y is an object
in U . Moreover, there exists an object X̃ in U and a denominator d : X̃ → X.

U X̃ Y V

U X Y V

df

≈

d

≈

dp

≈i

fp i

It follows that (p, f, i) ≡ (dp, df, i), and as (dp, df, i) is a 3-arrow in U , we have

ψ = p\f/i = dp\df/i = (Frac inc)(dp\df/i).

Thus FracU (U, V )→ Frac C(U, V ), ϕ 7→ (Frac inc)ϕ is surjective.
To show injectivity, we suppose given ϕ1, ϕ2 ∈ FracU (U, V ) with (Frac inc)ϕ1 = (Frac inc)ϕ2. We choose normal
3-arrows (p1, f1, i1) : U ← U1 → V1 ← V and (p2, f2, i2) : U ← U2 → V2 ← V in U with ϕ1 = p1\f1/i1
and ϕ2 = p2\f2/i2. By proposition (5.17)(a), there exist normal 3-arrows (p̃1, f̃1, ĩ1) : U ← X1 → Y1 ← V ,
(p̃2, f̃2, ĩ2) : U ← X2 → Y2 ← V , (q1, d1, j1) : U1 ← X1 → X2 ← U2, (q2, d2, j2) : V1 ← Y1 → Y2 ← V2 in C with
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denominators d1, d2, fitting into a commutative diagram as follows.

U U1 V1 V

U X1 Y1 V

U X2 Y2 V

U U2 V2 V

f1p1 i1

f̃1

≈

d1

p̃1

q1

≈

d2

q2

ĩ1

f̃2p̃2 ĩ2

f2p2

j1 j2

i2

Since ĩ1 resp. j1 resp. j2 is an S-denominator and V resp. U2 resp. V2 is an object in U , it follows that Y1 resp.
X2 resp. Y2 is an object in U . Moreover, there exists an object X̃1 in U and a denominator d : X̃1 → X1 in C.
Thus we obtain the following commutative diagram in which all objects – and hence all morphisms – are in U ,
and where dp̃1 is a denominator by multiplicativity.

U U1 V1 V

U X̃1 Y1 V

U X2 Y2 V

U U2 V2 V

f1p1 i1

df̃1

≈

dd1

≈

dp̃1

≈ dq1

≈

d2

q2

ĩ1

f̃2p̃2 ĩ2

f2p2

j1 j2

i2

But this implies

ϕ1 = p1\f1/i1 = p2\f2/i2 = ϕ2

in FracU . Therefore the map FracU (U, V )→ Frac C(U, V ), ϕ 7→ (Frac inc)ϕ is injective.

6 (Co)products and additive uni-fractionable categories
Some of our examples of uni-fractionable categories in section 7 have finite coproducts or products or are even
additive categories, so it is a natural question to ask whether these features are preserved when passing to the
fraction category.

(6.1) Proposition. We suppose given a uni-fractionable category C.

(a) We suppose that C admits finite coproducts.

(i) If Den C is closed under finite coproducts, then the fraction category Frac C admits finite coproducts
and the localisation functor loc : C → Frac C preserves finite coproducts. In this case, we have
ini

loc(¡)
loc(X) = loc(ini¡X) : loc(¡)→ loc(X) for X ∈ Ob C, and we have

(
b1\f1/a
b2\f2/a

)loc(X1qX2)

= (b1 q b2)\
(
f1

f2

)X̃1qX̃2

/a : loc(X1 qX2)→ loc(Y )

for 3-arrows (b1, f1, a) : X1 ← X̃1 → Ỹ ← Y and (b2, f2, a) : X2 ← X̃2 → Ỹ ← Y in C.
(ii) If C is saturated and the localisation functor loc : C → Frac C preserves finite coproducts, then Den C

is closed under finite coproducts.
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(b) We suppose that C admits finite products.

(i) If Den C is closed under finite products, then the fraction category Frac C admits finite products and
the localisation functor loc : C → Frac C preserves finite products. In this case, we have ter

loc(!)
loc(X) =

loc(ter!
X) : loc(X)→ loc(!) for X ∈ Ob C, and we have

( b\f1/a1 b\f2/a2 )
loc(Y1ΠY2)

= b\( f1 f2 )
Ỹ1ΠỸ2/(a1 Π a2) : loc(X)→ loc(Y1 Π Y2)

for 3-arrows (b, f1, a1) : X ← X̃ → Ỹ1 ← Y1 and (b, f2, a2) : X ← X̃ → Ỹ2 ← Y2 in C.
(ii) If C is saturated and the localisation functor loc : C → Frac C preserves finite products, then Den C is

closed under finite products.

(c) We suppose that C admits finite sums.

(i) If Den C is closed under finite sums, then the fraction category Frac C admits finite sums and the
localisation functor loc : C → Frac C preserves finite sums. In this case, we have 0 = loc(0) : loc(X)→
loc(Y ) for X,Y ∈ Ob C. Moreover, we have(

b1\f1/a
b2\f2/a

)loc(X1⊕X2)

= (b1 ⊕ b2)\
(
f1

f2

)X̃1⊕X̃2

/a : loc(X1 ⊕X2)→ loc(Y )

for 3-arrows (b1, f1, a) : X1 ← X̃1 → Ỹ ← Y and (b2, f2, a) : X2 ← X̃2 → Ỹ ← Y in C, and we have

( b\f1/a1 b\f2/a2 )
loc(Y1⊕Y2)

= b\( f1 f2 )
Ỹ1⊕Ỹ2/(a1 ⊕ a2) : loc(X)→ loc(Y1 ⊕ Y2)

for 3-arrows (b, f1, a1) : X ← X̃ → Ỹ1 ← Y1 and (b, f2, a2) : X ← X̃ → Ỹ2 ← Y2 in C.
(ii) If C is saturated and the localisation functor loc : C → Frac C preserves finite sums, then Den C is

closed under finite sums.

Proof.

(a) (i) We suppose that Den C is closed under finite coproducts. Moreover, we suppose given X ∈ Ob C.
Then loc(ini¡X) is a morphism from loc(¡) to loc(X). So let us suppose given an arbitrary morphism
ϕ : loc(¡) → X in Frac C, and we let (b, f, a) : ¡ ← I → X̃ ← X be a 3-arrow in C with ϕ = b\f/a.
By the universal property of ¡, we have ini¡Ib = 1¡ and ini¡If = ini¡

X̃
= ini¡Xa, and therefore

ϕ = b\f/a = ini¡Ib\ini¡If/a = 1¡\ini¡X/1 = loc(ini¡X).

Hence loc(¡) is an initial object in Frac C with ini
loc(¡)
loc(X) = loc(ini¡X) for all X ∈ Ob C.

¡ ¡ X X

¡ I X̃ X

ini¡X

≈

ini¡I

≈

a

f

≈b ≈a

Next, we suppose given morphisms ϕ1 : X1 → Y and ϕ2 : X2 → Y in Frac C. By proposition (5.13),
there exist 3-arrows (b1, f1, a) : X1 ← X̃1 → Ỹ ← Y and (b2, f2, a) : X2 ← X̃2 → Ỹ ← Y in C with
ϕ1 = b1\f1/a and ϕ2 = b2\f2/a. As b1qb2 is a denominator in C by assumption, we have the 3-arrow
(b1 q b2,

(
f1

f2

)
, a) in C. Moreover, since embX̃1qX̃2

k (b1 q b2) = bkembX1qX2

k , we have

loc(embX1qX2

k )((b1 q b2)\
(
f1

f2

)X̃1qX̃2

/a) = bk\embX̃1qX̃2

k

(
f1

f2

)X̃1qX̃2

/a = bk\fk/a = ϕk

for k ∈ {1, 2}.

X̃k X̃1 q X̃2 Ỹ

Xk X1 qX2 X̃1 q X̃2 Ỹ

Xk X1 qX2 Y

emb
X̃1qX̃2
k

≈

bk

(
f1
f2

)X̃1qX̃2

≈

b1 q b2
emb

X1qX2
k

(
f1
f2

)X̃1qX̃2

≈

b1 q b2 ≈a
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Conversely, we suppose given morphisms ϕ,ϕ′ : loc(X1 q X2) → loc(Y ) in Frac C such that
loc(embX1qX2

k )ϕ = loc(embX1qX2

k )ϕ′ = ϕk for k ∈ {1, 2}. By proposition (5.13), there exist normal
3-arrows (p, f, i), (p, f ′, i) : X1 qX2 ← X̃ → Ỹ ← Y in C with ϕ = p\f/i and ϕ′ = p\f ′/i. For
k ∈ {1, 2}, we choose a T-denominator pk : X̃k → Xk and a morphism ek : X̃k → X̃ in C with
pkembX1qX2

k = ekp. Then we have

ϕk = loc(embX1qX2

k )ϕ = loc(embX1qX2

k )(p\f/i) = pk\ekf/i

for k ∈ {1, 2}.

X̃k X̃ Ỹ

Xk X1 qX2 X̃ Ỹ

Xk X1 qX2 Y

ek

pk

f

p

emb
X1qX2
k f

p i

Analogously, we also have ϕk = pk\ekf ′/i and therefore loc(ekf) = loc(ekf
′) for k ∈ {1, 2}. By

proposition (5.17)(a), there exist normal 3-arrows (p̃k, f̃k, ĩk), (p̃′k, f̃
′
k, ĩ
′
k), (qk, dk, jk), (q̃k, d̃k, j̃k) in C

with denominators dk, d̃k for k ∈ {1, 2}, fitting into the following commutative diagrams in C.

e1f

f̃1

≈

d1

p̃1

q1

≈

d̃1

q̃1
ĩ1

f̃ ′1p̃′1 ĩ′1

e1f
′

j1 j̃1

e2f

f̃2

≈

d2

p̃2

q2

≈

d̃2

q̃2
ĩ2

f̃ ′2p̃′2 ĩ′2

e2f
′

j2 j̃2

We let
≈

ī2 ĩ2

ĩ1

ī1 and

≈

ī′2 ĩ′2

ĩ′1

ī′1

be weak pushout rectangles in C such that ī1 and ī′1 are S-denominators, so that we obtain morphisms
q, d, j such that the following diagram commutes.

≈

d̃1

≈

ī2

q̃1

ĩ2

ĩ1

≈

ī′2 ĩ′2

ĩ′1

j̃1

≈

d

≈q

≈

d̃2

ī1

q̃2

ī′1

j

j̃2
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Thus we obtain the following commutative diagrams.

e1f

f̃1 ī2

≈

d1

p̃1

q1

≈

d

≈ q

ĩ1 ī2

f̃ ′1 ī
′
2p̃′1 ĩ′1 ī

′
2

e1f
′

j1 j

e2f

f̃2 ī1

≈

d2

p̃2

q2

≈

d

≈ q

ĩ2 ī1

f̃ ′2 ī
′
1p̃′2 ĩ′2 ī

′
1

e2f
′

j2 j

Using coproducts, these diagrams provide in turn the following commutative diagram.

(
e1f
e2f

)

(
f̃1 ī2
f̃2 ī1

)

≈

d1 q d2

≈

p̃1 q p̃2

≈

q1 q q2

≈

d

≈ q

ĩ1 ī2

(
f̃′1 ī′2
f̃′2 ī′1

)

≈

p̃′1 q p̃
′
2 ĩ′1 ī

′
2

(
e1f′

e2f′

)≈

j1 q j2
j

We finally have

loc(( e1e2 ))loc(f) = loc(( e1e2 ) f) = loc(
(
e1f
e2f

)
) = loc(

(
e1f
′

e2f
′

)
) = loc(( e1e2 ) f ′) = loc(( e1e2 ))loc(f ′).

On the other hand,

( e1e2 ) p = ( e1pe2p ) =

(
p1emb

X1qX2
1

p2emb
X1qX2
2

)
= p1 q p2

implies that ( e1e2 ) is a denominator in C by semi-saturatedness, so we have loc(f) = loc(f ′) and
therefore

ϕ = p\f/i = p\f ′/i = ϕ′.

Altogether, loc(X1 qX2) is a coproduct of loc(X1) and loc(X2) with embeddings emb
loc(X1qX2)
k =

loc(embX1qX2

k ) for k ∈ {1, 2}.
(ii) We suppose that C is saturated and that loc preserves finite coproducts. Moreover, we suppose given

denominators d1 : X1 → Y1 and d2 : X2 → Y2 in C. Then we have

loc(dk)emb
loc(Y1qY2)
k = loc(dk)loc(embY1qY2

k ) = loc(dkembY1qY2

k ) = loc(embX1qX2

k (d1 q d2))

= loc(embX1qX2

k )loc(d1 q d2) = emb
loc(X1qX2)
k loc(d1 q d2).

Since d1 and d2 are denominators, loc(d1) and loc(d2) are isomorphisms. But then loc(d1 q d2) is
also an isomorphism and hence d1 q d2 is a denominator since C is saturated.

(b) This is dual to (a).

(c) This follows from (a) and (b).

The preceding criterion motivates the next definition.
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(6.2) Definition. An additive uni-fractionable category is a uni-fractionable category A such that the under-
lying category of A is equipped with the structure of an additive category and such that DenA is closed under
finite sums.

(6.3) Remark. We suppose given a uni-fractionable category C.

(a) We suppose that C admits finite coproducts. Then Den C is closed under finite coproducts if and only if
iq j is a denominator for all S-denominators i, j in C and pq q is a denominator for all T-denominators
p, q in C.

(b) We suppose that C admits finite products. Then Den C is closed under finite products if and only if iΠ j
is a denominator for all S-denominators i, j in C and p Π q is a denominator for all T-denominators p, q
in C.

Proof.

(a) If Den C is closed under finite coproducts, then in particular iq j is a denominator for all S-denominators
i, j, and pq q is a denominator for all T-denominators p, q in C. So let us conversely suppose that iq j is
a denominator for all S-denominators i, j and that pq q is a denominator for all T-denominators p, q, and
let us suppose given denominators d, e in C. Then there exist S-denominators i, j and T-denominators p,
q with d = ip and e = jq, and hence

dq e = (ip)q (jq) = (iq j)(pq q)

is a denominator in C by multiplicativity. Thus Den C is closed under finite coproducts.

Recall that every hom-set in a category that admits finite sums carries a unique structure of a commutative
monoid such that addition of morphisms becomes compatible with composition [25, ch. VIII, sec. 2, ex. 4(a)].
In modern terms: Such a category is enriched over the category of commutative monoids in a unique way.
Moreover, every hom-set becomes an abelian group, that is, the category under consideration is additive, if and
only if every identity has a negative element with respect to the addition on its hom-set [25, ch. VIII, sec. 2,
ex. 4(b)]. The latter condition is equivalent to the condition that the morphism ( 1 0

1 1 ) is always an isomorphism.
A functor between additive categories is additive if and only if it preserves finite sums, that is, if and only if
the image of every (chosen) finite sum is a finite sum of the images, such that the embeddings resp. projections
are the images of the embeddings resp. projections. Cf. also [24, sec. 18–19], [23, sec. 3.1–3.2].

(6.4) Proposition. Given an additive uni-fractionable category A, the additive structure of A induces an
additive structure on the fraction category FracA such that the localisation functor loc : A → FracA becomes
an additive functor. For parallel 3-arrows (b, f, a) and (b, g, a) in A (cf. proposition (5.13)), we have

b\f/a+ b\g/a = b\(f + g)/a.

Proof. By proposition (6.1)(c)(i), loc(0) is a zero object in FracA, and for objects X1, X2 in A, the object
loc(X1⊕X2) is a sum of loc(X1) and loc(X2) in FracA with emb

loc(X1⊕X2)
k = loc(embX1⊕X2

k ) and pr
loc(X1⊕X2)
k =

loc(prX1⊕X2

k ) for k ∈ {1, 2}. Thus FracA admits finite sums. For the purpose of this proof, let us choose
loc(X1)⊕loc(X2) := loc(X1⊕X2) forX1, X2 ∈ ObA, so that we can use matrix notation for induced morphisms
between those objects. Then we have ( 1 0

1 1 ) = loc(( 1 0
1 1 )) : loc(X)⊕ loc(X)→ loc(X)⊕ loc(X) for every object

X in A, and so ( 1 0
1 1 ) is an isomorphism. Altogether, FracA is an additive category and loc : A → FracA is an

additive functor. In particular, we obtain

b\f/a+ b\g/a = (loc(b))−1loc(f)(loc(a))−1 + (loc(b))−1loc(g)(loc(a))−1

= (loc(b))−1(loc(f) + loc(g))(loc(a))−1 = (loc(b))−1loc(f + g)(loc(a))−1

= b\(f + g)/a

for parallel 3-arrows (b, f, a) and (b, g, a) in A.

7 Applications
In this final section, we consider some examples and applications.
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Quillen model categories
Given a Quillen model categoryM [29, ch. I, §1, def. 1], we denote by Cof(M) the full subcategory of cofibrant
objects, by Fib(M) the full subcategory of fibrant objects and by Bif(M) the full subcategory of bifibrant
(that is, cofibrant and fibrant) objects.

(7.1) Example. Given a Quillen model categoryM, the categoriesM, Cof(M), Fib(M), Bif(M) carry the
structure of uni-fractionable categories, where

Den C = {w ∈ Mor C | w is a weak equivalence},
SDen C = {i ∈ Mor C | i is an acyclic cofibration},
TDen C = {p ∈ Mor C | p is an acyclic fibration}

for C ∈ {M,Cof(M),Fib(M),Bif(M)}. In particular, the homotopy category HoM is isomorphic to FracM.
IfM is a closed Quillen model category, then Den C is saturated for C ∈ {M,Cof(M),Fib(M),Bif(M)}. The
localisation functor loc : C → Frac C preserves finite coproducts for C ∈ {Cof(M),Bif(M)} and finite products
for C ∈ {Fib(M),Bif(M)}. (8)

Proof.

(a) We considerM and verify the axioms of a uni-fractionable category.

(Cat) By definition of a Quillen model category, weak equivalences, cofibrations and fibrations are closed
under composition and contain all isomorphisms. Hence in particular weak equivalences, acyclic
cofibrations and acyclic fibrations are closed under composition and contain all identities.

(2 of 3) This holds by definition of a Quillen model category.

(WU) We suppose given an acyclic cofibration i : X → X ′ and a morphism f : X → Y inM, and we let

X ′ Y ′

X Y

f ′

f

i i′

be a pushout rectangle in C. Then i′ is an acyclic cofibration.
The other assertion follows by duality.

(Fac) Since every morphism decomposes into a composite of a cofibration followed by an acyclic fibration,
the assertion follows by semi-saturatedness.

Altogether,M becomes a uni-fractionable category with

DenM = {w ∈ MorM | w is a weak equivalence},
SDenM = {i ∈ MorM | i is an acyclic cofibration},
TDenM = {p ∈ MorM | p is an acyclic fibration}.

The assertion on the saturatedness ofM is proven in [29, ch. I, §5, prop. 1].

(b) We consider Cof(M) and have to verify the axioms of a uni-fractionable category. Since (Cat) and (2 of 3)
hold forM by (a), they hold in particular for Cof(M).

8In general, the localisation functor loc :M → FracM does not preserve finite coproducts or finite products since the set of
denominators in a closed Quillen model category need not be closed under finite (co)products. A counterexample is provided by
(Z/4 ↓ mod(Z/4)), cf. [11, rem. 3.11], as considered in [10, ex.]: The coproduct of 2: (Z/4, 1) → (Z/4, 2) with itself is given by
( 2 0 ) : (Z/4, 1) → (Z/4 ⊕ Z/2, ( 2 0 )); the former is a weak equivalence, but the latter is not since Z/4 is a bijective object and
Z/4⊕ Z/2 is not a bijective object in mod(Z/4).
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(WU) We suppose given an acyclic cofibration i : X → X ′ and a morphism f : X → Y in Cof(M), and we
let

X ′ Y ′

X Y

f ′

f

i i′

be a pushout rectangle in C. Then i′ is an acyclic cofibration, and since Y is cofibrant and i′ is in
particular a cofibration, it follows that Y ′ is also cofibrant.
Now we suppose given an acyclic fibration p : Y ′ → Y and a morphism f : X → Y in Cof(M), and
we let

X ′ Y ′

X Y

f ′

p′ p

f

be a pullback rectangle in C. Then p′ is an acyclic fibration. We consider a strong cofibrant approxi-
mation of X ′, that is, we let X̃ ′ be a cofibrant object together with an acyclic fibration q : X̃ ′ → X ′.
The composite qp′ is an acyclic fibration by multiplicativity. We will show that

X̃ ′ Y ′

X Y

qf ′

qp′ p

f

is a weak pullback of f along p. To this end, we suppose given an object T ∈ Ob Cof(M) and
morphisms s : T → X, t : T → Y ′ with sf = tp. By the universal property of X ′, there exists a
(unique) morphism u : T → X ′ such that up′ = s and uf ′ = t.

T

X ′ Y ′

X Y

t

u

s

f ′

p′ p

f

Moreover, since T is cofibrant and q is an acyclic fibration, there exists a lift û : T → X̃ ′ such that
u = ûq.

X̃ ′

T X ′

q

u

û

Now we have ûqp′ = up′ = s and ûqf ′ = uf ′ = t.

T

X̃ ′ Y ′

X Y

t

û

s

qf ′

qp′ p

f
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(Fac) We let w : X → Y be a weak equivalence in Cof(M). Then there exists an acyclic cofibration
i : X → Z and an acyclic fibration p : Z → Y inM with w = ip.

Z

X Y

p
w

i

But since X is cofibrant and i is a cofibration, Z is cofibrant, too.

Altogether, Cof(M) becomes a uni-fractionable category with

Den Cof(M) = {w ∈ Mor Cof(M) | w is a weak equivalence},
SDen Cof(M) = {i ∈ Mor Cof(M) | i is an acyclic cofibration},
TDen Cof(M) = {p ∈ Mor Cof(M) | p is an acyclic fibration}.

The assertion on the saturatedness of Cof(M) follows from (a) since if locFrac Cof(M)(f) is an isomor-
phism, then also locFracM(f) is an isomorphism. The fact that the localisation functor loc : Cof(M) →
Frac Cof(M) preserves finite coproducts follows from the gluing lemma [16, lem. 7.4], cf. also [14, ch. II,
lem. 8.8], and proposition (6.1)(a)(i).

(c) This is dual to (b).

(d) This is a combination of (b) and (c).

As an application of our abstract machinery, we obtain the following part of Quillen’s homotopy category
theorem [29, ch. I, §1, th. 1]. Given a Quillen model category M, we (re-)define the homotopy category of
C ∈ {M,Cof(M),Fib(M),Bif(M)} by Ho C := Frac C, using the uni-fractionable category structures from
the preceding example.

(7.2) Example. We suppose given a Quillen model category M. The commutative diagram of inclusion
functors

Cof(M)

Bif(M) M

Fib(M)

inc

inc

inc

inc

induces a commutative diagram of equivalences

Ho Cof(M)

Ho Bif(M) HoM

Ho Fib(M)

''

' '

.

In particular, Ho Bif(M) ' HoM.

Proof. This follows from proposition (5.19), using criterion (a) for inc : Cof(M) → M and inc : Bif(M) →
Fib(M), and using criterion (b) for inc : Fib(M)→M and inc : Bif(M)→ Cof(M).

The proof of Quillen’s homotopy category theorem, which states in particular that the homotopy category
HoM is equivalent to the quotient category Bif(M)/∼, where ∼ denotes the homotopy congruence, can now
be completed as in [20, cor. 1.2.9] by showing that Bif(M)/∼ fulfills the universal property of a localisation,
which is essentially a corollary of Whitehead’s theorem [20, prop. 1.2.8].
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Derivable categories
Recall that a derivable category in the sense of Cisinski [7, sec. 2.25] consists of the same data as a Quillen
model category, that is, a category C together with three distinguished subsets of morphisms, called cofibra-
tions, fibrations and weak equivalences, subject to the following axioms, where (co)fibrant objects and acyclic
(co)fibrations are defined as in the Quillen model category case: The set of weak equivalences is supposed to be
semi-saturated. The set of cofibrations is supposed to be closed under (binary) composition. There exists an
initial object in C, which is supposed to be cofibrant. The set of cofibrant objects is supposed to be closed under
isomorphisms. The set of cofibrations between cofibrant objects and the subset of acyclic cofibrations therein
are supposed to be stable under pushouts along morphisms between cofibrant objects. Every morphism with
cofibrant source object factors into a cofibration followed by a weak equivalence. And dually for the fibrations
and fibrant objects.
For homotopical algebra in derivable categories, cf. also the manuscript of Rădulescu-Banu [31], who uses
the terminology Anderson-Brown-Cisinski premodel category.
Derivable categories are a natural generalisation of categories of fibrant objects in the sense of K. Brown [4,
sec. 1]. More precisely: Given a derivable category, then its full subcategory of fibrant objects is a category of
fibrant objects in this sense, and its full subcategory of cofibrant objects fulfills the dual properties. Conversely,
given a category C together with distinguished subsets of cofibrations, fibrations and weak equivalences such
that there exists an terminal object in C and such that the full subcategory of fibrant objects is a category of
fibrant objects in the sense of K. Brown, and dually, then C fulfills all axioms of a derivable category except
possibly for the stronger factorisation axioms of Cisinski. These stronger factorisation axioms are sufficient
to obtain the desirable equivalences between the homotopy categories of the full subcategories of (co)fibrant
objects in C and the homotopy category of C, see [7, prop. 1.8].
In the proof of example (7.1), we have not used the existence of general finite limits and colimits [29, ch. I, §1,
def. 1, ax. M0]. Moreover, to show that a Quillen model category carries the structure of a uni-fractionable
category, we also did not use the lifting axioms [29, ch. I, §1, def. 1, ax. M1]. Thus we obtain the following more
general example.

(7.3) Example. We let C be a derivable category such that the following properties hold.

• Every identity in C is a cofibration and a fibration. (9)

• Given an acyclic cofibration i : X → X ′ and a morphism f : X → Y in C, there exists a pushout rectangle

X ′ Y ′

X Y

f ′

f

i i′

in C such that i′ is an acyclic cofibration. Dually, given an acyclic fibration p : Y ′ → Y and a morphism
f : X → Y in C, there exists a pullback rectangle

X ′ Y ′

X Y

f ′

p′ p

f

in C such that p′ is an acyclic fibration.

• For every weak equivalence w : X → Y in C there exists an acyclic cofibration i : X → Z and an acyclic
fibration p : Z → Y with w = ip.

Z

X Y

p
w

i

9This is no restriction: Given a derivable category C with set of cofibrations C, set of fibrations F and set of weak equivalences W ,
the underlying category of C also becomes a derivable category with set of cofibrations C ∪ {1X | X ∈ Ob C}, set of fibrations
F ∪ {1X | X ∈ Ob C} and set of weak equivalences W .
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Then C carries the structure of a uni-fractionable category, where

Den C = {w ∈ Mor C | w is a weak equivalence},
SDen C = {i ∈ Mor C | i is an acyclic cofibration},
TDen C = {p ∈ Mor C | p is an acyclic fibration}.

Proof. This is the same proof as for a Quillen model category, see part (a) of the proof of example (7.1).

Complexes and exact categories
Our next example yields a construction for the derived category of an arbitrary abelian category A. We denote
by H : C(A)→ ADiscZ the cohomology functor, where DiscZ denotes the discrete category associated to the set
Z of integers.

(7.4) Example. The category C(A) of complexes in an abelian category A carries the structure of a saturated
additive uni-fractionable category, where

Den C(A) = {f ∈ Mor C(A) | H(f) is an isomorphism},
SDen C(A) = {i ∈ Den C(A) | i is a monomorphism},
TDen C(A) = {p ∈ Den C(A) | p is an epimorphism}.

In particular, the derived category D(A) is isomorphic to Frac C(A).

Proof. First of all, the set {f ∈ Mor C(A) | H(f) is an isomorphism} is closed under finite sums since the
cohomology functor H : C(A)→ ADiscZ is additive. We verify the axioms of a uni-fractionable category.

(2 of 3) Given morphisms f, g ∈ Mor C(A) with Target f = Source g, we have H(f)H(g) = H(fg). Hence if two
out of the morphisms H(f), H(g), H(fg) are isomorphisms, then so is the third.

(Cat) For every X ∈ Ob C(A), we have H(1X) = 1H(X), so in particular H(1X) is an isomorphism. Thus the
set {f ∈ Mor C(A) | H(f) is an isomorphism} is multiplicative. But then also its subsets of monomor-
phisms resp. epimorphisms are multiplicative since monomorphisms compose to monomorphisms resp.
epimorphisms compose to epimorphisms.

(WU) We suppose given a monomorphism i : X → X ′ and a morphism f : X → Y in C(A), and we let

X ′ Y ′

X Y

f ′

f

i i′

be a pushout rectangle in C(A). Then we obtain an induced isomorphism Coker i → Coker i′. A consid-
eration of the long exact cohomology sequence induced by

X
i−→ X ′

quo−−→ Coker i

shows that H(i) is an isomorphism if and only if H(Coker i) ∼= 0, and analogously for i′. So if H(i) is an
isomorphism, then also H(i′) is an isomorphism.

The other assertion follows by duality.

(Fac) This follows from the fact that every morphism f : X → Y in C(A) can be factorised into the morphism
( f ins ) : X → Y ⊕ ConeX, where ins : X → ConeX is the insertion of X into the cone of X, followed by
the (split) epimorphism ( 1

0 ) : Y ⊕ ConeX → Y , cf. [13, III.3.2–3].

Y ⊕ ConeX

X Y

(
1
0

)
f

( f ins )

38



The morphism ( f ins ) is a monomorphism as ins is a monomorphism. Moreover, H(( 1
0 )) : H(Y⊕ConeX)→

H(Y ) is an isomorphism since H is an additive functor and H(ConeX) ∼= 0. Hence if H(f) is an isomor-
phism, then also H(( f ins )) is an isomorphism. (10)

Altogether, C(A) becomes an additive uni-fractionable category with

Den C(A) = {f ∈ Mor C(A) | H(f) is an isomorphism},
SDen C(A) = {i ∈ Den C(A) | i is a monomorphism},
TDen C(A) = {p ∈ Den C(A) | p is an epimorphism}.

To show that C(A) is saturated, we suppose given morphisms f, g, h ∈ Mor C(A) with Target f = Source g
and Target g = Sourceh and such that fg and gh are denominators in C(A), that is, H(fg) and H(gh) are
isomorphisms in ADiscZ. Then also H(g) is an isomorphism with H(g)−1 = H(fg)−1H(f) = H(h)H(gh)−1 and
hence g is a denominator in C(A). But since C(A) is semi-saturated, this already implies that C(A) is weakly
saturated and therefore saturated by proposition (5.14).

The preceding example of complexes can be generalised to exact categories in the sense of Quillen [30, §2,
pp. 99–100] as follows in example (7.5). A denominator in example (7.4) is a morphism of complexes such
that the induced morphisms on the cohomology level are isomorphisms. This is what one usually calls a
quasi-isomorphism, and can be characterised as follows: A morphism of complexes with entries in an abelian
category is a quasi-isomorphism if and only if its cone is acyclic [35, cor. 1.5.4]. Since we have no cohomology
functor for exact categories, we have to clarify first what we want to understand by a (formal) cone and a
quasi-isomorphism in an exact category. We will develop these notions and some facts in appendix A, cf. in
particular definitions (A.1) resp. (A.3) resp. (A.4) resp. (A.5) for the definitions of formal cones resp. having
enough formal cones resp. quasi-isomorphisms resp. closedness under pure short sequences.

(7.5) Example. We suppose given an exact category E and a non-empty full subcategory U of E that is closed
under pure short exact sequences and such that E has enough formal U-cones. Then E carries the structure of
a uni-fractionable category with

Den E = {f ∈ Mor E | f is a U-quasi-isomorphism},
SDen E = {i ∈ Den E | i is a pure monomorphism}

= {i ∈ Mor E | i is a pure monomorphism with Coker i ∈ ObU},
TDen E = {p ∈ Den E | p is a pure epimorphism}

= {p ∈ Mor E | p is a pure epimorphism with Ker p ∈ ObU}.

If moreover U is closed under summands, then E is saturated.

Proof. The set of quasi-isomorphisms in E is closed under finite sums by remark (A.7) and semi-saturated
by proposition (A.11), hence in particular multiplicative. The set of pure monomorphisms that are quasi-
isomorphisms is also multiplicative since the set of pure monomorphisms in an exact category is multiplicative [5,
def. 2.1]. Dually, the set of pure epimorphisms that are quasi-isomorphisms is multiplicative. Axiom (WU) is
fulfilled by corollary (A.9) since pure monomorphisms in an exact category are stable under pushouts and
pure epimorphisms are stable under pullbacks [5, def. 2.1]. Finally, every quasi-isomorphism factors into a
pure monomorphism that is a quasi-isomorphism and a pure epimorphism that is a quasi-isomorphism by
corollary (A.12). Altogether, E becomes an additive uni-fractionable category with

Den E = {f ∈ Mor E | f is a U-quasi-isomorphism},
SDen E = {i ∈ Den E | i is a pure monomorphism},
TDen E = {p ∈ Den E | p is a pure epimorphism}.

Moreover, SDen E = {i ∈ Mor E | i is a pure monomorphism with Coker i ∈ ObU} and TDen E = {p ∈ Mor E |
p is a pure epimorphism with Ker p ∈ ObU} by proposition (A.8). The assertion on the saturatedness of E
follows from proposition (A.13) and proposition (5.14).

10Alternatively, one can give a factorisation using the cylinder of f instead of Y ⊕ ConeX, cf. for example [13, III.3.2–3].
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Recall that an additive category is said to be idempotent splitting if every morphism e with e2 = e is split.
(Bühler uses the notion “idempotent complete”, see [5, def. 6.1].) Moreover, recall that the category of
complexes with entries in an exact category becomes an exact category with degreewise pure short exact
sequences, see [5, lem. 9.1].
As an application of example (7.5), we obtain in particular a 3-arrow calculus for the derived category of an
idempotent splitting exact category without passing to the homotopy category in advance, cf. [26], [5, sec. 10].

(7.6) Example. The category C(E) of complexes in an idempotent splitting exact category E carries the
structure of a saturated additive uni-fractionable category, where

Den C(E) = {f ∈ Mor C(E) | f is a quasi-isomorphism},
SDen C(E) = {i ∈ Den C(E) | i is a pure monomorphism}

= {i ∈ Mor C(E) | i is a pure monomorphism with Coker i purely acyclic},
TDen C(E) = {p ∈ Den C(E) | p is a pure epimorphism}

= {p ∈ Mor C(E) | p is a pure epimorphism with Ker p purely acyclic}.

In particular, the derived category D(E) is isomorphic to Frac C(E).

Proof. By [5, rem. 10.17] and corollary (A.12), a quasi-isomorphism, in the sense of [5, def. 10.16], is precisely
a quasi-isomorphism with respect to the full subcategory of pure acyclic complexes [6, def. 4(2)] in the sense
of definition (A.4). Moreover, the full subcategory of pure acyclic complexes is closed under pure short exact
sequences [6, cor. 29] and under summands [5, lem. 10.7], and the exact category C(E) has enough formal
cones with respect to this full subcategory [5, def. 9.2, rem. 9.9, prop. 10.9]. Thus the assertion follows from
example (7.5).

Classical examples
We finish this article by considering some classical examples, which yield in fact a 2-arrow calculus, but nonethe-
less fit in our framework. Example (7.7)(b) implicitly occurs in Grothendieck’s Tôhoku article [15, sec. 1.11].
This example differs from the others since here the S-denominators are epimorphisms and the T-denominators
are monomorphisms, while in all our other examples the S-denominators are “mono-like” (certain cofibrations
resp. monomorphisms resp. pure monomorphisms) and the T-denominators are “epi-like” (certain fibrations
resp. epimorphisms resp. pure epimorphisms).
Recall that a thick subcategory of an abelian categoryA is a non-empty full (abelian) subcategory U that is closed
under extensions, subobjects and quotient objects. Recall that a thick subcategory of a Verdier triangulated
category V is a (non-empty) full triangulated subcategory U that is closed under taking summands.

(7.7) Example.

(a) We suppose given an abelian category A and a thick subcategory U in A. Then A carries the structure
of an additive uni-fractionable category, where

DenA = SDenA = TDenA = {f ∈ MorA | Ker f and Coker f are in U}.

In particular, the Serre quotient of A by U is isomorphic to FracA.

(b) We suppose given an abelian category A and a thick subcategory U in A. Then A carries the structure
of an additive uni-fractionable category, where

DenA = {f ∈ MorA | Ker f and Coker f are in U},
SDenA = {s ∈ DenA | s is an epimorphism},
TDenA = {t ∈ DenA | t is a monomorphism}.

In particular, the Serre quotient of A by U is isomorphic to FracA.

(c) We suppose given a Verdier triangulated category V and a thick subcategory U in V. Then V carries the
structure of an additive uni-fractionable category, where

DenV = SDenV = TDenV = {f ∈ MorV | a cone of f is in U}.

In particular, the Verdier quotient of V by U is isomorphic to FracV.
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Proof.

(a) We set D := {f ∈ MorA | Ker f and Coker f are in U} and have to verify the axioms (Cat), (2 of 3)
and (WU).

(Cat) We suppose given morphisms f : X → Y and g : Y → Z in A with f, g ∈ D, so that Ker f , Coker f ,
Ker g, Coker g are in U . By the circumference lemma [23, Lem. 132], we have an exact sequence

0 −→ Ker f −→ Ker(fg) −→ Ker g −→ Coker f −→ Coker(fg) −→ Coker g −→ 0.

Since Ker f and Ker g are in U , it follows that Ker(fg) is in U , and since Coker f and Coker g are in
U , it follows that Coker(fg) is in U . Thus we have fg ∈ D.
Moreover, 0 ∈ ObU and therefore 1X ∈ D for all X ∈ ObA.

(2 of 3) We suppose given morphisms f : X → Y and g : Y → Z in A with f, fg ∈ D, so that the objects
Ker f , Coker f , Ker(fg), Coker(fg) are in U . The circumference lemma [23, Lem. 132] implies that
Ker g is in U since Ker(fg) and Coker f are in U , and that Coker g is in U since Coker(fg) is in U .
Thus we have g ∈ D.
The other case follows by duality.

(WU) We suppose given morphisms d : X → X ′ and f : X → Y in A with d ∈ D, and we let

X ′ Y ′

X X ′

f ′

f

d d′

be a pushout rectangle in A. Then the induced morphism Coker d→ Coker d′ is an isomorphism and
the induced morphism Ker d→ Ker d′ is an epimorphism. Thus since Ker d and Coker d are in U , it
follows that Ker d′ and Coker d′ are in U , that is, d′ ∈ D.
The other property follows by duality.

Altogether, there is a structure of a uni-fractionable category on A with DenA = SDenA = TDenA = D.
Moreover, DenA is closed under finite sums since U is an additive subcategory, and hence A is an additive
uni-fractionable category.

(b) The axioms (Cat), (2 of 3) and (WU) as well as additivity follow from (a), taking into account that
epimorphisms are stable under composition and pushouts, and dually. Moreover, (Fac) holds since every
morphism in an abelian category factorises into an epimorphism with the same kernel followed by a
monomorphism with the same cokernel.

(c) We set D := {f ∈ MorV | a cone of f is in U} and have to verify the axioms of a uni-fractionable category.
In the following, given a morphism f ∈ MorV, we denote by Cf a chosen cone of f . Since every cone of
f is isomorphic to Cf [13, IV.1.4 b)], we have f ∈ D if and only if Cf is in U . The shift functor in V is
denoted by T.

(Cat) We suppose given morphisms f : X → Y and g : Y → Z with f, g ∈ D, so that Cf and Cg are in U .
By the octahedral axiom, we get a distinguished triangle

. . .
T−1v−−−→ T−1Cg

T−1w−−−−→ Cf
u−→ Cfg

v−→ Cg
w−→ TCf

Tu−−→ . . . ,

and in particular, Cfg is a cone of T−1w. Since Cg is in U , it follows that T−1Cg is in U . But then
T−1w is a morphism in U and thus Cfg is an object in U .
Moreover, 0 ∈ ObU implies 1X ∈ D for all X ∈ ObV.

(2 of 3) We suppose given morphisms f : X → Y and g : Y → Z in V, and we use the distinguished triangle
obtained by the octahedral axiom from above. If f, fg ∈ D, then Cf and Cfg are in U , hence u is
a morphism in U and therefore Cg is in U , that is, g ∈ D. Analogously, fg, g ∈ D implies that Cfg
and Cg are in U , hence v is a morphism in U and TCf is an object in U , and therefore Cf is in U ,
that is, f ∈ D.
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(WU) We suppose given morphisms d : X → X ′ and f : X → Y in V with d ∈ D, and we let

X ′ Y ′

X Y

f ′

f

d d′

be a dweak square in V, that is, a quadrangle whose diagonal sequence fits in a distinguished triangle,
and hence in particular a weak pushout. Then Cd is a cone of d′, cf. [27, lem. 1.4.4]. Hence d′ ∈ D
as Cd is in U .
The other property follows by duality.

Altogether, there is a structure of a uni-fractionable category on V with DenV = SDenV = TDenV = D.
Moreover, additivity of V follows from the additivity of U .

A Formal cones in exact categories
In this appendix, we develop a theory about “formal cones” and “quasi-isomorphisms” in an exact category
relative to a suitable subcategory. This will be used to generalise example (7.4), where we have shown that the
category of complexes in an abelian category carries a uni-fractionable category structure in such a way that
the fraction category becomes the derived category, to the case of idempotent splitting exact categories, see
example (7.6).
We consider an exact category E in the sense of Quillen [30, §2, pp. 99–100], cf. also [22, app. A], [5, def. 2.1].
The distinguished short exact sequences in E will be called pure short exact sequences. Likewise, the monomor-
phisms occurring in a pure short exact sequence are called pure monomorphisms, and the epimorphisms occurring
in a pure short exact sequence are called pure epimorphisms.
During this appendix, we suppose given an exact category E and a non-empty full subcategory U of E . From
remark (A.7) on, we suppose that U is closed under pure short exact sequences, see definition (A.5), and that
E has enough formal U-cones, see definition (A.3).

(A.1) Definition (formal cone).

(a) We suppose given an object X in E . A formal cone with respect to U (or formal U-cone or just formal
cone) of X consists of an object C in U together with a pure monomorphism i : X → C. By abuse of
notation, we denote the formal cone as well as its underlying object by C. The pure monomorphism i is
called the insertion in C. Given a formal cone C of X with insertion i, we write ins = insC := i.

(b) We suppose given a morphism f : X → Y in E . Given a formal U-cone CX of X, a formal cone with
respect to U (or formal U-cone or just formal cone) of f corresponding to CX consists of an object C in
U together with a pure monomorphism i : Y → C such that there exists a pushout rectangle

CX C

X Y

f ′

f

insCX i

in E . By abuse of notation, we denote the formal cone as well as its underlying object by C. The pure
monomorphism i : Y → C is called the insertion in C. Given a formal cone C of f corresponding to CX
with insertion i, we write ins = insC := i.

A formal cone with respect to U (or formal U-cone or just formal cone) of f is a formal U-cone of f
corresponding to some formal U-cone of X.

The cone of a complex resp. of a morphism of complexes with entries in an additive category as defined for
example in [5, def. 9.2] is a formal cone with respect to the full subcategory of acyclic complexes (or even of
split acyclic complexes).
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(A.2) Remark. We suppose that U is an additive subcategory of E .

(a) We suppose given objects X1 and X2 in E , a formal U-cone C1 of X1 and a formal U-cone C2 of X2. Then
C1 ⊕ C2 is a formal U-cone of X1 ⊕X2 with insC1⊕C2 = insC1 ⊕ insC2 .

(b) We suppose given morphisms f1 : X1 → Y1 and f2 : X2 → Y2 in E , a formal U-cone C1 of f1 and a formal
U-cone C2 of f2. Then C1 ⊕ C2 is a formal U-cone of f1 ⊕ f2 with insC1⊕C2 = insC1 ⊕ insC2 .

(A.3) Definition (having enough formal cones). The exact category E is said to have enough formal cones
with respect to U (or to have enough formal U-cones or just to have enough formal cones) if there exists a
formal U-cone of every object in E .

(A.4) Definition (quasi-isomorphism). We suppose that E has enough formal U-cones. A quasi-isomorphism
with respect to U (or U-quasi-isomorphism or just quasi-isomorphism) is a morphism f in E such that there
exists a formal cone of f that is in U .

(A.5) Definition (closed under pure short exact sequences). The full subcategory U of E is said to be closed
under pure short exact sequences in E if it fulfills the following axiom.

(Seq) Given a pure short exact sequence

X ′ −→ X −→ X ′′

in E such that two out of the objects X ′, X, X ′′ are in U , then so is the third.

(A.6) Remark. If U is closed under pure short exact sequences, then U is closed under isomorphisms and an
additive subcategory of E .

Proof. Since U is supposed to be non-empty, there exists an object X in U . But then

X
1X−−→ X

0−→ 0

is a pure short exact sequence [5, def. 2.1] and hence 0 is in U . Given objects X1 and X2 in U , we have the
pure short exact sequence

X1
( 1 0 )−−−→ X1 ⊕X2

( 0
1 )
−−→ X2

by [5, lem. 2.7] and therefore X1 ⊕X2 is in U . Thus U is an additive subcategory of E .
Finally, given an object X in U and an isomorphism f : X → Y in E , we have the pure short exact sequence

X
f−→ Y

0−→ 0

and hence Y is in U .

From now on, we suppose that U is closed under pure short exact sequences and that E has enough formal
U-cones.

(A.7) Remark. The set of U-quasi-isomorphisms in E is closed under finite sums.

Proof. This follows from remark (A.6) and remark (A.2)(b).

(A.8) Proposition.

(a) A pure monomorphism i in E is a U-quasi-isomorphism if and only if Coker i is in U .

(b) A pure epimorphism p in E is a U-quasi-isomorphism if and only if Ker p is in U .

Proof. We let f : X → Y be a morphism in E and we let CX be a formal cone of X. Moreover, we let Cf be a
formal cone of f corresponding to CX , that is, we suppose that there exists a pushout rectangle

CX Cf

X Y

f ′

f

insCX insCf
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in E . By [5, prop. 2.12], this rectangle is also a pullback.
Let us first suppose that f is a pure monomorphism. Then f ′ is also a pure monomorphism by [5, def. 2.1], and
since U is closed under pure short exact sequences, the formal cone Cf is in U if and only if Coker f ′ is in U .
But by [5, prop. 2.12], we have Coker f ∼= Coker f ′, so Cf is in U if and only if Coker f is in U . Since CX and
Cf were chosen arbitrarily, this means that f is a quasi-isomorphism if and only if Coker f is in U .
Next, let us suppose that f is a pure epimorphism. Then f ′ is also a pure epimorphism by [5, dual of prop. 2.15],
and since U is closed under pure short exact sequences, the formal cone Cf is in U if and only if Ker f ′ is in U .
By [5, dual of prop. 2.12], we have Ker f ∼= Ker f ′, so Cf is in U if and only if Ker f is in U . Since CX and Cf
were chosen arbitrarily, this means that f is a quasi-isomorphism if and only if Ker f is in U .

(A.9) Corollary.

(a) Given a pushout rectangle

X ′ Y ′

X Y

f ′

f

i i′

in E with pure monomorphism i, then i is a U-quasi-isomorphism if and only if i′ is a U-quasi-isomorphism.

(b) Given a pullback rectangle

X ′ Y ′

X Y

f ′

p′ p

f

in E with pure epimorphism p, then p is a U-quasi-isomorphism if and only if p′ is a U-quasi-isomorphism.

Proof. This follows by proposition (A.8) since these pushouts induce isomorphisms on the cokernels of the pure
monomorphisms and these pullbacks induce isomorphisms on the kernels of the pure epimorphisms [5, prop. 2.12
and its dual].

(A.10) Proposition. We let f : X → Y be a morphism in E . For every formal U-cone CX of X, we have the
factorisation f = ( f ins ) ( 1

0 ), where ( f ins ) : X → Y ⊕ CX is a pure monomorphism such that Coker ( f ins )
carries the structure of a formal U-cone of f corresponding to CX and where ( 1

0 ) : Y ⊕CX → Y is a split pure
epimorphism with Ker ( 1

0 ) ∼= CX . In particular, ( 1
0 ) is a U-quasi-isomorphism.

Y ⊕ CX

X Y

(
1
0

)
f

( f ins )

Proof. We let CX be a formal cone of X and we let Cf be a formal cone of f corresponding to CX , so that
there exists a pushout rectangle

CX Cf

X Y

f ′

f

insCX insCf

in E . We get the factorisation f = ( f insCX ) ( 1
0 ).

Y ⊕ CX

X Y

(
1
0

)
f

( f insCX )
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By [5, prop. 2.12], we have the pure short exact sequence

X
( f insCX )
−−−−−−−→ Y ⊕ CX

(
insCf

−f ′
)

−−−−−−→ Cf .

Hence ( f insCX ) : X → Y ⊕ CX is a pure monomorphism and Coker ( f insCX ) ∼= Cf . Moreover, since CX is in
U and the split short exact sequence

CX
( 0 1 )−−−→ Y ⊕ CX

( 1
0 )
−−→ Y

is a pure short exact sequence by [5, lem. 2.7], the morphism ( 1
0 ) : Y ⊕ CX → Y is a quasi-isomorphism by

proposition (A.8)(b).

(A.11) Proposition. The set of U-quasi-isomorphisms in E is a semi-saturated denominator set in E .

Proof. For every object X in E , the identity 1X is a pure monomorphism [5, def. 2.1] with Coker 1X ∼= 0. As 0
is in U by remark (A.6), it follows that 1X is a quasi-isomorphism for all X ∈ Ob E by proposition (A.8)(a).
We suppose given morphisms f : X0 → X1 and g : X1 → X2 in E . By proposition (A.10), there exists for every
formal cone Cf of f a pure monomorphism i : X0 → Y0 and a pure epimorphism p : Y0 → X1 with f = ip and
such that Coker i ∼= Cf and p is a quasi-isomorphism. Analogously, there exists for every formal cone Cg of g a
pure monomorphism j : X1 → Y1 and a pure epimorphism q : Y1 → X2 with g = jq and such that Coker j ∼= Cg
and q is a quasi-isomorphism. Every formal cone C0 for X0 leads to a diagram as follows, where all quadrangles
are pushout rectangles and hence also pullback rectangles [5, prop. 2.12], and where D0 is a formal cone of i
corresponding to C0, where C1 is a formal cone of ip = f corresponding to C0, where D1 is a formal cone of ipj
corresponding to C0, and where C2 is a formal cone of ipjq = fg corresponding to C0.

C0 D0 C1 D1 C2

X0 Y0 X1 Y1 X2

i′ p′ j′ q′

i

insC0

p

insD0

j

insC1

q

insD1 insC2

In particular, i′ and j′ are pure monomorphisms [5, def. 2.1] and p′ and q′ are pure epimorphisms [5, dual of
prop. 2.15].
So let us first suppose that f and g are quasi-isomorphisms. We choose formal cones Cf of f and Cg of g such
that Cf and Cg are in U , and we choose an arbitrary formal cone C0 of X0. Then C0 is in U and hence D0 is in
U since Coker i′ ∼= Coker i ∼= Cf is in U by [5, prop. 2.12] and U is closed under pure short exact sequences. By
proposition (A.8)(b), Ker p is in U as p is a quasi-isomorphism. But then C1 is in U since D0 and Ker p′ ∼= Ker p
are in U . Analogously, C1 in U implies that D1 is in U , and this in turn implies that C2 is in U . But C2 is a
formal cone of fg corresponding to C0, whence fg is a quasi-isomorphism.
Next, we suppose that f and fg are quasi-isomorphisms. We choose formal cones Cf of f and Cfg of fg such
that Cf and Cfg are in U . Moreover, we choose the formal cone C0 of X0 such that Cfg is corresponding to
C0. As shown above, C0 in U implies that D0 is in U , and D0 in U implies that C1 is in U . But then C1 is a
formal cone of X2 and hence C2 is a formal cone of jq = g of corresponding to C1. Since C2

∼= Cfg is in U by
our choice of C0, this implies that g is a quasi-isomorphism.
Finally, let us suppose that g and fg are quasi-isomorphisms. We choose formal cones Cg of g and Cfg of fg
such that Cg and Cfg are in U . Moreover, we choose the formal cone C0 of X0 such that Cfg is corresponding
to C0. Then C2

∼= Cfg is in U and Ker q′ ∼= Ker q is in U , and therefore D1 is in U . This in turn implies that
C1 is in U since Coker j′ ∼= Coker j ∼= Cg is in U . But C1 is a formal cone of f corresponding to C0, whence f
is a quasi-isomorphism.
Altogether, the set of quasi-isomorphisms is a semi-saturated denominator set in E .

(A.12) Corollary. We suppose given a morphism f in E . The following conditions are equivalent.

(a) The morphism f is a quasi-isomorphism with respect to U .

(b) Every formal U-cone of f is in U .
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(c) There exist a pure monomorphism i and a pure epimorphism p with f = ip and such that i and p are
U-quasi-isomorphisms.

Proof. First, we let f be a quasi-isomorphism and we suppose given an arbitrary formal cone Cf of f . By
proposition (A.10), there exist a pure monomorphism i and a pure epimorphism p with f = ip and such that
p is a quasi-isomorphism and Coker i ∼= Cf . But i is a quasi-isomorphism since f is a quasi-isomorphism
and since the set of quasi-isomorphisms is semi-saturated by proposition (A.11), so Cf ∼= Coker i is in U by
proposition (A.8)(a).
If every formal cone of f is an object of U , then f is a U-quasi-isomorphism since E has enough formal U-cones.
Finally, if there exist a pure monomorphism i and a pure epimorphism p with f = ip and such that i and p
are quasi-isomorphisms, then f is a quasi-isomorphism since the set of quasi-isomorphisms is multiplicative by
proposition (A.11).

Corollary (A.12)(c) and proposition (A.8) show that the notion of a quasi-isomorphism is self-dual, provided E
fulfills also the dual of definition (A.3).

(A.13) Proposition. If U is closed under taking summands, then the set of U-quasi-isomorphisms in E is a
weakly saturated denominator set in E .

Proof. We suppose that U is closed under taking summands, and we suppose given morphisms f : X0 → X1,
g : X1 → X2, h : X2 → X3 in E such that fg and gh are quasi-isomorphisms. We let C0 be a formal cone of X0

and construct iteratively pushouts as in the following diagram, so that C1 is a formal cone of f corresponding to
C0, so that C2 is a formal cone of fg corresponding to C0, and so that C3 is a formal cone of fgh corresponding
to C0.

C0 C1 C2 C3

X0 X1 X2 X3

f ′ g′ h′

f

insC0

g

insC1

h

insC2 insC3

Next, we let D1 be a formal cone of C1 and construct again iteratively pushouts as in the following diagram,
so that D2 is a formal cone of g′ corresponding to D1, and so that D3 is a formal cone of g′h′ corresponding
to D1.

D1 D2 D3

C0 C1 C2 C3

X0 X1 X2 X3

g′′ h′′

f ′ g′

insD1

h′

insD2 insD3

f

insC0

g

insC1

h

insC2 insC3

Then D1 is also a formal cone of X1 and therefore D3 is a formal cone of gh corresponding to D1. Since fg and
gh are quasi-isomorphisms, C2 and D3 are in U by corollary (A.12). But since we have the pure short exact
sequence

C2
(h′ insD2 )−−−−−−−→ C3 ⊕D2

(
insD3

−h′′
)

−−−−−−→ D3

by [5, prop. 2.12], we conclude that C3 ⊕ D2 is in U and therefore that D2 is in U since U is closed under
pure short exact sequences and taking summands. Thus g is a quasi-isomorphism as D2 is a formal cone of g
corresponding to D1, and hence also f , h, fgh are quasi-isomorphisms by proposition (A.11).
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