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0 Introduction

An abelian Frobenius category is an abelian category with enough injective and projective
objects, and where each injective object is projective and vice versa. For p prime and k£ € N,
the category of finitely generated Z/p*-modules, denoted by Z/p*-mod, is an example of an
abelian Frobenius category.

The stable category of an abelian Frobenius category A is defined as follows. As objects,
we take the objects of A. As morphisms, we take the residue classes [f] of the morphisms f
in A, modulo those that factorize over injective objects. This stable category is additive, but
no longer abelian. As Happel has shown [2, ch. I, sec. 2.6], it is Verdier triangulated [5, ch. I,
sec. 1-1].

In a Verdier triangulated category, one can extend any diagram of the form

X1—>X2

to a (distinguished) triangle. We refer to (X; — X3) as the base of this triangle. Two triangles
on a given base are isomorphic [1, sec. 4.1.4].
This assertion can be extended as follows. Two (generalized) triangles on a base of the form

X —Xo— ... — X,

are isomorphic [4, lem. 3.4(5)].
There is an obvious definition of (generalized) triangles on bases of the form

Xg— X4

]

X1 4>X2

in the stable category of an abelian Frobenius category. When displayed, such a triangle is a
four-dimensional diagram. The question arises whether two such triangles on the same base
are necessarily isomorphic.

In this bachelor thesis, I construct two triangles on the base

[01]
7 p? Z|p* & L/p*
Tm T[pu
]
Z[/p Z/p*.

in the stable category Z/p*-mod of Z/p*-mod, that are not isomorphic. In particular the functor
“restriction to the base” from these triangles to commutative quadrangles is not full.
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0.1 Notations

Throughout, let p be a prime number.

e We compose morphisms in the following direction: ! = . Sometimes we
write f-g = fg.

e By —e> we denote a monomorphism, by ——= an epimorphism.
e We often refer to a diagram (i.e. quadrangle)
C—D
|
A—=DB
by the tuple of its objects (A, B, C, D).
e By |A| we denote the cardinality of a given set A.

e Given a category A and objects X,Y € Obj(A), we denote the set of morphisms from X
toY by A(X, Y)

o Lett € Zs,. For k,l € Z>1, we denote:

azj @ Z/pmZ - @ Z/pn]

i€[1,k] Je[]

in Z/p'-mod and

laislis : B Z/p™ — D Z/p

1€[1,k] Jje[L]

in Z/p'-mod (see 1.10), where m;,n; < t.

Remark. If n; > m; we require that p"i~™|q; ; for welldefinedness of the maps.

For example,
(33 :Z/3®72/3* — Z/3® Z/3* in Z/3*-mod

has the residue class

19':Z/362Z/3 — Z/3 ¢ Z/3? in Z/3*-mod.
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1.1 Abelian categories

Definitions 1.1 (additive and abelian categories). Let C be a category.

1. We call C an additive category if there is a zero object 0 in Obj(C), if for all objects
X1, X3 € Obj(C) there exists a direct sum X; @ Xs, and if for each object X there is an
endomorphism —1y on X with 1y + (—1x) = 0.

Remark. For all objects X, Xo € Obj(C) the set ¢(X1, X»2) is an abelian group, and the
composition of morphisms is bilinear.

2. We call C an abelian category if it is additive, if for any morphism in C there exists a
kernel and a cokernel, if any monomorphism in C is a kernel and if any epimorphism is a
cokernel.

Definition 1.2 (additive functor). Let A, B be additive categories. A functor F : A — B is
called additive, if it satisfies the following:

1. F preserves zero objects, i.e. the object FO is a zero object in B.

2. F preserves binary direct sums, that is, if X; & X5 is a direct sum of X; and X, via
i X — X1@ Xy and m; 0 X3 & Xy — X0 € {1,2}, then F(X; ® X5) is a direct sum
of FX1 and FX2 via FLZ‘ . FXZ — F(Xl @XQ) and F?Ti . F(X1 @XQ) — FXZ,Z S {1, 2}

Remark. We apply additive functors summandwise in direct sums and componentwise in ma-
trices:

fii)ij Ffij)i;

F(@Xi(—> @y;) - (@Fxﬁﬁ @wj)

Definition 1.3 (pushout). Let A be an abelian category. Suppose given the following diagram
in A.

X' (1.1)

A commutative diagramm

X' ——Y’ (1.2)
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in A is called a pushout of (1.1) if for all 7" € Obj(.A) and all morphisms i : X' — T,
j Y — T such that gi = f7j, there exists a unique morphism % : Y’ — T such that (1.3)
commutes.

(1.3)

Remark. If g in (1.2) is a monomorphism, then so is h.

Lemma 1.4 (a pushout criterion). Let t € Zs,. Consider the following diagram in the abelian
category A = (Z/p") -mod.

The diagram is a pushout if
e the morphism (if) : X — X' @Y is a monomorphism,
e the morphism (f]') X'®Y — Y’ is an epimorphism,

e the diagram commutes and
o [X[[Y'|=|X"T]Y]

Remark. 1f i is a monomorphism, then so is (if).

1.2 Abelian Frobenius categories

Definition 1.5 (bijective object). Let B be an object in an abelian category A. We call B
a bijective object if the map 4(B, f) : 4(B,X) — 4(B,Y) is surjective for any epimorphism
f: X — Y and if the map 4(f, B) : 4(Y, B) — 4(X, B) is surjective for any monomorphism
f: X —Y.

Remark.
e This condition is equivalent to B being both projective and injective in A.
e The direct sum of bijective objects in A is bijective.

Definition 1.6 (abelian Frobenius category). Let A be a abelian category. We call A an
abelian Frobenius category if for all X € Obj(A) there is an epimorphism B —+=X and a

monomorphism X —e=B’, where B, B’ are bijective objects in A.

Remark. The category Z/p'-mod for t € Z~; is an abelian Frobenius category.



1 Theoretical preliminaries

Definitions 1.7 (stable category, residue class functor). Let A be an abelian Frobenius cate-
gory.

1. Let

Ej(X, Y):={f: X — Y | there is a bijective object B and morphisms
u:X — B,v:B—Y in Asuch that f = uv}

be the set of all morphisms that factorize over bijective objects in A .

N\

We define the stable category A of A as follows. (For welldefinedness see lemma 1.8.1.)
We let

X

Y

Obj(A) := Obj(A),
AX,Y) =4 (X,Y)/%(X,Y) for X,Y € Obj(A).
For f € 4(X,Y) we write [f] := f+zij(X, Y). Given f € 4(X,Y), g € 4(Y, Z), we define

the composite of [f] and [¢g] in A by [f]lg] := [fg]. Given X € Obj(A), we define the
identity of X in A by 1x := [1x].

2. We define the residue class functor R : A — A by
RX =X, Rf:=[f]
for X € Obj(A) and f € Mor(A). (For welldefinedness see lemma 1.8.2.)

Lemma 1.8. Let A be an abelian Frobenius category.
1. The stable category A of A is a welldefined additive category.

2. The residue class functor R : A — A is a welldefined additive functor.
Proof.

1. We prove only that the composition in A is independent of the representatives of the
composed residue classes. The axioms of a category then follow from the axioms in A.
Consider residue classes [f] = [f'], [g] = [¢] of morphisms f, f': X — Y, g,¢':Y — Z
in A. We have to show that [fg] = [f'¢/]. Since [f] = [f'], we have f — f' € J(X,Y),
that is, there exists a bijective object B and morphisms u : X — B, v’ : B — Y in
A such that uu’ = f — f'. Analogously, we have g — ¢’ € EXJ(Y, Z), that is, there exists a
bijective object C' and morphisms v : Y — C, v’ : C — Z in A such that vv' = g — ¢.
We get

fo=f9d=rfg—fa+fg—r4g
=(f=fg+1g—9)
=uu'g + flo
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Since B @ C' is a bijective object in A as a direct sum of such, we get [fg] = [f'¢].

X fa—1'g’ 7

O

Notation 1.9. The stable category of the abelian Frobenius category Z/p'-mod for t € Zx4
will be denoted by

Z/p"-mod := Z/p'-mod.

Lemma 1.10. For morphisms in Z/p3-mod we have:

Z/p3—LM<Z/p7 Z/p)

1+ pZ — [1]

Z/p —= Z/p3—LM(Z/p7 Z/p2)
1+ pZ P (]

Z/p —= Z/p3—LM(Z/p27Z/p)
1+pZ —_— [1]

Z/p — 2/ps—mod (Z/P?, L/ P?)
1+ pZ — [1]

For example in the fourth case we have the factorization

Z/p? ) Z./p?
o T
Z]p? :

Hence [r] = [0], although (») # (0).

1.3 Co-Heller sequences and shift

Throughout this section, let A be an abelian Frobenius category.

Definition 1.11 (co-Heller sequence). Let X, 1,7 € Obj(A). A co-Heller sequence of (an
object) X is a short exact sequence

X —>]—=T

where [ is bijective in A .
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Lemma 1.12 (cf. [3, lemma 5.2]). Let A be an additive category. Let X, Xy € Obj(A) and
consider co-Heller sequences X; —Z}—>Il —p+1—>T1 for X1 and X, —13—>[2 —p+2—>T2 for Xos.

1. For all morphisms f : X7 — X5 in A there are morphisms g : Iy — Iy and h : I} — I
such that the following diagram commutes.

X, -1 BT (1.4)

fl 9 h
12 v D2 v
X2 —o—>12 H—>T2

2. Consider morphisms f,g,h, f',g',h in A such that fiy = i1g, gpo = p1h, f'ia = i1q,
gp2=mhl.
X, -1, BT (1.5)
A olle Al
Xy %I, =T,
If [f1 = f'], then [h] = [I].
Proof.

1. By the definition of co-Heller sequences I is bijective, so in particular injective. Thus
there exists g : I — I, such that i1g = fis. For the existence of h consider that T} is
the cokernel of i;. Since i1gps = fisps = f0 = 0 it follows that there exists h: T} — Tp
such that pih = gp-.

)y AT (1.6)

N
12 v P2 v

Xz‘HIQH%TQ

2. We suppose that [f] = [f'], that is, f — f' € zij(Xl,Xz). So there exists a bijective object
B and morphisms v : X; — B and v’ : B — X5 in A such that f — f' = uwu’. Using
the injectivity of B, it follows that there exists @ : [y — B with u = 1.

x,— I x,
SN
- %-p

From the diagram, we see that
'ty = uu'iy = (f - f/)iz = il(g - 9/)
and hence i1((g — ¢') — @u'iy) = 0. Since T is a cokernel of iy, there is a morphism

w: Ty — I in A such that (g — ¢') — 2u'is = pyw.

i1 p1
Xl *— Il > Tl

o

12 p2
X2 *— 12 > T2
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We get
prwpz = ((9 — ¢') — @u'iz)p2 = (9 — ¢')po — W'izps = pi(h — 1').
This implies that wp, = h— k' as p; is an epimorphism. Thus we have h—h' € jj (11, T3),
that is, [h1] = [he]. O
Definition 1.13.
1. Let X € Obj(A) and s = ( X ——=I—+=T") be a co-Heller sequence for X. We set
Hy(X):=T.

2. Let ¢ : X1 — X5 be a morphism in A and let s; = ( X; —e—=1; —+=T; ) be a co-Heller
sequence for X;, i € {1,2}. We choose a morphism f : X; — X; in A fulfilling ¢ = [f]
and morphisms g : [y — Iy and h : 177 — T5 such that

X, %=1, BT (1.7)

I
Xy %>, =T,
commutes in A. We set Hy, ,(p) := [A].
Lemma 1.14.

1. Consider morphisms o1 : X1 — X5 and ¢ : Xo — X3 in A and co-Heller sequences
s; for X;,1 € {1,2,3}. We then have

H51753 (301902) = H81,52 (901) ) H82,83(902>' (18)
2. Let X € Obj(A) and s be a co-Heller sequence for X. Then
H, o(1x) = Tu,(x)- (1.9)

Proof.

1. We write s; = (X R I; 25 T;) for j € {1,2,3}. We choose morphisms f; : X; — Xy,
fo 1 Xo — X3 with ¢ = [f1], @2 = [f2]. Moreover, we choose morphisms ¢; : [1 — I,
Ggo : Iy — I3, hy : T7 — T3, hy : Ty — T3 such that the following diagram commutes.

X, -1 BT (1.10)
fli gll hll
12 D2

X14‘9[149T1

S

Xz —oI; Ty
We conclude

Hy, 55 (p102) = Hy, 55 ([f1][f2])
= H, 55 ([f1/2])
= hihs
= Hy, 5, ([f1]) - Hyy 55 ([f2])
= Hy, 5, (1) - Hy 55 (02)-



1 Theoretical preliminaries

2. We write s = (X —— I -2 T). As the diagram
1y

1x 17

commutes, we have
Hys(1x) = 1p = lu,x)- O

Definition 1.15 (shift functor). For every object X in A, choose a co-Heller sequence sx.
(This is possible since A has enough bijective objects by definition.)
We define the shift functor T : A — A by

TX :=H,, (X) for X € Obj(A) and
Ty :=Hs, s (p) for any morphism ¢ € 4(X,Y), X, Y € Obj(A).

10



2 [I-triangles

2.1 Definition of [I-triangles

Throughout this section, let A be an abelian Frobenius category.

Definition 2.1 (O-triangle model). A O-triangle model is a commutative diagram X in A of
the form

Xi/0 ) X2/0 )

such that X5,y = 0 and Xj/; is bijective in A for ¢ € {1,2,3,4} and the following quadruples

11
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are pushouts:

We call X, /4 and X; /4 auxiliary objects. Any morphism that has an auxiliary object as source
or target is called auziliary morphism and will be denoted by Z, by abuse of notation. Any
other morphism will be denoted as x, also by abuse of notation.

Definition 2.2 (O-pretriangle, morphism and base).

1. A O-pretriangle is a commutative diagram X in A of the form

X4

[z]

[z]

Xin [x][ | Xon .
“ Xs/0
X3/0 i Xu/0
(] [z]
[z] 2]
Xl/O 2 X2/0

12
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such that
[z] T[z]
X5/3*>X5/4 TX3/0*>TX4/() (21)
[z] T [z] T = Tz T Tz T
(2] T[]
X5/1*>X5/2 TX1/0*>TX2/0.

2. Let X, Y be O-pretriangles in A. A morphism of (-pretriangles is a diagram morphism
¢ : X — Y in A such that 5, = Ty, for i € {1,2,3,4}.

A morphism of [l-pretriangles that is an isomorphism in each component is called a
Jisomorphism of [J-pretriangles.

3. The base of a pretriangle X is the quadrangle (X9, Xo/0, X3/0, X4/0).
We now modify a given [-triangle model to define a standard [-triangle.

Notation 2.3. Suppose given a [J-triangle model X in A. Let i € {1,2,3,4}. Denote

Also denote
hi = HS§(7SXi/O(1Xi/O)

for morphisms from X5/ to TX; /0 in A.

13
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Definition 2.4 (standard [-triangle). Consider a O-triangle model X. The standard O-tri-
angle X obtained from X is defined to be the following diagram in A.

[x]h4 TX4/O
X4/4 -
T[z]
[z]
X33 i X3 Mh/S TX2/0
\ ] X4/2
Tlz] T[]
X2/2 ]
] [z]
TX
falhs 1o
X3n 1 Xa/1
(]
[z] (=]
(2]
Xin 1 Xon
[«] (2]
X
] 5/0
Xg/() & X4/0
(=] (]
(] (=]
X1/0 i X2/0

Lemma 2.5. Any standard O-triangle is a O-pretriangle.

Proof. Suppose given a [-triangle model X. We need to show that the standard [C-triangle
obtained from X commutes. To this end, we have to show that the quadrangles

(X4/17 X4/27 TX1/07 TX2/0)7 <X4/17 X4/37 TX1/07 TX3/0)7
(X4/27 X4/47 TXQ/O: TX4/0)7 (X4/37 X4/47 TX3/07 TX4/0)

commute. We do this exemplarily for

[z]ho

Xu2 T X,
] T[]

x|h
Xy — M TX

14
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Since (X1, Xa/2, Xs5/1, X5/2) already commutes as a subdiagram of X in A, its image under
the residue class functor R : A — A certainly commutes in A. Thus it remains to show that
the diagram

Xs/2 e TXy0
[z] T[]

X5 I TX0

commutes in A. Indeed as

(X551 A, Xs/2) = Hy, ox (X1y0 — X2/0),

we have
(X5 -, Xs/2)he = Hox ox (Xi/0 -, Xojo)Hex oy, (1x,0)
- Hs{(,sXQ (X1/0 N Xa/0)
= Hs{f,sxl <1X1/0)st1,sX2 (Xl/o ﬂ Xz/o)
= T(X1j0 25 X))
by lemma 1.14.1. ]

Definition 2.6 (O-triangle). Any [C-pretriangle isomorphic to a standard OJ triangle (in the
sense of 2.2) is called a O-triangle.

In the following two sections we give two examples Y and Y’ of O-triangles in Z/p*-mod.

2.2 The [l-triangle Y

We aim to construct a U-triangle Y having as base the commutative quadrangle

[01]

Z/p? Z/p* ® 7./ p*
T[p] T[pu
7]
Z/p Z]p.

First, we construct a [-triangle model X such that

X5/0 /0
X X / 2 (O ) o 2
3/0 4/0 Z|p*—=1ZL|p*®L/p
Tl" Tﬁ = T(p) T(Pl)
X0 —— Xy0 Z/p @) Z]p*.

To this end we construct X levelwise.

15
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1. Choose a monomorphism from Xy to a bijective object X;,;. Then construct pushouts

(X0, X0, Xij1, X 1)

for (i,7) € {(1,2),(1,3),(2,4),(3,4),(4,5)} using lemma 1.4. In fact, we may use the
induced morphism X3/1 — X4/1 for (Xg/(], X4/0,X3/1, X4/1).

2. Choose a monomorphism from X5/, to a bijective object X5/5. Then construct pushouts

(X1, X1, Xij2, X /o)

for (7,7) € {(2,4), (4,5)}.

3. Choose a monomorphism from X3/; to a bijective object X3/3. Then construct pushouts

(X1, X1, Xiss, Xj/3)

for (4,7) € {(3,4), (4,5)}.

4. Construct further pushouts
(X4/17 X4/27 X4/37 X4/4>7 (X5/17 X5/27 X5/37 X5/4)7 (X4/27 X5/27 X4/47 X5/4)-
Then (X3, Xs5/3, X4/4, X5/4) is also a pushout.

5. Choose a monomorphism from )v(4/4 to a bijective object X,/4. Construct a pushout
(X4/4, X5/4,X4/47X5/4)- Then (X4/27 X5/2, X4/4,X5/4) and (X4/3,X5/37X4/4, X5/4) are also
pushouts.

Second, we construct the standard U-triangle X.
1. Apply the residue class functor R : Z/p*-mod — Z/p*-mod to the whole diagram.

2. For i € {1,2,3,4}, replace the object X5/ by TX;)0 and the morphism X,,; — X5/; by
its composite with the isomorphism HsX,SX./O (1x,/0)-

3. Omit the auxiliary morphisms and objects (cf. definition 2.1), composing where necessary.

The following diagram in Z/p*-mod displays all construction steps so far. It contains the
[J-triangle model X, which commutes in Z/p3-mod. The whole diagram commutes only after
application of the residue class functor R : Z/p*-mod — Z/p3-mod.

16
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2 U-triangles

Z/p

—~
o ~
7 &
o
T N
(. @
[a\]
=8
/
— Z
O .
oo -
—O o
~— . e
i
2
i ™
—O p
n&/m S~— /
o N o
&= o — &
N - 2 = N
~— ZPO ~ |
N—r Z >
o
Q
N
[a\]
o,
&5 =
—~ —
o = 1P Z R
NS Ny _ : 2
S— >
N B
° =
[xp)
Q
& =
N ~ N
is%
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Bijective objects in A are mapped to zero objects in A under the residue class functor

R: A — A. We omit the summands of the form (Z/p®)®* from the X, writing 0 for the empty
sum. The resulting diagram Y, shown below, is isomorphic to X and therefore a [J-triangle.

Z/p ® Z/p
0
01]
01]
Z/10
/M
0 Z/p?
\ Z/p2
. / ] [1]
1]
[-9] 2/
/p
[1p] i
Z[p Z|p & Z/p* ]
[10]
0 Z[p [-973]
[-1] / 0
[p1]
Z/p* Z/p* ® 7./ p*
[+]
[-1] /

Z[p

2.3 The [O-triangle Y’

We construct a second [-triangle Y’ analogous to Y on the base

Z/p Z|p* & L/p*
T[p] T[Ol}
7]
Z[/p Z/p*.

18
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This time, we construct a O-triangle model X’ such that

é/o /O
/ z’ / / 5 (p1) 2 2
3/0 4/0 L|p*—=Z[/p* ®ZL]p
Tac’ Tac’ = T(p) T(pl)

T (p)

é/o Z/p

1/0 Z/p*.
Note that the morphism z’ : X} o —X 4 s differs from z : X3, — Xy0, but their images [2']
and [z] under the residue class functor are equal.
First, we construct X’ levelwise, analogously to X. Second, we pass to X', analogously to X.
The following diagram in Z/p*-mod displays the construction steps. It contains the C-tri-
angle model X’. The whole diagram commutes after application of the residue class functor
R : Z/p3*mod — Z/p*-mod. It commutes in Z/p3*-mod only incidentally.

19
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2 U-triangles

®ZL/p®

Z/p?

(01)

(01)

Z/p®Z/p°

(01)

(o1)

(=1»)

Z/p?

(-17)

Z/p®

(»?)

Z/p?

Z[p
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Analogously to Y, we obtain the desired [-triangle Y’, shown below, by an isomorphic
replacement of X'.

Z/p ©Z/p

01]

[01]

Z/p

21
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2.4 The [-triangles Y and Y’ are not isomorphic

Theorem 2.7. There exists an abelian Frobenius category A and two O-triangles in A that
both have the same base, but that are not isomorphic to each other.

Proof. Let A = Z/p*mod. Concerning morphisms in A, see lemma 1.10.
Consider Y from section 2.2 and Y’ from section 2.3. We observe that Y and Y’ have the
same basis

(p1]

Z/p? Z]p*® Z[p* .
[7] p1]

7]
Z[p Z/p?

We claim that they are not isomorphic in ,A. To prove this, it suffices to show that the
subdiagrams (Y2/1, Y1, Y3/1) and (}g/l,xq/l,yg/l) are not isomorphic.
Assume that they are isomorphic. That means there are a, b, ¢, d, e, f € Z such that

[10] [10]

Z]p Z/p®Z/p? Z[p (2.2)
o] [57] 7]
(1p] [10]
Z[p ~—Z/p ® L/p* Z[p
commutes and the vertical morphisms are isomorphisms.
Since the left quadrangle in diagram 2.2 commutes we have:
bve] = 0] 2] = [al 1] = [ama] (23)

It follows that b gp a and pc =2 pa, and therefore c %@p a.
Since the right quadrangle in diagram 2.2 also commutes we have

bre] = 0] ] = [s][10] = [0} (2.4)

We get b=, f and pc =2 0, and therefore ¢ =, 0.
Together with ® and ®® we have:

®® @
0=, c=,a=,b=, f. (2.5)
Hence [a] = [0] is not an isomorphism and [f] = [0] is not an isomorphism, which is a contra-
diction. O

Corollary 2.8. There exist a U-triangle X with base X, a O-triangle Y with base Y and a
diagram morphism f : X — Y in A such that there does not exist a morphism of triangles
f: X — Y that restricts to f.
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2 O-triangles

Proof. By theorem 2.7, there exist a O-triangle X with base X, a O-triangle Y with base Y’
such that X =Y and such that X and Y are not isomorphic as O-triangles.

Let f := 14 = 1y : X — Y. Now assume that there exists a morphism of C-triangles
f: X — Y that restricts to f. Then

Xi/o Xk/0 Xi X5/
fijo Trs0 Tryi Isyi
Yio Yz 0 Yy Y5/

is a morphism of ordinary (Verdier) triangles [2, section 2.5] in A for all 4,k € {1,...,4} with
i < k. Since fijo = 1x,, = ly,, for all i € {1,...,4}, it follows from [1, sec. 4.1.4] that fy; is
an isomorphism for all i, k € {1,...,4} with ¢ < k. But then f is an isomorphism of [J-triangles
in contradiction to X and Y being not isomorphic. O]
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