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Abstract
Given a simplicial group G, there are two known classifying simplicial set constructions, the Kan clas-

sifying simplicial set WG and DiagNG, where N denotes the dimensionwise nerve. They are known to be
weakly homotopy equivalent. We will show that WG is a strong simplicial deformation retract of DiagNG.
In particular, WG and DiagNG are simplicially homotopy equivalent.

1 Introduction
We suppose given a simplicial group G. Kan introduced in [10] the Kan classifying simplicial set WG. The
functor W from simplicial groups to simplicial sets is the right adjoint, and actually the homotopy inverse, to the
Kan loop group functor, which is a combinatorial analogue to the topological loop space functor. Alternatively,
dimensionwise application of the nerve functor for groups yields a bisimplicial set NG, to which we can apply the
diagonal functor to obtain a simplicial set Diag NG. The latter construction is used for example by Quillen [12]
and Jardine [9, p. 41].
It is well-known that these two variants WG and Diag NG for the classifying simplicial set of G are weakly
homotopy equivalent (1). Better still, the Kan classifying functor W can be obtained as the composite of the
nerve functor with the total simplicial set functor Tot as introduced by Artin and Mazur [1] (2); and Cegarra
and Remedios [3] showed that already the total simplicial set functor and the diagonal functor, applied to a
bisimplicial set, yield weakly homotopy equivalent results (3). Moreover, the model structures on the category
of bisimplicial sets induced by Tot resp. by Diag are related [4].
The aim of this article is to prove the following

Theorem. The Kan classifying simplicial set WG is a strong simplicial deformation retract of Diag NG. In
particular, WG and Diag NG are simplicially homotopy equivalent.

This commutativity up to simplicial homotopy equivalence fits into the following diagram.
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∗This is a slightly revised version from April 16, 2008.
1Addendum (December 19, 2011): The fact that WG and DiagNG are weakly homotopy equivalent has been shown by Zis-

man [14, sec. 3.3.4, cf. sec. 1.3.3, rem. 1]. He shows that a morphism DiagNG → WG, which is essentially the same as the
morphism DG we consider in section 3, induces an isomorphism on the fundamental groups as well as isomorphisms on the homol-
ogy groups of their universal coverings.

2This is not the total simplicial set as used by Bousfield and Friedlander [2, app. B, p. 118].
3Addendum (December 19, 2011): To this end, Cegarra and Remedios consider a morphism DiagX → TotX, which is

essentially the same as the morphism φX we consider in section 2.
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By definition, the homology of a simplicial group is obtained by composition of the functors in the upper row.
The generalised Eilenberg-Zilber theorem (due to Dold, Puppe and Cartier [6, Satz 2.9]) states that the
quadrangle in the middle of the diagram commutes up to homotopy equivalence of complexes. The composition
of the functors in the lower row yields the Jardine spectral sequence [9, lem. 4.1.3] of G, which has E1

p,n−p
∼=

Hn−p(Gp), and which converges to the homology of G. Similarly for cohomology.

Conventions and notations
We use the following conventions and notations.

• The composite of morphisms X f−→ Y and Y g−→ Z is denoted by X fg−→ Z. The composite of functors
C F−→ D and D G−→ E is denoted by C G◦F−−−→ E .

• If C is a category and X,Y ∈ Ob C are objects in C, we write C(X,Y ) = MorC(X,Y ) for the set of
morphisms between X and Y . Moreover, we denote by (((C,D))) the functor category that has functors
between C and D as objects and natural transformations between these functors as morphisms.

• Given a functor I X−→ C, we sometimes denote the image of a morphism i
θ−→ j in I by Xi

Xθ−−→ Xj . This
applies in particular if I = ∆op or I = ∆op ×∆op.

• We use the notations N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

• Given integers a, b ∈ Z, we write [a, b] := {z ∈ Z | a ≤ z ≤ b} for the set of integers lying between a and b.
Moreover, we write da, be := (z ∈ Z | a ≤ z ≤ b) for the ascending interval and ba, bc = (z ∈ Z | a ≥ z ≥ b)
for the descending interval. Whereas we formally deal with tuples, we use the element notation, for
example we write

∏
i∈d1,3e gi = g1g2g3 and

∏
i∈b3,1c gi = g3g2g1 or (gi)i∈b3,1c = (g3, g2, g1) for group

elements g1, g2, g3.

• Given an index set I, families of groups (Gi)i∈I and (Hi)i∈I and a family of group homomorphisms (ϕi)i∈I ,
where ϕi : Gi → Hi for all i ∈ I, we denote the direct product of the groups by ×i∈I Gi and the direct
product of the group homomorphisms by×i∈I ϕi : ×i∈I Gi →×i∈I Hi, (gi)i∈I 7→ (giϕi)i∈I .

2 Simplicial preliminaries
We recall some standard definitions, cf. for example [5], [8] or [11].

Simplicial objects
For n ∈ N0, we let [n] denote the category induced by the totally ordered set [0, n] with the natural order, and
we let ∆ be the full subcategory in Cat defined by Ob ∆ := {[n] | n ∈ N0}.
The category of simplicial objects sC in a given category C is defined to be the functor category (((∆op, C))).
Moreover, the category of bisimplicial objects s2C in C is defined to be (((∆op ×∆op, C))). The dual notion is that
of the category csC := (((∆, C))) of cosimplicial objects in C.
For n ∈ N, k ∈ [0, n], we let [n− 1]

δk−→ [n] be the injection that omits k ∈ [0, n], and for n ∈ N0, k ∈ [0, n], we

let [n + 1]
σk−→ [n] be the surjection that repeats k ∈ [0, n]. The images of the morphisms δk resp. σk under a

simplicial object X in a given category C are denoted by dk := Xδk , called the k-th face, for k ∈ [0, n], n ∈ N,
resp. sk := Xσk , called the k-th degeneracy, for k ∈ [0, n], n ∈ N0. Similarly, in a bisimplicial object X one
defines horizontal and vertical faces resp. degeneracies, dh

k := Xδk,id, dv
k := Xid,δk , shk := Xσk,id, svk := Xid,σk .

Moreover, we use the ascending and descending interval notation as introduced above for composites of faces
resp. degeneracies, that is, we write dbj,ic := djdj−1 . . . di resp. sdi,je := sisi+1 . . . sj .

The nerve
We suppose given a group G. The nerve of G is the simplicial set NG given by NnG = G×n for all n ∈ N0 and
by

(gj)j∈bn−1,0c(NθG) = (
∏

j∈b(i+1)θ−1,iθc

gj)i∈bm−1,0c
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for (gj)j∈bn−1,0c ∈ NnG and θ ∈ ∆([m], [n]), where m,n ∈ N0.

Since the nerve construction is a functor Grp
N−→ sSet, it can be applied dimensionwise to a simplicial group.

This yields a functor sGrp
N−→ s2Set.

From bisimplicial sets to simplicial sets
We suppose given a bisimplicial set X. There are two known ways to construct a simplicial set from X, namely
the diagonal simplicial set DiagX and the total simplicial set TotX, see [1, §3]. We recall their definitions.
The diagonal simplicial set DiagX has entries DiagnX := Xn,n for n ∈ N0, while DiagθX := Xθ,θ for
θ ∈ ∆([m], [n]), where m,n ∈ N0.
To introduce the total simplicial set of X, we define the splitting at p ∈ [0,m] of a morphism [m]

θ−→ [n] in ∆
by Splp(θ) := (Spl≤p(θ),Spl≥p(θ)), where

[p]
Spl≤p(θ)−−−−−→ [pθ] and [m− p]

Spl≥p(θ)−−−−−→ [n− pθ]

are given by i Spl≤p(θ) := iθ for i ∈ [0, p] and i Spl≥p(θ) := (i+ p)θ − pθ for i ∈ [0,m− p]. The total simplicial
set TotX is defined by

TotnX :=
{

(xq)q∈bn,0c ∈ ×
q∈bn,0c

Xq,n−q
∣∣xqdh

q = xq−1dv
0 for all q ∈ bn, 1c

}
for n ∈ N0

and by

(xq)q∈bn,0c(TotθX) = (xpθXSplp(θ)
)p∈bm,0c

for (xq)q∈bn,0c ∈ TotnX and θ ∈ ∆([m], [n]), where m,n ∈ N0.
There is a natural transformation

Diag
φ−→ Tot,

where φX is given by xn(φX)n = (xndh
bn,q+1cd

v
bq−1,0c)q∈bn,0c for xn ∈ DiagnX, n ∈ N0, X ∈ Ob s2Set; cf. [3,

formula (1)].

The Kan classifying simplicial set
We let G be a simplicial group. For a morphism θ ∈ ∆([m], [n]) and non-negative integers i ∈ [0,m], j ∈ [iθ, n],
we let θ|[j][i] ∈ ∆([i], [j]) be defined by kθ|[j][i] := kθ for k ∈ [i]. Kan constructed a reduced simplicial set WG by

WnG := ×
j∈bn−1,0c

Gj for every n ∈ N0

and

(gj)j∈bn−1,0cWθG := (
∏

j∈b(i+1)θ−1,iθc

gjGθ|[j]
[i]

)i∈bm−1,0c

for (gj)j∈bn−1,0c ∈WnG and θ ∈ ∆([m], [n]), see [10, def. 10.3]. The simplicial set WG will be called the Kan
classifying simplicial set of G.

Notions from simplicial homotopy theory
For n ∈ N, the standard n-simplex ∆n in the category sSet is defined to be the functor ∆op −→ Set represented
by [n], that is, ∆n := ∆(•, [n]). These simplicial sets yield a cosimplicial object ∆− ∈ cs(sSet). We set
dl := ∆δl ∈ sSet(∆

0,∆1) for l ∈ [0, 1].
For a simplicial set X we define ins0 resp. ins1 to be the composite morphisms

X
∼=−→ X ×∆0 id×d1

−−−−→ X ×∆1 resp. X
∼=−→ X ×∆0 id×d0

−−−−→ X ×∆1,
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where the cartesian product is defined dimensionwise and the isomorphisms are canonical.
For k ∈ [0, n + 1], n ∈ N0, we let τk ∈ ∆1

n = ∆([n], [1]) be the morphism given by [0, n − k]τk = {0} and
[n− k + 1, n]τk = {1}. Note that (xn)(ins0)n = (xn, τ

0) and (xn)(ins1)n = (xn, τ
n+1) for xn ∈ Xn.

In the following, we assume given simplicial sets X and Y .
Simplicial maps f, g ∈ sSet(X,Y ) are said to be simplicially homotopic, written f ∼ g, if there exists a simplicial
map X ×∆1 H−→ Y such that ins0H = f and ins1H = g. In this case, H is called a simplicial homotopy from
f to g.
The simplicial sets X and Y are said to be simplicially homotopy equivalent if there are simplicial maps X f−→ Y

and Y g−→ X such that fg ∼ idX and gf ∼ idY . In this case we write X ' Y and we call f and g mutually
inverse simplicial homotopy equivalences.
Finally, we suppose given a dimensionwise injective simplicial map Y i−→ X, that is, in is assumed to be injective
for all n ∈ N0. We call Y a simplicial deformation retract of X if there exists a simplicial map X r−→ Y such
that ir = idY and ri ∼ idX . In this case, r is said to be a simplicial deformation retraction. If there exists
a homotopy ri

H−→ idX which is constant along i, that is, if (ynin, τ
k)Hn = yninfn = yningn for yn ∈ Yn,

k ∈ [0, n + 1], n ∈ N0, then we call Y a strong simplicial deformation retract of X and r a strong simplicial
deformation retraction.

3 Comparing W and Diag ◦N

We have W ∼= Tot ◦N. The natural transformation Diag
φ−→ Tot composed with the nerve functor N yields a

natural transformation

Diag ◦N D−→W,

given by (DG)n =×i∈bn−1,0c dbn,i+1c : Diagn NG→WnG for n ∈ N0 and G ∈ Ob sGrp.

Proposition. The natural transformation D is a retraction. A corresponding coretraction is given by

W
S−→ Diag ◦N,

where

(SG)n : WnG→ Diagn NG, (gi)i∈bn−1,0c 7→ (yi)i∈bn−1,0c

with, defined by descending recursion,

yi :=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) ∈ Gn

for each i ∈ bn− 1, 0c, n ∈ N0, G ∈ Ob sGrp.

Proof. We suppose given a simplicial group G. Then we have to show that the maps (SG)n for n ∈ N0 commute
with the faces and degeneracies of G.
First, we consider the faces. We let n ∈ N and k ∈ [0, n]. For an n-tuple (gi)i∈bn−1,0c ∈WnG we compute

(gi)i∈bn−1,0cdk(SG)n−1 = (fi)i∈bn−2,0c(SG)n−1 = (xi)i∈bn−2,0c,

where

fi :=


gi+1dk for i ∈ bn− 2, kc,
(gkdk)gk−1 for i = k − 1,

gi for i ∈ bk − 2, 0c

and

xi :=
∏

j∈di+1,n−2e

(x−1j dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e) for each i ∈ bn− 2, 0c.
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On the other hand, we get

(gi)i∈bn−1,0c(SG)ndk = (yi)i∈bn−1,0cdk = (x′i)i∈bn−2,0c

with

yi :=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) for i ∈ bn− 1, 0c

and

x′i :=


yi+1dk for i ∈ bn− 2, kc,
(ykdk)(yk−1dk) for i = k − 1,

yidk for i ∈ bk − 2, 0c.

We have to show that xi = x′i for all i ∈ bn− 2, 0c. To this end, we proceed by induction on i.
For i ∈ bn− 2, kc, we calculate

xi =
∏

j∈di+1,n−2e

(x−1j dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(y−1j+1dkdbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(gj+1dkdbj,i+1csdi,n−2e)

=
( ∏
j∈di+2,n−1e

(y−1j dbj,i+2csdi+1,j−1e)
∏

j∈bn−1,i+1c

(gjdbj,i+2csdi+1,n−1e)
)

dk = yi+1dk.

For i = k − 1, we have

xk−1 =
∏

j∈dk,n−2e

(x−1j dbj,kcsdk−1,j−1e)
∏

j∈bn−2,k−1c

(fjdbj,kcsdk−1,n−2e)

=
∏

j∈dk,n−2e

(x′j
−1

dbj,kcsdk−1,j−1e)
∏

j∈bn−2,k−1c

(fjdbj,kcsdk−1,n−2e)

=
∏

j∈dk,n−2e

(y−1j+1dkdbj,kcsdk−1,j−1e)
∏

j∈bn−2,kc

(gj+1dkdbj,kcsdk−1,n−2e) · ((gkdk)gk−1)sdk−1,n−2e

=
∏

j∈dk+1,n−1e

(y−1j dbj,kcsdk−1,j−2e)
∏

j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−2e)

= (ykdk)
∏

j∈dk,n−1e

(y−1j dbj,kcsdk−1,j−2e)
∏

j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−2e)

= (ykdk)
( ∏
j∈dk,n−1e

(y−1j dbj,kcsdk−1,j−1e)
∏

j∈bn−1,k−1c

(gjdbj,kcsdk−1,n−1e)
)

dk

= (ykdk)(yk−1dk).

For i ∈ bk − 2, 0c, we finally get

xi =
∏

j∈di+1,n−2e

(x−1j dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

=
∏

j∈di+1,n−2e

(x′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn−2,ic

(fjdbj,i+1csdi,n−2e)

= (
∏

j∈di+1,k−2e

(y−1j dkdbj,i+1csdi,j−1e))((ykyk−1)−1dkdbk−1,i+1csdi,k−2e)

· (
∏

j∈dk,n−2e

(y−1j+1dkdbj,i+1csdi,j−1e))(
∏

j∈bn−2,kc

(yj+1dkdbj,i+1csdi,n−2e))
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· (((gkdk)gk−1)dbk−1,i+1csdi,n−2e)(
∏

j∈bk−2,ic

(gjdbj,i+1csdi,n−2e))

=
∏

j∈di+1,k−1e

(y−1j dkdbj,i+1csdi,j−1e)
∏

j∈dk,n−1e

(y−1j dbj,i+1csdi,j−2e)

·
∏

j∈bn−1,kc

(gjdbj,i+1csdi,n−2e)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,n−2e)

=
( ∏
j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

dk = yidk.

Next, we come to the degeneracies. We let n ∈ N0, k ∈ [0, n] and (gi)i∈bn−1,0c ∈WnG. Then we have

(gi)i∈bn−1,0csk(SG)n+1 = (hi)i∈bn,0c(SG)n+1 = (zi)i∈bn,0c,

where

hi :=


gi−1sk for i ∈ bn, k + 1c,
1 for i = k,

gi for i ∈ bk − 1, 0c

and

zi :=
∏

j∈di+1,ne

(z−1j dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne) for each i ∈ bn, 0c.

Further, we get

(gi)i∈bn−1,0c(SG)nsk = (yi)i∈bn−1,0csk = (z′i)i∈bn,0c

with

yi :=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) for i ∈ bn− 1, 0c

and

z′i :=


yi−1sk for i ∈ bn, k + 1c,
1 for i = k,

yisk for i ∈ bk − 1, 0c.

Thus we have to show that zi = z′i for every i ∈ bn, 0c. To this end, we perform an induction on i ∈ bn, 0c.
For i ∈ bn, k + 1c, we have

zi =
∏

j∈di+1,ne

(z−1j dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(y−1j−1skdbj,i+1csdi,j−1e)
∏

j∈bn,ic

(gj−1skdbj,i+1csdi,ne)

=
( ∏
j∈di,n−1e

(y−1j dbj,icsdi−1,j−1e)
∏

j∈bn−1,i−1c

(gjdbj,icsdi−1,n−1e)
)

sk = yi−1sk.

For i = k, we compute

zk =
∏

j∈dk+1,ne

(z−1j dbj,k+1csdk,j−1e)
∏

j∈bn,kc

(hjdbj,k+1csdk,ne)
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=
∏

j∈dk+1,ne

(z′j
−1

dbj,k+1csdk,j−1e)
∏

j∈bn,kc

(hjdbj,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1j−1skdbj,k+1csdk,j−1e)
∏

j∈bn,k+1c

(gj−1skdbj,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1j−1dbj−1,k+1csdk,j−1e)
∏

j∈bn,k+1c

(gj−1dbj−1,k+1csdk,ne)

=
∏

j∈dk+1,ne

(y−1j−1skdbj,k+2csdk+1,j−1e)
∏

j∈bn,k+1c

(gj−1skdbj,k+2csdk+1,ne)

=
∏

j∈dk+1,ne

(z′j
−1

dbj,k+2csdk+1,j−1e)
∏

j∈bn,k+1c

(hjdbj,k+2csdk+1,ne)

= z−1k+1

∏
j∈dk+2,ne

(z−1j dbj,k+2csdk+1,j−1e)
∏

j∈bn,k+1c

(hjdbj,k+2csdk+1,ne) = z−1k+1zk+1 = 1.

For i ∈ bk − 1, 0c, we get

zi =
∏

j∈di+1,ne

(z−1j dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,ne

(z′j
−1

dbj,i+1csdi,j−1e)
∏

j∈bn,ic

(hjdbj,i+1csdi,ne)

=
∏

j∈di+1,k−1e

(y−1j skdbj,i+1csdi,j−1e)
∏

j∈dk+1,ne

(y−1j−1skdbj,i+1csdi,j−1e)

·
∏

j∈bn,k+1c

(gj−1skdbj,i+1csdi,ne)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,ne)

=
∏

j∈di+1,k−1e

(y−1j skdbj,i+1csdi,j−1e)
∏

j∈dk,n−1e

(y−1j skdbj+1,i+1csdi,je)

·
∏

j∈bn−1,kc

(gjskdbj+1,i+1csdi,ne)
∏

j∈bk−1,ic

(gjdbj,i+1csdi,ne)

=
( ∏
j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

sk = yisk.

Thus (SG)n∈N yields a simplicial map

WG
SG−−→ Diag NG.

Finally, we have to prove that DG is a retraction with coretraction SG, that is,

(SG)n(DG)n = idWnG
for all n ∈ N0.

Again, we let (yi)i∈bn−1,0c denote the image of an element (gi)i∈bn−1,0c ∈WnG under (SG)n. Then we have

(gi)i∈bn−1,0c(SG)n(DG)n = (yi)i∈bn−1,0c(DG)n = (yidbn,i+1c)i∈bn−1,0c.

Induction on i ∈ bn− 1, 0c shows that

yidbn,i+1c =
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1edbn,i+1c)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1edbn,i+1c)

=
∏

j∈di+1,n−1e

(y−1j dbn,i+1c)
∏

j∈bn−1,ic

(gjdbj,i+1c)

=
∏

j∈di+1,n−1e

(g−1j dbj,i+1c)
∏

j∈bn−1,ic

(gjdbj,i+1c) = gi.

This implies that (SG)n(DG)n = idWnG
for all n ∈ N0.
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Theorem. We suppose given a simplicial group G. The Kan classifying simplicial set WG is a strong simplicial
deformation retract of Diag NG with a strong simplicial deformation retraction given by

Diag NG
DG−−→WG.

Proof. We consider the coretraction W
S−→ Diag N as in the preceding proposition. Now, we shall show that

DGSG ∼ idDiagNG via a simplicial homotopy constant along SG.
A simplicial homotopy H from DGSG to idDiagNG is given by

Hn : Diagn NG×∆1
n → Diagn NG, ((gn,i)i∈bn−1,0c, τ

n+1−k) 7→ (y
(n+1−k)
i )i∈bn−1,0c

for all n ∈ N0, where k ∈ [0, n+ 1] and, defined by descending recursion,

y
(n+1−k)
i :=


gn,i for i ∈ bn− 1, k − 1c ∩ N0,∏
j∈di+1,k−2e((y

(n+1−k)
j )−1dbj,i+1csdi,j−1e)

·
∏
j∈bk−2,ic(gn,jdbk−1,i+1csdi,k−2e) for i ∈ bk − 2, 0c.

To facilitate the following calculations, we abbreviate ỹi := y
(n+1−k)
i for the respective index k ∈ [0, n] under

consideration, if no confusion can arise.
We have to verify that the maps Hn for n ∈ N0 yield a simplicial map.
First, we show the compatibility with the faces. For k ∈ [0, n], l ∈ [0, n+1], n ∈ N0, (gn,i)i∈bn−1,0c ∈ Diagn NG,
we have

((gn,i)i∈bn−1,0c, τ
n+1−l)dkHn−1 = ((gn,i)i∈bn−1,0cdk, τ

n+1−ldk)Hn−1 = ((fi)i∈bn−2,0c, δ
kτn+1−l)Hn−1

=

{
((fi)i∈bn−2,0c, τ

n−l)Hn−1 for k ≥ l,
((fi)i∈bn−2,0c, τ

n+1−l)Hn−1 for k < l

}
= (x̃i)i∈bn−2,0c,

where

fi :=


gn,i+1dk for i ∈ bn− 2, kc,
(gn,kdk)(gn,k−1dk) for i = k − 1,

gn,idk for i ∈ bk − 2, 0c

for all i ∈ bn− 2, 0c and

x̃i :=




fi for i ∈ bn− 2, l − 1c,∏
j∈di+1,l−2e(x̃

−1
j dbj,i+1csdi,j−1e)

·
∏
j∈bl−2,ic(fjdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

 if k ≥ l,


fi for i ∈ bn− 2, l − 2c,∏
j∈di+1,l−3e(x̃

−1
j dbj,i+1csdi,j−1e)

·
∏
j∈bl−3,ic(fjdbl−2,i+1csdi,l−3e) for i ∈ bl − 3, 0c

 if k < l

for all i ∈ bn− 2, 0c. On the other hand, we have

((gn,i)i∈bn−1,0c, τ
n+1−l)Hndk = (ỹi)i∈bn−1,0cdk = (x̃′i)i∈bn−2,0c

with

ỹi :=

{
gn,i for i ∈ bn− 1, l − 1c,∏
j∈di+1,l−2e(ỹ

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(gn,jdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

for i ∈ bn− 1, 0c and

x̃′i :=


ỹi+1dk for i ∈ bn− 2, kc,
(ỹkdk)(ỹk−1dk) for i = k − 1,

ỹidk for i ∈ bk − 2, 0c
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for i ∈ bn− 2, 0c. We have to show that x̃i = x̃′i for all i ∈ bn− 2, 0c. To this end, we consider three cases and
we handle each one by induction on i ∈ bn− 2, 0c.
We suppose that k ∈ bn, lc. For i ∈ bn− 2, kc, we have

x̃i = fi = gn,i+1dk = ỹi+1dk = x̃′i.

For i = k − 1, we get

x̃k−1 = fk−1 = (gn,kdk)(gn,k−1dk) = (ỹkdk)(ỹk−1dk) = x̃′k−1.

For i ∈ bk − 2, l − 1c, we get

x̃i = fi = gn,idk = ỹidk = x̃′i

Finally, for i ∈ bl − 2, 0c, we calculate

x̃i =
∏

j∈di+1,l−2e

(x̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(fjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(x̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(fjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(ỹ−1j dkdbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jdkdbl−1,i+1csdi,l−2e)

=
( ∏
j∈di+1,l−2e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

dk = ỹidk = x̃′i.

Next, we suppose that k = l − 1. For i ∈ bn− 2, kc, we have

x̃i = fi = gn,i+1dk = ỹi+1dk = x̃′i.

For i = k − 1, we compute

x̃k−1 = fk−1 = (gn,kdk)(gn,k−1dk) = (gn,kdk)(gn,k−1dksk−1dk) = (ỹkdk)(ỹk−1dk) = x̃′k−1.

For i ∈ bk − 2, 0c, we get

x̃i =
∏

j∈di+1,k−2e

(x̃−1j dbj,i+1csdi,j−1e)
∏

j∈bk−2,ic

(fjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(x̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(fjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(ỹ−1j dkdbj,i+1csdi,j−1e)
∏

j∈bk−2,ic

(gn,jdkdbk−1,i+1csdi,k−2e)

=
( ∏
j∈di+1,k−1e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bk−1,ic

(gn,jdbk,i+1csdi,k−1e)
)

dk = ỹidk = x̃′i.

Finally, we suppose that k ∈ bl − 2, 0c. For i ∈ bn− 2, l − 2c, we see that

x̃i = fi = gn,i+1dk = ỹi+1dk = x̃′i.

For i ∈ bl − 3, kc, we have

x̃i =
∏

j∈di+1,l−3e

(x̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(x̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(ỹ−1j+1dkdbj,i+1csdi,j−1e)
∏

j∈bl−3,ic

(gn,j+1dkdbl−2,i+1csdi,l−3e)
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=
( ∏
j∈di+2,l−2e

(ỹ−1j dbj,i+2csdi+1,j−1e)
∏

j∈bl−2,i+1c

(gn,jdbl−1,i+2csdi+1,l−2e)
)

dk = ỹi+1dk = x̃′i.

For i = k − 1, we have

x̃k−1 =
∏

j∈dk,l−3e

(x̃−1j dbj,kcsdk−1,j−1e)
∏

j∈bl−3,k−1c

(fjdbl−2,kcsdk−1,l−3e)

=
∏

j∈dk,l−3e

(x̃′j
−1dbj,kcsdk−1,j−1e)

∏
j∈bl−3,k−1c

(fjdbl−2,kcsdk−1,l−3e)

= (
∏

j∈dk,l−3e

(ỹj+1dkdbj,kcsdk−1,j−1e))(
∏

j∈bl−3,kc

(gn,j+1dkdbl−2,kcsdk−1,l−3e))

· (gn,kdkdbl−2,kcsdk−1,l−3e)(gn,k−1dkdbl−2,kcsdk−1,l−3e)

=
∏

j∈dk+1,l−2e

(ỹ−1j dbj,kcsdk−1,j−2e)
∏

j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−3e)

= (ỹkdk)
( ∏
j∈dk,l−2e

(ỹ−1j dbj,kcsdk−1,j−1e)
∏

j∈bl−2,k−1c

(gn,jdbl−1,kcsdk−1,l−2e)
)

dk = (ỹkdk)(ỹk−1dk)

= x̃′k−1.

For i ∈ bk − 2, 0c, we get

x̃i =
∏

j∈di+1,l−3e

(x̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

=
∏

j∈di+1,l−3e

(x̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−3,ic

(fjdbl−2,i+1csdi,l−3e)

= (
∏

j∈di+1,k−2e

(ỹ−1j dkdbj,i+1csdi,j−1e))(ỹ
−1
k−1dkdbk−1,i+1csdi,k−2e)(ỹ

−1
k dkdbk−1,i+1csdi,k−2e)

· (
∏

j∈dk,l−3e

(ỹ−1j+1dkdbj,i+1csdi,j−1e))(
∏

j∈bl−3,kc

(gn,j+1dkdbl−2,i+1csdi,l−3e))(gn,kdkdbl−2,i+1csdi,l−3e)

· (gn,k−1dkdbl−2,i+1csdi,l−3e)(
∏

j∈bk−2,ic

(gn,jdkdbl−2,i+1csdi,l−3e))

=
∏

j∈di+1,k−1e

(ỹ−1j dkdbj,i+1csdi,j−1e)
∏

j∈dk,l−2e

(ỹ−1j dkdbj−1,i+1csdi,j−2e)
∏

j∈bl−2,ic

(gn,jdkdbl−2,i+1csdi,l−3e)

=
( ∏
j∈di+1,l−2e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

dk = ỹidk = x̃′i.

Now we consider the degeneracies. We let n ∈ N0, k ∈ [0, n], l ∈ [0, n+ 1], and (gn,i)i∈bn−1,0c ∈ Diagn NG. We
compute

((gn,i)i∈bn−1,0c, τ
n+1−l)skHn+1 = ((gn,i)i∈bn−1,0csk, τ

n+1−lsk)Hn+1 = ((hi)i∈bn−1,0c,σ
kτn+1−l)Hn+1

=

{
((hi)i∈bn−1,0c, τ

n+2−l)Hn+1 for k ≥ l,
((hi)i∈bn−1,0c, τ

n+1−l)Hn+1 for k < l

}
= (z̃i)i∈bn,0c,

where

hi :=


gn,i−1sk for i ∈ bn, k + 1c,
1 for i = k,

gn,isk for i ∈ bk − 1, 0c

and

z̃i :=



{
hi for i ∈ bn, l − 1c,∏
j∈di+1,l−2e(z̃

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(hjdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

}
if k ≥ l,{

hi for i ∈ bn, lc,∏
j∈di+1,l−1e(z̃

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic(hjdbl,i+1csdi,l−1e) for i ∈ bl − 1, 0c

}
if k < l.
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Furthermore, we have

((gn,i)i∈bn−1,0c, τ
n+1−l)Hnsk = (ỹi)i∈bn−1,0csk = (z̃′i)i∈bn,0c,

where

ỹi :=

{
gn,i for i ∈ bn− 1, l − 1c,∏
j∈di+1,l−2e(ỹ

−1
j dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic(gn,jdbl−1,i+1csdi,l−2e) for i ∈ bl − 2, 0c

and

z̃′i :=


ỹi−1sk for i ∈ bn, k + 1c,
1 for i = k,

ỹisk for i ∈ bk − 1, 0c.

Thus we have to show that z̃i = z̃′i for every i ∈ bn, 0c. Again, we distinguish three cases, and in each one, we
perform an induction on i ∈ bn, 0c.
We suppose that k ∈ bn, lc. For i ∈ bn, k + 1c, we calculate

z̃i = hi = gn,i−1sk = ỹi−1sk = z̃′i.

For i = k, we get

z̃k = hk = 1 = z̃′k.

For i ∈ bk − 1, l − 1c, we have

z̃i = hi = gn,isk = ỹisk = z̃′i.

For i ∈ bl − 2, 0c, we get

z̃i =
∏

j∈di+1,l−2e

(z̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(hjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(z̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−2,ic

(hjdbl−1,i+1csdi,l−2e)

=
∏

j∈di+1,l−2e

(ỹ−1j skdbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jskdbl−1,i+1csdi,l−2e)

=
( ∏
j∈di+1,l−2e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

sk = ỹisk.

Now we suppose that k = l − 1. For i ∈ bn, k + 1c, we calculate

z̃i = hi = gn,i−1sk = ỹi−1sk = z̃′i.

For i = k, we get

z̃k = hkdk+1sk = 1 = z̃′k.

For i ∈ bk − 1, 0c, we get

z̃i =
∏

j∈di+1,ke

(z̃−1j dbj,i+1csdi,j−1e)
∏

j∈bk,ic

(hjdbk+1,i+1csdi,ke)

=
∏

j∈di+1,ke

(z̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bk,ic

(hjdbk+1,i+1csdi,ke)

=
∏

j∈di+1,k−1e

(ỹ−1j skdbj,i+1csdi,j−1e)
∏

j∈bk−1,ic

(gn,jskdbk+1,i+1csdi,ke)
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=
( ∏
j∈di+1,k−1e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bk−1,ic

(gn,jdbk,i+1csdi,k−1e)
)

sk = ỹisk.

At last, we suppose that k ∈ bl − 2, 0c. For i ∈ bn, lc, we have

z̃i = hi = gn,i−1sk = ỹi−1sk = z̃′i.

For i ∈ bl − 1, k + 1c, we get

z̃i =
∏

j∈di+1,l−1e

(z̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(z̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(ỹ−1j−1skdbj,i+1csdi,j−1e)
∏

j∈bl−1,ic

(gn,j−1skdbl,i+1csdi,l−1e)

= (
∏

j∈di,l−2e

(ỹ−1j dbj,icsdi−1,j−1e)
∏

j∈bl−2,i−1c

(gn,jdbl−1,icsdi−1,l−2e))sk = ỹi−1sk = z̃′i.

For i = k, we have

z̃k =
∏

j∈dk+1,l−1e

(z̃−1j dbj,k+1csdk,j−1e)
∏

j∈bl−1,kc

(hjdbl,k+1csdk,l−1e)

=
∏

j∈dk+1,l−1e

(z̃′j
−1dbj,k+1csdk,j−1e)

∏
j∈bl−1,kc

(hjdbl,k+1csdk,l−1e)

=
∏

j∈dk+1,l−1e

(ỹ−1j−1skdbj,k+1csdk,j−1e)
∏

j∈bl−1,k+1c

(gn,j−1skdbl,k+1csdk,l−1e)

= (ỹ−1k sk)(
∏

j∈dk+1,l−2e

(ỹ−1j dbj,k+1csdk,je))(
∏

j∈bl−2,kc

(gn,jdbl−1,k+1csdk,l−1e))

= (ỹ−1k sk)
(( ∏

j∈dk+1,l−2e

(ỹ−1j dbj,k+1csdk,j−1e)
∏

j∈bl−2,kc

(gn,jdbl−1,k+1csdk,l−2e)
)

sk

)
= (ỹ−1k sk)(ỹksk) = 1

= z̃′k.

For i ∈ bk − 1, 0c, we get

z̃i =
∏

j∈di+1,l−1e

(z̃−1j dbj,i+1csdi,j−1e)
∏

j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,l−1e

(z̃′j
−1dbj,i+1csdi,j−1e)

∏
j∈bl−1,ic

(hjdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(ỹ−1j skdbj,i+1csdi,j−1e)
∏

j∈dk+1,l−1e

(ỹ−1j−1skdbj,i+1csdi,j−1e)

·
∏

j∈bl−1,k+1c

(gn,j−1skdbl,i+1csdi,l−1e)
∏

j∈bk−1,ic

(gn,jskdbl,i+1csdi,l−1e)

=
∏

j∈di+1,k−1e

(ỹ−1j skdbj,i+1csdi,j−1e)
∏

j∈dk,l−2e

(ỹ−1j skdbj+1,i+1csdi,je)
∏

j∈bl−2,ic

(gn,jskdbl,i+1csdi,l−1e)

=
( ∏
j∈di+1,l−2e

(ỹ−1j dbj,i+1csdi,j−1e)
∏

j∈bl−2,ic

(gn,jdbl−1,i+1csdi,l−2e)
)

sk = ỹisk = z̃′i.

Altogether, we obtain a simplicial map

Diag NG×∆1 H−→ Diag NG.

To prove that H is a simplicial homotopy from DGSG to idDiagNG, it remains to show that ins0H = DGSG and
ins1H = idDiagNG. For n ∈ N0, k ∈ [0, n+ 1], (gn,i)i∈bn−1,0c ∈ Diagn NG, n ∈ N0, we have

(gn,i)i∈bn−1,0c(DG)n(SG)n = (gn,idbn,i+1c)i∈bn−1,0c(SG)n = (yi)i∈bn−1,0c
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with

yi =
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gn,jdbn,j+1cdbj,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gn,jdbn,i+1csdi,n−1e)

for i ∈ bn− 1, 0c, and

((gn,i)i∈bn−1,0c, τ
n+1−k)Hn = (y

(n+1−k)
i )i∈bn−1,0c

with

y
(n+1−k)
i :=


gn,i for i ∈ bn− 1, k − 1c ∩ N0,∏
j∈di+1,k−2e((y

(n+1−k)
j )−1dbj,i+1csdi,j−1e)

·
∏
j∈bk−2,ic(gn,jdbk−1,i+1csdi,k−2e) for i ∈ bk − 2, 0c.

But by descending induction on i ∈ bn− 1, 0c, we get

yi =
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gn,jdbn,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

((y
(0)
j )−1dbj,i+1csdi,j−1e)

∏
j∈bn−1,ic

(gn,jdbn,i+1csdi,n−1e) = y
(0)
i .

Hence the simplicial map H fulfills

(gn,i)i∈bn−1,0c(ins0)nHn = ((gn,i)i∈bn−1,0c, τ
0)Hn = (y

(0)
i )i∈bn−1,0c

= (yi)i∈bn−1,0c = (gn,i)i∈bn−1,0c(DG)n(SG)n

and

(gn,i)i∈bn−1,0c(ins1)nHn = ((gn,i)i∈bn−1,0c, τ
n+1)Hn = (gn,i)i∈bn−1,0c

for each (gn,i)i∈bn−1,0c ∈ Diagn NG, n ∈ N0.
In order to prove that WG is a strong deformation retract of Diag NG, it remains to show that H is constant
along SG. Concretely, this means the following. For (gi)i∈bn−1,0c ∈WnG, we have

((gi)i∈bn−1,0c(SG)n, τ
n+1−k)Hn = ((yi)i∈bn−1,0c, τ

n+1−k)Hn = (y
(n+1−k)
i )i∈bn−1,0c,

where

yi :=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)

and

y
(n+1−k)
i :=


yi for i ∈ bn− 1, k − 1c ∩ N0,∏
j∈di+1,k−2e((y

(n+1−k)
j )−1dbj,i+1csdi,j−1e)

·
∏
j∈bk−2,ic(yjdbk−1,i+1csdi,k−2e) for i ∈ bk − 2, 0c.

Now, we have to show that y(n+1−k)
i = yi for all i ∈ bn − 1, 0c, k ∈ [0, n + 1]. For k ∈ {n + 1, 0}, this follows

since H is a simplicial homotopy from DGSG to idDiagNG and since SGDGSG = SG. So we may assume that
k ∈ bn, 1c and have to show that y(n+1−k)

i = yi for every i ∈ bk − 2, 0c. But we have

yidbk−1,i+1csdi,k−2e =
( ∏
j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)
)

dbk−1,i+1csdi,k−2e
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=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1edbk−1,i+1csdi,k−2e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1edbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1j dbj,i+1csdi,j−1edbk−1,j+1cdbj,i+1csdi,k−2e)

·
∏

j∈dk,n−1e

(y−1j dbj,i+1csdi,k−1esdk,j−1edbk−1,i+1csdi,k−2e)

·
∏

j∈bn−1,ic

(gjdbj,i+1csdi,k−1esdk,n−1edbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1j dbj,i+1cdbi+k−1−j,i+1csdi,j−1edbj,i+1csdi,k−2e)

·
∏

j∈dk,n−1e

(y−1j dbj,i+1csdi,k−1edbk−1,i+1csdi+1,i+j−kesdi,k−2e)

·
∏

j∈bn−1,ic

(gjdbj,i+1csdi,k−1edbk−1,i+1csdi+1,i+n−kesdi,k−2e)

=
∏

j∈di+1,k−1e

(y−1j dbk−1,i+1csdi,k−2e)
∏

j∈dk,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e),

and this implies, by induction on i ∈ bk − 2, 0c, that

y
(n+1−k)
i =

∏
j∈di+1,k−2e

((y
(n+1−k)
j )−1dbj,i+1csdi,j−1e)

∏
j∈bk−2,ic

(yjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bk−2,ic

(yjdbk−1,i+1csdi,k−2e)

=
∏

j∈di+1,k−2e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bk−2,i+1c

(yjdbk−1,i+1csdi,k−2e)

·
∏

j∈di+1,k−1e

(y−1j dbk−1,i+1csdi,k−2e)
∏

j∈dk,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e)

=
∏

j∈di+1,n−1e

(y−1j dbj,i+1csdi,j−1e)
∏

j∈bn−1,ic

(gjdbj,i+1csdi,n−1e) = yi

for all i ∈ bk − 2, 0c.
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