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Chapter 0

Introduction

0.1 Quillen model categories

In his seminal monograph “Homotopical Algebra” [10] Daniel Quillen introduced model
categories as an axiomatic framework for homotopy theory of topological spaces, simplicial
sets and chain complexes [10, Ex. on pp. I.2f]. With a slight variation, Bousfield and
Friedlander applied the concept of model categories to spectra [1, §2].

Roughly speaking, a model category in the sense of Quillen is a categoryM that has finite
limits and colimits and that is equipped with subsets CofM ⊆ MorM of cofibrations,
FibM ⊆ MorM of fibrations and QisM ⊆ MorM of quasi-isomorphisms, also known
as weak equivalences, fulfilling certain axioms [10, Def. I.1.1].

In particular, all pushouts and pullbacks exist. Furthermore, pushouts of cofibrations
along arbitrary morphisms are required to be cofibrations. Dually, pullbacks of fibrations
along arbitrary morphisms are required to be fibrations.

The notion of a model category is self-dual, which is not a priori evident when considering
the examples above.

Quillen introduces the homotopy category M[Qis−1] of M as localisation of M with
respect to QisM, in which the quasi-isomorphisms become formally inverted in the sense
of Gabriel and Zisman [5].

Under further assumptions on M, Dwyer, Hirschhorn, Kan and Smith showed that the
morphisms ofM[Qis−1] can be represented by 3-arrows, allowing for a calculus of fractions
onM[Qis−1]; cf. [4, Cor. 10.9]. For a more general approach to this 3-arrow calculus, we
refer to [14] by Sebastian Thomas.

To avoid a calculus of fractions, Quillen uses bifibrant objects as follows.

To indicate that i ∈ MorM is a cofibration, we often write X •i // Y.

To indicate that p ∈ MorM is a fibration, we often write X �p // Y.

To indicate that w ∈ MorM is a quasi-isomorphism, we often write X ≈
w // Y.

A model categoryM has a terminal object ! and an initial object ¡. Thus, one can define
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full subcategories Mcof of cofibrant objects, Mfib of fibrant objects and Mbif of bifibrant
objects by letting

ObMcof := {X ∈ ObM : ¡ • // X }

ObMfib := {X ∈ ObM : X � // ! }
ObMbif := ObMcof ∩ObMfib .

In [10, Def. I.1.3], Quillen introduced left-homotopy and, dually, right-homotopy of mor-
phisms. He showed that right-homotopy yields a congruence onMcof , that left-homotopy
yields a congruence onMfib and that left- and right-homotopy coincide onMbif ; cf. [10,
pp. I.8-11]. In consequence, we obtain factor categories Mcof , Mfib and Mbif .

The homotopy and factor categories introduced by Quillen are related by the commutative
diagram of functors

Mcof
γcof //Mcof [Qis−1]

∼

��
Mbif

γ

∼
//

OO

��

M[Qis−1]

Mfib γfib

//Mfib[Qis−1],
∼

OO

where ∼ denotes an equivalence of categories [10, Th. I.1]. Thus, already Mcof , Mfib

and Mbif contain the essential homotopy-theoretic information of M.

Therefore, one can choose to work in Mcof , Mfib or Mbif only.

However, e.g. in Mbif , we have neither pushouts along cofibrations nor pullbacks along
fibrations at our disposal.

0.2 Working with Mfib or Mcof

In [2], Kenneth Brown introduced categories of fibrant objects as an axiomatization of the
full subcategory of fibrant objects in a model category.

Roughly speaking, a category of fibrant objects is a category B with finite products and
final object ! equipped with subsets FibB ⊆ MorB of fibrations and QisB ⊆ MorB of
quasi-isomorphisms fulfilling certain axioms [2, pp. 420f]. Pullbacks of fibrations along
arbitrary morphisms are required to exist and to yield a fibration. Furthermore, every
object is fibrant.

The notion of a category with fibrant objects is not self-dual.

Brown showed that the morphisms of B[Qis−1] for a category of fibrant objects B can be
represented by 2-arrows, allowing for a calculus of fractions on B[Qis−1]; cf. [2, Th. 1].

This calculus of fractions was simplified by Sebastian Thomas by considering only certain
well-behaved 2-arrows [15, Ch. II]. In particular, he made equality of morphisms tractable.

For an overview of different approaches to fibration categories, we refer to [11] by Andrei
Radulescu-Banu.
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0.3 Working with Mbif

0.3.1 Quasi-model-categories

In this work, we introduce quasi-model-categories as an axiomatization ofMbif for a model
category M.

Roughly speaking, a quasi-model-category is a category C with terminal object ! and final
object ¡ equipped with subsets Cof C ⊆ Mor C of cofibrations, Fib C ⊆ Mor C of fibrations
and Qis C ⊆ Mor C of quasi-isomorphisms fulfilling certain axioms; cf. Definition 100.
Furthermore, all objects are bifibrant.

We introduce quasi-pushouts QPO C and quasi-pullbacks QPB C as additional data for
a quasi-model-category C. They are weak pushouts resp. weak pullbacks satisfying fur-
ther properties; cf. Definitions 96 and 97, and Lemma 104. They serve as a practical
replacement for the missing pushouts and pullbacks.

The notion of a quasi-model-category is self-dual; cf. Remark 102.

0.3.2 The basic example

Let M be a model category in the sense of Definition 172, which is a slight variation
of Quillen’s original definition. We additionally require that in M, pushouts of quasi-
isomorphisms along cofibrations yield quasi-isomorphisms and, dually, pullbacks of quasi-
isomorphisms along fibrations yield quasi-isomorphisms. I.e.M is proper in the sense of
Bousfield and Friedlander [1, Def. 1.2]. On the other hand, we only require pushouts
of arbitrary morphisms along cofibrations and pullbacks of arbitrary morphisms along
fibrations to exist.

Theorem 193. Suppose that M is weakly pointed, i.e. that ¡ � // ! and ¡ • // ! .

Then Mbif carries the structure of a quasi-model-category.

0.3.3 Results

For this §0.3.3, let C be a quasi-model-category.

0.3.3.1 The homotopy category

Let X, Y ∈ Ob C. We call f0, f1 ∈ C(X, Y ) homotopic, written f0 ∼ f1 , if there exists a
commutative diagram as follows.

X X
f0 //

≈i0
��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//

i1 ≈

OO

Y Y
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Proposition 52. The homotopy relation (∼) is a congruence on C; cf. Definition 108.

Let Ho C := C/(∼) be the factor category. Let LC : C → Ho C be the residue class functor.

Let D be a category. Write [C,D] for the category of functors from C to D. We consider
the full subcategories (∼)[C,D] and Loc[C,D] of [C,D] defined by

Ob (∼)[C,D] := {F ∈ Ob[C,D] : for f, g ∈ Mor C with f ∼ g, we have Ff = Fg}
Ob Loc[C,D] := {F ∈ Ob[C,D] : F (Qis C) ⊆ IsoD}.

Theorem 62. We have the isomorphism of categories

(∼)[C,D] ←− [Ho C,D]

(U ◦ LC
β∗LC−−−→ V ◦ LC) 7→ (U

β−→ V ).

In particular, we have the universal property of the factor category; i.e. every functor
F ∈ Ob (∼)[C,D] factors uniquely over LC as F = F ◦ LC.

C F //

LC

��

D

Ho C
∃! F

==

Proposition 59. We have (∼)[C,D] = Loc[C,D].

The proof of the inclusion Ob (∼)[C,D] ⊆ Ob Loc[C,D] uses weak pushouts and weak
pullbacks; cf. Lemma 53.

As a consequence of this lemma, the residue class functor LC : C → Ho C also has the
universal property of the localisation of C with respect to the quasi-isomorphisms.

Theorem 63. We have the isomorphism of categories

Loc[C,D] ←− [Ho C,D]

(U ◦ LC
β∗LC−−−→ V ◦ LC) 7→ (U

β−→ V ).

In particular, every functor F ∈ Ob Loc[C,D] factors uniquely over LC as F = F ◦ LC.

C F //

LC

��

D

Ho C
∃! F

==

Technically speaking, we establish the homotopy category and its universal property more
generally for categories with split denominators; cf. Definition 39. The notion of a cate-
gory with split denominators is a precursor to the notion of a quasi-model-category; cf.
Definition 108. A category with split denominators is in particular a uni-fractionable
category in the sense of Sebastian Thomas [14, Def. 3.1]. We only need weak pushouts
and weak pullbacks for the construction of the homotopy category, so that no further
properties of quasi-pushouts and quasi-pullbacks were needed.
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0.3.3.2 Hirschhorn replacement

We have the following Hirschhorn replacement lemma.

Proposition 112 (Cf. [8, Cor. 7.3.12]). The following assertions (1, 2) hold in C.

(1) Suppose given

A
f //

•i
��

X

B

g

88

such that ig ∼ f . There exists B
g′ // X with g ∼ g′ and ig′ = f .

(2) Suppose given
X

_ p
��

A

f

88

g
// Y

such that fp ∼ g. There exists A
f ′ // X with f ∼ f ′ and f ′p = g.

Using this replacement lemma, we obtain the following corollaries.

Corollary 113. A quasi-pushout yields a weak pushout in Ho C.

Corollary 114. A quasi-pullback yields a weak pullback in Ho C.

0.3.3.3 Loop and suspension functor

We construct the loop and suspension functors

Ho C
ΣC // Ho C.
ΩC

oo

Cf. Definitions 141 and 153.

Theorem 160. Suppose that C is pointed, i.e. that ! ∼= ¡ .

Then the suspension functor ΣC is left adjoint to the loop functor ΩC .

In the context of model categories, this has been shown by Quillen [10, pp. I.2.9ff]. Having
only a quasi-model-category at our disposal forced us to follow an entirely different path
compared to Quillen’s original line of arguments. We hope to have achieved an accessible
proof.
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0.4 An overview diagram

We provide a diagram relating the main notions considered in this work.

FCQ-category
(Definition 92)

• fibrations

• cofibrations

• quasi-isomorphisms

Category with
split denominators

(Definition 39)

• S-denominators

• T-denominators

Quasi-model-category
(Definition 100)

• fibrations

• cofibrations

• quasi-isomorphisms

• quasi-pullbacks

• quasi-pushouts

Full subcategory of
bifibrant objects in
a model category
(Definition 178.(3))

Model category
(Definitions 172

and 174.(1))

• fibrations

• cofibrations

• quasi-isomorphisms

is a

is a

is a

(letting

SDen = Qis∩Cof

TDen = Qis∩Fib)

is contained in

is a
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0.6 Conventions

We assume the reader to be familiar with elementary category theory. An introduction
to this subject can be found in [9] or [13]. Some basic definitions and notations are given
below.

Let A, B and C be categories.

1. All categories are supposed to be small (with respect to a sufficiently big universe);
cf. [13, §3.2 and §3.3].

2. We write ObA for the set of objects and MorA for the set of morphisms of A.

Given A,B ∈ ObA, we denote the set of morphisms from A to B by A(A,B).

The identity morphism of A ∈ ObA is written as 1A or 1AA. If unambiguous, we
often write 1 := 1A .

Let f ∈ MorA. We write Source f ∈ ObA for its source and Target f ∈ ObA for
its target.

3. The composition of morphisms in A is written naturally:(
A

f−→ B
g−→ C

)
=
(
A

fg−→ C
)

=
(
A

f ·g−→ C
)
.

4. The composition of functors is written traditionally:(
A F−→ B G−→ C

)
=
(
A G◦F−−→ C

)
=
(
A GF−−→ C

)
.

5. The opposite category of A is denoted by A◦. To a morphism X
f // Y in A

corresponds the morphism Y
f◦ // X in A◦.

6. We write CoretA for the set of coretractions and RetA for the set of retractions of
A. We write IsoA = (CoretA) ∩ (RetA) for the set of isomorphisms in A.

7. Suppose given A,B ∈ ObA. If A and B are isomorphic in A, we write A ∼= B.

To indicate that ϕ ∈ A(A,B) is an isomorphism, we often write A -ϕ∼ B. Given an
isomorphism f ∈ A(A,B), we often write f− ∈ A(B,A) for its inverse.

8. A commutative diagram in A is a functor from a category associated to a poset to
the category A.
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9. If we work in a category A, diagrams are meant to be diagrams in A, unless specified
otherwise.

10. A commutative quadrangle

A
f //

a

��

B

b
��

A′ g
// B′

is sometimes denoted by (A,B,A′, B′). Note that (A,B,A′, B′) is not the same
diagram as (A,A′, B,B′), the latter being a mirror image of the former.

11. To indicate that a commutative quadrangle is a pushout, we often write

A
f //

a

��

B

b
��

A′
f ′
// B′.

To indicate that a commutative quadrangle is a pullback, we often write

A
f //

a

��

B

b
��

A′
f ′
// B′.

12. Let X
f−→ Y and Y

g−→ X in A. We say that the quadrangle

X X

Y

g

OO

X
f
oo

is commutative if the quadrangle

X X
1oo

Y

g

OO

X
f
oo

1

OO

is commutative, i.e. if fg = 1X .

13. A functor A F−→ B is called an equivalence if there exists a functor B G−→ A such that
(F ◦G) ∼= 1A and (G ◦ F ) ∼= 1B. Recall that a functor is an equivalence if and only
if it is full, faithful and dense.

14. A functor A F−→ B is called an isomorphism of categories, if F is an isomorphism in

the (1-)category of categories. Recall that a functor A F−→ B is an isomorphsim of
categories if and only if it is full, faithful and bijective on objects.

8



15. By [A,B] we denote the functor category whose objects are the functors from A to
B and whose morphisms are the transformations between such functors.

16. Suppose given

A
F
**

G

44 B
H

**

J

44 C.α�� β��

We have the transformation (H ◦ F )
β∗α
==⇒ (J ◦G) with

(β ∗ α)X := HαX · βGX = βFX · JαX

for X ∈ ObA.

Furthermore, we write β∗F := β∗1F . Thus, we have (β∗F )X = βFX for X ∈ ObA.

Moreover, we write H ∗α := 1H ∗α. Thus, we have (H ∗α)X = HαX for X ∈ ObA.

If unabiguous, we write βF := β ∗ F and Hα := H ∗ α.

17. Let A F−→ B and B G−→ A be functors. Let 1A
η−→ (G ◦ F ) and (F ◦ G)

ε−→ 1B
be transformations. We call (F,G, η, ε) an adjunction, if the following diagrams
commute.

F
Fη // F ◦G ◦ F

εF
��
F

G
ηG // G ◦ F ◦G

Gε
��
G

In this case, F is called left adjoint to G and G is called right adjoint to F . We also
write F a G. Furthermore, we call η the unit and ε the counit of the adjunction.

9
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Chapter 1

Preliminaries

1.1 The factor category

In this §1.1 we review the factor category C/(∼) of a category C with respect to a congruence
(∼) on C, the class functor R(∼) : C → C/(∼) and its (2-)universal property; cf. Definitions 3
and 4 and Proposition 12 below. This wellknown construction can for example be found in
[9, III.8] or (without the universal property) in [13, 6.4].

1.1.1 Congruences

For this §1.1.1 let C be a category.

Definition 1.

(1) Let (∼) be an equivalence relation on Mor C. We call (∼) categorical if the following
assertion holds.

Suppose given f, g ∈ Mor C with f ∼ g.

Then we have Source f = Source g and Target f = Target g, i.e.

Source f
f //
g
// Target f.

For X, Y ∈ Ob C we write (∼)X,Y := (∼) ∩ C(X, Y )×2.

(2) Let (∼) be a categorical equivalence relation on Mor C. We call (∼) a congruence
on C if the following assertion holds.

Suppose given X
f0 //

f1

// Y
g0 //
g1

// Z in C with f0 ∼ f1 and g0 ∼ g1.

Then we have f0g0 ∼ f1g1 .

Let f ∈ Mor C. We write [f ] for its equivalence class.

(3) Let (∼) be a congruence on C. We call (C, (∼)) a category with congruence.

11



Remark 2. Let (∼) be a categorical equivalence relation on Mor C. The following asser-
tions (1, 2) are equivalent.

(1) The relation (∼) is a congruence on C.

(2) The following assertions (a, b) hold.

(a) Suppose given X
f0 //

f1

// Y
g // Z in C with f0 ∼ f1. Then we have f0g ∼ f1g.

(b) Suppose given X
f // Y

g0 //
g1

// Z in C with g0 ∼ g1. Then we have fg0 ∼ fg1.

1.1.2 Factor category and class functor

For this §1.1.2 let C be a category and let (∼) be a congruence on C.

Definition 3 (and Lemma). We shall define a category C/(∼) as follows.

Let Ob (C/(∼)) := Ob C.

For X, Y ∈ Ob (C/(∼)) we define (C/(∼))(X, Y ) := C(X, Y )/(∼)X,Y .

For X, Y and Z in Ob (C/(∼)), [f ] ∈ (C/(∼))(X, Y ) and [g] ∈ (C/(∼))(Y, Z) we define

[f ] · [g] := [fg].

For X ∈ Ob (C/(∼)) we define 1
C/(∼)
X :=

[
1CX
]
.

This defines a category C/(∼).

We call C/(∼) the factor category of C modulo (∼).

If unambiguous, we often write C := C/(∼).

Proof. Suppose given X
f0 //

f1

// Y
g0 //
g1

// Z in C with [f0] = [f1] and [g0] = [g1], i.e. f0 ∼ f1

and g0 ∼ g1.

Since (∼) is a congruence, we have f0g0 ∼ f1g1, i.e. [f0g0] = [f1g1]. Thus, composition is
welldefined.

Suppose given X
[f ] // Y

[g] // Z
[h] //W in C/(∼). We have

[f ] · ([g] · [h]) = [f ] · [gh] = [f(gh)] = [(fg)h] = [fg] · [h] = ([f ] · [g]) · [h].

Furthermore, we have [f ] · [1Y ] = [f1Y ] = [f ] and [1Y ] · [g] = [1Y g] = [g].

Thus, we have a category indeed.
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Definition 4 (and Lemma). We have the functor

C
R(∼)−−→ C/(∼) = C

(X
f−→ Y ) 7→ (X

[f ]−→ Y ).

We call R(∼) the class functor of (∼).

If unambiguous, we often write R := RC := R(∼).

Proof. Suppose given X
f−→ Y

g−→ Z in C.

We have R(fg) = [fg] = [f ] · [g] = Rf ·Rg and R
(
1CX
)

=
[
1CX
]

= 1CX = 1CRX .

Thus, we have a functor indeed.

Lemma 5. The following assertions (1, 2) hold.

(1) The class functor R(∼) is full.

(2) The class functor R(∼) is bijective on objects. In particular, R(∼) is dense.

Proof. Ad (1). Suppose given X, Y ∈ Ob C. Suppose given

ϕ ∈ C(RX,RY )
D4
= C(X, Y ).

By Definition 3, there exists f ∈ C(X, Y ) with ϕ = [f ]
D4
= Rf . Thus, R is full.

Ad (2). We have Ob C D3
= Ob C and RX

D4
= X for X ∈ Ob C.

1.1.3 Universal property

For this §1.1.3 let C, D and E be categories and let (∼) be a congruence on C.

Definition 6. Let (∼)[C,D] be the full subcategory of [C,D] with

Ob (∼)[C,D] := {F ∈ Ob[C,D] : for f, g ∈ Mor C with f ∼ g, we have Ff = Fg}.

Remark 7. The following assertions (1, 2) hold.

(1) We have R(∼) ∈ Ob (∼)[C, C] ; cf. Definition 4.

(2) Suppose given F ∈ Ob (∼)[C,D] and G ∈ Ob[D, E ].

Then we have (G ◦ F ) ∈ Ob (∼)[C, E ].

13



Definition 8 (and Lemma). Let F ∈ Ob (∼)[C,D].

The following assertions (1, 2, 3) hold.

(1) We have the functor

C = C/(∼)
F−→ D

(X
[f ]−→ Y ) 7→ (FX

Ff−→ FY ).

(2) We have F ◦R(∼) = F .

(3) Suppose given F̃ ∈ [C,D] with F̃ ◦R(∼) = F . Then we have F̃ = F .

Proof. Ad (1). Suppose given X
f //

f̃

// Y
g // Z in C with f ∼ f̃ .

Since F ∈ Ob (∼)[C,D], we have Ff = F f̃ . Thus, F is welldefined on morphisms.

Furthermore, we have

F1CX
D3
= F [1CX ] = F1CX = 1DFX = 1D

FX

and
F ([f ] · [g]) = F [fg] = F (fg) = Ff · Fg = F [f ] · F [g].

Thus, F is a functor indeed.

Ad (2). Suppose given X
f−→ Y in C. We have

(F ◦R)(X
f−→ Y )

D4
= F (X

[f ]−→ Y ) = (FX
Ff−→ FY ) = F (X

f−→ Y ).

Ad (3). Suppose given X
[f ]−→ Y in C. We have

F (X
[f ]−→ Y )

D4
= (F ◦R)(X

f−→ Y ) = (F̃ ◦R)(X
f−→ Y )

D4
= F̃ (X

[f ]−→ Y ).

Lemma 9. Suppose given F ∈ Ob (∼)[C,D]. The following assertions (1, 2) hold.

(1) Suppose that F is full. Then F is full.

(2) Suppose that F is dense. Then F is dense.

Proof. Ad (1). Suppose given X, Y ∈ Ob C.

Suppose given ϕ ∈ D(FX,FY ) = D(FX,FY ). Since F is full, there exists f ∈ C(X, Y )
with Ff = ϕ. We have F [f ] = Ff = ϕ. Thus, F is full.

Ad (2). Suppose given Z ∈ ObD. Since F is dense, there exists X ∈ Ob C with FX ∼= Z.
We have FX = FX ∼= Z. Thus, F is dense.
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Definition 10 (and Lemma). Let F
α−→ G in (∼)[C,D]. Define α := (αX)X∈Ob C .

The following assertions (1, 2, 3) hold.

(1) We have F
α−→ G in [C,D].

(2) We have α ∗R(∼) = α.

(3) Suppose given F
α̃−→ G with α̃ ∗R(∼) = α. Then we have α̃ = α.

Proof. Ad (1). For X ∈ Ob C = Ob C, we have (FX
αX−−→ GX)

D8
= (FX

αX−−→ GX).

We show that α is natural. Suppose given X
[f ]−→ Y in C. We have

αX ·G[f ]
D8
= αX ·Gf = Ff · αY

D8
= F [f ] · αY . FX = FX

Ff=F [f ] //

αX

��

FY = FY

αY

��

GX = GX
Gf=G[f ]

// GY = GY
Ad (2). Suppose given X ∈ Ob C. We have

(α ∗R)X = αRX
D4
= αX = αX .

Ad (3). Suppose given X ∈ Ob C. We have

α̃X
D4
= α̃RX = (α̃ ∗R)X = αX = αX .

Remark 11. Suppose given an isotransformation F α
∼
// G in (∼)[C,D]. Then we have

an isotransformation F α
∼
// G.

Proof. This follows since αX = αX for X ∈ Ob C = Ob C; cf. Definition 10.

Proposition 12. Recall that C and D are categories.

Recall that (∼) is a congruence on C and that C = C/(∼). Cf. Definitions 1 and 3.

The following assertions (1, 2) hold.

(1) We have R(∼) ∈ Ob (∼)[C, C]; cf. Definitions 4 and 6.

Suppose given F
α−→ G in (∼)[C,D].

We have unique F ,G ∈ [C,D] with F ◦R(∼) = F and G◦R(∼) = G; cf. Definition 8.

We have a unique transformation F
α

=⇒ G with α ∗R(∼) = α; cf. Definition 10.

C

G

��
F

))

R(∼) // C

G

		

F

��
D

α =E α +3
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(2) We have the isomorphism of categories

(∼)[C,D] ←− [C,D]

(U ◦R(∼)

β∗R(∼)−−−−→ V ◦R(∼)) 7→ (U
β−→ V )

with inverse
(∼)[C,D] −→ [C,D]

(F
α−→ G) 7→ (F

α−→ G) .

Proof. Ad (1). This follows from Definitions 8 and 10.

Ad (2). This follows from (1) and Remark 7.

1.1.4 Functoriality

For this §1.1.4, let
(
C, ( C∼)

)
,
(
D, (D∼)

)
and

(
E , ( E∼)

)
be categories with congruences.

By abuse of notation, we write (∼) = (
C∼) and (∼) = (

D∼), etc.

Definition 13. Let Ho[C,D] be the full subcategory of [C,D] with

Ob Ho[C,D] := {F ∈ Ob[C,D] : RD ◦ F ∈ Ob (∼)[C,D]}
= {F ∈ Ob[C,D] : for f, g ∈ Mor C with f ∼ g, we have Ff ∼ Fg}.

Definition 14 (and Lemma). Let F ∈ Ob Ho[C,D].

Let HoF := (RD ◦ F ); cf. Definition 8.(1).

The following assertions (1, 2, 3) hold.

(1) We have

C = C/(∼)
HoF−−→ D/(∼) = D

(X
[f ]−→ Y ) 7→ (FX

[Ff ]−−→ FY ).

(2) We have RD ◦ F = (HoF ) ◦RC .

C F //

RC
��

D
RD
��

C
HoF

// D

(3) Suppose given F̃ ∈ Ob[C,D] with RD ◦ F = F̃ ◦RC. Then we have F̃ = HoF .

Proof. By Definition 8.(2), there exists a functor(
C HoF−−→ D

)
=

(
C (RD◦F )−−−−→ D

)
16



with RD ◦ F = (HoF ) ◦RC .

By Definition 8.(3), this equality determines HoF uniquely.

Furthermore, we have

(HoF )
(
X

[f ]−→ Y
)

D8.(1)
=

(
(RD ◦ F )X

(RD◦F )f−−−−−→ (RD ◦ F )Y
)

D4
=
(
FX

[Ff ]−−→ FY
)

for X
[f ]−→ Y in C.

Lemma 15. Suppose given F ∈ Ob Ho[C,D] and G ∈ Ob Ho[D, E ].

The following assertions (1, 2) hold.

(1) We have Ho 1C = 1C .

(2) We have G ◦ F ∈ Ob Ho[C, E ] and Ho(G ◦ F ) = HoG ◦ HoF .

Proof. Ad (1). Suppose given X
[f ]−→ Y in C. We have

(Ho 1C)
(
X

[f ]−→ Y
)

=
(

1CX
[1Cf ]−−−→ 1CY

)
=
(
X

[f ]−→ Y
)

= 1C

(
X

[f ]−→ Y
)
.

Ad (2). Suppose given X
[f ]−→ Y in C. We have

(Ho(G ◦ F ))
(
X

[f ]−→ Y
)

=
(

(G ◦ F )X
[(G◦F )f ]−−−−−→ (G ◦ F )Y

)
= (HoG)

(
FX

[Ff ]−−→ FY
)

= ((HoG) ◦ (HoF ))
(
X

[f ]−→ Y
)
.

Definition 16 (and Lemma). Suppose given F
α−→ G in Ho[C,D]. Define

Hoα := (RD ∗ α) : HoF - HoG;

cf. Definition 10. The following assertions (1, 2, 3) hold.

(1) We have (Hoα)X = [αX ] for X ∈ Ob C.

(2) We have (Hoα) ∗RC = RD ∗ α.

(3) Suppose given HoF
α̃−→ HoG with α̃ ∗RC = RD ∗ α. Then we have α̃ = Hoα.

Proof. We have the transformation (RD ◦ F )
RD∗α−−−→ (RD ◦G).

By Definition 10.(2), there exists a unique transformation(
HoF

Hoα−−→ HoG
)

D14
=

(
(RD ◦ F )

(RD∗α)−−−−→ (RD ◦G)

)
with (Hoα) ∗RC = RD ∗ α.

By Definition 10.(3), this equality defines Hoα uniquely.

Furthermore, we have (Hoα)X
D10
= (RD ∗ α)X = RDαX

D4
= [αX ] for X ∈ Ob C.
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Lemma 17. Suppose given F
α−→ F ′ and F ′

α′−→ F ′′ in Ho[C,D].

The following assertions (1, 2) hold.

(1) We have Ho 1F = 1HoF .

(2) We have Ho(αα′) = Hoα · Hoα′.

Proof. Ad (1). Suppose given X ∈ Ob C. We have

(Ho 1F )X = [(1F )X ] = [1DFX ] = 1DFX = 1D(HoF )X = (1HoF )X .

Ad (2). Suppose given X ∈ Ob C. We have

(Ho(αα′))X = [(αα′)X ] = [αX ·α′X ] = [αX ]·[α′X ] = (Hoα)X ·(Hoα′)X = ((Hoα)·(Hoα′))X .

Lemma 18. Suppose given F
α−→ F ′ in Ho[C,D] and G

β−→ G′ in Ho[D, E ].

We have Ho(β ∗ α) = (Ho β) ∗ (Hoα).

Proof. Suppose given X ∈ Ob C. We have

(Ho(β ∗ α))X
D16.(1)

= [(β ∗ α)X ]

= [GαX · βF ′X ]

= [GαX ] · [βF ′X ]
D14.(1),D16.(1)

= (HoG)[αX ] · (Ho β)F ′X
D14.(1),D16.(1)

= (HoG)(Hoα)X · (Ho β)(HoF ′)X

= (Ho β ∗ Hoα)X .

1.2 A remark on isomorphisms

For this §1.2, let C be a category.

Remark 19. Suppose given A
f−→ B

g−→ C
h−→ D in C.

Suppose that fg, gh ∈ Iso C. Then we have f, g, h, fgh ∈ Iso C.

B

g

��

gh

∼
// D

A

f

AA

fg

∼ //

fgh

55

C

h

@@

18



Proof. It suffices to show that f, g, h ∈ Iso C.

We have
g · h(gh)− = 1B and (fg)−f · g = 1C .

Thus, we have g ∈ (Coret C) ∩ (Ret C) = Iso C. Furthermore, we have

f · g(fg)− = 1A and g(fg)− · f = g(fg)− · f · gg− = gg− = 1B .

Similarily, we have

(gh)−g · h = 1D and h · (gh)−g = g−g · h · (gh)−g = g−g = 1C .

1.3 Retracts and lifting properties

In this §1.3 we introduce rectracts and the extension properties. Furthermore, we establish
the well known rectract argument; cf. for example [8, Prop. 7.2.2].

For this §1.3 let C be a category.

Definition 20. Let A
a−→ A′ and B

b−→ B′ in C.

We call a a retract of b if there exists a commutative diagram as follows.

A

a

��

f
//

1

%%
B

b

��

g
// A

a

��
A′

f ′ //

1

99B′
g′ // A′

Definition 21. Let A
a−→ A′ and B

b−→ B′ in C.

We call (a, b) an extension pair if the following assertion (∗) holds.

(∗) Suppose given A
f−→ B and A′

f ′−→ B′ with af ′ = fb.

Then there exists A′
h−→ B with ah = f and hb = f ′.

A
f //

a

��

B

b

��
A′

f ′
//

h

>>

B′
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Lemma 22. Suppose given A
i−→ B

j−→ C and X
p−→ Y

q−→ Z.

The follwing assertions (1, 2) hold.

(1) Suppose that (i, p) and (j, p) are extension pairs. Then (ij, p) is an extension pair.

(2) Suppose that (i, p) and (i, q) are extension pairs. Then (i, pq) is an extension pair.

Proof. Ad (1). Suppose given A
f−→ X and C

g−→ Z with ijg = fp.

Since (i, p) is an extension pair, there exists B
k−→ X with ik = f and jg = kp.

Since (j, p) is an extension pair, there exists C
h−→ X with jh = k and hp = g.

Thus, we have hp = g and (ij)h = ik = f . Therefore, (ij, p) is an extension pair.

A
f //

i
��

X

p

��

B

j

��

k
>>

C g
//

h

GG

Z

Ad (2). This is dual to (1).

Lemma 23 (The retract argument, [8, Prop. 7.2.2]).

Suppose given X
i−→ Y

p−→ Z in C. The following assertions (1, 2) hold.

(1) Suppose that (ip, p) is an extension pair. Then ip is a retract of i.

(2) Suppose that (i, ip) is an extension pair. Then ip is a retract of p.

Proof. Ad (1). Since (ip, p) is an extension pair, there exists a commutative diagram as
follows.

X
i //

ip

��

Y

p

��
Z

h
>>

Z

Thus, we have the following commutative diagram.

X

ip

��

X

i
��

X

ip

��
Z

h //

1

::Y
p // Z

Ad (2). This is dual to (1).
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1.4 (Weak) pushouts and (weak) pullbacks

For this §1.4, let C be a category.

Definition 24. A commutative quadrangle

A
f //

a

��

B

b
��

A′
f ′
// B′

is called a weak pushout, if the following assertion (∗) holds.

(∗) Suppose given A′
x // T B

yoo with ax = fy.

Then there exists B′ u // T such that the following diagram commutes.

A
f //

a

��

B

b
�� y



A′
f ′
//

x 22

B′

u

  
T

To indicate that a commutative quadrangle (A,B,A′, B′) is a weak pushout, we often
write

A
f //

a

�� W

B

b
��

A′
f ′
// B′.

Definition 25. A commutative quadrangle

A
f //

a

��

B

b
��

A′
f ′
// B′

is called a weak pullback, if the following assertion (∗) holds.

(∗) Suppose given A′ T
xoo y // B with xf ′ = yb.

Then there exists T
u // A such that the following diagram commutes.

T
u

  

y

��

x

''

A
f //

a

��

B

b
��

A′
f ′
// B′
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To indicate that a commutative quadrangle (A,B,A′, B′) is a weak pullback, we often
write

A
f //

a

��

W
B

b
��

A′
f ′
// B′.

Remark 26. Let

A
f //

a

��

B

b
��

A′
f ′
// B′

be a commutative diagram in C.

The following assertions (1, 2) are equivalent.

(1) The quadrangle (A,B,A′, B′) is a weak pushout.

(2) The quadrangle (A,A′, B,B′) is a weak pushout.

The following assertions (3, 4) are equivalent.

(3) The quadrangle (A,B,A′, B′) is a weak pullback.

(4) The quadrangle (A,A′, B,B′) is a weak pullback.

Lemma 27. Suppose given

A
f //

a

�� W

B
g //

b
�� W

C

c

��
A′

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is a weak pushout.

Proof. Suppose given A′ x // T C
yoo with ax = fgy.

Since (A,B,A′, B′) is a weak pushout, there exists a commutative diagram as follows.

A
f //

a

��

B

b
�� gy



A′
f ′
//

x 22

B′

k

  
T
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Since (B,C,B′, C ′) is a weak pushout, there exists a commutative diagram as follows.

B
g //

b
��

C

c

�� y



B′
g′
//

k
22

C ′

h

  
T

Thus, the following diagram commutes.

A
fg //

a

��

C

c

�� y



A′
f ′g′
//

x 22

C ′

h

  
T

Lemma 28. Suppose given

A
f //

a

��

W
B

g //

b
��

W
C

c

��
A′

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is a weak pullback.

Proof. This is dual to Lemma 27.

Definition 29. A weak pushout

A
f //

a

�� W

B

b
��

A′
f ′
// B′

is called a pushout, if the following assertion (∗) holds.

(∗) Suppose given B′
u //
v
// T with f ′u = f ′v and bu = bv.

Then we have u = v.

To indicate that a commutative quadrangle (A,B,A′, B′) is a pushout, we often write

A
f //

a

��

B

b
��

A′
f ′
// B′.
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Definition 30. A weak pullback

A
f //

a

��

W
B

b
��

A′
f ′
// B′

is called a pullback, if the following assertion (∗) holds.

(∗) Suppose given T
u //
v
// A with uf = vf and ua = va.

Then we have u = v.

To indicate that a commutative quadrangle (A,B,A′, B′) is a pullback, we often write

A
f //

a

��

B

b
��

A′
f ′
// B′.

Remark 31. Let

A
f //

a

��

B

b
��

A′
f ′
// B′

be a commutative diagram in C. The following assertions (1, 2) are equivalent.

(1) The quadrangle (A,B,A′, B′) is a pushout.

(2) The quadrangle (A,A′, B,B′) is a pushout.

The following assertions (3, 4) are equivalent.

(3) The quadrangle (A,B,A′, B′) is a pullback.

(4) The quadrangle (A,A′, B,B′) is a pullback.

Lemma 32. Suppose given

A
f //

a

��

B
g //

b
��

C

c

��
A′

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is a pushout.

Proof. By Lemma 27, the quadrangle (A,C,A′, C ′) is a weak pushout.

Suppose given C ′
u //
v
// T with f ′g′u = f ′g′v and cu = cv.

Since f ′ · g′u = f ′ · g′v and b · g′u = b · g′v, we obtain g′u = g′v; cf. Definition 29.

Since g′u = g′v and cu = cv, we obtain u = v; cf. Definition 29.
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Lemma 33. Suppose given

A
f //

a

��

B
g //

b
��

C

c

��
A′

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is a pullback.

Proof. This is dual to Lemma 32.

Lemma 34. Suppose given the following commutative diagram.

A
f //

a

��

h

  
B

b
��

g // C

c

��
A′

f ′
//

h′

??B′
g′ // C ′

Then (B,C,B′, C ′) is a pushout.

Proof. Suppose given B′
x // T C

yoo with bx = gy.

Since (A,C,A′, C ′) is a weak pushout, we have a commutative diagram as follows.

A
fg //

a

��

C

c

�� y



A′
f ′g′
//

f ′x
22

C ′

u

  
T

Cf. Definitions 24 and 29.

Since we have f ′ · g′u = f ′ · x and b · g′u = gcu = gy = b · x, and since (A,B,A′, B′) is a
pushout, we obtain g′u = x.

Since the diagram

B
g //

b
��

C

c

�� y



B′
g′
//

x 22

C ′

u

  
T

commutes, (B,C,B′, C ′) is a weak pushout.

It remains to show that (B,C,B′, C ′) fullfills (∗) from Definition 29.
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Suppose given C ′
u //
v
// T with cu = cv and g′u = g′v.

Since f ′g′ · u = f ′g′ · v and cu = cv, we obtain u = v; cf. Definition 29.

Lemma 35. Suppose given

A
f //

a

��

B

b
��

A′
f ′
// B′

and A
f //

a

��

B

b̂
��

A′
f̂

// B̂.

The following assertions (1, 2, 3) hold.

(1) There exists a commutative diagram as follows.

A
f //

a

��

B

b
�� b̂

��

A′
f ′
//

f̂
11

B′

u

��
B̂

(2) Suppose given commutative diagrams

A
f //

a

��

B

b
�� b̂

��

A′
f ′
//

f̂
11

B′

u

��
B̂

and A
f //

a

��

B

b̂
�� b



A′
f̂

//

f ′ 11

B̂
v

��
B′.

Then we have uv = 1B′ and vu = 1B̂ .

(3) Suppose given a commutative diagram as follows.

A
f //

a

��

B

b
�� b̂

��

A′
f ′
//

f̂
11

B′

u

��
B̂

Then we have u ∈ Iso C.

Proof. Ad (1). This holds since (A,B,A′, B′) is a weak pushout; cf. Definitions 24 and 29.

Ad (2). By symmetry, it suffices to show that uv = 1B′ .

Since f ′ · uv = f̂v = f ′ and b · uv = b̂v = b, we obtain uv = 1B′ ; cf. Definition 29.

Ad (3). This follows from (1) and (2).
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1.5 Equivalences and adjoint functors

In this §1.5, we recapitulate elementary facts about equivalences of categories and adjoint
functors. In particular, we recall that mutually inverse equivalences are also adjoint func-
tors.

For this §1.5, let C, D and E be categories.

Lemma 36. Suppose given mutually inverse equivalences F ∈ [C,D] and G ∈ [D, C].

Suppose given F ◦ G -β∼ 1D . Then there exists 1C -α∼ G ◦ F such that (F,G, α, β) is an
adjunction.

Proof. Suppose given X ∈ Ob C.

Since F is full and faithful, there uniquely exists αX ∈ C(X,GFX) with

FαX = β−FX .

We show that α := (αY )Y ∈Ob C is natural, i.e. that α ∈ [C,C](1C, G ◦ F ).

Suppose given Y
f−→ Z in C. We show that the following diagram is commutative.

Y
αY //

f
��

GFY

GFf
��

Z
αZ // GFZ

Applying F , we obtain the following diagram.

FY
FαY =β−FY //

Ff

��

FGFY

FGFf

��
FZ

FαZ=β−FZ // FGFZ

Since β is natural, the latter diagram commutes. Since F is full and faithful, the former
diagram commutes as well. Therefore, α is natural.

By construction, we have Fα · βF = 1F .

We show that αG ·Gβ = 1G.

Suppose given Y ∈ ObD. We have to show that αGY ·GβY = 1GY .

Since F is faithful, it suffices to show that FαGY · FGβY
!

= F1GY = 1FGY .

Thus, it suffices to show that β−FGY · FGβY = 1FGY .

Since β is natural, the following diagram commutes.

FGFGY
βFGY //

FGβY
��

FGY

βY
��

FGY
βY

// Y

Since β is an isotransformation, we obtain βFGY = FGβY , as needed.
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Lemma 37. Let (F,G, η, ε) and (F, G̃, η̃, ε̃) be adjunctions with F ∈ Ob[C,D].

Let γ := (η̃G) · (G̃ε) ∈ [D,C](G, G̃) and γ̃ := (ηG̃) · (Gε̃) ∈ [D,C](G̃, G).

Then the following assertions (1, 2) hold.

(1) We have γ ∈ Iso[D, C] with γ− = γ̃. In particular, we have G
γ

∼
// G̃ .

(2) The following diagrams commute.

1C
η //

η̃
$$

G ◦ F
γF

��

G̃ ◦ F

F ◦G
Fγ

��

ε // 1D

F ◦ G̃
ε̃

;;

Proof. Ad (1). We show have to show that γ · γ̃ = 1G and γ̃ · γ = 1G̃ . By symmetry, it
suffices to show that γ · γ̃ = 1G .

Suppose given Y ∈ ObD. We have to show that

1GY
!

= γY · γ̃Y = η̃GY · G̃εY · ηG̃Y ·Gε̃Y .

Since η and ε̃ are natural, we have the following commutative diagram.

GY
ηGY //

η̃GY

��

GFGY

GFη̃GY

��

G̃FGY ηG̃FGY

//

G̃εY
��

GFG̃FGY

GFG̃εY
��

Gε̃FGY // GFGY

GεY
��

G̃Y ηG̃Y

// GFG̃Y
Gε̃Y

// GY

Thus, it suffices to show that

ηGY ·GFη̃GY ·Gε̃FGY ·GεY
!

= 1GY .

Since ηG ·Gε = 1G , it suffices to show that

GFη̃GY ·Gε̃FGY
!

= 1GFGY .

This holds, since we have F η̃ · ε̃F = 1F .

Ad (2). Suppose given X ∈ Ob C. We have to show that

η̃X
!

= ηX · γFX = ηX · η̃GFX · G̃εFX .

Since η̃ is natural, the following diagram commutes.

X
ηX //

η̃X
��

GFX

η̃GFX

��

G̃FX
G̃FηX

// G̃FGFX
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Thus, it suffices to show that

η̃X · G̃FηX · G̃εFX
!

= η̃X .

This holds, since Fη · εF = 1F .

Suppose given Y ∈ ObD. We have to show that

εY
!

= FγY · ε̃Y = F η̃GY · FG̃εY · ε̃Y .

Since ε̃ is natural, the following diagram commutes.

FG̃FGY
FG̃εY //

ε̃FGY

��

FG̃Y

ε̃Y
��

FGY εY
// Y

Thus, it suffices to show that

F η̃GY · ε̃FGY · εY
!

= εY .

This holds, since F η̃ · ε̃F = 1F .

Lemma 38. Suppose given adjunctions (F,G, η, ε) and (F ′, G′, η′, ε′) with F ∈ Ob[C,D]
and F ′ ∈ Ob[D, E ].

We have the adjunction (F ′ ◦ F,G ◦G′, η ·Gη′F, F ′εG′ · ε′).

Proof. We have the following transformations.

1C
η // GF

Gη′F // GG′F ′F

F ′FGG′
F ′εG′

// F ′G′
ε′

// 1E

Thus, we need to show that the following diagrams commute.

F ′F
F ′F (η·Gη′F ) // F ′FGG′F ′F

(F ′εG′·ε′)F ′F
��

F ′F

GG′
(η·Gη′F )GG′ // GG′F ′FGG′

GG′(F ′εG′·ε′)
��

GG′

Since ε′ is natural and (F,G, η, ε) and (F ′, G′, η′, ε′) are adjunctions, the diagram

F ′F
F ′Fη // F ′FGF

F ′FGη′F //

F ′εF
��

F ′FGG′F ′F

F ′εG′F ′F
��

F ′F
F ′η′F

// F ′G′F ′F

ε′F ′F
��

F ′F
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commutes.

Since η′ is natural and (F,G, η, ε) and (F ′, G′, η′, ε′) are adjunctions, the diagram

GG′
ηGG′ // GFGG′

Gη′FGG′ //

GεG′

��

GG′F ′FGG′

GG′F ′εG′

��
GG′

Gη′G′
// GG′F ′G′

GG′ε′

��
GG′

commutes.

30



Chapter 2

Categories with split denominators

In this chapter 2, we introduce categories with split denominators; cf. Definition 39 below.
For these categories we establish a notion of homotopy, the homotopy category and its
2-universal property; cf. Definitions 50 and 55 and Theorem 62 below.

The notion of a category with split denominators is a precursor to the notion of a quasi-
model-category; cf. Definitions 100 and 108 below.

2.1 Axioms for categories with split denominators

Definition 39. Let C be a category.

Let SDen C and TDen C be subsets of Mor C.

The elements of SDen C are called S-denominators. To indicate that s ∈ Mor C is an
S-denominator, we often write

X ◦s // Y.

The elements of TDen C are called T-denominators. To indicate that t ∈ Mor C is a
T-denominator, we often write

X
t // Y.

Let

Den C := {f ∈ Mor C : ∃ (s, t) ∈ SDen C × TDen C with f = st}.

The elements of Den C are called denominators. To indicate that d ∈ Mor C is a denomi-
nator, we often write

X ≈
d // Y.

We call (C, SDen C,TDen C) a category with split denominators if the following axioms
(SSDen, STDen, SDen) hold. We often refer to just C as a category with split denominators.
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SSDen The following assertions (1, 2, 3, 4) hold.

(1) Suppose given X ◦s
′
// Y ◦s

′′
// Z in C. Then we have s′s′′ ∈ SDen C.

(2) Suppose given X ∈ Ob C. We have 1X ∈ SDen C.

(3) We have SDen C ⊆ Coret C.

(4) Suppose given X ′ X◦soo
f // Y in C. There exists a weak pushout

X

W

f //

◦s
��

Y

◦s′
��

X ′
f ′
// Y ′

in C.

STDen The following assertions (1, 2, 3, 4) hold.

(1) Suppose given X t′ // Y t′′ // Z in C. Then we have t′t′′ ∈ TDen C.

(2) Suppose given X ∈ Ob C. We have 1X ∈ TDen C.

(3) We have TDen C ⊆ Ret C.

(4) Suppose given X ′
f ′ // Y ′ Y

t′oo in C. There exists a weak pullback

X
W

f //

t
��

Y

t′

��
X ′

f ′
// Y ′

in C.

SDen Suppose given X
f // Y

g // Z in C. The following assertions (1, 2, 3) hold.

(1) Suppose that f, g ∈ Den C. Then we have fg ∈ Den C.

(2) Suppose that f, fg ∈ Den C. Then we have g ∈ Den C.

(3) Suppose that g, fg ∈ Den C. Then we have f ∈ Den C.

Remark 40. A category with split denominators is a uni-fractionable category as de-
fined by Thomas [14, Def. 3.1] such that all S-denominators are coretractions and all
T-denominators are retractions. Whereas in our context, it is no longer necessary to
work with fractions, we have kept the notions of denominators, S-denominators and T-
denominators.
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Remark 41. The full subcategory of bifibrant objects Mbif in a model category

(M,QisM,CofM,FibM)

is a category with split denominators for

SDen(Mbif) = QisM∩ CofM∩Mor(Mbif)

and
TDen(Mbif) = QisM∩ FibM∩Mor(Mbif).

Furthermore, we have
Den(Mbif) = QisM∩Mor(Mbif).

Cf. Definition 108 and Theorem 193 below.

Remark 42. Let C be a category. Let

SDen C := {1X : X ∈ Ob C}
TDen C := {1X : X ∈ Ob C}.

Then C is a category with split denominators. So, in general Iso C 6⊆ Den C.

2.2 Elementary properties

In the sequel, the results of this §2.2 are often used tacitly.

For this §2.2 let C be a category with split denominators.

Remark 43. Suppose given X ≈
q // Y in C.

Then there exists a commutative diagram as follows.

X ≈
q //

◦
i   

Y

Z

p

??

Cf. Definition 39.

Remark 44. The following assertions (1, 2, 3) hold.

(1) We have SDen C ⊆ Den C.

(2) We have TDen C ⊆ Den C.

(3) Suppose given X ∈ Ob C. We have 1X ∈ Den C.

Proof. Ad (1). This follows from STDen.(2).

Ad (2). This follows from SSDen.(2).

Ad (3). This follows from SSDen.(2) and STDen.(2).
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Remark 45. The following assertions (1, 2) hold.

(1) Suppose given X ◦s // Y in C. Then there exists a commutative diagram as follows.

X

◦s
  

1 // X

Y

≈
s′

>>

(2) Suppose given X t // Y in C. Then there exists a commutative diagram as follows.

Y

≈
t′   

1 // Y

X

t

>>

Proof. Ad (1). This follows from Remark 44.(1,3) and SDen.(2).

Ad (2). This follows from Remark 44.(2,3) and SDen.(3).

Remark 46. Suppose given the following commutative diagram.

X ≈
d //

≈x

��

Y

X ′
d′
// Y ′

≈y′

OO

Then we have d′ ∈ Den C.

Proof. Since we have xd′ · y′ = d, we obtain xd′ ∈ Den C; cf. SDen.(3).

Thus, we obtain d′ ∈ Den C; cf. SDen.(2).

2.3 A lemma on factorisations

In this §2.3 we establish a lemma in categories with split denominators which could be
expressed by saying that they admit a weaker variant of functorial factorisations of denom-
inators.

For this §2.3 let C be a category with split denominators.

Lemma 47 (Cf. also [14, Lem. 5.1]). The following assertions (1, 2) hold.

(1) Suppose given the following commutative diagram.

X
p

��
A ≈

u //

f

��

◦i
AA

C

g

��
B ≈

v
// D
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Then there exists a commutative diagram as follows.

X
p

��

h
��

A ≈
u

//

f

��

◦i
AA

C

g

��

Y
q

��
B ≈

v
//

◦
j AA

D

(2) Suppose given the following commutative diagram.

A ≈
u //

f

��

C

g

��

Y
q

��
B ≈

v
//

◦
j
AA

D

Then there exists a commutative diagram as follows.

X
p

��

h
��

A ≈
u

//

f

��

◦i
AA

C

g

��

Y
q

��
B ≈

v
//

◦
j AA

D

Proof. Ad (1). We have a commutative diagram as follows.

A

W

◦i //

f

��

X

f̃
��

pg

��

B ◦
m
//

≈

v ..

X̃

≈k

��
D

Cf. SSDen.(4) and SDen.(2). There exists a commutative diagram as follows.

X̃ ≈
k //

◦
l ��

D

Y

q

??
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Finally, we have the following commutative diagram.

X
p

  

f̃ l
��

A ≈
u

//

f

��

◦i
>>

C

g

��

Y
q

  
B ≈

v
//

◦
ml >>

D

Cf. SSDen.(1).

Ad (2). This is dual to (1).

Corollary 48. Let C be a category with split denominators.

Suppose given a commutative diagram as follows.

A ≈
u //

f

��

C

g

��
B ≈

v
// D

Then there exists a commutative diagram as follows.

X
p

��

h
��

A ≈
u

//

f

��

◦i
AA

C

g

��

Y
q

��
B ≈

v
//

◦
j AA

D

Proof. There exists a commutative diagram as follows.

A ≈
u //

◦
i   

C

X

p

>>

Thus, the assertion follows from Lemma 47.(1).

2.4 Homotopy

In this §2.4, we establish the homotopy relation for a category with split denominators and
show that it is a congruence; cf. Definition 50 and Proposition 52 below.

For this §2.4 let C be a category with split denominators.
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Lemma 49. Let X, Y ∈ Ob C. Suppose given X
f0 //

f1

// Y in C.

The following assertions (1, 2, 3′, 3′′) on f0 and f1 are equivalent.

(1) There exists a commutative diagram as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//
≈i1

OO

Y Y

(2) There exists a commutative diagram as follows.

X X
f0 // Y Y

X X

≈j0

��

f̂0 // Y ′

≈ q0

OO

≈ q1

��

Y≈
yoo

X X ′≈
xoo f̂1 // Y Y

X X

≈j1

OO

f1

// Y Y

(3′) There exists a commutative diagram as follows.

X X
f0 //

≈k0

��

Y Y

X X̂τoo f̂ // Ŷ

r0

OO

≈ r1

��

Y◦σoo

X X
f1

//

◦k1

OO

Y Y
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(3′′) There exists a commutative diagram as follows.

X X
f0 //

◦k0

��

Y Y

X X̂
τoo f̂ // Ŷ

≈ r0

OO

r1

��

Y◦σoo

X X
f1

//

≈k1

OO

Y Y

Proof. Ad (1)⇒ (2). By assumption, we have a commutative diagram as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//

≈i1

OO

Y Y

Thus, we have the following commutative diagram.

X X
f0 // Y Y

X X

≈i0

��

i0f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X̂≈
too f̂p1 // Y Y

X X

≈i1

OO

f1

// Y Y

Ad (2)⇒ (3′′). By assumption, we have a commutative diagram as follows.

X X
f0 // Y Y

X X

≈j0

��

f̂0 // Y ′

≈ q0

OO

≈ q1

��

Y≈
yoo

X X ′≈
xoo f̂1 // Y Y

X X

≈j1

OO

f1

// Y Y
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Using Corollary 48, we obtain a commutative diagram as follows.

X̃
b

��

m

��

X ≈
j0

//

f̂0

��

◦a
AA

X ′

f̂1

��

Ỹ
d

��
Y ′ ≈

q1
//

◦
c
AA

Y

By Remark 45, there exist commutative diagrams as follows.

X ′

≈
b′   

1 // X ′

X̃

b

>> Y ′

◦c
��

1 // Y ′

Ỹ

≈
c′

??

Thus, we have the following commutative diagram.

X X
f0 //

◦a

��

Y Y

X X̃≈
bxoo m // Ỹ

≈ c′q0

OO

d

��

Y≈
ycoo

X X
f1

//

≈j1b′

OO

Y Y

Cf. SDen.(1). There exist commutative diagrams as follows.

X̃

◦s
��

≈
bx // X

X̂

τ

?? Y

◦σ
��

≈
yc // Ỹ

Ŷ

t

@@

By Remark 45, there exist commutative diagrams as follows.

X̃

◦s
��

1 // X̃

X̂

≈
s′

?? Ỹ

≈
t′ ��

1 // Ỹ

Ŷ

t

@@

Finally, we have the following commutative diagram.

X X
f0 //

◦as

��

Y Y

X X̂
τoo s′mt′ // Ŷ

≈ tc′q0

OO

td

��

Y◦σoo

X X
f1

//

≈j1b′s

OO

Y Y

39



Cf. SSDen.(1), STDen.(1) and SDen.(1).

Ad (3′′)⇒ (1). This follows from Remark 44.(1, 2).

Ad (1)⇔ (3′). This follows by symmetry from (1)⇔ (3′′).

Definition 50 (and Lemma). Let X, Y ∈ Ob C.

We call f0, f1 ∈ C(X, Y ) homotopic, written f0∼f1, if there exists a commutative diagram
as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//

≈i1

OO

Y Y

Cf. Lemma 49.(1).

The relation (∼) on C(X, Y ) is an equivalence relation.

The equivalence class of f ∈ C(X, Y ) is denoted by [f ].

Proof. Suppose given X
f−→ Y . We have the following commutative diagram.

X X
f //

≈1

��

Y Y

X X≈
1oo f // Y

≈ 1

OO

≈ 1

��

Y≈
1oo

X X
f
//

≈1

OO

Y Y

Cf. Remark 44.(3). Thus, (∼) is reflexive.

Symmetry of (∼) follows from the symmetry of the defining diagram.

We show that (∼) is transitive.

Suppose given f, g, h ∈ C(X, Y ) with f ∼ g and g ∼ h.

40



We have a commutative diagram as follows.

X X
f // Y Y

X X

≈j0

��

k′ // Y ′

≈ q0

OO

≈ q1

��

Y≈
y′oo

X X ′≈
x′oo l′ // Y Y

X X

≈j1

OO

g
// Y Y

X X
≈j2

��

k′′ // Y ′′

≈ q2

OO

≈ q3

��

Y≈
y′′oo

X X ′≈
x′′oo l′′ // Y Y

X X

≈j3

OO

h
// Y Y

Cf. Lemma 49.(2). Using Corollary 48, we obtain a commutative diagram as follows.

X̂
b

��

m

��

X ≈
j1

//

k′′

��

◦a
AA

X ′

l′

��

Ŷ
d

��
Y ′′ ≈

q2
//

◦
c
AA

Y

By Remark 45, there exist commutative diagrams as follows.

X ′

≈
b′   

1 // X ′

X̂

b

>> Y ′′

◦c
  

1 // Y ′′

Ŷ

≈
c′

>>

There exist commutative diagrams as follows.

X j0b′m

��

k′

!!

k

  
Ỹ

W
≈
q̃1 //

d̃
��

Ŷ

d

��
Y ′ ≈

q1
// Y

Y ′

≈

q1y′′c

  

≈1

!!

≈d̃
′

  
Ỹ

W
≈
q̃1 //

d̃
��

Ŷ d

��
Y ′ ≈

q1
// Y
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Cf. STDen.(4) and SDen. Furthermore, there exist commutative diagrams as follows.

X

W

◦a //

≈j2

��

X̂

≈ j̃2
��

mc′q3

��

X ′ ◦
ã
//

l′′ ..

X̃
l

��
Y

X

W

◦a //

≈j2

��

X̂

≈ j̃2
��

≈bx
′j2

��

X ′ ◦
ã
//

≈

1 ..

X̃

≈̃a
′

  
X ′

Cf. SSDen.(4) and SDen. Finally, we have the following commutative diagram.

X X
f // Y Y

X X

≈j0b′j̃2

��

k // Ỹ

≈ d̃q0

OO

≈ q̃1c′q3

��

Y≈
y′d̃′oo

X X̃≈
ã′x′′oo l // Y Y

X X

≈j3ã

OO

h
// Y Y

Cf. SDen.(1). By Lemma 49, we have f ∼ h.

Lemma 51. Suppose given X, Y and Z in Ob C. The following assertions (1, 2) hold.

(1) Suppose given X
f0 //

f1

// Y
g // Z with f0 ∼ f1. Then we have f0g ∼ f1g.

(2) Suppose given X
f // Y

g0 //
g1

// Z with g0 ∼ g1. Then we have fg0 ∼ fg1.

Ad (1). We have a commutative diagram as follows.

X X
f0 //

≈k0

��

Y Y

X X̂
τoo f̂ // Ŷ

r0

OO

≈ r1

��

Y◦σoo

X X
f1

//

◦k1

OO

Y Y
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Cf. Lemma 49.(3′). Furthermore, we have commutative diagrams as follows.

Y

W

◦σ //

g

��

Ŷ

ĝ

��
r0g

��

Z ◦
σ̃
//

1

≈

..

Ẑ
ρ0
≈

��
Z

Y

W

◦σ //

g

��

Ŷ

ĝ

��
r1g

��

Z ◦
σ̃
//

1

≈

..

Ẑ
ρ1
≈

��
Z

Cf. SSDen.(4) and SDen.(2). Thus, we have the following commutative diagram.

X X
f0g //

≈k0

��

Z Z

X X̂
τoo f̂ ĝ // Ẑ

≈ ρ0

OO

≈ ρ1

��

Z◦σ̃oo

X X
f1g

//

◦k1

OO

Z Z

Therefore, we have f0g ∼ f1g.

Ad (2). This is dual to (1).

Proposition 52. Recall that C is a category with split denominators; cf. Definition 39.

Homotopy is a congruence on C; cf. Definition 50.

Proof. Homotopy is an equivalence relation; cf. Definition 50. Moreover, it is a congruence
by Lemma 51 and Remark 2.

Lemma 53. The following assertions (1, 2) hold.

(1) Suppose given a commutative diagram in C as follows.

X

◦s
  

1 // X

Y

≈
s′

>>

Then we have s′s ∼ 1Y .

(2) Suppose given a commutative diagram in C as follows.

Y

≈
t′   

1 // Y

X

t

>>

Then we have tt′ ∼ 1X .
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Proof. Ad (1). There exist commutative diagrams as follows

X

W

◦s //

◦s
��

Y

◦s0
��

1≈

��

Y ≈
s1
//

s′s

≈

..

Ŷ
u≈

��
Y

X

W

◦s //

◦s
��

Y

◦s0
��

1≈

��

Y ≈
s1
//

1

≈

..

Ŷ
v≈

��
Y

Cf. SSDen.(4) and SDen. Thus, we have the following commutative diagram.

Y Y
s′s //

≈s1

��

Y Y

Y Ŷ≈
voo u // Y Y

Y Y
1
//

◦s0

OO

Y Y

Therefore, we have s′s ∼ 1Y .

Ad (2). This is dual to (1).

Lemma 54. Suppose given X
f−→ Y in C with f ∼ f ′ ∈ Den C. Then we have f ∈ Den C.

Proof. By assumption, there exists a commutative diagram as follows.

X X
f //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X ≈
f ′

//

≈i1

OO

Y Y

Since we have i1 · f̂ · p1 = f ′, we obtain f̂ ∈ Den C; cf. Remark 46.

Thus, we have f = i0f̂p0 ∈ Den C; cf. SDen.(1).

2.5 The homotopy category

2.5.1 Homotopy category and localisation functor

In this §2.5.1, we establish the homotopy category Ho C of a category with split denominators
C, the localisation functor LC : C → Ho C and their elementary properties; cf. Definitions 55
and 56 below.
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For this §2.5.1, let C be a category with split denominators; cf. Definition 39.

Definition 55. Recall that the homotopy relation (∼) is a congruence on C; cf. Proposition 52.

We define Ho C := C/(∼); cf. Definition 3.

We have
Ob Ho C = Ob C.

For X and Y in Ob Ho C, we have

Ho C(X, Y ) = C(X, Y )/(∼)X,Y .

Recall that for f ∈ C(X, Y ) we write [f ] ∈ Ho C(X, Y ); cf. Definition 50.

For X, Y and Z in Ob Ho C, [f ] ∈ Ho C(X, Y ) and [g] ∈ Ho C(Y, Z), we have

[f ] · [g] = [fg].

For X ∈ Ob Ho C, we have
1Ho C
X = [1CX ].

We call Ho C the homotopy category of C.

This defines a category Ho C; Definition 3.

Definition 56. We define LC := R(∼); cf. Definition 4.

We have
C LC−→ Ho C

(X
f−→ Y ) 7→ (X

[f ]−→ Y ).

We call LC the localisation functor of C.

If unambiguous, we often write L := LC.

This defines a functor LC : C → Ho C; cf. Definition 4.

Lemma 57. The following assertions (1, 2) hold.

(1) The localisation functor LC is full.

(2) The localisation functor LC is bijective on objects. In particular, LC is dense.

Proof. This follows from Lemma 5.

2.5.2 Universal property

In this §2.5.2 we establish the (2-)universal property of the homotopy category Ho C of a
category with split denominators C; cf. Theorems 62 and 63 below.

For this §2.5.2 let C be a category with split denominators; cf. Definition 39. Let D be a
category.
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Definition 58. Let Loc[C,D] be the full subcategory of [C,D] with

Ob Loc[C,D] := {F ∈ Ob[C,D] : F (Den C) ⊆ IsoD}.

The elements of Ob Loc[C,D] are called localising functors.

Proposition 59. We have Ob (∼)[C,D] = Ob Loc[C,D]; cf. Definition 6.

Proof. Ad ⊆. Let F ∈ Ob (∼)[C,D]. We show that F is localising.

It suffices to show that F (SDen C) ⊆ IsoD and F (TDen C) ⊆ IsoD.

By duality, it suffices to show that F (SDen C) ⊆ IsoD.

Suppose given X ◦s // Y in C. There exists a commutative diagram as follows.

X

◦s
  

1 // X

Y

≈
s′

>>

By Lemma 53.(1), we have s′s ∼ 1Y . Since F ∈ Ob (∼)[C,D], we have Fs′ · Fs = 1FY .

Furthermore, we have Fs · Fs′ = 1X . Thus, we have Fs ∈ IsoD.

Ad ⊇. Let F ∈ Ob Loc[C,D].

Suppose given X
f0 //

f1

// Y with f0 ∼ f1 in C. We show that Ff0 = Ff1 .

There exists a commutative diagram in C as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//

≈i1

OO

Y Y

Cf. Definition 50.

Since F ∈ Ob Loc[C,D], we have the following commutative diagram in D.

FX FX
Ff0 //

Fi0 ∼

��

FY FY

FX FX̂
Ft
∼

oo F f̂ // FŶ

Fp0∼

OO

Fp1∼

��

FY
Fs
∼

oo

FX FX
Ff1

//

Fi1 ∼

OO

FY FY

46



We have
Fi0 = Fi0 · Ft · (Ft)− = (Ft)− = Fi1 · Ft · (Ft)− = Fi1 .

Similarily, we have Fp0 = Fp1 . Thus, we have

Ff0 = Fi0 · F f̂ · Fp0 = Fi1 · F f̂ · Fp1 = Ff1 .

Corollary 60. We have LC ∈ Ob Loc[C,Ho C].

Proof. This follows from Proposition 59; cf. Definition 56 and Remark 7.(1).

Lemma 61. Suppose given F ∈ Ob (∼)[C,D]. The following assertions (1, 2) hold.

(1) Suppose that F is full. Then F is full.

(2) Suppose that F is dense. Then F is dense.

Proof. This follows from Lemma 9.

We have the following (2-)universal property of the factor category with respect to homo-
topy.

Theorem 62. Recall that C is a category with split denominators.

Recall that the homotopy relation (∼) is a congruence on C; cf. Proposition 52.

Recall that D is a category.

The following assertions (1, 2) hold.

(1) We have LC ∈ Ob (∼)[C,Ho C]; cf. Definition 56.

Suppose given F
α−→ G in (∼)[C,D]; cf. Definition 6.

We have unique functors F ,G : Ho C → D with F ◦ LC = F and G ◦ LC = G; cf.
Definition 8.

We have a unique transformation F
α
=⇒ G with α ∗ LC = α; cf. Definition 10.

Specifically, we have
F [f ] = [Ff ]

for X
f−→ Y in C and

α = (αX)X∈Ob Ho C .

C

G

!!

F

))

LC // Ho C

G





F

��
D

α
BJ α +3
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(2) We have the isomorphism of categories

(∼)[C,D] ←− [Ho C,D]

(U ◦ LC
β∗LC−−−→ V ◦ LC) 7→ (U

β−→ V )

with inverse
(∼)[C,D] −→ [Ho C,D]

(F
α−→ G) 7→ (F

α−→ G) .

Proof. This follows from Definitions 8 and 10, and Proposition 12.

For sake of easier use, we use Proposition 59 to reformulate Theorem 62 as the (2-)universal
property of the localisation with respect to denominators.

Theorem 63. Recall that C is a category with split denominators.

Recall that D is a category.

The following assertions (1, 2) hold.

(1) We have LC ∈ Ob Loc[C,Ho C]; cf. Corollary 60.

Suppose given F
α−→ G in Loc[C,D]; cf. Definition 58.

We have unique functors F ,G : Ho C → D with F ◦ LC = F and G ◦ LC = G.

We have a unique transformation F
α
=⇒ G with α ∗ LC = α.

Specifically, we have
F [f ] = [Ff ]

for X
f−→ Y in C and

α = (αX)X∈Ob Ho C .

C
G

��
F

))

LC // Ho C

G

		

F

��
D

α @H α +3

(2) We have the isomorphism of categories

Loc[C,D] ←− [Ho C,D]

(U ◦ LC
β∗LC−−−→ V ◦ LC) 7→ (U

β−→ V )

with inverse
Loc[C,D] −→ [Ho C,D]

(F
α−→ G) 7→ (F

α−→ G) .

Proof. This follows from Proposition 59 and Theorem 62.
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2.5.3 Saturatedness

For this §2.5.3, let C be a category with split denominators.

Remark 64. By Corollary 60, we have LC f ∈ Iso Ho C for f ∈ Den C.

Definition 65. We call C saturated, if the following assertion (?) holds.

(?) Suppose given f ∈ Mor C. Then LC f ∈ Iso Ho C if and only if f ∈ Den C.

Remark 66. Let C be saturated. Then we have Iso C ⊆ Den C. Cf. also Remark 42.

Proof. Suppose given f ∈ Iso C. Since L is a functor, we have L f ∈ Iso Ho C.

Thus, we have f ∈ Den C; cf. Definition 65.

Remark 67. The following assertions (1, 2) are equivalent.

(1) The category with split denominators C is saturated.

(2) Suppose given A
f−→ B

g−→ C
h−→ D in C.

Suppose that fg, gh ∈ Den C. Then we have f, g, h, fgh ∈ Den C.

B

g

��

≈
gh // D

A

f

BB

≈
fg

//

fgh

55

C

h

BB

Proof. Ad (1)⇒ (2). After applying L, this follows from Remark 19.

Ad (2)⇒ (1). Suppose given X
f // Y in C with L f ∈ Iso Ho C.

Thus, there exists Y
g // X with fg ∼ 1X and gf ∼ 1Y ; cf. Definition 55.

By Lemma 54, we obtain fg ∈ Den C and gf ∈ Den C.

Y

g

��

≈
gf // Y

X

f

BB

≈
fg

//

fgf

55

X

f

BB

Since (2) holds, we have f ∈ Den C.
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2.5.4 Functoriality

In this §2.5.4 we consider the functor HoF induced on homotopy categories by an homotopi-
cal functor F between categories with split denominators; cf. Definition 68 below. Similarily
for transformations. Furthermore, we establish (2-)functoriality properties of Ho.

For this §2.5.4, let C, D and E be categories with split denominators.

Definition 68.

(1) Let Ho[C,D] be the full subcategory of [C,D] with

Ob Ho[C,D] := {F ∈ Ob[C,D] : LD ◦F ∈ Ob (∼)[C,HoD]}
D56
= {F ∈ Ob[C,D] : for f, g ∈ Mor C with f ∼ g, we have Ff ∼ Fg}

P59
= {F ∈ Ob[C,D] : LD ◦F ∈ Loc[C,HoD]}

D58
= {F ∈ Ob[C,D] : for f ∈ Den C, we have [Ff ] ∈ Iso HoD}.

The objects of Ho[C,D] are called homotopical functors; cf. also Definition 13.

(2) Let Den[C,D] be the full subcategory of [C,D] with

Ob Den[C,D] := {F ∈ Ob[C,D] : F (Den C) ⊆ DenD}.

The objects of Den[C,D] are called denominatorial functors.

Lemma 69. Suppose given F ∈ Ob[C,D]. The following assertions (1, 2) hold.

(1) Suppose that F ∈ Ob Den[C,D]. Then we have F ∈ Ob Ho[C,D].

(2) Suppose that D is saturated. Suppose that F ∈ Ob Ho[C,D].

Then we have F ∈ Ob Den[C,D].

Proof. Ad (1). We have (LD ◦F )(Den C) ⊆
D68.(2)

LD(DenD) ⊆
C60

Iso HoD.

Ad (2). Suppose given d ∈ Den C. Then we have (LD ◦F )d ∈ Iso HoD.

Since D is saturated, we obtain Fd ∈ DenD; cf. Definition 65.

Corollary 70. Let D be saturated; cf. Definition 65. Then we have

Ob Ho[C,D] = Ob Den[C,D].

Definition 71 (and Lemma). Let F ∈ Ob Ho[C,D].

Let HoF := (LD ◦ F ); cf. Definition 8.(1).

The following assertions (1, 2, 3) hold.

(1) We have

Ho C HoF−−→ HoD

(X
[f ]−→ Y ) 7→ (FX

[Ff ]−−→ FY ).
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(2) We have LD ◦F = (HoF ) ◦ LC.

C F //

LC
��

D
LD
��

Ho C
HoF

// HoD

(3) Suppose given F̃ ∈ Ob[Ho C,HoD] with LD ◦F = F̃ ◦ LC. Then we have F̃ = HoF .

Proof. This follows from Definition 14.

Lemma 72. Suppose given F ∈ Ob Ho[C,D] and G ∈ Ob Ho[D, E ].

The following assertions (1, 2) hold.

(1) We have Ho 1C = 1Ho C .

(2) We have G ◦ F ∈ Ho[C, E ] and Ho(G ◦ F ) = HoG ◦ HoF .

Proof. This follows from Lemma 15.

Definition 73 (and Lemma). Suppose given F
α−→ G in Ho[C,D]. Define

Hoα := (LD ∗ α) : HoF - HoG;

cf. Definition 10. The following assertions (1, 2, 3) hold.

(1) We have (Hoα)X = [αX ] for X ∈ Ob Ho C.

(2) We have (Hoα) ∗ LC = LD ∗α.

(3) Supppose given HoF
α̃−→ HoG with α̃ ∗ LC = LD ∗α. Then we have α̃ = Hoα.

Proof. This follows from Definition 16.

Lemma 74. Suppose given F
α−→ F ′ and F ′

α′−→ F ′′ in Ho[C,D].

The following assertions (1, 2) hold.

(1) We have Ho 1F = 1HoF .

(2) We have Ho(αα′) = Hoα · Hoα′.

Proof. This follows from Lemma 17.

Lemma 75. Suppose given F
α−→ F ′ in Ho[C,D] and G

β−→ G′ in Ho[D, E ].

We have Ho(β ∗ α) = (Ho β) ∗ (Hoα).

Proof. This follows from Lemma 18.
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Lemma 76. Suppose given F
α−→ F ′ in Ho[C,D]. Suppose that α = (αX)X∈Ob C with

αX ∈ DenD for X ∈ Ob C.

Then HoF
Hoα−−→ HoF ′ is an isotransformation.

Proof. Suppose given X ∈ Ob Ho C. We have

(Hoα)X
D73
= [αX ]

D56
= LD αX ∈ Iso HoD;

cf. Corollary 60.

2.5.5 Adjunctions between categories with split denominators

For this §2.5.5, let C, D and E be categories with split denominators.

Definition 77.

(1) Let F
α−→ F ′ in [C,D]. We call α denominatorial if αX ∈ DenD for X ∈ Ob C.

(2) We say that an adjunction (F,G, η, ε) with F ∈ Ob[C,D] is unit-denominatorial if
η is denominatorial.

(3) We say that an adjunction (F,G, η, ε) with F ∈ Ob[C,D] is counit-denominatorial
if ε is denominatorial.

(4) We say that an adjunction (F,G, η, ε) with F ∈ Ob[C,D] is denominatorial if η and
ε are denominatorial.

(5) Let F ∈ Ob[C,D]. We call F a unit-denominatorial left adjoint if there exists a
unit-denominatorial adjunction (F,G, η, ε).

(6) Let F ∈ Ob[C,D]. We call F a counit-denominatorial left adjoint if there exists a
counit-denominatorial adjunction (F,G, η, ε).

(7) Let F ∈ Ob[C,D]. We call F a denominatorial left adjoint if there exists a denomi-
natorial adjunction (F,G, η, ε).

Lemma 78. Suppose given a denominatorial adjunction (F,G, η, ε) with F ∈ Ob Ho[C,D]
and G ∈ Ob Ho[D, C].

We have isotransformations

1Ho C
Ho η

∼
// (HoG) ◦ (HoF ) and (HoF ) ◦ (HoG) Ho ε

∼
// 1HoD .

In particular, we have mutually inverse equivalences HoF and HoG.

Proof. Since F and G are homotopical, we can consider

1Ho C
Ho η // (HoG) ◦ (HoF ) and (HoF ) ◦ (HoG) Ho ε // 1HoD .

Cf. Definitions 71 and 73, and Lemma 72.

Since η and ε are denominatorial, we have isotransformations Ho η and Ho ε; cf. Lemma 76.
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Remark 79. Suppose given an adjunction (F,G, η, ε) with F ∈ Ob[C,D].

The following assertions (1, 2) hold.

(1) Suppose that η is denominatorial. Suppose given X
c // Y in C.

The following assertions (a, b) are equivalent.

(a) We have c ∈ Den C.

(b) We have GFc ∈ Den C.

(2) Suppose that ε is denominatorial. Suppose given X
d // Y in D.

The following assertions (a, b) are equivalent.

(a) We have d ∈ DenD.

(b) We have FGd ∈ DenD.

Proof. Ad (1). We have the following commutative diagram.

X c //

≈ηX
��

Y
≈ ηY

��
GFX

GFc
// GFY

Thus, the claim follows from SDen .

Ad (2). This is dual to (1).

Definition 80. We say that a functor C F−→ D detects denominators if the following
assertion (∗) holds.

(∗) Suppose given c ∈ Mor C with Fc ∈ DenD. Then we have c ∈ Den C.

Lemma 81. Suppose given an adjunction (F,G, η, ε) with F ∈ Ob[C,D].

The following assertions (1, 2) hold.

(1) Suppose that η is denominatorial. The following assertions (a, b) hold.

(a) Suppose that G detects denominators. Then F ∈ Ob Den[C,D].

(b) Suppose that G ∈ Ob Den[D, C]. Then F detects denominators.

(2) Suppose that ε is denominatorial. The following assertions (a, b) hold.

(a) Suppose that F detects denominators. Then G ∈ Ob Den[D, C].
(b) Suppose that F ∈ Ob Den[C,D]. Then G detects denominators.

Proof. Ad (1). This follows from Remark 79.(1).

Ad (2). This follows from Remark 79.(2).
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Lemma 82. Let (F,G, η, ε) and (F, G̃, η̃, ε̃) be adjunctions with F ∈ Ob[C,D].

The following assertions (1, 2) hold.

(1) Suppose that Iso C ⊆ Den C. Suppose given X ∈ Ob C. Suppose that ηX ∈ Den C.
Then we have η̃X ∈ Den C.

(2) Suppose that IsoD ⊆ DenD. Suppose given Y ∈ ObD. Suppose that εY ∈ DenD.
Then we have ε̃Y ∈ DenD.

Proof. Ad (1). By Lemma 37, we have the following commutative diagram in C.

X ≈
ηX //

η̃X
&&

GFX

γFX∼

��

G̃FX

Thus, we have η̃X ∈ Den C; cf. SDen.(1).

Ad (2). By Lemma 37, we have the following commutative diagram in D.

FGY

FγY ∼

��

≈
εY // Y

FG̃Y

ε̃Y

88

Thus, we have ε̃Y ∈ DenD; cf. SDen.(2).

Remark 83. The following assertions (1, 2) hold.

(1) Suppose that Iso C ⊆ Den C. Let F ∈ Ob[C,D] be a unit-denominatorial left adjoint.
Suppose given an adjunction (F, G̃, η̃, ε̃). Then (F, G̃, η̃, ε̃) is unit-denominatorial.

(2) Suppose that IsoD ⊆ DenD. Let F ∈ Ob[C,D] be a counit-denominatorial left ad-
joint. Suppose given an adjunction (F, G̃, η̃, ε̃). Then (F, G̃, η̃, ε̃) is counit-denomi-
natorial.

Proof. Ad (1). This follows from Lemma 82.(1).

Ad (2). This follows from Lemma 82.(2).

Lemma 84. Suppose that IsoD ⊆ DenD; cf. also Remark 66.

Suppose given a denominatorial left adjoint F ∈ Ob[C,D]; cf. Definition 77.(7).

The following assertions (1, 2, 3) are equivalent.

(1) The functor F detects denominators; cf. Definition 80.

(2) Suppose given an adjunction (F,G, η, ε). Then we have G ∈ Ob Den[D, C].

(3) There exists a denominatorial adjunction (F,G, η, ε) with G ∈ Ob Den[D, C].
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Proof. Ad (1) ⇒ (2). Since IsoD ⊆ DenD, ε is denominatorial; cf. Remark 83.(2).
Therefore, G is denominatorial; cf. Lemma 81.(2.a).

Ad (2) ⇒ (3). Since F is a denominatorial left adjoint, there exists a denominatorial
adjunction (F,G, η, ε). Since (2) holds, we obtain G ∈ Ob Den[D, C].

Ad (3)⇒ (1). This follows from Lemma 81.(1, b).

Proposition 85. Suppose that IsoD ⊆ DenD; cf. also Remark 66.

Suppose given a denominatorial adjunction (F,G, η, ε) such that F ∈ Ob Ho[C,D] detects
denominators; cf. Lemma 69 and Definition 80.

Then the following assertions (1, 2) hold.

(1) We have G ∈ Ob Den[D, C]; cf. also Lemma 69.

(2) We have isotransformations

1Ho C
Ho η

∼
// (HoG) ◦ (HoF ) and (HoF ) ◦ (HoG) Ho ε

∼
// 1HoD .

In particular, we have mutually inverse equivalences HoF and HoG.

Proof. Ad (1). This follows from Lemma 81.(2.a).

Ad (2). Since (1) holds, this follows from Lemma 78; cf. Lemma 69.

Corollary 86. Suppose that Iso C ⊆ Den C and IsoD ⊆ DenD; cf. also Remark 66.

Suppose given mutually inverse equivalences F ∈ Ob Ho[C,D] and G ∈ Ob[D, C].

Suppose that F detects denominators; cf. Definition 80.

Then the following assertions (1, 2) hold.

(1) We have G ∈ Ob Den[D, C]; cf. also Lemma 69.

(2) We have isotransformations

1Ho C
Ho η

∼
// (HoG) ◦ (HoF ) and (HoF ) ◦ (HoG) Ho ε

∼
// 1HoD .

In particular, we have mutually inverse equivalences HoF and HoG.

Proof. This follows from Proposition 85; cf. Lemma 36.

Lemma 87. Suppose given denominatorial adjunctions (F,G, η, ε) and (F ′, G′, η′, ε′) with
G ∈ Ob Den[D, C] and F ′ ∈ Ob Den[D, E ].

Then (F ′◦F,G◦G′, η ·Gη′F, F ′εG′ ·ε′) is a denominatorial adjunction; cf. also Lemma 38.

Proof. Suppose given X ∈ Ob C. We have to show that (η ·Gη′F )X ∈ Den C.

Since η and η′ are denominatorial and G ∈ Ob Den[D, C], we have

(η ·Gη′F )X = ηX ·Gη′FX ∈ Den C.
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Cf. SDen.(1).

Suppose given Z ∈ Ob E . We have to show that (F ′εG′ · ε′)Z ∈ Den E .

Since ε and ε′ are denominatorial and F ′ ∈ Ob Den[D, E ], we have

(F ′εG′ · ε′)Z = F ′εG′Z · ε′Z ∈ Den E .

Cf. SDen.(1).

2.6 Left-homotopy and right-homotopy

In this §2.6, we consider variants of the notion of homotopy which will turn out to be useful
in §3.5; cf. Lemma 110.

For this §2.6, let C be a category with split denominators.

Definition 88 (and Lemma). Let X, Y ∈ Ob C.

(1) We call f0, f1 ∈ C(X, Y ) left-homotopic, written f0
l∼ f1, if there exists a commuta-

tive diagram as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Y Y

X X
f1

//

≈i1

OO

Y Y

This defines a reflexive and symmetric relation (
l∼) on C(X, Y ).

(2) We call f0, f1 ∈ C(X, Y ) right-homotopic, written f0
r∼ f1, if there exists a commu-

tative diagram as follows.

X X
f0 // Y Y

X X
f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

// Y Y

This defines a reflexive and symmetric relation (
r∼) on C(X, Y ).
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Proof. Ad (2). Suppose given X
f // Y . We have the following commutative diagram.

X X
f // Y Y

X X
f // Y

≈ 1

OO

≈ 1

��

Y≈
1oo

X X
f
// Y Y

Cf. Remark 44.(3). Thus, (
r∼) is reflexive.

Symmetry of (
r∼) follows from the symmetry of the defining diagram.

Ad (1). This is dual to (2).

Remark 89. Suppose given X
f0 //

f1

// Y .

The following assertions (1, 2) hold.

(1) Suppose that f0
l∼ f1. We have f0 ∼ f1 .

(2) Suppose that f0
r∼ f1. We have f0 ∼ f1 .

Proof. Ad (2). This follows from Remark 44.(3); cf. Definitions 50 and 88.

Ad (1). This is dual to (2).

Lemma 90. Suppose given X
f0 //

f1

// Y . The following assertions (1, 2) hold.

(1) Suppose that f0
l∼ f1. There exists a commutative diagram as follows.

X X
f0 //

◦i0
��

Y Y

X X̂too f̂ // Y Y

X X
f1

//

≈i1

OO

Y Y
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(2) Suppose that f0
r∼ f1. There exists a commutative diagram as follows.

X X
f0 // Y Y

X X
f̂ // Ŷ

p0

OO

≈ p1

��

Y◦soo

X X
f1

// Y Y

Proof. Ad (2). There exists a commutative diagram as follows.

X X
f0 // Y Y

X X
f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

// Y Y

Cf. Definition 88. Moreover, there exists a commutative diagram as follows.

Ŷ ≈
p0 //

◦
i ��

Y

Ȳ

q

??

Additionally, there exists Ȳ
j // Ŷ with ij = 1Ŷ ; cf. SSDen.(3).

There exists a commutative diagram as follows.

Y ≈
si //

◦σ
��

Ȳ

Ỹ

τ

??

Furthermore, there exists Ŷ ≈
w // Ỹ with wτ = 1Ȳ ; cf. STDen.(3).

In consequence, we have the following commutative diagram.

X X
f0 // Y Y

X X
f̂ iw // Ȳ

τq

OO

≈ τjp1

��

Y≈
σoo

X X
f1

// Y Y

Ad (1). This is dual to (2).
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Lemma 91. Suppose given X, Y ∈ Ob C. The following assertions (1, 2) hold.

(1) The relation (
l∼) on C(X, Y ) is an equivalence relation.

(2) The relation (
r∼) on C(X, Y ) is an equivalence relation.

Proof. Ad (2). The relation (
r∼) is reflexive and symmetric; cf. Definition 88.(2).

We show that (
r∼) is transitive.

Suppose given f0, f1 and f2 in C(X, Y ) with f0
r∼ f1 and f1

r∼ f2.

Since (
r∼) is symmetric, there exists a commutative diagram as follows.

X X
f0 // Y Y

X X
f̂0,1 // Ŷ0,1

≈ p0

OO

p1

��

Y≈
s0,1oo

X X
f1

// Y Y

X X
f̂1,2 // Ŷ1,2

≈ p2

OO
≈ p3

��

Y≈
s1,2oo

X X
f2

// Y Y

Cf. Lemma 90.(2). There exist commutative diagrams as follows.

X
h

  

f̂0,1

��

f̂1,2

$$

Ŷ
W

≈
v //

u

��

Ŷ0,1

p1

��
Ŷ1,2 ≈

p2

// Y

Y
s≈

  

s0,1

≈

��

s1,2 ≈

$$

Ŷ
W

≈
v //

u

��

Ŷ0,1

p1

��
Ŷ1,2 ≈

p2

// Y

Cf. STDen.(4) and SDen . In consequence, we have the following commutative diagram.

X X
f0 // Y Y

X X
h // Ŷ

≈ vp0

OO

≈ up3

��

Y≈
soo

X X
f2

// Y Y

Ad (1). This is dual to (2).
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Chapter 3

Quasi-model-categories

3.1 FCQ-categories

In order to fix notation, we define FCQ-categories, containing fibrations, cofibrations and
quasi-isomorphisms. They provide a framework in which a notion of homotopy is defined, as
needed to introduce quasi-pushouts and quasi-pullbacks; cf. Definition 95, Definition 96.(5)
and Definition 97.(5) below.

Definition 92. Let C be a category.

Let Cof C, Fib C and Qis C be subsets of Mor C.

The elements of Cof C are called cofibrations. To indicate that i ∈ Mor C is a cofibration,
we often write

X •i // Y.

The elements of Fib C are called fibrations. To indicate that p ∈ Mor C is a fibration, we
often write

X �p // Y.

The elements of Qis C are called quasi-isomorphisms. To indicate that w ∈ Mor C is a
quasi-isomorphism, we often write

X ≈
w // Y.

The elements of Cof C ∩ Qis C are called acyclic cofibrations. To indicate that i ∈ Mor C
is an acyclic cofibration, we often write

X ◦i // Y.

The elements of Fib C ∩Qis C are called acyclic fibrations. To indicate that p ∈ Mor C is
an acyclic fibration, we often write

X
p // Y.

If the following axioms (ACof , AFib, AQis, ALift, AFact) hold, we call (C,Cof C,Fib C,Qis C)
an FCQ-category. We often refer to just C as an FCQ-category.
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ACof The following assertions (1, 2) hold.

(1) We have Iso C ⊆ Cof C.

(2) Suppose given X •i // Y •
j // Z . Then we have X •

ij // Z .

AFib The following assertions (1, 2) hold.

(1) We have Iso C ⊆ Fib C.

(2) Suppose given X �p // Y �q // Z . Then we have X �pq // Z .

AQis The following assertions (1, 2) hold.

(1) We have Iso C ⊆ Qis C.

(2) Suppose given X
f // Y

g // Z in C. The following assertions (a, b, c) hold.

(a) Suppose that f, g ∈ Qis C. Then we have fg ∈ Qis C.
(b) Suppose that f, fg ∈ Qis C. Then we have g ∈ Qis C.
(c) Suppose that g, fg ∈ Qis C. Then we have f ∈ Qis C.

ALift Suppose given (i, p) ∈ Cof C × Fib C. The following assertions (1, 2) hold.

(1) Suppose that i is acyclic. Then (i, p) is an extension pair.

(2) Suppose that p is acyclic. Then (i, p) is an extension pair.

Cf. Definition 21.

AFact Suppose given A
f−→ B in C. The following assertions (1, 2) hold.

(1) There exists a commutative diagram as follows.

A
f //

◦
i   

B

X

=
p

>>

(2) There exists a commutative diagram as follows.

A
f //

•
i   

B

X

p

>>

Remark 93. Let C be an FCQ-category. Let X ∈ Ob C.

The following assertions (1, 2) hold.

(1) Let I and I ′ be initial objects in C. The following assertions (a, b) are equivalent.

(a) We have I • // X .

(b) We have I ′ • // X .
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(2) Let T and T ′ be terminal objects in C. The following assertions (a, b) are equivalent.

(a) We have X � // T .

(b) We have X � // T ′ .

Proof. Ad (1). By symmetry, it suffices to show that (a) implies (b).

Since I, I ′ are initial, we have I ′ ∼= I. Thus, we have I ′ ◦ // I; cf. ACof .(1) and AQis.(1).

Therefore, we have I ′ ◦ // I • // X and the claim follows from ACof .(2).

Ad (2). This is dual to (1).

Definition 94 (and Lemma). Let D be a subcategory of an FCQ-category C. Let

Cof D := CofM∩MorD
FibD := FibM∩MorD
QisD := QisM∩MorD.

The following assertions (1, 2) hold.

(1) The properties ACof , AFib and AQis hold in (D,Cof D,FibD,QisD).

(2) Suppose that D is a full subcategory of D. Then ALift holds in (D,Cof D,FibD,QisD).

Proof. Ad (1). This follows since ACof , AFib and AQis hold in C.

Ad (2). This follows since ALift holds in C and since D is a full subcategory.

Definition 95. Let C be an FCQ-category.

Let X, Y ∈ Ob C. Suppose given f0 , f1 ∈ C(X, Y ).

We write f0∼f1, if there exists a commutative diagram as follows.

X X
f0 //

≈i0

��

Y Y

X X̂≈
too f̂ // Ŷ

≈ p0

OO

≈ p1

��

Y≈
soo

X X
f1

//

≈i1

OO

Y Y

Once an FCQ-category is equipped with extra data that turn it into a so-called quasi-model-
category, it will in particular have the structure of a category with split denominators; cf.
Definitions 39, 100 and 108. So then (∼) will just be the homotopy relation as introduced in
Definition 50. In particular, it will be a congruence on C; cf. Definition 1 and Proposition 52.
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3.2 Quasi-pushouts and quasi-pullbacks

In this §3.2, we introduce the notions of quasi-pushouts and quasi-pullbacks. They will serve
as practical replacements for actual pushouts and pullbacks in our constructions on the ho-
motopy categories of quasi-model-categories; e.g. in the construction of loop and suspension
functor; cf. §3.6.3 and §3.7.3 below.

At the end of this §3.2, we recall traditional names for some properties of quasi-pushouts
and quasi-pullbacks and explain our nomenclature; cf. Remark 99 below.

For this §3.2, let C be an FCQ-category; cf. Definition 92.

Definition 96. Let QPO C be a set of commutative quadrangles in C.

To indicate that a quadrangle is in QPO C, we often write

A
f //

a

�� Q

B

b
��

A′
f ′
// B′.

We call QPO C a set of quasi-pushouts, if the following assertions (1–8) hold.

(1) Suppose given

A
f //

a

�� Q

B

b
��

A′
f ′
// B′.

Then we have a, b ∈ Cof C.

(2) Suppose given

A

Q

f //

◦a
��

B

•b
��

A′
f ′
// B′.

Then we have b ∈ Cof C ∩Qis C.

(3) Suppose given

A

Q

≈
f //

•a
��

B

•b
��

A′
f ′
// B′.

Then we have f ′ ∈ Qis C.
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(4) Suppose given the following commutative diagram.

A •
f //

•a
��

B

•b
��

A′
f ′
// B′

Then the following assertions (a, b) are equivalent.

(a) We have (A,B,A′, B′) in QPO C.
(b) We have (A,A′, B,B′) in QPO C.

(5) Suppose given the diagram

A

Q

f //

•a
��

B

•b
��

A′
f ′
// B′

u

  v
  
T

in which f ′u = f ′v and bu = bv. Then we have u ∼ v; cf. Definition 95.

(6) Suppose given

A

Q

f //

•a
��

B

Q

g //

•b
��

C

•c
��

A′
f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is in QPO C.

(7) Suppose given

A

Q

f //

•a0

��

B

•b0
��

A′

Q

f ′
//

•a1

��

B′

•b1
��

A′′
f ′′
// B′′

Then (A,B,A′′, B′′) is in QPO C.

(8) Suppose given a commutative diagram as follows.

A

Q

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′
u

  
T �

s
// S
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Then there exists B′
v−→ T in C such that the following diagram commutes.

A

Q

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′

v

  

u

  
T �

s
// S

Given a set of quasi-pushouts QPO C, an element of QPO C is referred to as a quasi-
pushout (with respect to QPO C).

Definition 97. Let QPB C be a set of commutative quadrangles in C.

To indicate that a quadrangle is in QPB C, we often write

A
f //

a

��

Q
B

b
��

A′
f ′
// B′.

We call QPB C a set of quasi-pullbacks, if the following assertions (1–8) hold.

(1) Suppose given

A
f //

a

��

Q
B

b
��

A′
f ′
// B′.

Then we have a, b ∈ Fib C.

(2) Suppose given

A
f //

_a
��

Q
B

b
��

A′
f ′
// B′.

Then we have a ∈ Fib C ∩Qis C.

(3) Suppose given

A
f //

_a
��

Q
B

_ b
��

A′ ≈
f ′
// B′.

Then we have f ∈ Qis C.
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(4) Suppose given the following commutative diagram.

A
f //

_a
��

B

_ b
��

A′ �
f ′
// B′

Then the following assertions (a, b) are equivalent.

(a) We have (A,B,A′, B′) in QPB C.
(b) We have (A,A′, B,B′) in QPB C.

(5) Suppose given the diagram
T

u

  v
  
A

f //

_a
��

Q
B

_ b
��

A′
f ′
// B′

in which ua = va and uf = vf . Then we have u ∼ v; cf. Definition 95.

(6) Suppose given

A
Q

f //

_a
��

B
Q

g //

b
��

C

_ c
��

A′
f ′
// B′

g′
// C ′

Then (A,C,A′, C ′) is in QPB C.

(7) Suppose given

A
Q

f //

_a0

��

B

_ b0
��

A′
Q f ′

//

_a1

��

B′

_ b1
��

A′′
f ′′
// B′′

Then (A,B,A′′, B′′) is in QPB C.

(8) Suppose given a commutative diagram as follows.

S •s //

u --

T
x

!!
y

��

A
Q

f //

_a
��

B

_ b
��

A′
f ′
// B′
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Then there exists T
v−→ A in C such that the following diagram commutes.

S •s //

u --

T
x

!!

v

  
y

��

A
Q

f //

_a
��

B

_ b
��

A′
f ′
// B′

Given a set of quasi-pullbacks QPB C, an element of QPB C is referred to as a quasi-
pullback (with respect to QPB C).

Remark 98. The following assertions (1, 2) hold.

(1) Let QPO C be a set of quasi-pushouts in C. Suppose given

A

Q

•
f //

•a
��

B

•b
��

A′
f ′
// B′.

Then we have f ′ ∈ Cof C.

(2) Let QPB C be a set of quasi-pullbacks in C. Suppose given

A
Q

f //

_a
��

B

_ b
��

A′ �
f ′
// B′.

Then we have f ∈ Fib C.

Proof. Ad (1). This follows from Definition 96.(1,4).

Ad (2). This follows from Definition 97.(1,4).

Remark 99.

• We often refer to property (2) in Definitions 96 and 97 as the axiom of incision or
just as incision.

• We often refer to property (3) in Definitions 96 and 97 as the axiom of excision or
just as excision.

• In the context of quasi-model-categories, property (8) in Definition 96 implies that
a quasi-pushout is in particular a weak pushout, justifying the notion quasi-pushout;
cf. Definition 24 and Lemma 104.(1) below.

Dually, in the context of quasi-model-categories, property (8) in Definition 97 implies
that a quasi-pullback is in particular a weak pullback, justifying the notion quasi-
pullback; cf. Definition 25 and Lemma 104.(2) below.
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3.3 Axioms for quasi-model-categories

Definition 100.

Let C be an FCQ-category that has initial and terminal objects; cf. Definition 92. Choose
an initial object ¡ and a terminal object ! in C.

Let QPO C be a set of quasi-pushouts in C; cf. Definition 96.

Let QPB C be a set of quasi-pullbacks in C; cf. Definition 97.

If the following axioms QCof , QFib and QBraid hold, we call

(C,Cof C,Fib C,Qis C,QPO C,QPB C)

a quasi-model-category. We often refer to just C as a quasi-model-category.

So altogether, a quasi-model-category is a category C with initial object ¡ and terminal
object !, together with subsets Cof C ⊆ Mor C of cofibrations, Fib C ⊆ Mor C of fibrations and
Qis C ⊆ Mor C of quasi-isomorphisms, and sets of quasi-pushouts QPO C and quasi-pullbacks
QPB C such that the axioms ACof , AFib, AQis, ALift, AFact, QCof , QFib andQBraid hold,
where the properties of quasi-pushouts are given in Definition 96 and the properties of
quasi-pullbacks are given in Definition 97.

QCof The following assertions (1, 2) hold.

(1) Suppose given A ∈ Ob C. Then we have ¡ • // A. Cf. also Remark 93.(1).

(2) Suppose given A′ A•aoo
f // B in C. There exists a quasi-pushout

A
f //

Q
•a
��

B

•b
��

A′
f ′
// B′

cf. Definition 96.

QFib The following assertions (1, 2) hold.

(1) Suppose given A ∈ Ob C. We have A � // ! . Cf. also Remark 93.(2).

(2) Suppose given A′
f ′ // B′ B� boo in C. There exists a quasi-pullback

A
f //

Q
_a
��

B

_ b
��

A′
f ′
// B′

cf. Definition 97.
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QBraid Suppose given a commutative diagram as follows.

A

Q

f //

•a
��

B

•b
�� u

��

v
A′

v′

++

u′

f ′
// B′

""

��
X

Q

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

There exists B′ w // X such that the following diagram commutes.

A

Q

f //

•a
��

B

•b
�� u

��

v
A′

v′

++

u′

f ′
// B′

w

  

""

��
X

Q

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

Remark 101. LetM be a weakly pointed model category; cf. Definitions 172 and 174.(1).
Then Mbif is a quasi-model-category with the quasi-model-structure described in Theo-
rem 193, as shown in loc. cit.

Remark 102. Let C be a quasi-model-category.

Let
Cof C◦ := {f ◦ : f ∈ Fib C}
Fib C◦ := {f ◦ : f ∈ Cof C}
Qis C◦ := {f ◦ : f ∈ Qis C}.

Let

QPO C◦ :=


A

f◦ //

•a◦

��

B

•b◦
��

A′
(f ′)◦

// B′
:

A B
foo

A′

_a

OO

B′

_ b

OO

f ′
oo

∈ QPB C



QPB C◦ :=


A

f◦ //

_a◦

��

B

_ b◦
��

A′
(f ′)◦

// B′
:

A B
foo

A′

•a
OO

B′

•b

OO

f ′
oo

∈ QPO C

 .
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Then
(C◦,Cof C◦,Fib C◦,Qis C◦,QPO C◦,QPB C◦)

is a quasi-model-category.

Remark 103. Let C be a quasi-model-category. Suppose given X
f // Y in C.

The following assertions (1, 2) hold.

(1) Suppose that (f, p) is an extension pair for all acyclic fibrations p. Then f is a
retract of a cofibration.

(2) Suppose that (f, p) is an extension pair for all fibrations p. Then f is a retract of
an acyclic cofibration.

Proof. Ad (1). Since AFact.(2) holds in C, there exists a commutative diagram as follows.

A
f //

•
i   

B

X

p

>>

By assumption, (f, p) is an extension pair. Thus, f = ip is a retract of i; cf. Lemma 23.(1).

Ad (2). Since AFact.(1) holds in C, there exists a commutative diagram as follows.

A
f //

◦
i   

B

X

=
p

>>

By assumption, (f, p) is an extension pair. Thus, f = ip is a retract of i; cf. Lemma 23.(1).

3.4 Elementary properties

For this §3.4 let C be a quasi-model-category.

3.4.1 Brown factorisation

Lemma 104. The following assertions (1, 2) hold.

(1) Suppose given

A
f //

•a
�� Q

B

•b
��

A′
f ′
// B′.

Then (A,B,A′, B′) is a weak pushout; cf. Definition 24.

71



(2) Suppose given

A
f //

_a
��

Q
B

_ b
��

A′
f ′
// B′.

Then (A,B,A′, B′) is a weak pullback; cf. Definition 25.

Proof. Ad (1). Suppose given A′
x−→ T and B

y−→ T with ax = fy. We have to show that
there exists B′

v−→ T with f ′v = x and bv = y.

We have a commutative diagram as follows.

A

Q

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′

��
T � // !

Cf. QFib.(1). Thus, there exists B′
v−→ T such that the following diagram commutes.

A

Q

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′

v

  ��
T � // !

Cf. Definition 96.(8). In particular, we have f ′v = x and bv = y.

Ad (2). This is dual to (1).

The following lemma and its proof are essentially due to K. Brown [2, p. 421]. He established
it in the context of categories of fibrant objects.

Lemma 105 (Brown factorisation). Suppose given X
f−→ Y .

The following assertions (1, 2) hold.

(1) There exists a diagram

X
f //

•
j   

Y

◦
knnZ

q
??

such that jq = f and kq = 1Y .
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(2) There exists a diagram

X
f //

◦
j   

Y

Z

>
q

??

k

NN

such that jq = f and jk = 1X .

Proof. Ad (1). We have a commutative diagram as follows.

¡ • //

•
�� Q

X

•x
�� f

��

Y •
y
//

1 //

M
g

  
Y

Cf. QCof , Remark 98.(1) and Lemma 104.(1).

Furthermore, there exists a commutative diagram as follows.

M
g //

•
a

  

Y

Z

s

??

Cf. AFact.(2). In consequence, we have the following diagram

X
f //

•
xa

  

Y

◦
yannZ

s

??

with xas = f and yas = 1Y ; cf. ACof .(1) and AQis.(2).

Ad (2). This is dual to (1).

3.4.2 Split denominator structure

Remark 106. The following assertions (1, 2) hold.

(1) We have Qis C ∩ Cof C ⊆ Coret C.

(2) We have Qis C ∩ Fib C ⊆ Ret C.

Proof. Ad (1). Suppose given A ◦i // B . We have a commutative diagram as follows.

A

◦i
��

A

_
��

B

q

??

� // !
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Cf. ALift.(1) and QFib.(1). Thus, i ∈ Coret C.

Ad (2). This is dual to (1).

Remark 107. Suppose given d ∈ Mor C. The following assertions (1, 2) are equivalent.

(1) We have d ∈ Qis C.

(2) There exists (i, p) ∈ (Cof C ∩Qis C)× (Fib C ∩Qis C) with q = ip.

Proof. Ad (1)⇒ (2). By AFact.(1), there exists (i, p) ∈ (Cof C ∩Qis C)×Fib C with q = ip.
By AQis.(2.b), we have p ∈ (Fib C ∩Qis C).

Ad (2)⇒ (1). This follows from AQis.(2.a).

Definition 108 (and Lemma). Recall that C is a quasi-model-category; cf. Definition 100.

Define

SDen C := Cof C ∩Qis C
TDen C := Fib C ∩Qis C.

Then (C, SDen C,TDen C) is a category with split denominators; cf. Definition 39.

Furthermore, we have

Den C = Qis C.

In the following we will use this split denominator structure on C without further notice.
In particular, we will make use of LC : C → Ho C; cf. §2.5.

Proof. By Remark 107, we have Den C = Qis C; cf. Definition 39.

Furthermore, we have

SSDen.(1) by ACof .(2) and AQis.(2.a),

SSDen.(2) by ACof .(1) and AQis.(1),

SSDen.(3) by Remark 106.(1), and

SSDen.(4) by QCof .(2); cf. Definition 96.(2).

Dually, we have

STDen.(1) by AFib.(2) and AQis.(2.a),

STDen.(2) by AFib.(1) and AQis.(1),

STDen.(3) by Remark 106.(2), and

STDen.(4) by QFib.(2); cf. Definition 97.(2).

Finally, we have SDen by AQis.(2).
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3.4.3 Uniqueness properties of quasi-pushouts

Lemma 109. Suppose given

A
f //

•a
�� Q

B

•b
��

A′
f ′
// B′

and A
f //

•a
�� Q

B
• b̂��

A′
f̂

// B̂.

The following assertions (1, 2, 3) hold.

(1) There exists a commutative diagrams as follows.

A
f //

•a
�� Q

B

•b
�� • b̂



A′
f ′
//

f̂
22

B′
u

��
B̂

(2) Suppose given commutative diagrams

A
f //

•a
�� Q

B

•b
�� • b̂



A′
f ′
//

f̂
22

B′
u

��
B̂

and A
f //

•a
�� Q

B
• b̂�� •b

��

A′
f̂

//

f ′
22

B̂
v

��
B′.

Then we have uv ∼ 1B′ and vu ∼ 1B̂ .

(3) Suppose given a commutative diagram as follows.

A
f //

•a
�� Q

B

•b
�� • b̂



A′
f ′
//

f̂
22

B′
u

��
B̂

Then we have LC u ∈ Iso Ho C. If C is saturated, then we have u ∈ Qis C.

Proof. Ad (1). This follows from Lemma 104.(1).

Ad (2). We have to show that uv ∼ 1B′ and vu ∼ 1B̂ . By symmetry, it suffices to show
that uv ∼ 1B′ .
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Since we have the diagram

A

Q

f //

•a
��

B

•b
��

A′
f ′
// B′

1

  uv
  
B′

in which f ′uv = f ′ = f ′ · 1B′ and b · 1B′ = b = buv, we obtain uv ∼ 1B′ ; cf. Definition 96.(5).

Ad (3). By (1, 2), we have Lu ∈ Iso Ho C.

If C is saturated, this implies u ∈ Qis C; cf. Definition 65.

3.5 Hirschhorn replacement

For this §3.5, let C be a quasi-model-category.

3.5.1 Homotopy in quasi-model-categories

Lemma 110. Suppose given X
f0 //

f1

// Y. The following assertions (1, 2, 3) are equivalent.

(1) We have f0 ∼ f1 .

(2) We have f0
l∼ f1 .

(3) We have f0
r∼ f1 .

This proof is essentially due to Quillen [10, Lem. I.1.5].

Proof. We have (2)⇒ (1) and (3)⇒ (1); cf. Remark 89.

Ad (1)⇒ (3). Suppose that f0 ∼ f1 . There exists a commutative diagram as follows.

X X
f0 //

◦i0
��

Y Y

X X̂
too f̂ // Ŷ

≈ p0

OO

p1

��

Y◦soo

X X
f1

//

≈i1

OO

Y Y
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Cf. Lemma 49.(3′). We have a commutative diagram as follows.

Ŷ
p̄

��

p0≈

��

p1

&&

Ȳ
Q

�c0 //

_c1

��

Y

_
��

Y � // !

Cf. QFib.(2), Remark 98.(2) and Lemma 104.(2).

Furthermore, we have a commutative diagram as follows.

Ŷ
p̄ //

◦
j ��

Ȳ

Y ′

>
q

??

Cf. AFact.(1). Thus, we have the following commutative diagrams.

Ŷ ≈
p0 //

◦
j ��

Y

Y ′

>
qc0

?? Ŷ
p1 //

◦
j ��

Y

Y ′

>
qc1

??

Cf. AFib.(2). Therefore, we obtain qc0, qc1 ∈ Qis C ∩ Fib C; cf. AQis.(2.b).

Moreover, we have a commutative diagram as follows.

X ◦
i0 //

f0sp̄
,,

X̂
tf0

  

v

��

f̂p0

��

Ȳ
Q

�c0 //

_c1

��

Y

_
��

Y � // !

Cf. Definition 97.(8). Additionally, we have the following commutative diagram.

X
f0sj //

◦i0
��

Y ′

_q
��

X̂ v
//

w

;;

B′

Cf. ALift.(1). Since the following diagram commutes, we have f0
r∼ i1f̂p0 .

X X
f0 // Y Y

X X
i1w // Y ′

qc0

OO

qc1

��

Y◦
sjoo

X X
i1f̂p0

// Y Y
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Since the following diagram commutes, we have i1f̂p0
r∼ f1 .

X X
i1f̂p0 // Y Y

X X
i1f̂ // Ŷ

≈ p0

OO

p1

��

Y◦soo

X X
f1

// Y Y

Altogether, we have f0
r∼ i1f̂p0

r∼ f1 . Thus, we have f0
r∼ f1 ; cf. Lemma 91.(2).

Ad (1)⇒ (2). This is dual to (1)⇒ (3).

Lemma 111. Suppose given X
f0 //

f1

// Y with f0 ∼ f1 . The following assertions (1, 2) hold.

(1) Suppose given a commutative diagram as follows.

¡

Q

• //

•
��

X

•ι1
��

X •
ι0
// X ′

Cf. QCof .(1,2) and Remark 98.(1).

There exists X ′ •
j // X̃ and a commutative diagram as follows.

X X
f0 //

◦ι0j

��

Y Y

X X̃too �f̃ // Y Y

X X
f1

//

◦ι1j

OO

Y Y

(2) Suppose given a commutative diagram as follows.

Y ′ �π0 //

_π1

��

Q
Y

_
��

Y � // !

Cf. QFib.(1,2) and Remark 98.(2).
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There exist Ỹ �q // Y ′ and a commutative diagram as follows.

X X
f0 // Y Y

X X •
f̃ // Ỹ

qπ0

OO

qπ1

��

Y◦soo

X X
f1

// Y Y

Proof. Ad (2). By Lemmas 110 and 90.(2), there exists a commutative diagram as follows.

X X
f0 // Y Y

X X
f̂ // Ŷ

p0

OO

≈ p1

��

Y◦soo

X X
f1

// Y Y

By Lemma 105.(1), there exists a diagram

X
f̂ //

•
f̄ ��

Ŷ

◦ vooȲ

u

??

such that f̄u = f̂ and vu = 1Ŷ . There exists a commutative diagram as follows.

Ȳ up0

��

≈up1

""

p

  
Y ′ �π0 //

_π1

��

Q
Y

_
��

Y � // !

Cf. Lemma 104.(2). By AFact.(1), there exists a commutative diagram as follows.

Ȳ
p //

◦
j ""

Y ′

Ỹ

8
q

;;
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In consequence, we have a commutative diagram as follows.

X X
f0 // Y Y

X X •
f̄ j // Ỹ

qπ0

OO

qπ1

��

Y◦
svjoo

X X
f1

// Y Y

Cf. AFib.(1), ACof .(1) and AQis .

Ad (1). This is dual to (2).

3.5.2 The replacement lemma

Proposition 112 (Hirschhorn replacement lemma, [8, Cor. 7.3.12]).

The following assertions (1, 2) hold.

(1) Suppose given

A
f //

•i
��

X

B

g

88

such that ig ∼ f . There exists B
g′ // X with g ∼ g′ and ig′ = f .

(2) Suppose given

X

_ p
��

A

f

88

g
// Y

such that fp ∼ g. There exists A
f ′ // X with f ∼ f ′ and f ′p = g.

Proof. Ad (1). Since ig ∼ f , there exists a commutative diagram as follows.

A A •i // B
g // X X

A A
h // X̂

p

OO

≈ q

��

X≈
soo

A A
f

// X X

Cf. Lemma 110 and Lemma 90.(2).
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Furthermore, we have a commutative diagram as follows.

A
h //

•i
��

X̂

p

��
B g

//

m

??

X

Cf. ALift.(2). Let B
g′ :=mq // X. Then we have ig′ = f .

Since the following diagram commutes, we have g ∼ g′; cf. Lemma 110.

B B
g // X X

B B
m // X̂

p

OO

≈ q

��

Y≈
soo

B B
g′
// X X

Ad (2). This is dual to (1).

Corollary 113. Suppose given

A

Q
•a
��

f // B

•b
��

A′
f ′
// B′.

The following assertion (∗) holds.

(∗) Suppose given A′ x // T B
yoo with fy ∼ ax.

Then there exists B′
u // T with f ′u ∼ x and bu = y.

A

Q
•a
��

f // B

•b
�� y



A′
f ′
//

x 22

B′

u

!!
T

In particular,

A
[a]
��

[f ] // B
[b]
��

A′
[f ′]
// B′

is a weak pushout in Ho C.
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Proof. There exists A′ x′ // T with x ∼ x′ and ax′ = fy; cf. Proposition 112.(1).

Moreover, there exists a commutative diagram as follows.

A

Q
•a
��

f // B

•b
�� y



A′
f ′
//

x′
22

B′

u

!!
T

Cf. Lemma 104.(1). Additionally, we have f ′u = x′ ∼ x.

Corollary 114. Suppose given

A
Q

_a
��

f // B

_b
��

A′
f ′
// B′

The following assertion (∗) holds.

(∗) Suppose given A′ T
xoo y // B with yb ∼ xf ′.

Then there exists T u // A with uf ∼ y and ua = x.

T
u

  

y

��

x

''

A
f //

_a
��

Q
B

_b
��

A′
f ′
// B′

In particular,

A

[a]
��

[f ] // B

[b]
��

A′
[f ′]
// B′

is a weak pullback in Ho C.

Proof. This is dual to Corollary 113.

3.6 The suspension functor

In this §3.6, we establish the suspension functor ΣC : Ho C → Ho C on the homotopy category
of a quasi-model-category C; cf. Definition 141 below.
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3.6.1 Brown-Gunnarsson gluing

3.6.1.1 H-pushouts

3.6.1.1.1 The general case

For this §3.6.1.1.1, let C be a quasi-model-category.

Definition 115. A commutative quadrangle

A

•a
��

f // B

b
��

A′
f ′
// B′

is called an H-pushout, if the following assertion (∗) holds.

(∗) Suppose given a commutatitive diagram as follows.

A

•a

��

f //

Q

B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′

Then we have LC u ∈ Iso Ho C.

To indicate that (A,B,A′, B′) is an H-pushout, we often write

A

•a
��

f //

H

B

b
��

A′
f ′
// B′.

Remark 116. Suppose given the following commutative quadrangle.

A

•a
��

f // B

b
��

A′
f ′
// B′

The following assertions (1, 2) are equivalent.

(1) The commutative quadrangle (A,B,A′, B′) is an H-pushout; cf. Definition 115.
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(2) There exists a commutative diagram

A

•a

��

f //

Q

B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′

with LC u ∈ Iso Ho C.

Proof. Ad (1)⇒ (2). We have a commutative diagram as follows.

A

•a

��

f //

Q

B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′

Cf. QCof .(2) and Lemma 104.(1). Since (1) holds, we have Lu ∈ Iso Ho C.

Ad (2)⇒ (1). Suppose given the following commutative diagram.

A

•a

��

f //

Q

B

b

��

• b̃
��

B̃
ũ

  
A′

f ′
//

f̃

88

B′

We have to show that L ũ ∈ Iso Ho C; cf. Definition 115.

By Lemma 109, we have a commutative diagram

A
f //

•a
�� Q

B

• b̂
��

b̃•

��

A′
f̂

//

f̃ ..

B̂
v

Q ��
B̃

with L v ∈ Iso Ho C.

Since we have f̂ ·u = f ′ = f̂ ·vũ and b̂·u = b = b̂·vũ, we obtain u ∼ vũ; cf. Definition 96.(5).

Thus, we have Lu = L(vũ) = L v · L ũ with Lu,L v ∈ Iso Ho C. Therefore, L ũ ∈ Iso Ho C.
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Remark 117. Suppose given a quasi-pushout (A,B,A′, B′).

Then (A,B,A′, B′) is an H-pushout.

Proof. This follows from Remark 116 using u = 1B′ .

Remark 118. Suppose given

A

H

f //

◦a
��

B

b
��

A′
f ′
// B′.

Then we have LC b ∈ Iso Ho C.

Proof. There exists a commutative diagram

A

◦a

��

f //

Q

B

b

��

◦ b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′

where Lu ∈ Iso Ho C; cf. Remark 116 and Definition 96.(2). Thus, we have L b ∈ Iso Ho C.

Remark 119. Suppose given the following commutative diagram.

A ≈
f //

•a
��

B

b
��

A′
f ′
// B′.

The following assertions (1, 2) are equivalent.

(1) We have LC f
′ ∈ Iso Ho C.

(2) The commutative quadrangle (A,B,A′, B′) is an H-pushout.

Proof. There exists a commutative diagram as follows.

A

•a

��

≈
f //

Q

B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂
≈
88

B′
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Cf. QCof .(2), Definition 96.(3) and Lemma 104.(1). In particular, we have Lf̂ ∈ Iso Ho C;
cf. Corollary 60.

Ad (1)⇒ (2). Since L f ′ is in Iso Ho C, so is Lu. Thus, (A,B,A′, B′) is an H-pushout; cf.
Remark 116.

Ad (2)⇒ (1). Since (A,B,A′, B′) is an H-pushout, we have Lu ∈ Iso Ho C. In conse-
quence, we have L f ′ ∈ Iso Ho C.

Lemma 120. Suppose given the following commutative diagram.

A

H

•
f //

•a0

��
•a

��

B

b0

��
b

��
H

A′
f ′
//

≈a1

��

B′

b1

��
A′′

f ′′
// B′′

Then we have LC b1 ∈ Iso Ho C.

Proof. We have a commutative diagram

A •
f //

•a0

��

Q

B

b0

��

• b̂
��

B̂

≈ b̃

��

u

  
A′

f ′
//

≈a1

��

f̂
•
88

Q

B′

b1

��

B̃
v

  
A′′

f ′′
//

f̃
•
88

B′′

where Lu ∈ Iso Ho C; cf. Remarks 116 and 98.(1), QCof .(2), Definition 96.(3) and Lem-
ma 104.(1).

Thus, we have an H-pushout (A,B,A′′, B′′) and a quasi-pushout (A,B,A′′, B̃); cf. Definition 96.(7).
Therefore, we obtain L v ∈ Iso Ho C; cf. Definition 115.

In consequence, we have L b1 ∈ Iso Ho C; cf. also Corollary 60.

Remark 121. Suppose given

A

H
•a
��

f // B

H
•b
��

≈
g // C

c

��
A′

f ′
// B′

g′
// C ′.
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Then (A,C,A′, C ′) is an H-pushout.

Proof. There exists a commutative diagram

A

•a

��

f //

Q

B

Q•b

��

• b̂
��

≈
g // C

c

��

• ĉ
��

B̂
u

��

ĝ
≈ // Ĉ

v

��
A′

f ′
//

f̂

88

B′
g′

// C ′

where Lu ∈ Iso Ho C; cf. Remark 116, QCof .(2), Definition 96.(3) and Lemma 104.(1).

Since (A,C,A′, Ĉ) is a quasi-pushout, it suffices to show that L v ∈ Iso Ho C; cf. Definition 96.(6)
and Remark 116.

We have Lu·L g′ = L ĝ ·L v with Lu, L g′, L ĝ ∈ Iso Ho C; cf. Corollary 60 and Remark 119.

Thus, we obtain L v ∈ Iso Ho C.

Remark 122. Suppose given the following commutative diagram.

A
f //

•a
�� H

h

  
B

•b
��

≈
g // C

c

��
A′

f ′
//

h′

??B′
g′ // C ′
H

Then (B,C,B′, C ′) is an H-pushout.

Proof. There exists a commutative diagram

A

•a

��

f //

Q

B

Q•b

��

• b̂
��

≈
g // C

c

��

• ĉ
��

B̂
u

��

ĝ
≈ // Ĉ

v

��
A′

f ′
//

f̂

88

B′
g′

// C ′

where Lu ∈ Iso Ho C; cf. Remark 116, QCof .(2), Definition 96.(3) and Lemma 104.(1).

By Remark 119, it suffices to show that L g′ ∈ Iso Ho C. Thus, it suffices to show that
L v ∈ Iso Ho C; cf. also Corollary 60.

Since we have an H-pushout (A,C,A′, C ′) and a quasi-pushout (A,C,A′, Ĉ), we have
L v ∈ Iso Ho C; cf. Definition 115 and Definition 96.(6).
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Lemma 123. Suppose given

A

•a
��

≈
f // B

H
•b
��

g // C

c

��
A′ ≈

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is an H-pushout.

Proof. There exists a commutative diagram as follows

A

Q

•a

��

≈
f // B

Q

•i //

•b

��

• b̂

��

g

&&
X

p //

•x̂
��

•x̄

Q
��

C

c

��

X̂

v $$
B̂

u≈
%%

•
î

33

X̄
w

%%
A′ ≈

f ′
//f̂

≈

33

B′
•
ī

33

g′
// C ′

Cf. QCof .(2), Definition 96.(3), Lemma 104.(1), AFact.(2), Remark 98.(1) and AQis.(2.b).

Since (A,X,A′, X̂) is an H-pushout, it suffices to show that (X,C, X̂, C ′) is an H-pushout;
cf. Definition 96.(6), Remark 117 and Remark 121.

Thus, it suffices to show that L(vw) ∈ Iso Ho C; cf. Remark 119.

We show that L v ∈ Iso Ho C and Lw ∈ Iso Ho C.

Since (B,X,B′, X̄) and (B,X, B̂, X̂) are H-pushouts, we have L v ∈ Iso Ho C; cf. Re-
mark 117 and Lemma 120.

Since (B,C,B′, C ′) and (B,X,B′, X̄) are H-pushouts, so is (X,C, X̄, C ′); cf. Remarks 117
and 122. Thus, Lw ∈ Iso Ho C; cf. Remark 119.

Lemma 124. Suppose given the following commutative diagram.

A ≈
f //

•a
��

h

  
B

•b
��

g // C

c

��
A′ ≈

f ′
//

h′

??B′
g′ // C ′
H

Then (B,C,B′, C ′) is an H-pushout.
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Proof. There exists a commutative diagram as follows.

A ≈
f //

•a

��

B

•b

��

•i //

g

((

Q

X

•x̂
��

p // C

c

��

X̂
v

))
A′ ≈

f ′
// B′

•
î

55

g′
// C ′

Cf. AFact.(2), QCof .(2), Remark 98.(1) and Lemma 104.(1).

Since (B,X,B′, X̂) is an H-pushout, so is (A,X,A′, X̂); cf. Remark 117 and Lemma 123.

Since (A,C,A′, C ′) and (A,X,A′, X̂) are H-pushouts, so is (X,C, X̂, C ′); cf. Remark 122.

Since (B,X,B′, X̂) and (X,C, X̂, C ′) are H-pushouts, so is (B,C,B′, C ′); cf. Remark 121.

3.6.1.1.2 The saturated case

For this §3.6.1.1.2, let C be a saturated quasi-model-category.

Remark 125. Suppose given the following commutative quadrangle.

A

•a
��

f // B

b
��

A′
f ′
// B′

The following assertions (1, 2, 3) are equivalent.

(1) The commutative quadrangle (A,B,A′, B′) is an H-pushout; cf. Definition 115.

(2) Suppose given a commutative diagram as follows.

A

•a

��

f //

Q

B

b

��

• b̂��

B̂
u
  

A′
f ′

//
f̂

99

B′

Then we have u ∈ Qis C.

(3) There exists a commutative diagram as follows.

A

•a

��

f //

Q

B

b

��

• b̂��

B̂
u≈  

A′
f ′

//
f̂

99

B′
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Proof. Ad (1)⇒ (2). Since (A,B,A′, B′) is an H-pushout, we have Lu ∈ Iso Ho C. Thus,
we have u ∈ Qis C; cf. Definition 65.

Ad (2)⇒ (3). We have a commutative diagram as follows.

A

•a

��

f //

Q

B

b

��

• b̂��

B̂
u
  

A′
f ′

//
f̂

99

B′

Cf. QCof .(2) and Lemma 104.(1). Since (2) holds, we have u ∈ Qis C.

Ad (3)⇒ (1). By Corollary 60, we have Lu ∈ Iso Ho C.

Thus, (A,B,A′, B′) is an H-pushout; cf. Remark 116.

Lemma 126. Suppose given

A

H
•a
��

f // B

H
•b
��

g // C

c

��
A′

f ′
// B′

g′
// C ′.

Then (A,C,A′, C ′) is an H-pushout.

Proof. There exists a commutative diagram as follows.

A

Q

•a

��

f // B

Q

•i //

•b

��

• b̂

��

g

&&
X

p //

•x̂
��

•x̄

Q
��

C

c

��

X̂

v $$
B̂

u≈
%%

•
î

33

X̄
w

%%
A′

f ′
//f̂

33

B′
•
ī

33

g′
// C ′

Cf. Remark 125, AFact.(2), QCof .(2), Remark 98.(1) and Lemma 104.(1).

Since (A,X,A′, X̂) is an H-pushout, it suffices to show that (X,C, X̂, C ′) is an H-pushout;
cf. Definition 96.(6), Remark 117 and Remark 121.

Thus, it suffices to show that L(vw) ∈ Iso Ho C; cf. Remark 119.

We show that L v ∈ Iso Ho C and Lw ∈ Iso Ho C.

Since (B,X,B′, X̄) and (B,X, B̂, X̂) are H-pushouts, we have L v ∈ Iso Ho C; cf. Re-
mark 117 and Lemma 120.

Since (B,C,B′, C ′) and (B,X,B′, X̄) are H-pushouts, so is (X,C, X̄, C ′); cf. Remarks 117
and 122. Thus, Lw ∈ Iso Ho C; cf. Remark 119.
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Lemma 127. Suppose given the following commutative diagram.

A
f //

•a
�� H

h

  
B

•b
��

g // C

c

��
A′

f ′
//

h′

??B′
g′ // C ′
H

Then (B,C,B′, C ′) is an H-pushout.

Proof. There exists a commutative diagram as follows.

A

H

f //

•a

��

B

•b

��

•i //

g

((

Q

X

•x̂

��

p // C

c

��

X̂
v

&&
A′

f ′
// B′

•
î

88

g′
// C ′

Cf. AFact.(2), QCof .(2), Remark 98.(1) and Lemma 104.(1).

Since (A,B,A′, B′) and (B,X,B′, X̂) are H-pushouts, so is (A,X,A′, X̂); cf. Remark 117
and Lemma 126.

Since (A,C,A′, C ′) and (A,X,A′, X̂) are H-pushouts, so is (X,C, X̂, C ′); cf. Remark 122.

Since (B,X,B′, X̂) and (X,C, X̂, C ′) are H-pushouts, so is (B,C,B′, C ′); cf. Remark 121.

Lemma 128. Suppose given

A
f //

•a0

�� H

B

b0
��

A′
f ′ //

•a1

�� H

B′

b1
��

A′′
f ′′
// B′′.

Then (A,B,A′′, B′′) is an H-pushout.
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Proof. We have a commutative diagram as follows.

A

Q
•a0

��

f // B

•
b̂

�� b0

��

B̂

u≈

!!

• b̃

��

A′

Q

f̂

::

•a1

��

f ′
// B′

• b̄

Q





b1

��

B̃

v
≈

��
B̄

w≈

  
A′′

f̃

<<

f̄

33

f ′′
// B′′

Cf. Remark 125, QCof .(2) and Definition 96.(3). Since (A′, B̂, A′′, B̃) and (B̂, B′, B̃, B̄)
are quasi-pushouts, so is (A′, B′, A′′, B̄); cf. Definition 96.(6). Since (A′, B′, A′′, B̄) is a
quasi-pushout and (A′, B′, A′′, B′′) is an H-pushout, there exists w ∈ Qis C making the
diagram above commutative; cf. Lemma 104.(1) and Remark 125.

Since (A,B,A′′, B̃) is a quasi-pushout and vw ∈ Qis C, (A,B,A′′, B′′) is an H-pushout;
cf. Definition 96.(7), AQis.(2.a) and Remark 125.

Lemma 129. Suppose given the following commutative diagram.

A

H

f //

•a0

��
•a

��

B

b0

��
b

��
H

A′
f ′
//

•a1

��

B′

b1

��
A′′

f ′′
// B′′

Then (A′, B′, A′′, B′′) is an H-pushout.
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Proof. We have a commutative diagram as follows.

A

Q
•a0

��

f // B

•
b̂

�� b0

��

B̂

u≈

!!

• b̃

��

A′

Q

f̂

::

•a1

��

f ′
// B′

• b̄

Q





b1

��

B̃

v
≈

��
B̄

w

  
A′′

f̃

<<

f̄

33

f ′′
// B′′

Cf. Remark 125, QCof .(2) and Definition 96.(3). Lemma 104.(1). Since (A′, B̂, A′′, B̃) and
(B̂, B′, B̃, B̄) are quasi-pushouts, so is (A′, B′, A′′, B̄); cf. Definition 96.(6). Thus, there
exists w ∈ Mor C making the diagram above commutative; cf. Lemma 104.(1).

It suffices to show that w ∈ Qis C; cf. Remark 125. Therefore, it suffices to show that
vw ∈ Qis C; cf. AQis.(2.b).

Since (A,B,B′′, B̃) ∈ QPO C and (A,B,A′′, B′′) is an H-pushout, we have vw ∈ Qis C; cf.
Definition 96.(7) and Remark 125.

3.6.1.2 The gluing lemma

The following proposition is inspired by ideas of Gunnarsson [7, Lem. 7.4] and Thomas [15,
Prop. 3.50]. Cf. also [6, Lem. II.8.8]. Moreover, it is an analogue of R. Brown’s gluing
lemma [3, 7.4.1].

For this §3.6.1.2, let C be quasi-model-category.
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Proposition 130. Suppose given the following commutive diagram.

A′0

u′≈

��

f ′0 // B′0

v′

��

A0

H

≈u

��

f0

//

•
a0

>>

B0

v≈

��

•
b0

>>

A′1
f ′1 // B′1

A1

H

f1

//

•
a1

>>

B1

b1

>>

Then we have L v′ ∈ Iso Ho C.

Proof. Since (A1, A
′
1, B1, B

′
1) is an H-pushout, so is (A0, B1, A

′
0, B

′
1); cf. Lemma 123.

Since (A0, B1, A
′
0, B

′
1) and (A0, B0, A

′
0, B

′
0) are H-pushouts, so is (B0, B1, B

′
0, B

′
1); cf. Re-

mark 122.

Thus, L v′ ∈ Iso Ho C; cf. Remark 119.

3.6.2 Acyclic objects

For this §3.6.2, let C be a quasi-model-category.

3.6.2.1 Definition and elementary properties

Definition 131. Let Ac C be the full subcategory of C with

Ob Ac C := {A ∈ Ob C : A // ! }.

The elements of Ob Ac C are called acyclic objects.

Remark 132. Let X ∈ Ob C be a terminal object. Then X ∈ Ob Ac C.

Lemma 133. Suppose given A,B ∈ Ob Ac C. The following assertions (1, 2, 3) hold.

(1) There exists A ≈
d // B.

(2) Suppose given A
f−→ B. Then we have A ≈

f // B.

(3) Suppose given A
f //
g
// B. Then we have f ∼ g.

Proof. Ad (1). By Remark 106.(2), there exists a commutative diagram as follows.

!

≈
b ��

!

B

@@
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Cf. AQis. Thus, we have A // ! ≈
b // B ; cf. AQis.(2.a).

Ad (2). We have the following commutative diagram.

A

f

��

// !

B

@@

Thus, we have f ∈ Qis C; cf. AQis.(2.c).

Ad (3). Since ! is terminal, we have ft = gt with B
t // ! . Thus, we obtain

L f · L t = L(ft) = L(gt) = L g · L t.

Since L t ∈ Iso Ho C, we have L f = L g; cf. Corollary 60. Thus, we obtain f ∼ g.

Remark 134. Suppose given X ∈ Ob C. There exists X •a // A with A ∈ Ob Ac C.

Proof. By AFact.(2), there exists a commutative diagram as follows.

X � //

•
a

  

!

A

@@

Remark 135. Suppose given

A X•aoo

f

��

•b // B

C Yc
oo

d
// D

with C and D in Ob Ac C.

There exist α and β in Mor C such that the following diagram commutes.

A

α

��

X•aoo

f

��

•b // B

β

��
C Yc
oo

d
// D

Proof. There exist commutative diagrams as follows.

X

•a
��

fc // C

��
A � //

α
>>

!

X

•b
��

fd // D

��
B � //

β
>>

!

Cf. ALift.(2).
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3.6.2.2 The key lemma

Lemma 136. The following assertions (1, 2) hold.

(1) Suppose given commutative diagrams

A •b̃ //

α

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

c
??

d
// D

c̃

??

A •b̃ //

α

��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

c
??

d
// D

c̃

??

with B and D in Ob Ac C. Then we have f ′ ∼ f ′′.

(2) Suppose given commutative diagrams

A •b̃ //

α′ ≈

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

c
??

d
// D

c̃

??

A •b̃ //

α′′ ≈
��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′ ≈
��

•
ã

??

C
d̃

// Ỹ

Y

c
??

d
// D

c̃

??

with A, B, C and D in Ob Ac C. Then we have f ′ ∼ f ′′.

Proof. Ad (1). There exist commutative diagrams as follows.

X

Q

•b //

•b
��

B

•b0
�� β′

��

B •
b1
//

β′′ //

X̄
β̄

  
D

X

Q

•b //

•b
��

B

•b0
�� β′′

��

B •
b1
//

β′′ //

X̄
¯̄β

  
D

Cf. Lemma 104.(1). We choose X̄ •b̄ // B̄ // ! ; cf. Remark 134.

By ALift.(2), there exist commutative diagrams as follows.

X̄
β̄ //

•b̄
��

D

��
B̄ //

b̄

??

!

X̄
¯̄β //

•b̄
��

D

��
B̄ //

¯̄b

??

!
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There exist commutative diagrams as follows.

X

Q

•
bb0b̄ //

•a
��

B̄

•â
��

b̄c̃

��

A •
b̂

//

αd̃ ..

X̂
f̄

��
Ỹ

X

Q

•
bb0b̄ //

•a
��

B̄

•â
�� ¯̄bc̃

��

A •
b̂

//

αd̃ ..

X̂
¯̄f

��
Ỹ

Cf. Lemma 104.(1). Furthermore, we have a commutative diagram as follows.

X

Q

•b //

•a
��

B

•ã
��

b0b̄â

��

A •
b̃

//

b̂ ..

X̃
w

��
X̂

We have diagrams

X

Q

•b //

•a
��

B

•ã
��

A •
b̃

// X̃
f ′

��wf̄ ��
Ỹ

X

Q

•b //

•a
��

B

•ã
��

A •
b̃

// X̃
f ′′

��w ¯̄f ��
Ỹ

where ãf ′ = ãwf̄ , where b̃f ′ = b̃wf̄ , where ãf ′′ = ãw ¯̄f and where b̃f ′′ = b̃w ¯̄f .

Thus, we obtain f ′ ∼ wf̄ and f ′′ ∼ w ¯̄f ; cf. Definition 96.(5). Therefore, it suffices to

show that f̄ ∼ ¯̄f .

We have the following commutative cuboid.

A •b̃ // X̃

v

��

X

Q

b
• //

•
a

??

B

b1b̄◦

��

•
ã

??

A b̂• // X̂

X

Q

•
bb0b̄

//

•
a

??

B̄

•
â

??

Cf. Lemma 133.(2), ACof .(2), AQis.(1) and Lemma 104.(1). By Proposition 130, we obtain

that L v ∈ Iso Ho C; cf. Remark 117. Thus, it suffices to show that vf̄ ∼ v ¯̄f .
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We have the diagram

X

Q

•b //

•a
��

B

•ã
��

A •
b̃

// X̃
vf̄

��v ¯̄f ��
Ỹ

in which b̃ · vf̄ = αd̃ = b̃ · v ¯̄f and ã · vf̄ = β′′c̃ = ã · v ¯̄f . Thus, we obtain vf̄ ∼ v ¯̄f ; cf.
Definition 96.(5).

Ad (2). We have a commutative diagram as follows.

X •a //

•b
�� Q

A

• b̃
�� α′d̃



B •
ã
//

β′′c̃ 11

X̃
f̃

��
Ỹ

Cf. Lemma 104.(1).

Since B and D are acyclic and the following diagrams commute, we obtain f ′ ∼ f̃ by (1).

A •b̃ //

α′ ≈

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

c
??

d
// D

c̃

??

A •b̃ //

α′ ≈

��

X̃

f̃

��

X
b
• //

•
a

?? Q

f

��

B

β′′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

•
c
??

d
// D

c̃

??

Since A and C are acyclic and the following diagrams commute, we obtain f̃ ∼ f ′′ by (1).

A •b̃ //

α′ ≈

��

X̃

f̃

��

X
b
• //

•
a

?? Q

f

��

B

β′′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

•
c
??

d
// D

c̃

??

A •b̃ //

α′′ ≈

��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′ ≈

��

•
ã

??

C
d̃

// Ỹ

Y

•
c
??

d
// D

c̃

??

Cf. Definition 96.(4). In consequence, we obtain f ′ ∼ f ′′; cf. Definition 50.
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3.6.2.3 A variant of the key lemma

In this §3.6.2.3, we give a variant of our key lemma, Lemma 136. This variant is an aside
and is not used in the sequel.

Lemma 137. The following assertions (1, 2) hold.

(1) Suppose given commutative diagrams

A •b̃ //

α

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′

��

•
ã

??

C
d̃

// Ỹ

Y

•
c
??

d
//

Q

D

•
c̃

??

A •b̃ //

α

��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′

��

•
ã

??

C
d̃

// Ỹ

Y

•
c
??

d
//

Q

D

•
c̃

??

where D in Ob Ac C. Then we have f ′ ∼ f ′′.

(2) Suppose given commutative diagrams

A •b̃ //

α′

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??

A •b̃ //

α′′

��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??

where C and D in Ob Ac C. Then we have f ′ ∼ f ′′.
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Proof. Ad (1). We have

A •b̃ //

α

��

X̃

f ′

��

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′

��

β′′

��

•
ã

??

C
d̃

// Ỹ

v

��

Y

•
c
??

d
//

Q

D

•
c̃

??

p

��

C
ẽ // Z

Y

•
c
>>

e //

Q

!

•
z

>>

such that the lower cuboid is commutative; cf. QCof .(2) and Lemma 104.(1).

Since

b̃ · f ′v = αd̃v = b̃ · f ′v and ã · f ′v = β′pz = β′′pz = ã · f ′′v,

we obtain f ′v ∼ f ′′v; cf. Definition 96.(5). Thus, it suffices to show that L v ∈ Iso Ho C.

We obtain L v ∈ Iso Ho C by applying Proposition 130 to the lower cuboid; cf. Remark 117.

Ad (2). We have a commutative diagram as follows.

X •a //

•b
�� Q

A

• b̃
�� α′d̃



B •
ã
//

β′′c̃ 11

X̃
f̃

��
Ỹ

Cf. Lemma 104.(1).

Since D in Ob Ac C and the following diagrams commute, we obtain f ′ ∼ f̃ by (1).

A •b̃ //

α′

��

X̃

f ′

��

X
b
• //

•
a

?? Q

f

��

B

β′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??

A •b̃ //

α′

��

X̃

f̃

��

X
b
• //

•
a

?? Q

f

��

B

β′′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??
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Since C in Ob Ac C and the following diagrams commute, we obtain f̃ ∼ f ′′ by (1).

A •b̃ //

α′

��

X̃

f̃

��

X
b
• //

•
a

?? Q

f

��

B

β′′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??

A •b̃ //

α′′

��

X̃

f ′′

��

X
b
• //

•
a

?? Q

f

��

B

β′′

��

•
ã

??

C
d̃
• // Ỹ

Y

•
c
??

•
d

//

Q

D

•
c̃

??

Cf. Definition 96.(4). In consequence, we obtain f ′ ∼ f ′′; cf. Definition 50.

Remark 138. The key lemma, Lemma 136, and its variant Lemma 137 are related as
follows.

• Suppose that A and B in Lemma 137.(2) are acyclic. Then the conclusion of
Lemma 137.(2) also follows from Lemma 136.(2); cf. Lemma 133.(2).

• Suppose that c, c̃, d, d̃ ∈ Cof C and that (Y,D,C, Ỹ ) is in QPO C in Lemma 136.(2).
Then the conclusion of Lemma 136.(2) also follows from Lemma 137.(2).

3.6.3 Construction of the suspension

For this §3.6.3, let C be a quasi-model-category.

Definition 139 (and Lemma).

(1) For X ∈ Ob C, we choose

X

•aX

��

•
bX //

Q

BX

•cX
��

AX •
dX
// SX

with AX and BX in Ob Ac C; cf. Remark 134, QCof .(2) and Remark 98.(1).

(2) For X
f // Y , we choose AX ≈

αf // AY , BX ≈
βf // BY and SX Sf // SY such that

the following diagram commutes.

AX •
dX //

αf ≈

��

SX

Sf

��

X
bX
• //

•
aX

>> Q

f

��

BX

βf ≈

��

•cX

<<

AY dY
• // SY

Y

•
aY

>>

•
bY

//

Q

BY

•cY

<<
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Cf. Remark 135, Lemma 133.(2) and Lemma 104.(1).

This defines the functor

C SC−→ Ho C

(X
f−→ Y ) 7→ (SCX

SCf−−→ SCY ) := (SX [Sf ]−−→ SY ).

If unambiguous, we often write S := SC .

Proof. First we show that S1X = 1SX for X ∈ Ob C.

Suppose given X ∈ Ob C. We need to show that S1X ∼ 1SX .

For brevity, we write αX := α1X and βX := β1X .

We have commutative diagrams

AX •
dX //

αX ≈

��

SX

S1X

��

X
bX
• //

•
aX

>> Q

1X

��

BX

βX ≈

��

•cX

<<

AX dX
• // SX

X

•
aX

>>

•
bX

//

Q

BX

•cX

<<

AX •
dX //

1AX≈

��

SX

1SX

��

X
bX
• //

•
aX

>> Q

1X

��

BX

1BX ≈

��

•cX

<<

AX dX
• // SX

X

•
aX

>>

•
bX

//

Q

BX

•cX

<<

with AX and BX in Ob Ac C. Thus, we obtain S1X ∼ 1SX by Lemma 136.(2).

Now we show that S(fg) = Sf · Sg for X
f // Y

g // Z in C.

We need to show that S(fg) ∼ Sf · Sg. We have commuative diagrams

AX •
dX //

αfg ≈

��

SX

S(fg)

��

X
bX
• //

•
aX

>> Q

fg

��

BX

βfg ≈

��

•cX

<<

AZ dZ
• // SZ

Z

•
aZ

>>

•
bZ

//

Q

BZ

•cZ

<<

AX •
dX //

αfαg≈

��

SX

Sf ·Sg

��

X
bX
• //

•
aX

>> Q

fg

��

BX

βfβg ≈

��

•cX

<<

AZ dZ
• // SZ

Z

•
aZ

>>

•
bZ

//

Q

BZ

•cZ

<<

with AX , BX , AZ andBZ in Ob Ac C. Thus, we obtain S(fg) ∼ Sf ·Sg; cf. Lemma 136.(2).

Lemma 140. We have SC ∈ Ob (∼)[C,Ho C] .
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Proof. By Proposition 59, it suffices to show that S(Qis C) ⊆ Iso Ho C; cf. Definition 108.

Suppose given X ≈
f // Y . We have the following commutative diagram.

AX •
dX //

αf ≈

��

SX

Sf

��

X
bX
• //

•
aX

>> Q

≈f

��

BX

βf ≈

��

•cX

<<

AY dY
• // SY

Y

•
aY

>>

•
bY

//

Q

BY

•cY

<<

Cf. Definition 139.(2). By Proposition 130, we obtain

Sf = [Sf ] = L(Sf) ∈ Iso Ho C.

Cf. Remark 117.

Definition 141 (and Lemma). Let ΣC := SC; cf. Definition 8.

We have the functor

Ho C ΣC−→ Ho C

(X
[f ]−→ Y ) 7→ (ΣCX

ΣC [f ]−−−→ ΣCY ) = (SCX
SCf−−→ SCY ).

We call ΣC the suspension functor of C. If unambiguous, we often write Σ := ΣC .

Proof. This follows from Lemma 140; cf. Definition 8.

We aim to show that the construction of the suspension functor is essentially independent
of the choices made.

Lemma 142. Suppose given a choice of a commutative diagram

X

•ãX
��

•
b̃X //

Q

B̃X

•c̃X
��

ÃX •
d̃X

// S̃X

with AX and BX in Ob Ac C for X ∈ Ob C.
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Suppose given a choice of a commutative diagram

ÃX •
d̃X //

α̃f ≈

��

S̃X

S̃f

��

X
b̃X

• //

•
ãX

?? Q

f

��

B̃X

β̃f ≈

��

•
c̃X

==

ÃY
d̃Y

• // S̃Y

Y

•
ãY

??

•
b̃Y

//

Q

B̃Y

•
c̃Y

==

for X
f // Y in C.

This defines the functor

C S̃−→ Ho C

(X
f−→ Y ) 7→ (S̃X [S̃f ]−−→ S̃Y ).

Cf. Definition 139.

For X ∈ Ob C, we choose AX ≈
aX // ÃX , BX ≈

bX // B̃X and SX dX // S̃X such that the
following diagram commutes.

AX •
dX //

aX ≈

��

SX

dX

��

X
bX
• //

•
aX

>> Q

1X

��

BX

bX ≈

��

•cX

<<

ÃX
d̃X

• // S̃X

X

•
ãX

??

•
b̃X

//

Q

B̃X

•
c̃X

==

Cf. Remark 135, Lemma 133.(2) and Lemma 104.(1).

Let γ := (γX)X∈Ob C , where γX := [dX ] for X ∈ Ob C.

We have S̃ ∈ Ob (∼)[C,Ho C]; cf. Lemma 140. Let Σ̃ := S̃; cf. Definition 8.

The following assertions (1, 2) hold.

(1) We have the isotransformation S
γ

∼
// S̃.

(2) We have the isotransformation Σ
γ̄

∼
// Σ̃ ; cf. Definition 10.
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Proof. Ad (1). By Proposition 130, we have

γX = [dX ] = L dX ∈ Iso Ho C

for X ∈ Ob C; cf. Remark 117.

We show that γ is natural. Suppose given X
f // Y in C. We need to show that

dX · S̃f ∼ Sf · dY .

We have commutative diagrams

AX •
dX //

aX α̃f≈

��

SX

dX ·S̃f

��

X
bX
• //

•
aX

>> Q

f

��

BX

bX β̃f ≈

��

•cX

<<

ÃY
d̃Y

• // S̃Y

Y

•
ãY

??

•
b̃Y

//

Q

B̃Y

•
c̃Y

==

AX •
dX //

αfaY≈

��

SX

Sf ·dY

��

X
bX
• //

•
aX

>> Q

f

��

BX

βfbY ≈

��

•cX

<<

ÃY
d̃Y

• // S̃Y

Y

•
ãY

??

•
b̃Y

//

Q

B̃Y

•
c̃Y

==

where AX , BX , ÃY and B̃Y in Ob Ac C.

Thus, we obtain dX · S̃f ∼ Sf · dY by Lemma 136.(2).

Ad (2). This follows from (1) and Remark 11.

3.7 The loop functor

In this §3.7, we establish the loop functor ΩC : Ho C → Ho C on the homotopy category of a
quasi-model-category C; cf. Definition 153 below.

3.7.1 Brown-Gunnarsson cogluing

For this §3.7.1, let C be a quasi-model-category.

Definition 143. A commutative diagram

A
f //

a

��

B

_ b
��

A′
f ′
// B′.

is called an H-pullback, if the following assertion (∗) holds.
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(∗) Suppose given a commutative diagram as follows.

A
f //

a

��

u

��

B

_ b

��

Â

f̂

88

M̂a

��

Q

A′
f ′

// B′

Then we have LC u ∈ Iso Ho C.

To indicate that (A,B,A′, B′) is an H-pullback, we often write

A

a

��

f //
H

B

_ b
��

A′
f ′
// B′.

Proposition 144. Recall that C is a quasi-model-category.

Suppose given the following commutive diagram.

A′0

u′≈

��

f ′0 // B′0

≈ v′

��

A0

H

u

��

f0

//

a0

>>

B0

v≈

��

=
b0

>>

A′1
f ′1 // B′1

A1

H

f1

//

=a1

>>

B1

=
b1

>>

Then we have Lu ∈ Iso Ho C.

Proof. This is dual to Proposition 130.

3.7.2 Coacyclic objects

For this §3.7.2, let C be a quasi-model-category.

Definition 145. Let Coac C be the full subcategory of C with

Ob Coac C := {C ∈ Ob C : ¡ ◦ // C }.

The elements of Ob Coac C are called coacyclic objects.
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Remark 146. Let X be an initial object in C. Then X ∈ Ob Coac C.

Lemma 147. Suppose given A,B ∈ Ob Coac C. The following assertions (1, 2, 3) hold.

(1) There exists A ≈
d // B.

(2) Suppose given A
f−→ B. Then we have A ≈

f // B.

(3) Suppose given A
f //
g
// B. Then we have f ∼ g.

Proof. This is dual to Lemma 133.

Remark 148. Suppose given X ∈ Ob C. There exists C � c // X with C ∈ Ob Coac C.

Proof. This is dual to Remark 134.

Remark 149. Suppose given

A a // X

f

��

Bboo

C �
c
// Y D�

d
oo

with A and B in Ob Coac C.

There exist α and β in Mor C such that the following diagram commutes.

A

α

��

a // X

f

��

B
boo

β

��
C �

c
// Y D�

d
oo

Proof. This is dual to Remark 135.

Lemma 150. Suppose given commutative diagrams

A b̃ //

α′ ≈

��

X̃

f̃

��

X
b

//

a
??

f ′

��

B

β′ ≈

��

ã

??

C
d̃

� // Ỹ

Y
Q

?c
??

�
d

// D

>
c̃

??

A b̃ //

α′′ ≈

��

X̃

f̃

��

X
b

//

a
??

f ′′

��

B

β′′ ≈

��

ã

??

C
d̃

� // Ỹ

Y
Q

?c
??

�
d

// D

>
c̃

??

where A, B, C and D in Ob Coac C. Then we have f ′ ∼ f ′′.

Proof. This is dual to Lemma 136.(2)
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3.7.3 Construction of the loop functor

For this §3.7.3, let C be a quasi-model-category.

Definition 151 (and Lemma).

(1) For X ∈ Ob C, we choose

OX
Q

_mX

��

�lX // KX

_ kX
��

JX
�
jX

// X

with JX and KX in Ob Coac C; cf. Remark 148, QFib.(2) and Remark 98.(2).

(2) For X
f // Y , we choose JX ≈

ιf // JY , KX ≈
κf // KY and OX Of // OY such

that the following diagram commutes.

JX
�jX //

ιf≈

��

X

f

��

OX

Of

��

lX

� //

:mX

<<

Q
KX

κf ≈

��

<
kX

==

JY jY

� // Y

OY

:mY

<<

�
lY

//
Q

KY

<
kY

==

Cf. Remark 149, Lemma 147.(2) and Lemma 104.(2).

This defines the functor

C OC−−→ Ho C

(X
f−→ Y ) 7→ (OCX

OCf−−→ OCY ) := (OX [Of ]−−→ OY ).

If unambiguous, we often write O := OC .

Proof. This is dual to Definition 139.

Lemma 152. We have OC ∈ Ob (∼)[C,Ho C] .

Proof. This is dual to Lemma 140.

Definition 153 (and Lemma). Let ΩC := OC; cf. Definition 8. We have

Ho C ΩC−→ Ho C

(X
[f ]−→ Y ) 7→ (ΩCX

ΩC [f ]−−−→ ΩCY ) = (OCX
OCf−−→ OCY ).

We call ΩC the loop functor of C. If unambiguous, we often write Ω := ΩC .
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Proof. This is dual to Definition 141.

Lemma 154. Suppose given a choice of a commutative diagram

ÕX
Q

_m̃X

��

�l̃X // K̃X

_ k̃X
��

J̃X
�

j̃X

// X

with J̃X and K̃X in Ob Coac C for X ∈ Ob C.

Suppose given a choice of a commutative diagram

J̃X
�j̃X //

ι̃f≈

��

X

f

��

ÕX

Õf

��

l̃X

� //

<m̃X

==

Q
K̃X

κ̃f ≈

��

>
k̃X

>>

J̃Y
j̃Y

� // Y

ÕY

<m̃Y

==

�

l̃Y

//
Q

K̃Y

>
k̃Y

>>

for X
f // Y in C.

This defines the functor

C Õ−→ Ho C

(X
f−→ Y ) 7→ (ÕX

Õf−−→ ÕY ) := (ÕX [Õf ]−−→ ÕY ).

Cf. Definition 151.

For X ∈ Ob C, we choose JX ≈
jX // J̃X , KX ≈

kX // K̃X and OX pX // ÕX such that the
following diagram commutes.

JX
�jX //

jX≈

��

X

1X

��

OX

pX

��

lX

� //

:mX

<<

Q
KX

kX ≈

��

<
kX

==

J̃X
j̃X

� // X

ÕX

<m̃X

==

�

l̃X

//
Q

K̃X

>
k̃X

>>
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Cf. Remark 149, Lemma 147.(2) and Lemma 104.(2).

Let ϕ := (ϕX)X∈Ob C , where ϕX := [pX ] for X ∈ Ob C.

We have Õ ∈ Ob (∼)[C,Ho C]; cf. Lemma 152. Let Ω̃ := Õ; cf. Definition 8.

The following assertions (1, 2) hold.

(1) We have the isotransformation O
ϕ

∼
// Õ.

(2) We have the isotransformation Ω
ϕ̄

∼
// Ω̃ ; cf. Definition 10.

Proof. This is dual to Lemma 142.

3.8 Adjunction of loop and suspension functor

3.8.1 Pointedness

Lemma 155. Suppose given a quasi-model-category C.

The following assertions (1, 2, 3) are equivalent.

(1) There exists an isomorphism ¡ d
∼
// ! .

(2) There exists a quasi-isomorphism ¡ ≈
d // ! .

(3) We have Ac C = Coac C.

Proof. Ad (1)⇒ (2). We have d ∈ Qis C; cf. AQis.(1).

Ad (2)⇒ (1). We show that d ∈ Iso C. There exists a commutative diagram as follows.

¡ ≈
d //

◦
i ��

!

X

p

@@

Cf. AFact.(1) and AQis.(2.a).

There exist ! ≈
q
// X ≈

j // ¡ with ij = 1¡ and qp = 1! ; cf. Remark 106 and AQis.

We have ¡ ≈
dqj // ¡ . Since ¡ is initial, we obtain dqj = 1¡ .

We have ! ≈
qjd // ! . Since ! is terminal, we obtain qjd = 1! .

Ad (2)⇒ (3). By duality, it suffices to show that Coac C ⊆ Ac C.

Suppose given A ∈ Ob Coac C. Since (2) holds, we have a commutative diagram as follows.

¡ ≈ //

◦
��

!

A

B
@@
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Cf. Definition 145. Thus, A ∈ Ob Ac C; cf. AQis.(2.b).

Ad (3)⇒ (2). We have ¡ ∈ Coac C = Ac C; cf. Definition 145.

Thus, we have ¡ // ! ; cf. Definition 131.

Definition 156 (and Stipulation). Let C be a quasi-model-category.

(1) We call C pointed if we have ! ∼= ¡ .

(2) Let C be pointed. We choose a zero object ∗ in C; cf. Lemma 155.

Remark 157. Let C be a pointed quasi-model-category. Let A ∈ Ob C.

The following assertions (1, 2, 3, 4) are equivalent.

(1) We have A ∈ Ob Ac C.

(2) We have A // ∗ .

(3) We have A ∈ Ob Coac C.

(4) We have ∗ ◦ // A .

Proof. This follows from Remark 93 and Lemma 155.

3.8.2 The adjunction

For this §3.8.2, let C be a pointed quasi-model-category.

Recall the construction of the suspension functor in Definition 139 and the loop functor
in Definition 151.

Definition 158 (and Lemma). For X ∈ Ob C we choose AX
σX
≈ // JSX , BX

τX
≈ // KSX

and X
eX // OSX such that the following diagram commutes.

AX •
dX //

≈ σX

��

SX

X •
bX

//

•aX

;; Q

eX

��

BX

•cX

;;

≈ τX

��

JSX jSX

� // SX

OSX �
lSX

//

6mSX
;;

Q
KSX

8
kSX

;;

Cf. Remarks 149 and 157, Lemma 147 and Lemma 104.(2).

Let η := (ηX)X∈Ob Ho C , where ηX := [eX ] for X ∈ Ob Ho C = Ob C.

We have the transformation 1Ho C
η // (Ω ◦ Σ) .
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Proof. Suppose given X
[f ] // Y in Ho C. We need to show that

[f ] · ηY = ηX · (Ω ◦ Σ)[f ] .

Thus, it suffices to show that
f · eY ∼ eX · OSf.

We have commutative diagrams

AX •
dX //

≈αf ·σY

��

SX

Sf

��

X •
bX

//

•aX
;; Q

f ·eY

��

BX

•cX

<<

≈ βf ·τY

��

JSY jSY

� // SY

OSY �
lSY

//

7mSY
;;

Q
KSY

8
kSY

<<

AX •
dX //

≈ σX ·ιSf

��

SX

Sf

��

X •
bX

//

•aX
;; Q

eX ·OSf

��

BX

•cX

<<

≈ τX ·κSf

��

JSY jSY

� // SY

OSY �
lSY

//

7mSY
;;

Q
KSY

8
kSY

<<

with AX , BX , JSY and KSY in Ob Ac C = Ob Coac C.

Thus, we obtain f · eY ∼ eX · OSf by Lemma 150.

Definition 159 (and Lemma). For X ∈ Ob C we choose AOX
γX
≈ // JX , BOX

δX
≈ // KX

and SOX gX // X such that the following diagram commutes.

AOX •
dOX //

≈ γX

��

SOX

gX

��

OX •
bOX

//

•
aOX

;; Q

BOX

•cOX

::

≈ δX

��

JX jX

� // X

OX �
lX

//

8mX

;;

Q
KX

6
kX

::

Cf. Remarks 135 and 157, Lemma 133 and Lemma 104.(1).

Let ε := (εX)X∈Ob Ho C , where εX := [gX ] for X ∈ Ob Ho C = Ob C.

We have the transformation (Σ ◦ Ω) ε // 1Ho C .

Proof. This is dual to Definition 158.

Theorem 160 (Cf. also [10, Theorem 2.2]). We have the adjunction (Σ,Ω, η, ε).

Proof. We need to show that the following diagrams in [Ho C,Ho C] commute.

Σ
Ση // Σ ◦ Ω ◦ Σ

εΣ
��

Σ

Ω
ηΩ // Ω ◦ Σ ◦ Ω

Ωε
��

Ω
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By duality, it suffices to show the commutativity of the first diagram.

Suppose given X ∈ Ob C. We need to show that SeX · gSX ∼ 1SX .

We have commutative diagrams

AX •
dX //

≈ σX

��

SX

X •
bX

//

•aX

;; Q

eX

��

BX

•cX

;;

≈ τX

��

JSX jSX

� // SX

OSX �
lSX

//

6mSX
;;

Q
KSX

8
kSX

;;

AX •
dX //

≈αeX
·γSX

��

SX

SeX ·gSX

��

X •
bX

//

•aX

;; Q

eX

��

BX

•cX

;;

≈ βeX ·δSX

��

JSX jSX

� // SX

OSX �
lSX

//

6mSX
;;

Q
KSX

8
kSX

;;

with AX , BX , JSX and KSX in Ob Ac C = Ob Coac C.

Thus, we obtain SeX · gSX ∼ 1SX by Lemma 136.(2).

3.9 A remark on excision

3.9.1 Slim quasi-model-categories

Definition 161. Let C be an FCQ-category.

(1) A set of commutative quadrangles SQPO C in C is called a slim set of quasi-pushouts
if it fullfills Definition 96.(1, 2, 4, 5, 6, 7, 8).

(2) A set of commutative quadrangles SQPB C in C is called a slim set of quasi-pullbacks
if it fullfills Definition 97.(1, 2, 4, 5, 6, 7, 8).

Definition 162.

Let C be an FCQ-category that has initial and terminal objects; cf. Definition 92. Choose
an initial object ¡ and a terminal object ! in C.

Let SQPO C be a slim set of quasi-pushouts in C; cf. Definition 161.(1).

Let SQPB C be a slim set of quasi-pullbacks in C; cf. Definition 161.(2).

We call
(C,Cof C,Fib C,Qis C, SQPO C, SQPB C)

a slim quasi-model-category if QCof , QFib and QBraid hold.

We often refer to just C as a slim quasi-model-category.

So, a slim quasi-model-category is a category fullfilling all axioms of a quasi-model-category
except the excision axioms Definition 96.(3) and Definition 97.(3).
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3.9.2 Following Hirschhorn and Reedy

In this §3.9.2 we follow Hirschhorn [8, Prop. 13.1.2] and Reedy [12, Th. B] and show that
the excision axioms Definition 96.(3) and Definition 97.(3) follow from the other axioms
in the saturated case; cf. Corollary 171 below. In the general case, we can only deduce a
weaker form of excision; cf. Proposition 170 below.

For this §3.9.2 let C be a slim quasi-model-category; cf. Definition 162.

Remark 163.

(1) Excision is not used in § 3.4 and § 3.5. In particular, C is a category with split
denominators such that Brown factorisation and Hirschhorn replacement hold; cf.
Definition 108, Lemma 105 and Proposition 112.

(2) Excision is used in the context of H-pushouts and H-pullbacks to prove the Brown-
Gunnarson gluing lemma Proposition 130 and its dual Proposition 144. In conse-
quence, the construction of the loop and suspension functors and their adjunction,
§3.6, §3.7 and §3.8.2, rely on excision.

3.9.2.1 Preparations

Lemma 164. Suppose given a commutative diagram as follows.

B
1 //

≈
i ��

B

A

p

??

There exists a commutative diagram as follows.

A
p

##
A

1

<<

≈
pi

""

≈
l // Â

p0

OO

p1

��

A◦σoo B

A
p

;;

In particular, we have pi ∼ 1A .

This lemma is a variant of Lemma 53.(2).

Proof. There exist commutative diagrams as follows.

A
s≈

��

1

��

1

""

Ā
π0 //

π1

��

Q
A

p

��
A p

// B

A
k≈

��

1

��

pi ≈

""

Ā
π0 //

π1

��

Q
A

p

��
A p

// B
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Cf. QFib.(2), Definition 97.(2,4), AQis and Lemma 104.(2).

There exists a commutative diagram as follows.

A ≈
s //

◦σ
��

Ā

Â

π

@@

Cf. AFact.(1) and AQis.(2.b). Furthermore, there exists Ā ≈
q
// Â with qπ = 1Ā ; cf.

Remark 106.(2) and AQis .

Thus, we have the following commutative diagram.

A
p

##
A

1

<<

≈
pi

""

≈
kq // Â

ππ0

OO

ππ1

��

A◦σoo B

A
p

;;

Lemma 165. Suppose given commutative diagrams as follows.

Y
tY

##
X

f0

<<

f1

""

h // Ŷ

p0

OO

p1

��

Y◦soo T

Y
tY

;;

Y v //

tY ��

Z
?
tZ��

T

There exists a commutative diagram as follows.

Z
tZ�

""
X

f0v

<<

f1v

""

k // Ẑ

q0

OO

q1

��

Z◦zoo T

Z
tZ

,

<<
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Proof. There exists a commutative diagram as follows.

Y

Q

v //

◦s
��

Z

◦t
��

1

��

1
Ŷ

p1v

**

p0v

v̄
// Z

w

��

""

��
Z̃

Q

�z0 //

_z1

��

Z

_ tZ
��

Z �
tZ
// T

Cf. QCof .(2), QFib.(2), Definition 96.(2), Definition 97.(4) and QBraid .

Furthermore, there exists a commutative diagram as follows.

Z
w //

◦
i
��

Z̃

Ẑ

A
q

@@

Cf. AFact.(1). Thus, we have the following commutative diagram.

Z
tZ�

""
X

f0v

<<

f1v

""

hv̄i // Ẑ

qz0

OO

qz1

��

Z◦tioo T

Z
tZ

,

<<

Cf. AQis and AFib.(2).

Lemma 166. Suppose given the following diagram

A

tA

  

f //

•a
��

B

tB

��

A′

tA′ ((

g

66

T

in which atA′ = tA , ftB = tA and gtB = tA′ .
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Suppose given a commutative diagram as follows.

A′
g // B

tB

##
A

•a

<<

f

))

h // B̂

p0

OO

p1

��

B◦soo T

B
tB

;;

There exist commutative diagrams as follows.

A

tA

  

f //

•a
��

B

tB

��

A′

tA′ ((

g̃

66

T

B

A′

g

<<

g̃

""

k // B̂

p0

OO

p1

��

B◦soo

B

This lemma is a variant of Proposition 112.(1).

Proof. There exists a commutative diagram as follows.

A

•a
��

h // B̂

p0

��
A′ g

//

k
??

B

Cf. ALift.(2). The assertion follows by letting g̃ := kp1 .

3.9.2.2 Saturatedness implies excision

Lemma 167. Suppose given the following commutative diagram.

A

Q
•a
��

f // B

•b
��

A′
f ′
// B′
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Suppose given A′ v // Z . Then there exists B′ u // Z with f ′u ∼ v.

A

Q
•a
��

f // B

•b
��

A′
f ′
//

v 22

B′

u

  
Z

Proof. There exists a commutative diagram

B
1 //

≈
g

��

B

A
f

??

so that fg ∼ 1A ; cf. Remark 106.(2) and Lemma 53.(2). Thus, we have the diagram

A

Q
•a
��

f // B

•b
�� gav



A′
f ′
//

v 22

B′

Z

in which av ∼ fgav. Thus, the assertion follows from Corollary 113.

Lemma 168. Suppose given a diagram

A

Q
•a
��

f // B

•b
��

A′
f ′
// B′

ũ   

u

  
Z

where f ′u ∼ f ′ũ. Then we have u ∼ ũ.

Proof. There exists a commutative diagram as follows.

Z2
Q

� π //

_π̃
��

Z

_
��

Z � // !
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Cf. QFib and Definition 97.(4). Since we have f ′u ∼ f ′ũ, there exists Ẑ �q // Z2 and a
commutative diagram as follows.

B′ u // Z

A′

f ′
88

f ′
&&

•h // Ẑ

qπ

OO

qπ̃

��

Z◦soo

B′
ũ

// Z

Cf. Lemma 111.(2). Furthermore, there exists a commutative diagram as follows.

A′

Q

f ′ //

•h
��

B′

•h′
�� u

��

ũ
Ẑ

qπ̃

++

qπ

f ′′
//W

w

��

""

��
Z2

Q

� π //

_π̃
��

Z

_
��

Z � // !

Cf. QCof .(2) and QBraid .

Moreover, there exists a commutative diagram as follows.

Ẑ
f ′′w //

◦
ζ

��

Z2

ˆ̂
Z

A
η

@@

Cf. AFact.(1). There exists a commutative diagram as follows.

B 1 //

≈
g

��

B

A
f

??

Cf. Remark 106.(2) and AQis .

By Lemma 164, there exists a commutative diagram as follows.

A
f

##
A

1

<<

≈
fg

""

≈
l // Â

f0

OO

f1

��

A◦σoo B

A
f

;;
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Since we have ahζη = fbh′w, we may apply Lemma 165 to the commutative diagrams

A
fbh′w

""
A

1

<<

≈
fg

""

≈
l // Â

f0

OO

f1

��

A◦σoo Z

A
fbh′w

<<

A
ahζ //

ahζη
��

ˆ̂
Z

A
η

��
Z

to obtain the following commutative diagram.

ˆ̂
Z

η
�

""
A

ahζ

==

fgahζ

!!

l̃ // Ž

f̃0

OO

f̃1

��

ˆ̂
Z◦šoo Z2

ˆ̂
Z

η

-

<<

Note that fgahζη = fgfbh′w = fbh′w = ahζη.

By applying Lemma 166 to the preceding diagram and

A

ahζη

  

fgahζ //

•a
��

ˆ̂
Z

_ η

��

A′

hζη
((

hζ

77

Z2

we obtain the following commutative diagrams.

A

ahζη

  

fgahζ //

•a
��

ˆ̂
Z

η

��

A′

hζη
((

H

77

Z2

ˆ̂
Z

A′

hζ

==

H

!!

ľ // Ž

f̃0

OO

f̃1

��

ˆ̂
Z◦šoo

ˆ̂
Z
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There exists a commutative diagram as follows.

Af
) //

•a
�� Q

B

•b
�� gahζ

��

A′
f ′
//

H ..

B′

m

�� ˆ̂
Z

Cf. Lemma 104.(1). We obtain the following diagram

Z

B′

u

<<

ũ

""

m // ˆ̂Z

ηπ

OO

ηπ̃

��

Z◦
sζoo

Z

in which sζ · ηπ = 1Z = sζ · ηπ̃; cf. AQis , AFib.(2) and ACof .(2).

We need to show that u ∼ ũ or, equivalently, Lu = L ũ.

Since we have L(sζ) ∈ Iso Ho C, we obtain L(ηπ) = (L(sζ))− = L(ηπ̃); cf. Corollary 60.
Thus, it suffices to show that m · ηπ ∼ u and m · ηπ̃ ∼ ũ.

We have the diagram

A
f //

•a
�� Q

B

•b
��

A′
f
// B′

u
  

mηπ

  
Z

in which
b · u = bh′wπ = gfbh′wπ = gahζηπ = b ·mηπ
f ′ · u = hf ′′wπ = hζηπ = Hηπ = f ′ ·mηπ.

Thus, we obtain u ∼ mηπ; cf. Definition 96.(5).

Similarily, we obtain ũ ∼ mηπ̃.

Lemma 169. Suppose given the following commutative diagram.

A

Q
•a
��

f // B

•b
��

A′
f ′
// B′

Then we have LC f
′ ∈ Iso Ho C.
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Proof. By Lemma 167, there exists B′
g′ // A′ with f ′g′ ∼ 1A′ .

Since we have f ′ · g′f ′ ∼ 1A′ · f ′ ∼ f ′ · 1B′ , we obtain g′f ′ ∼ 1B′ ; cf. Lemma 168.

Proposition 170. Recall that C is a slim quasi-model-category; cf. Definition 162.

The following assertions (1, 2) hold.

(1) Suppose given the following commutative diagram.

A

Q
•a
��

≈
f // B

•b
��

A′
f ′
// B′

Then we have LC f
′ ∈ Iso Ho C.

(2) Suppose given the following commutative diagram.

A
Q

_a
��

f // B

_ b
��

A′ ≈
f ′
// B′

Then we have LC f ∈ Iso Ho C.

Proof. Ad (1). There exists a commutative diagram as follows.

A

Q

◦s //

•a

��

≈
f

**X

Q

•x

��

p // B

•b

��

• b̂

��

X ′
p′

// B̂
v

��
A′

f ′
//

◦
s′

55

B′

Cf. AFact.(1), AQis.(2.b), QCof .(2), Definition 96.(2,4,6) and Lemma 104.(1).

We have L f ′ = L s′ ·L p′ ·L v ∈ Iso Ho C; cf. Corollary 60, Lemma 169 and Lemma 109.(3).

Ad (2). This is dual to (1).

Corollary 171 (Cf. [8, Prop. 13.1.2] and [12, Th. B]). Suppose that C is saturated.
Then C is a quasi-model-category.

Proof. We have to show that Definition 96.(3) and Definition 97.(3) hold in C.

Since C is saturated, this follows from Proposition 170.
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Chapter 4

Model categories

4.1 Axioms and elementary properties

4.1.1 Axioms for model categories

Definition 172. Let M be an FCQ-category that has an initial and a terminal object;
cf. Definition 92. Choose an initial object ¡ and a terminal object ! in M.

If the following axioms MCof and MFib hold, we call

(M,FibM,CofM,QisM)

a model category. We often refer to just M as a model category.

So altogether, a model category is a categoryM with initial object ¡ and terminal object !,
with subsets FibM ⊆ MorM of fibrations, CofM ⊆ MorM of cofibrations and
QisM ⊆ MorM of quasi-isomorphisms, such that the axioms AFib, ACof , AQis, ALift,
AFact, MFib and MCof hold.

MCof The following assertions (1, 2, 3) hold.

(1) Suppose given A′ A•aoo
f // B in M. There exists a pushout

A
f //

•a
��

B

•b
��

A′
f ′
// B′.

(2) Suppose given B A◦aoo
f // X in M. There exists a pushout

A
f //

◦a
��

B

◦b
��

A′
f ′
// B′.
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(3) Suppose given A′ A•aoo ≈
f // B in M. There exists a pushout

A ≈
f //

•a
��

B

b
��

A′ ≈
f ′
// B′.

MFib The following assertions (1, 2, 3) hold.

(1) Suppose given A′
f ′ // B′ B�boo in M. There exists a pullback

A
f //

_a
��

B

_ b
��

A′
f ′
// B′.

(2) Suppose given A′
f ′ // B′ B

boo in M. There exists a pullback

A
f //

a

��

B

b
��

A′
f ′
// B′.

(3) Suppose given A′ ≈
f ′ // B′ B�boo in M. There exists a pullback

A ≈
f //

a

��

B

_ b
��

A′ ≈
f ′
// B′.

Remark 173. Note that the axioms for model categories in this work differ slightly from
the axioms originally formulated by Quillen [10, Def. I.1.1]. Bousfield and Friedlander
have added the axioms MCof .(3) and MFib.(3); cf. [1, Def, 1.2]. They call a model
category satisfying these additional axioms a proper model category. So, a proper model
category in the sense of Bousfield and Friedlander is in particular a model category in
the sense of Definition 172. On the other hand, we only suppose certain pushouts and
pullbacks to exist, we do not require M to have all final limits and colimits.

Definition 174. Let M be a model category.

(1) We call M weakly pointed if the following assertions (a, b) hold.

(a) We have ¡ � // ! .

(b) We have ¡ • // ! .

(2) We call M pointed if we have ¡ ∼= ! .

Remark 175. Let M be a pointed model category. Then M is weakly pointed.

Proof. This follows from ACof .(1) and AFib.(1).
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4.1.2 Elementary properties

For this §4.1.2, let M be a model category.

Remark 176. Suppose given

A
f //

a

��

B

b
��

A′
f ′
// B′.

The following assertions (1, 2, 3) hold.

(1) Suppose that a ∈ CofM. Then we have b ∈ CofM.

(2) Suppose that a ∈ CofM∩QisM. Then we have b ∈ CofM∩QisM.

(3) Suppose that a ∈ CofM and f ∈ QisM. Then we have f ′ ∈ QisM.

Proof. Ad (1). There exists a commutative diagram

A
f //

•a
��

B

• b̂
��

b

��

A′
f̂

//

f ′ ..

B̂

•
ϕ

��
B′

in which ϕ ∈ IsoM⊆ CofM; cf. MCof .(1), Lemma 35 and ACof .(1).

Thus, b = b̂ϕ ∈ CofM; cf. ACof .(2).

Ad (2). There exists a commutative diagram

A
f //

◦a
��

B

◦ b̂
��

b

��

A′
f̂

//

f ′ ..

B̂

◦
ϕ

��
B′

in which ϕ ∈ IsoM⊆ CofM∩QisM; cf. MCof .(2), Lemma 35, ACof .(1) and AQis.(1).

Thus, b = b̂ϕ ∈ CofM∩QisM; cf. ACof .(2) and AQis.(2.a).

Ad (3). There exists a commutative diagram

A ≈
f //

•a
��

B

b̂
��

b

��

A′ ≈
f̂

//

f ′ ..

B̂

≈
ϕ

��
B′

125



in which ϕ ∈ IsoM⊆ QisM; cf. MCof .(3), Lemma 35 and AQis.(1).

Thus, f ′ = f̂ϕ ∈ QisM; cf. AQis.(2.a).

Remark 177. Suppose given

A
f //

a

��

B

b
��

A′
f ′
// B′.

The following assertions (1, 2, 3) hold.

(1) Suppose that b ∈ FibM. Then we have a ∈ FibM.

(2) Suppose that b ∈ FibM∩QisM. Then we have a ∈ FibM∩QisM.

(3) Suppose that b ∈ FibM and f ′ ∈ QisM. Then we have f ∈ QisM.

Proof. This is dual to Remark 176.

4.2 The full subcategory of bifibrant objects

For this §4.2, let M be a model category.

4.2.1 Cofibrant, fibrant and bifibrant objects

Definition 178 (and Lemma).

(1) Let Mcof be the full subcategory of M with ObMcof := {A ∈ ObM : ¡ • // A }.

An object A ∈ ObMcof is called cofibrant.

The category Mcof is an FCQ-category with initial object ¡ ; cf. Definition 94.

Furthermore, QCof .(1) holds in Mcof .

(2) Let Mfib be the full subcategory of M with ObMfib := {A ∈ ObM : A � // ! }.

An object A ∈ ObMfib is called fibrant.

The category Mfib is an FCQ-category with terminal object ! ; cf. Definition 94.

Furthermore, QFib.(1) holds in Mfib .

(3) Let Mbif be the full subcategory of M with ObMbif := ObMfib ∩ObMcof .

An object A ∈ ObMbif is called bifibrant.

The category Mbif is an FCQ-category; cf. Definition 94.
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Proof. Ad (1). Since Mcof is a full subcategory of the FCQ-category M, the properties
ACof , AFib , AQis and ALift hold in Mcof ; cf. Definitions 94 and 172.

In order to show that Mcof is an FCQ-category, it remains to show that AFact holds in
Mcof ; cf. Definition 92. By duality, it suffices to show that AFact.(1) holds in Mcof .

Suppose given A
f−→ B in Mcof . In M, there exists a commutative diagram as follows.

¡ • // A
f //

◦
i ��

B

X

>
p

??

Cf. AFact.(1). By ACof .(2), we have X ∈ ObMcof . Thus, AFact.(1) holds in Mcof .

By ACof .(1), we have ¡ •1 // ¡. Thus, ¡ ∈ ObMcof .

By definition of ObMcof , the property QCof .(1) holds in Mcof .

Ad (2). This is dual to (1).

Ad (3). This follows as in (1) and (2).

Remark 179. Suppose that M is weakly pointed; cf. Definition 174.(1).

Then we have ! ∈ ObMbif and ¡ ∈ ObMbif .

Furthermore, QCof .(1) and QFib.(1) hold in Mbif .

Proof. This follows from Definition 178.(1, 2); cf. Definition 174.(1).

4.2.2 Quasi-pushouts

In this §4.2.2, we define R-pushouts inMbif – R as in ”replaced” – which will play the role
of quasi-pushouts inMbif in the sense of Definition 96; cf. Definition 180 below. As soon as
we have shown that the set of R-pushouts RPOMbif is a set of quasi- pushouts in Mbif ,
we will mainly refer to R-pushouts as quasi-pushouts; cf. Proposition 189 below.

Definition 180. A commutative quadrangle

A

•a
��

f // B

b
��

A′
f ′
// B′

in Mbif is called an R-pushout, if the following assertion (∗) holds.
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(∗) Suppose given a commutative diagram in M as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′

Then we have u ∈ QisM∩ CofM.

To indicate that (A,B,A′, B′) is an R-pushout, we often write

A

•a
��

f //

R

B

b
��

A′
f ′
// B′.

We denote the set of all R-pushouts in Mbif by RPOMbif .

Remark 181. Suppose given a commutative quadrangle

A

•a
��

f // B

b
��

A′
f ′
// B′.

The following assertions (1, 2) are equivalent.

(1) The commutative quadrangle (A,B,A′, B′) is an R-pushout; cf. Definition 180.

(2) There exists a commutative diagram as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
u

��
A′

f ′
//

f̂

88

B′

Proof. Ad (1)⇒ (2). By MCof .(1), we have a commutative diagram as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
u

��
A′

f ′
//

f̂

88

B′
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Since (1) holds, we have u ∈ QisM∩ CofM.

Ad (2)⇒ (1). Suppose given the following commutative diagram.

A

•a

��

f // B

b

��

• b̃
��

B̃
ũ

  
A′

f ′
//

f̃

88

B′

We have to show that ũ ∈ QisM∩ CofM; cf. Definition 180.

By Lemma 35, we have the commutative diagram

A
f //

•a
��

B

• b̃
��

b̂•

��

A′
f̃

//

f̂ ..

B̃

◦v

��
B̂.

in which v ∈ IsoM⊆ QisM∩ CofM; cf. ACof .(1) and AQis.(1).

Since we have f̃ ũ = f ′ = f̃vu and b̃ũ = b = b̃vu, we obtain ũ = vu; cf. Definition 29.

In consequence, ũ = vu ∈ QisM∩ CofM; cf. ACof .(2) and AQis.(2.a).

Remark 182. Suppose given

A

•a
��

f // B

b
��

A′
f ′
// B′.

in Mbif . Then (A,B,A′, B′) is an R-pushout.

Lemma 183. Suppose given

A

•a
��

f //

R

B

b
��

A′
f ′
// B′.

in Mbif . The following assertions (1, 2, 3) hold.

(1) We have b ∈ CofM.

(2) Suppose that a ∈ CofM∩QisM. Then we have b ∈ CofM∩QisM.

(3) Suppose that f ∈ QisM. Then we have f ′ ∈ QisM.
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Proof. By Remark 181, there exists a commutative diagram in M as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
u

��
A′

f ′
//

f̂

88

B′

Ad (1). We have b = b̂u ∈ CofM; cf. ACof .(2).

Ad (2). We have b = b̂u ∈ CofM∩QisM; cf. Remark 176.(2), ACof .(2) and AQis.(2.a).

Ad (3). We have f ′ = f̂u ∈ QisM; cf. Remark 176.(3) and AQis.(2.a).

Lemma 184. Suppose given the following commutative diagram in Mbif .

A •
f //

•a
��

B

•b
��

A′
f ′
// B′

Then the following assertions (1, 2) are equivalent.

(1) We have (A,B,A′, B′) in RPOMbif .

(2) We have (A,A′, B,B′) in RPOMbif .

Proof. This follows from Remark 31 and Remark 176.(1).

Lemma 185. Suppose given a diagram

A

R

f //

•a
��

B

•b
��

A′
f ′
// B′

u //
v
// T

in Mbif in which f ′u = f ′v and bu = bv.

Then we have u ∼ v in Mbif ; cf. Definition 95.

Proof. By Remark 181, there exists a commutative diagram in M as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
i

��
A′

f ′
//

f̂

88

B′
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Since we have f̂ · iu = f̂ · iv and b̂ · iu = b̂ · iv, we obtain iu = iv; cf. Definition 29.

Thus, we have commutative diagrams

B̂ ◦i //

◦i
��

B′

◦ i0
�� 1≈



B′ ◦
i1
//

1

≈

11

B̃
t̃≈

  
B′

B̂ ◦i //

◦i
��

B′

◦ i0
�� u



B′ ◦
i1
//

v 11

B̃
h̃

��
T

in M; cf. MCof .(2), Remark 176.(2) and AQis .

Additionally, we have a commutative diagram in M as follows.

¡ • // B′ ◦
i0 // B̃ //

◦
j
��

!

B̄

C
p

AA

In particular, we have B̄ ∈ ObMbif . Furthermore, we have commutative diagrams

B̃ ◦t̃ //

◦j
��

B′

_
��

B̄ � //

t
≈

??

!

and B̃
h̃ //

◦j
��

T

_
��

B̄ � //

h

@@

!

in M; cf. ALift.(1) and AQis.(2.b). Since we have the commutative diagram

B′ B′
u //

◦i0j

��

T T

B′ B̄≈
too h // T T

B′ B′ v
//

◦i1j

OO

T T

in Mbif , we have u ∼ v in Mbif .

Lemma 186. Suppose given

A

R

f //

•a
��

B

R

g //

•b
��

C

•c
��

A′
f ′
// B′

g′
// C ′

in Mbif . Then (A,C,A′, C ′) is in RPOMbif .
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Proof. In M, we have a commutative diagram as follows.

A
f //

•a

��

B

• b̂

		

•b

��

g // C

• ĉ

		

•
c̃

}}

•c

��

C̃
w

��
B̂

g̃

55

◦
u

��

Ĉ

◦
v

��
A′

f ′
//

f̂

55

B′
g′

//
ĝ

55

C ′

Cf. Remark 181 and MCof .(1).

It suffices to show that wv ∈ QisM∩ CofM; cf. Remark 181 and Lemma 32.(1). Thus,
it suffices to show that w ∈ QisM∩ CofM; cf. ACof .(2) and AQis.(2.a).

Since (B,C,B′, Ĉ) and (B,C, B̂, C̃) are pushouts, so is (B̂, C̃, B′, Ĉ); cf. Lemma 34.(2).

Thus, we have w ∈ QisM∩ CofM; cf. Remark 176.(2).

Lemma 187. Suppose given

A

R

f //

•a0

��

B

•b0
��

A′

R

f ′
//

•a1

��

B′

•b1
��

A′′
f ′′
// B′′

in Mbif . Then (A,B,A′′, B′′) is in RPOMbif .
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Proof. In M, we have a commutative diagram as follows.

A

•a0

��

f // B

•
b̂

�� b0

��

B̂

◦
u

!!

• b̃

��

A′

f̂

::

•a1

��

f ′
// B′

• b̄





b1

��

B̃

v
��
B̄

◦
w

  
A′′

f̃

<<

f̄

33

f ′′
// B′′

Cf. Remark 181 and MCof .(1).

By Remark 181, it suffices to show that vw ∈ QisM∩ CofM. Thus, it suffices to show
that v ∈ QisM∩ CofM; cf. ACof .(2) and AQis.(2.a).

Since (A′, B′, A′′, B̄) and (A′, B̂, A′′, B̃) are pushouts, so is (B̂, B′, B̃, B̄); cf. Lemma 34.(1).

Thus, we have v ∈ QisM∩ CofM; cf. Remark 176.(2).

Lemma 188. Suppose given a commutative diagram in Mbif as follows.

A

R

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′
u

  
T �

s
// S
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Then there exists B′
v−→ T such that the following diagram commutes.

A

R

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′

v

  

u

  
T �

s
// S

Proof. In M, we have a commutative diagram as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
i

��
A′

f ′
//

f̂

88

B′

Cf. Remark 181. Furthermore, we have a commutative diagram in M as follows.

A
f //

•a
��

B

• b̂
�� y



A′
f̂

//

x 11

B̂
v̂

��
T

Since f̂ · iu = xs = f̂ · v̂s and b̂ · iu = ys = b̂ · v̂s, we obtain iu = v̂s; cf. Definition 29.

Moreover, we have a commutative diagram as follows.

B̂ v̂ //

◦i
��

T

_ s
��

B′ u
//

v
??

S

Cf. ALift.(1).

Since bv = b̂iv = b̂v̂ = y and f ′v = f̂ iv = f̂ v̂ = x, we have the commutative diagram

A

R

f //

•a
��

B

•b
�� y

��

A′
f ′
//

x --

B′

v

  

u

  
T �

s
// S

in Mbif .
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Proposition 189. The set RPOMbif is a set of quasi-pushouts inMbif ; cf. Definition 96.

Proof. We have to show that RPOMbif fullfills the assertions (1–8) from Definition 96.

Ad (1). This follows from Definition 180 and Lemma 183.(1).

Ad (2). This follows from Lemma 183.(2).

Ad (3). This follows from Lemma 183.(3).

Ad (4). This follows from Lemma 184.

Ad (5). This follows from Lemma 185.

Ad (6). This follows from Lemma 186.

Ad (7). This follows from Lemma 187.

Ad (8). This follows from Lemma 188.

4.2.3 Quasi-pullbacks

Definition 190. A commutative diagram

A
f //

a

��

B

_ b
��

A′
f ′
// B′.

in Mbif is called an R-pullback, if the following assertion (∗) holds.

(∗) Suppose given a commutative diagram in M as follows.

A
f //

a

��

u

��

B

_ b

��

Â

f̂

88

M̂a

��
A′

f ′
// B′

Then we have u ∈ QisM∩ FibM.

To indicate that (A,B,A′, B′) is an R-pullback, we often write

A

a

��

f //
R

B

_ b
��

A′
f ′
// B′.

We denote the set of all R-pullbacks in Mbif by RPBMbif .
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Remark 191.

A
f //

a

��

B

_ b
��

A′
f ′
// B′.

in Mbif . The following assertions (1, 2) are equivalent.

(1) The commutative quadrangle (A,B,A′, B′) is an R-pullback; cf. Definition 190.

(2) There exists a commutative diagram as follows.

A
f //

a

��

u

��

B

_ b

��

Â

f̂

88

M̂a

��
A′

f ′
// B′

Proof. This is dual to Remark 181.

Proposition 192. The set RPBMbif is a set of quasi-pullbacks inMbif ; cf. Definition 97.

Proof. This is dual to Proposition 189.

4.2.4 Quasi-model-structure

Recall that M is a model category; cf. Definition 172.

Recall that Mbif is an FCQ-category; cf. Definition 178.(3).

Recall that RPOMbif is a set of quasi-pushouts inMbif ; cf. Definition 180 and Proposi-
tion 189.

Recall that RPBMbif is a set of quasi-pullbacks inMbif ; cf. Definition 190 and Proposi-
tion 192.

Theorem 193. The following assertions (1, 2) hold.

(1) Suppose that M is weakly pointed; cf. Definition 174.(1).

Then (Mbif ,CofMbif ,FibMbif ,QisMbif ,RPOMbif ,RPBMbif) is a quasi-model-
category; cf. Definition 100.

(2) Suppose that M is pointed; cf. Definition 174.(2).

Then (Mbif , CofMbif , FibMbif , QisMbif , RPOMbif , RPBMbif) is a pointed
quasi-model-category; cf. Definition 156.(1).
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Proof. Ad (1). By Remark 179, the FCQ-category Mbif has initial and terminal objects
and fulfills QCof .(1) and QFib.(1).

It remains to show that Mbif fulfills QBraid , QCof .(2) and QFib.(2).

Ad QBraid . Suppose given a commutative diagram in Mbif as follows.

A

R

f //

•a
��

B

•b
�� u

��

v
A′

v′

++

u′

f ′
// B′

""

��
X

R

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

By Remarks 181 and 191, there exist commutative diagrams in M as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
s

��
A′

f ′
//

f̂

88

B′

X
g //

x

��

t

  

Y

_ y

��

X̂

ĝ
88

K̂x

��
X ′

g′
// Y ′

Furthermore, there exist commutative diagrams in M as follows.

B u

��

v

!!

h

  
X̂

ĝ //

_x̂
��

Y

_ y
��

X ′
g′
// Y ′

A′ u′

��

v′

""

h′

  
X̂

ĝ //

_x̂
��

Y

_ y
��

X ′
g′
// Y ′

Since we have fh · ĝ = ah′ · ĝ and fh · x̂ = ah′ · x̂, we obtain fh = ah′; cf. Definition 30.

There exists a commutative diagram in M as follows.

A
f //

•a
��

B

• b̂
�� h



A′
f̂

//

h′ 11

B̂
ĥ

��
X̂
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By ALift.(1) and AFib.(2), there exists a commutative diagram in M as follows.

B̂

◦s
��

ĥ // X̂

_
��

B′ � //

w̃
>>

!

Moreover, we have a commutative diagram in M as follows.

¡

•
��

• // X

t
��

B′
w̃
//

w

??

X̂

Cf. ALift.(2). So we have swt = ĥ.

Thus, we have the following commutative diagram in Mbif .

A

R

f //

•a
��

B

•b
�� u

��

v
A′

v′

++

u′

f ′
// B′

w

  

""

��
X

R

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

Ad QCof .(2). Suppose given A′ A•aoo
f // B in Mbif .

In M, there exists a commutative diagram as follows.

A
f //

•a
��

B

•b
��

A′
f ′
// B′

Cf. MCof .(1). Furthermore, we have a commutative diagram

¡ • // B •b // B′ //

◦
i
��

!

B̂

C

AA
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in M. In particular, B̂ ∈ ObMbif . Therefore, we have the commutative diagram

A

•a

��

f // B

•bi

��

• b
��

B′

◦
i

��
A′

f ′i
//

f ′

88

B̂

inM. Thus, (A,B,A′, B̂) is an R-pushout inMbif , i.e., a quasi-pushout; cf. Remark 181.

Ad QFib.(2). This is dual to QCof .(2).

Ad (2). Since (1) holds, this follows from Remark 175; cf. Definition 156.(1).

4.3 Further properties of Mbif

In this §4.3 we give properties of Mbif which might turn out to be useful in the future.

Remark 194. The following assertions (1, 2) hold.

(1) Suppose given A •a // A′ in Mbif . Then the commutative diagram

A

•a
��

A

•a
��

A′ A′

is an R-pushout; cf. Definition 180.

(2) Suppose given B �b // B′ in Mbif . Then the commutative diagram

B

_b
��

B

_ b
��

B′ B′

is an R-pullback; cf. Definition 190.

Proof. Ad (1). Since (A,A,A′, A′) is a pushout, this follows from Remark 182.

Ad (2). This is dual to (1).
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Lemma 195. Suppose given a commutative diagram in Mbif as follows.

A

R

f //

•a
��

B

•b
��

u

��

A′

u′ //

f ′
// B′

v

��

v′

##

X
R

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

There exists B′ w // X such that the following diagram commutes.

A

R

f //

•a
��

B

•b
��

u

��

A′

u′ //

f ′
// B′

v

��

v′

##

w

!!
X

R

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′

Proof. By Remarks 181 and 191, there exist commutative diagrams in M as follows.

A

•a

��

f // B

b

��

• b̂
��

B̂
◦
s

��
A′

f ′
//

f̂

88

B′

X
g //

x

��

t

  

Y

_ y

��

X̂

ĝ
88

K̂x

��
X ′

g′
// Y ′

Furthermore, there exist commutative diagrams in M as follows.

A
f //

•a
��

B

• b̂
��

u

��

A′
f̂

//

u′ ..

B̂
û

��
X

B′ v

��

v′

""

v̂

  
X̂

_x̂
��

ĝ // Y

_ y
��

X ′
g′
// Y ′

Since we have
bv̂ · ĝ = bv = ug = ut · ĝ
bv̂ · x̂ = bv′ = ux = ut · x̂,
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we obtain bv̂ = ut; cf. Definition 30. Since we have

f ′v̂ · ĝ = f ′v = u′g = u′t · ĝ
f ′v̂ · x̂ = f ′v′ = u′x = u′t · x̂,

we obtain f ′v̂ = u′t; cf. Definition 30. Since we have

b̂ · ût = ut = bv̂ = b̂ · sv̂
f̂ · ût = u′t = f ′v̂ = f̂ · sv̂,

we obtain ût = sv̂; cf. Definition 29.

Thus, we have the following commutative diagram in M.

B̂
û //

◦s
��

X

t
��

B′
v̂
//

w

??

X̂

Cf. ALift . In consequence, we have the following commutative diagram in Mbif .

A

R

f //

•a
��

B

•b
��

u

��

A′

u′ //

f ′
// B′

v

��

v′

##

w

!!
X

R

g //

_x
��

Y

_ y
��

X ′
g′
// Y ′
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Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition.

[7] Thomas E.W. Gunnarsson. Abstract Homotopy Theory and Related Topics. PhD thesis, Chalmers
University of Technology Göteborg, 1978.
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