GAP Package AtlasRep

ATLAS of Finite Groups — Bibliography

Bibliography on p. 243
M11 M12 J1 M22 J2 M23 HS
J3 M24 McL He Ru Suz O'N
Co3 Co2 Fi22 HN Ly Th Fi23
Co1 J4 Fi24' B M    
Cross-referenced Collections

Bibliography on p. 243

[Art57] Artin, E., Geometric algebra, Interscience Publishers, Inc., New York-London (1957), x+214 pages.

[Art88] Artin, E., Geometric algebra, John Wiley & Sons Inc., Wiley Classics Library, New York (1988), x+214 pages
(Reprint of the 1957 original, A Wiley-Interscience Publication).

[Car72] Carter, R. W., Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney (1972), viii+331 pages
(Pure and Applied Mathematics, Vol. 28).

[Car85] Carter, R. W., Finite groups of Lie type, John Wiley & Sons Inc., Pure and Applied Mathematics (New York), New York (1985), xii+544 pages
(Conjugacy classes and complex characters, A Wiley-Interscience Publication).

[Car89] Carter, R. W., Simple groups of Lie type, John Wiley & Sons Inc., Wiley Classics Library, New York (1989), x+335 pages
(Reprint of the 1972 original, A Wiley-Interscience Publication).

[Car93] Carter, R. W., Finite groups of Lie type, John Wiley & Sons Ltd., Wiley Classics Library, Chichester (1993), xii+544 pages
(Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication).

[Che55] Chevalley, C., Sur certains groupes simples, Tôhoku Math. J. (2), 7 (1955), 14–66.

[CM65] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, Springer-Verlag, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 14, Berlin (1965), ix+161 pages.

[CM72] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, Springer-Verlag, Third edition, New York (1972), ix+161 pages
(Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14).

[CM80a] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, Springer-Verlag, Fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14, Berlin (1980), ix+169 pages.

[Dav69] Davis, C., A bibliographical survey of simple groups of finite order, 1900–1965, Courant Institute of Mathematical Sciences, New York Univ., New York (1969), xxi+209 pages.

[Dic58] Dickson, L. E., Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., with an introduction by W. Magnus, New York (1958), xvi+312 pages.

[Die63] Dieudonné, J., La géométrie des groupes classiques, Springer-Verlag, Seconde édition, revue et corrigée, Berlin (1963), viii+125 pages.

[Die71] Dieudonné, J. A., La géométrie des groupes classiques, Springer-Verlag, Berlin (1971), viii+129 pages
(Troisième édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5).

[Gor74] (Gorenstein, D., Ed.), Reviews on finite groups, American Mathematical Society, Providence, R.I. (1974), xi+706 pages
(Reviews reprinted from Mathematical Reviews, Vols. 1-40, published during 1940–1970, Classified by Daniel Gorenstein).

[Gor82] Gorenstein, D., Finite simple groups, Plenum Publishing Corp., University Series in Mathematics, New York (1982), x+333 pages
(An introduction to their classification).

[Sri79] Srinivasan, B., Representations of finite Chevalley groups, Springer-Verlag, Lecture Notes in Mathematics, 764, Berlin (1979), x+177 pages
(A survey).

[Ste59] Steinberg, R., Variations on a theme of Chevalley, Pacific J. Math., 9 (1959), 875–891.

Mathieu group M11

[Hug82] Hughes, D. R., A combinatorial construction of the small Mathieu designs and groups, in Algebraic and geometric combinatorics, North-Holland, North-Holland Math. Stud., 65, Amsterdam (1982), 259–264.

[Kel69] Keller, G., A characterization of A_6 and M_11, J. Algebra, 13 (1969), 409–421.

[Kim74] Kimura, H., A characterization of A_7 and M_11. I, Hokkaido Math. J., 3 (1974), 213–217.

[Kim75a] Kimura, H., A characterization of A_7 and M_11. II, Hokkaido Math. J., 4 (1975), 39–44.

[Kim75b] Kimura, H., A characterization of A_7 and M_11. III, Hokkaido Math. J., 4 (2) (1975), 273–277.

[Mos59] Moser, W. O. J., Abstract definitions for the Mathieu groups M_11 and M_12, Canad. Math. Bull., 2 (1959), 9–13.

[Nor68] Norman, C. W., A characterization of the Mathieu group M_11, Math. Z., 106 (1968), 162–166.

[Par70a] Parrott, D., On the Mathieu groups M_22 and M_11, Bull. Austral. Math. Soc., 3 (1970), 141–142.

[Par70b] Parrott, D., On the Mathieu groups M_22 and M_11, J. Austral. Math. Soc., 11 (1970), 69–81.

[Sch79] Schneider, G. J. A., The Mathieu group M_11, M. Sc. thesis, Oxford (1979).

[TL65] Ts'eng, K. C. and Li, C. S., On the commutators of the simple Mathieu groups, J. China Univ. Sci. Techn., 1 (1) (1965), 43–48.

[War75] Ward, H. N., A form for M_11, J. Algebra, 37 (2) (1975), 340–361.

Mathieu group M12

[Aki83] Akiyama, K., A note on the Mathieu groups M_12 and M_23, Bull. Central Res. Inst. Fukuoka Univ., 66 (1983), 1–5.

[BF66a] Brauer, R. and Fong, P., A characterization of the Mathieu group M_12, Trans. Amer. Math. Soc., 122 (1966), 18–47.

[Bue82] Buekenhout, F., Geometries for the Mathieu group M_12, in Combinatorial theory (Schloss Rauischholzhausen, 1982), Springer, Lecture Notes in Math., 969, Berlin (1982), 74–85.

[Con71a] Conway, J. H., Three lectures on exceptional groups, in Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London (1971), 215–247.

[Con84] Conway, J. H., Hexacode and tetracode—MOG and MINIMOG, in Computational group theory (Durham, 1982), Academic Press, London (1984), 359–365.

[Cox58] Coxeter, H. S. M., Twelve points in PG(5,3) with 95040 self-transformations, Proc. Roy. Soc. London. Ser. A, 247 (1958), 279–293.

[Cur84b] Curtis, R. T., The Steiner system S(5,6,12), the Mathieu group M_12 and the "kitten", in Computational group theory (Durham, 1982), Academic Press, London (1984), 353–358.

[Fro04] Frobenius, G., Über die Charaktere der mehrfach transitiven Gruppen, Berliner Berichte (1904), 558–571.

[Hal62] Hall Jr., M., Note on the Mathieu group M_12, Arch. Math., 13 (1962), 334–340.

[Hug82] Hughes, D. R., A combinatorial construction of the small Mathieu designs and groups, in Algebraic and geometric combinatorics, North-Holland, North-Holland Math. Stud., 65, Amsterdam (1982), 259–264.

[Hum80] Humphreys, J. F., The projective characters of the Mathieu group M_12 and of its automorphism group, Math. Proc. Cambridge Philos. Soc., 87 (3) (1980), 401–412.

[Mat83] Matzat, B. H., Konstruktion von Zahlkörpern mit der Galoisgruppe M_12 über Q(sqrt{-5}), Arch. Math. (Basel), 40 (3) (1983), 245–254.

[Mos59] Moser, W. O. J., Abstract definitions for the Mathieu groups M_11 and M_12, Canad. Math. Bull., 2 (1959), 9–13.

[Sch81] Schneider, G. J. A., On the 2-modular representations of M_12, in Representations of algebras (Puebla, 1980), Springer, Lecture Notes in Math., 903, Berlin (1981), 302–314.

[Sch83] Schneider, G. J. A., The vertices of the simple modules of M_12 over a field of characteristic 2, J. Algebra, 83 (1) (1983), 189–200.

[Sta51] Stanton, R. G., The Mathieu groups, Canadian J. Math., 3 (1951), 164–174.

[Thw73] Thwaites, G. N., A characterization of M_12 by centralizer of involution, Quart. J. Math. Oxford Ser. (2), 24 (1973), 537–557.

[Tod59] Todd, J. A., On representations of the Mathieu groups as collineation groups, J. London Math. Soc., 34 (1959), 406–416.

[Tod70] Todd, J. A., Abstract definitions for the Mathieu groups, Quart. J. Math. Oxford Ser. (2), 21 (1970), 421–424.

[Whi66] Whitelaw, T. A., On the Mathieu group of degree twelve, Proc. Cambridge Philos. Soc., 62 (1966), 351–364.

[Wit38a] Witt, E., Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Hamburg, 12 (1938), 256–264.

[Won64] Wong, W. J., A characterization of the Mathieu group M_12, Math. Z., 84 (1964), 378–388.

Janko group J1

[Cam73] Cameron, P. J., Another characterization of the small Janko group, J. Math. Soc. Japan, 25 (1973), 591–595.

[Cha82] Chapman, G. R., Generators and relations for the cohomology ring of Janko's first group in the first twenty-one dimensions, in Groups—St. Andrews 1981 (St. Andrews, 1981), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 71, Cambridge (1982), 201–206.

[Con71a] Conway, J. H., Three lectures on exceptional groups, in Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London (1971), 215–247.

[Fon74] Fong, P., On decomposition numbers of J_1 and R(q), in Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London (1974), 415–422.

[Gag65] Gagen, T. M., On groups with abelian Sylow 2-groups, Math. Z., 90 (1965), 268–272
(see MR0215897, p. 99–100).

[Gag67] Gagen, T. M., On groups with Abelian 2-Sylow subgroups, in Proceedings of the International Conference on the Theory of Groups, Gordon and Breach Science Publishers, New York (1967), 99–100.

[Gag68] Gagen, T. M., A characterization of Janko's simple group, Proc. Amer. Math. Soc., 19 (1968), 1393–1395.

[Hig71] Higman, G., Construction of simple groups from character tables, in Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London (1971), 205–214.

[Jan65] Janko, Z., A new finite simple group with abelian 2-Sylow subgroups, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 657–658.

[Jan66] Janko, Z., A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra, 3 (1966), 147–186.

[Jan67] Janko, Z., A characterization of a new simple group, in Proceedings of the International Conference on the Theory of Groups, Gordon and Breach Science Publishers, New York (1967), 205–208.

[LM78] Landrock, P. and Michler, G. O., Block structure of the smallest Janko group, Math. Ann., 232 (3) (1978), 205–238.

[Li81] Li, J. S., The commutators of the small Janko group J_1, J. Math. (Wuhan), 1 (2) (1981), 175–179
(Chinese).

[Liv67] Livingstone, D., On a permutation representation of the Janko group, J. Algebra, 6 (1967), 43–55.

[Mar69] Martineau, R. P., A characterization of Janko's simple group of order 175,560, Proc. London Math. Soc. (3), 19 (1969), 709–729.

[Per80] Perkel, M., A characterization of J_1 in terms of its geometry, Geom. Dedicata, 9 (3) (1980), 291–298.

[Shu72] Shult, E., A note on Janko's simple group of order 175,560, Proc. Amer. Math. Soc., 35 (1972), 342–348.

[Whi67] Whitelaw, T. A., Janko's group as a collineation group in PG(6,11), Proc. Cambridge Philos. Soc., 63 (1967), 663–677.

[Yam72] Yamaki, H., On the Janko's simple group of order 175560, Osaka J. Math., 9 (1972), 111–112.

Mathieu group M22

[GG82] Gagola Jr., S. M. and Garrison III, S. C., Real characters, double covers, and the multiplier, J. Algebra, 74 (1) (1982), 20–51.

[Gri80] Griess, R. L., The covering group of M_22 and associated component problems, Abstracts Amer. Math. Soc., 1 (1980), 213.

[Hel68] Held, D., Eine Kennzeichnung der Mathieu-Gruppe M_22 und der alternierenden Gruppe A_10, J. Algebra, 8 (1968), 436–449.

[Hum82b] Humphreys, J. F., The projective characters of the Mathieu group M_22, J. Algebra, 76 (1) (1982), 1–24.

[Jan68a] Janko, Z., A characterization of the Mathieu simple groups. I, II, J. Algebra 9 (1968), 1-19; ibid., 9 (1968), 20–41.

[JM76] Jónsson, W. and McKay, J., More about the Mathieu group M_22, Canad. J. Math., 38 (5) (1976), 929–937.

[Maz79] Mazet, P., Sur le multiplicateur de Schur du groupe de Mathieu M_22, C. R. Acad. Sci. Paris Sér. A-B, 289 (14) (1979), A659–A661.

[Par70a] Parrott, D., On the Mathieu groups M_22 and M_11, Bull. Austral. Math. Soc., 3 (1970), 141–142.

[Par70b] Parrott, D., On the Mathieu groups M_22 and M_11, J. Austral. Math. Soc., 11 (1970), 69–81.

[Tit64] Tits, J., Sur les systèmes de Steiner associés aux trois "grands" groupes de Mathieu, Rend. Mat. e Appl. (5), 23 (1964), 166–184.

[TL65] Ts'eng, K. C. and Li, C. S., On the commutators of the simple Mathieu groups, J. China Univ. Sci. Techn., 1 (1) (1965), 43–48.

Janko group J2

[Coh80] Cohen, A. M., Finite quaternionic reflection groups, J. Algebra, 64 (2) (1980), 293–324.

[FR73] Finkelstein, L. and Rudvalis, A., Maximal subgroups of the Hall-Janko-Wales group, J. Algebra, 24 (1973), 486–493.

[GG82] Gagola Jr., S. M. and Garrison III, S. C., Real characters, double covers, and the multiplier, J. Algebra, 74 (1) (1982), 20–51.

[GH69] Gorenstein, D. and Harada, K., A characterization of Janko's two new simple groups, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1969), 331–406 (1970).

[HW68] Hall Jr., M. and Wales, D., The simple group of order 604,800, J. Algebra, 9 (1968), 417–450.

[HW69] Hall Jr., M. and Wales, D., The simple group of order 604,800, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 79–90.

[Ili73] Ilʹinyh, A. P., A characterization of the Hall-Janko finite simple group, Mat. Zametki, 14 (1973), 535–542.

[Jan69a] Janko, Z., Some new simple groups of finite order, in Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, Edited by Richard Brauer and Chih-han Sah (1969), 63–64.

[Lin69] Lindsey, J. H., Linear groups of degree 6 and the Hall-Janko group, in Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, Edited by Richard Brauer and Chih-han Sah (1969), 97–100.

[Lin68] Lindsey II, J. H., On a projective representation of the Hall-Janko group, Bull. Amer. Math. Soc., 74 (1968), 1094.

[Lin70a] Lindsey II, J. H., On a six dimensional projective representation of the Hall-Janko group, Pacific J. Math., 35 (1970), 175–186.

[MW71a] McKay, J. and Wales, D., The multipliers of the simple groups of order 604,800 and 50,232,960, J. Algebra, 17 (1971), 262–272.

[Smi74a] Smith, F., A general characterization of the Janko simple group J_2, Arch. Math. (Basel), 25 (1974), 17–22.

[Tit69] Tits, J., Le groupe de Janko d'ordre 604,800, in Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, Edited by Richard Brauer and Chih-han Sah (1969), 91–95.

[Wal69a] Wales, D., The uniqueness of the simple group of order 604800 as a subgroup of SL_6(4), J. Algebra, 11 (1969), 455–460.

[Wal69b] Wales, D. B., Generators of the Hall-Janko group as a subgroup of G_2(4), J. Algebra, 13 (1969), 513–516.

[Wil86b] Wilson, R. A., The geometry of the Hall-Janko group as a quaternionic reflection group, Geom. Dedicata, 20 (2) (1986), 157–173.

Mathieu group M23

[Aki83] Akiyama, K., A note on the Mathieu groups M_12 and M_23, Bull. Central Res. Inst. Fukuoka Univ., 66 (1983), 1–5.

[Bry71] Bryce, N., On the Mathieu group M_23, J. Austral. Math. Soc., 12 (1971), 385–392.

[Dem72] Dempwolff, U., Eine Kennzeichnung der Gruppen A_5 und M_23, J. Algebra, 23 (1972), 590–601.

[Jan68b] Janko, Z., A characterization of the Mathieu simple groups. I, II, J. Algebra 9 (1968), 1-19; ibid., 9 (1968), 20–41.

[Pai57] Paige, L. J., A note on the Mathieu groups, Canad. J. Math., 9 (1957), 15–18.

[Tit64] Tits, J., Sur les systèmes de Steiner associés aux trois "grands" groupes de Mathieu, Rend. Mat. e Appl. (5), 23 (1964), 166–184.

Higman-Sims group HS

[Bro82] Brouwer, A. E., Polarities of G. Higman's symmetric design and a strongly regular graph on 176 vertices, Aequationes Math., 25 (1) (1982), 77–82.

[CW82] Calderbank, A. R. and Wales, D. B., A global code invariant under the Higman-Sims group, J. Algebra, 75 (1) (1982), 233–260.

[Fra72] Frame, J. S., Computation of characters of the Higman-Sims group and its automorphism group, J. Algebra, 20 (1972), 320–349.

[GE73] Gorenstein, D. and Harris, M. E., A characterization of the Higman-Sims simple group, J. Algebra, 24 (1973), 565–590.

[Hig69] Higman, G., On the simple group of D. G. Higman and C. C. Sims, Illinois J. Math., 13 (1969), 74–80.

[HS68] Higman, D. G. and Sims, C. C., A simple group of order 44,352,000, Math. Z., 105 (1968), 110–113.

[Hum82a] Humphreys, J. F., The modular characters of the Higman-Sims simple group, Proc. Roy. Soc. Edinburgh Sect. A, 92 (3-4) (1982), 319–335.

[JW69] Janko, Z. and Wong, S. K., A characterization of the Higman-Sims simple group, J. Algebra, 13 (1969), 517–534.

[Kim78] Kimura, H., On the Higman-Sims simple group of order 44,353,000, J. Algebra, 52 (1) (1978), 88–93.

[Mag70] Magliveras, S. S., The maximal subgroups of the Higman-Sims group, Ph.D. thesis, Birmingham (1970).

[Mag71] Magliveras, S. S., The subgroup structure of the Higman-Sims simple group, Bull. Amer. Math. Soc., 77 (1971), 535–539.

[MW71b] McKay, J. and Wales, D., The multiplier of the Higman-Sims simple group, Bull. London Math. Soc., 3 (1971), 283–285.

[PW70] Parrott, D. and Wong, S. K., On the Higman-Sims simple group of order 44,352,000, Pacific J. Math., 32 (1970), 501–516.

[Rud75] Rudvalis, A., Characters of the covering group of the Higman-Sims group, J. Algebra, 33 (1975), 135–143.

[Sim69] Sims, C. C., On the isomorphism of two groups of order 44,352,000, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 101–108.

[Smi75a] Smith, M. S., On rank 3 permutation groups, J. Algebra, 33 (1975), 22–42.

[Smi76a] Smith, M. S., On the isomorphism of two simple groups of order 44,352,000, J. Algebra, 41 (1) (1976), 172–174.

[Smi76b] Smith, M. S., A combinatorial configuration associated with the Higman-Sims simple group, J. Algebra, 41 (1) (1976), 175–195.

[Wal69c] Wales, D., Uniqueness of the graph of a rank three group, Pacific J. Math., 30 (1969), 271–276.

[Wil85c] Wilson, R. A., Maximal subgroups of automorphism groups of simple groups, J. London Math. Soc. (2), 32 (3) (1985), 460–466.

Janko group J3

[CW74] Conway, J. H. and Wales, D. B., Matrix generators for J_3, J. Algebra, 29 (1974), 474–476.

[FR74] Finkelstein, L. and Rudvalis, A., The maximal subgroups of Janko's simple group of order 50,232,960, J. Algebra, 30 (1974), 122–143.

[Fro83] Frohardt, D., A trilinear form for the third Janko group, J. Algebra, 83 (2) (1983), 349–379.

[GH69] Gorenstein, D. and Harada, K., A characterization of Janko's two new simple groups, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1969), 331–406 (1970).

[HM69a] Higman, G. and McKay, J., On Janko's simple group of order 50,232,960, Bull. London Math. Soc. 1 (1969), 89–94; correction, ibid., 1 (1969), 219.

[HM69b] Higman, G. and McKay, J., On Janko's simple group of order 50,232,960, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 65–77.

[Jan69a] Janko, Z., Some new simple groups of finite order, in Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, Edited by Richard Brauer and Chih-han Sah (1969), 63–64.

[Jan69b] Janko, Z., Some new simple groups of finite order. I, in Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, Academic Press, London (1969), 25–64.

[MW71a] McKay, J. and Wales, D., The multipliers of the simple groups of order 604,800 and 50,232,960, J. Algebra, 17 (1971), 262–272.

[Wei82a] Weiss, R., On the geometry of Janko's group J_3, Arch. Math. (Basel), 38 (5) (1982), 410–419.

[Wei82b] Weiss, R., A geometric construction of Janko's group J_3, Math. Z., 179 (1) (1982), 91–95.

[Won69] Wong, S. K., On a new finite non-abelian simple group of Janko, Bull. Austral. Math. Soc., 1 (1969), 59–79.

Mathieu group M24

[AM66] Assmus Jr., E. F. and Mattson, H. F., Perfect codes and the Mathieu groups, Arch. Math. (Basel), 17 (1966), 121–135.

[BF66b] Burgoyne, N. and Fong, P., The Schur multipliers of the Mathieu groups, Nagoya Math. J., 27 (1966), 733–745.

[BF68] Burgoyne, N. and Fong, P., A correction to: "The Schur multipliers of the Mathieu groups", Nagoya Math. J., 31 (1968), 297–304.

[Cho72a] Choi, C., On subgroups of M_24. I. Stabilizers of subsets, Trans. Amer. Math. Soc., 167 (1972), 1–27.

[Cho72b] Choi, C., On subgroups of M_24. II. The maximal subgroups of M_24, Trans. Amer. Math. Soc., 167 (1972), 29–47.

[Con71a] Conway, J. H., Three lectures on exceptional groups, in Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London (1971), 215–247.

[Con77a] Conway, J. H., The miracle octad generator, in Topics in group theory and computation (Proc. Summer School, University Coll., Galway, 1973), Academic Press, London (1977), 62–68.

[Con84] Conway, J. H., Hexacode and tetracode—MOG and MINIMOG, in Computational group theory (Durham, 1982), Academic Press, London (1984), 359–365.

[Cur72] Curtis, R. T., On the Mathieu group M_24 and related topics, Ph.D. thesis, Cambridge (1972).

[Cur76] Curtis, R. T., A new combinatorial approach to M_24, Math. Proc. Cambridge Philos. Soc., 79 (1) (1976), 25–42.

[Cur77a] Curtis, R. T., The maximal subgroups of M_24, Math. Proc. Cambridge Philos. Soc., 81 (2) (1977), 185–192.

[Seg01] de Séguier, J. A., Sur les equations de certains groupes, C. R. Acad. Sci. Paris, 132 (1901), 1030–1033.

[Seg04] de Séguier, J. A., Sur certains groupes de Mathieu, Bull. Soc. Math. France, 32 (1904), 116–124.

[Fro04] Frobenius, G., Über die Charaktere der mehrfach transitiven Gruppen, Berliner Berichte (1904), 558–571.

[GM64] Garbe, D. and Mennicke, J. L., Some remarks on the Mathieu groups, Canad. Math. Bull., 7 (1964), 201–212.

[GM72] Garbe, D. and Mennicke, J., Corrections: "Some remarks on the Mathieu groups", Canad. Math. Bull., 15 (1972), 147.

[Gre73] Greenberg, P. J., Mathieu groups, Courant Institute of Mathematical Sciences New York University, New York (1973), iv+189 pages.

[Hel69b] Held, D., The simple groups related to M_24, J. Algebra, 13 (1969), 253–296.

[Jam73] James, G. D., The modular characters of the Mathieu groups, J. Algebra, 27 (1973), 57–111.

[Koi82] Koike, M., Automorphic forms and Mathieu groups, in Topics in finite group theory, Kyoto University Research Institute for Mathematical Sciences, Kyoto (1982), 47–56.

[Lis77] List, R. J., On the maximal subgroups of the Mathieu groups. I. M_24, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 62 (4) (1977), 432–438.

[Lue68] Lüneburg, H., Über die Gruppen von Mathieu, J. Algebra, 10 (1968), 194–210.

[Mas77a] Mason, D. R., On the construction of the Steiner system S(5,8,24), J. Algebra, 47 (1) (1977), 77–79.

[Mat61] Mathieu, E., Memoire sur l'etude des fonctions de plusieurs quantites, J. Math. Pures Appl., 6 (1861), 241–243.

[Mat73] Mathieu, E., Sur les fonctions cinq fois transitives de 24 quantites, J. Math. Pures Appl., 18 (1873), 25–46.

[Maz82a] Mazet, P., Sur les multiplicateurs de Schur des groupes de Mathieu, J. Algebra, 77 (2) (1982), 552–576.

[Mil00] Miller, G. A., Sur plusieurs groupes simples, Bull. Soc. Math. France, 28 (1900), 266–267.

[Ple68] Pless, V., On the uniqueness of the Golay codes, J. Combinatorial Theory, 5 (1968), 215–228.

[Ras76] Rasala, R., Split codes and the Mathieu groups, J. Algebra, 42 (2) (1976), 422–471.

[Ron82] Ronan, M. A., Locally truncated buildings and M_24, Math. Z., 180 (4) (1982), 489–501.

[Sch74] Schoenwaelder, U., Finite groups with a Sylow 2-subgroup of type M_24. I, II, J. Algebra, 28 (1974), 20–45; ibid. 28 (1974), 46–56.

[Sta51] Stanton, R. G., The Mathieu groups, Canadian J. Math., 3 (1951), 164–174.

[Str76a] Striko, J. K., A characterization of the finite simple groups M_24, He and L_5(2)., J. Algebra, 43 (2) (1976), 375–397.

[Tit64] Tits, J., Sur les systèmes de Steiner associés aux trois "grands" groupes de Mathieu, Rend. Mat. e Appl. (5), 23 (1964), 166–184.

[Tod59] Todd, J. A., On representations of the Mathieu groups as collineation groups, J. London Math. Soc., 34 (1959), 406–416.

[Tod66a] Todd, J. A., A representation of the Mathieu group M_24 as a collineation group, Ann. Mat. Pura Appl. (4), 71 (1966), 199–238.

[Tod66b] Todd, J. A., A representation of the Mathieu group M_24 as a collineation group, Rend. Mat. Appl., V. Ser., 25 (1966), 29–32.

[Tod70] Todd, J. A., Abstract definitions for the Mathieu groups, Quart. J. Math. Oxford Ser. (2), 21 (1970), 421–424.

[Wit38a] Witt, E., Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Hamburg, 12 (1938), 256–264.

[Wit38b] Witt, E., Über Steinersche Systeme, Abh. Math. Sem. Hamburg, 12 (1938), 265–274.

McLaughlin group McL

[Dia84] Diawara, O., Sur le groupe simple de J. McLaughlin, Ph.D. thesis, Bruxelles (1984).

[Fin73] Finkelstein, L., The maximal subgroups of Conway's group C_3 and McLaughlin's group, J. Algebra, 25 (1973), 58–89.

[JW72] Janko, Z. and Wong, S. K., A characterization of the McLaughlin's simple group, J. Algebra, 20 (1972), 203–225.

[McL69] McLaughlin, J., A simple group of order 898,128,000, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 109–111.

[Smi75a] Smith, M. S., On rank 3 permutation groups, J. Algebra, 33 (1975), 22–42.

Held group He

[Bor80] Borovik, A. V., 3-local characterization of the Held group, Algebra i Logika, 19 (4) (1980), 387–404, 503
(Russian, English translation: Algebra and Logic 19 (1980), no.4, 255–266 (1981)).

[But81] Butler, G., The maximal subgroups of the sporadic simple group of Held, J. Algebra, 69 (1) (1981), 67–81.

[CH74] Cannon, J. J. and Havas, G., Defining relations for the Held-Higman-Thompson simple group, Bull. Austral. Math. Soc., 11 (1974), 43–46.

[Dec74] Deckers, M., On groups related to Held's simple group, Arch. Math. (Basel), 25 (1974), 23–28.

[Gul79] Güloğlu, I. Ş., A characterization of the simple group He, J. Algebra, 60 (1) (1979), 261–281.

[Hel69a] Held, D., Some simple groups related to M_24, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 121–124.

[Hel69b] Held, D., The simple groups related to M_24, J. Algebra, 13 (1969), 253–296.

[Hel73] Held, D., The simple groups related to M_24. II, J. Austral. Math. Soc., 16 (1973), 24–28
(Collection of articles dedicated to the memory of Hanna Neumann, I).

[MS82] Mason, G. and Smith, S. D., Minimal 2-local geometries for the Held and Rudvalis sporadic groups, J. Algebra, 79 (2, part 1) (1982), 286–306.

[McK74] McKay, J., Computing with finite simple groups, in Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), Springer, Berlin (1974), 448–452. Lecture Notes in Math., Vol. 372.

[Sch74] Schoenwaelder, U., Finite groups with a Sylow 2-subgroup of type M_24. I, II, J. Algebra, 28 (1974), 20–45; ibid. 28 (1974), 46–56.

[Str76a] Striko, J. K., A characterization of the finite simple groups M_24, He and L_5(2)., J. Algebra, 43 (2) (1976), 375–397.

[Wil85c] Wilson, R. A., Maximal subgroups of automorphism groups of simple groups, J. London Math. Soc. (2), 32 (3) (1985), 460–466.

Rudvalis group Ru

[Ass76] Assa, S. B., A characterization of ^2F_4(2)' and the Rudvalis group, J. Algebra, 41 (2) (1976), 473–495.

[Bie79a] Bierbrauer, J., A 2-local characterization of the Rudvalis simple group, J. Algebra, 58 (2) (1979), 563–571.

[Con77b] Conway, J. H., A quaternionic construction for the Rudvalis group, in Topics in group theory and computation (Proc. Summer School, University Coll., Galway, 1973), Academic Press, London (1977), 69–81.

[CW73] Conway, J. H. and Wales, D. B., Construction of the Rudvalis group of order 145,926,144,000, J. Algebra, 27 (1973), 538–548.

[Dem74] Dempwolff, U., A characterization of the Rudvalis simple group of order 2^14 * 3^3 * 5^3 * 7 * 13 * 29 by the centralizers of noncentral involutions, J. Algebra, 32 (1974), 53–88.

[Hal73] Hall, M., A representation of the Rudvalis group, Notices Amer. Math. Soc., 20 (1973), A-88.

[MS82] Mason, G. and Smith, S. D., Minimal 2-local geometries for the Held and Rudvalis sporadic groups, J. Algebra, 79 (2, part 1) (1982), 286–306.

[Maz82b] Mazurov, V. D., Characterization of the Rudvalis group, Mat. Zametki, 31 (3) (1982), 321–338, 473
(Russian, English translation: Math. Notes 31 (1982), no. 3–4, 165–173).

[ON78] O'Nan, M. E., A characterization of the Rudvalis group, Comm. Algebra, 6 (2) (1978), 107–147.

[OY78] Okuyama, T. and Yoshida, T., A characterization of the Rudvalis group, J. Math. Soc. Japan, 30 (3) (1978), 463–474.

[Par76] Parrott, D., A characterization of the Rudvalis simple group, Proc. London Math. Soc. (3), 32 (1) (1976), 25–51.

[Rud72] Rudvalis, A., The graph for a new group of order 2^14.3^3.5^3.7.13.29, Michigan (1972)
(preprint).

[Rud73] Rudvalis, A., A new simple group of order 2^14.3^3.5^3.7.13.29, Notices Amer. Math. Soc., 20 (1973), A-95.

[Rud84a] Rudvalis, A., A rank 3 simple group of order 2^14 * 3^3 * 5^3 * 7 * 13 * 29. I, J. Algebra, 86 (1) (1984), 181–218.

[Rud84b] Rudvalis, A., A rank 3 simple group G of order 2^14 * 3^3 * 5^3 * 7 * 13 * 29. II. Characters of G and hat{G}, J. Algebra, 86 (1) (1984), 219–258.

[Wil84b] Wilson, R. A., The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. London Math. Soc. (3), 48 (3) (1984), 533–563.

[Yos91] Yoshiara, S., Maximal subgroups of the sporadic simple group of Rudvalis, Nihonkai Math. J., 2 (1) (1991), 1–24.

[You74] Young, K.-C., Some simple subgroups of the Rudvalis simple group, Notices Amer. Math. Soc., 21 (1974), A-481.

Suzuki group Suz

[Lin70b] Lindsey II, J. H., On the Suzuki and Conway groups, Bull. Amer. Math. Soc., 76 (1970), 1088–1090.

[Lin71a] Lindsey II, J. H., A correlation between PSU_4(3), the Suzuki group, and the Conway group, Trans. Amer. Math. Soc., 157 (1971), 189–204.

[Lin71b] Lindsey II, J. H., On the Suzuki and Conway groups, in Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, R.I. (1971), 107–109.

[PW76] Patterson, N. J. and Wong, S. K., A characterization of the Suzuki sporadic simple group of order 448, 345, 497, 600, J. Algebra, 39 (1) (1976), 277–286.

[Rei75a] Reifart, A., A characterization of Sz by the Sylow 2-subgroup, J. Algebra, 36 (3) (1975), 348–363.

[Rei75b] Reifart, A., A characterization of the sporadic simple group of Suzuki, J. Algebra, 33 (1975), 288–305.

[Soi84] Soicher, L. H., A natural series of presentations for the Suzuki chain of groups (1984)
(preprint).

[Suz69] Suzuki, M., A simple group of order 448,345,497,600, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 113–119.

[Wil83c] Wilson, R. A., The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra, 84 (1) (1983), 151–188.

[Wri74] Wright, D., The irreducible characters of the simple group of M. Suzuki of order 448, 345, 497, 600, J. Algebra, 29 (1974), 303–323.

[Yam76a] Yamaki, H., A characterization of the Suzuki simple group of order 448, 345, 497,600, J. Algebra, 40 (1) (1976), 229–244.

[Yam76b] Yamaki, H., Characterizing the sporadic simple group of Suzuki by a 2-local subgroup, Math. Z., 151 (3) (1976), 239–242.

[Yos82] Yoshiara, S., The complex Leech lattice and sporadic Suzuki group, in Topics in finite group theory, Kyoto University Research Institute for Mathematical Sciences, Kyoto (1982), 26–46.

O'Nan group O'N

[And80] Andrilli, S., On the uniqueness of O'Nan's sporadic simple group, Ph.D. thesis, Rutgers (1980).

[Gul81b] Güloğlu, I. Ş., A characterization of the simple group ON, Osaka J. Math., 18 (1) (1981), 25–31.

[Ili78] Ilʹinyh, A. P., Characterization of the simple O'Nan-Sims group by the centralizer of an element of order three, Mat. Zametki, 24 (4) (1978), 487–497, 589.

[ON76] O'Nan, M. E., Some evidence for the existence of a new simple group, Proc. London Math. Soc. (3), 32 (3) (1976), 421–479.

[Ryb84] Ryba, A. J. E., The existence of a 45-dimensional 7-modular representation of 3.O'N (1984)
(preprint, Cambridge).

[Soi87a] Soicher, L. H., Presentations of some finite groups with applications to the O'Nan simple group, J. Algebra, 108 (2) (1987), 310–316.

[Sys81] Syskin, S. A., 3-characterization of the O'Nan-Sims group, Mat. Sb. (N.S.), 114(156) (3) (1981), 471–478, 480
(Russian).

[Wil85b] Wilson, R. A., The maximal subgroups of the O'Nan group, J. Algebra, 97 (2) (1985), 467–473.

[Yos85] Yoshiara, S., The maximal subgroups of the sporadic simple group of O'Nan, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1) (1985), 105–141.

Conway group Co3

[Fen70a] Fendel, D., A characterization of Conway's group .3, Ph.D. thesis, Yale (1970).

[Fen70b] Fendel, D., A characterization of Conway's group .3, Bull. Amer. Math. Soc., 76 (1970), 1024–1025.

[Fen73] Fendel, D., A characterization of Conway's group. 3, J. Algebra, 24 (1973), 159–196.

[Fin73] Finkelstein, L., The maximal subgroups of Conway's group C_3 and McLaughlin's group, J. Algebra, 25 (1973), 58–89.

[Mor81] Mortimer, B., The modular permutation representations of Conway's third group, Carleton Math. Ser., 172 (1981).

[Wor82] Worboys, M. F., Generators for the sporadic group Co_3 as a (2,3,7) group, Proc. Edinburgh Math. Soc. (2), 25 (1) (1982), 65–68.

[Yos74] Yoshida, T., A characterization of Conway's group C_3, Hokkaido Math. J., 3 (1974), 232–242.

Conway group Co2

[Smi74b] Smith, F. L., A characterization of the .2 Conway simple group, J. Algebra, 31 (1974), 91–116.

[Wil83b] Wilson, R. A., The maximal subgroups of Conway's group * 2, J. Algebra, 84 (1) (1983), 107–114.

[Yos77] Yoshida, T., A characterization of the .2 Conway simple group, J. Algebra, 46 (2) (1977), 405–414.

Fischer group Fi22

[Ass81] Assa, S. B., A characterization of M(22), J. Algebra, 69 (2) (1981), 455–466.

[Con73] Conway, J. H., A construction for the smallest Fischer group F_22, in Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam (1973), 27–35. North-Holland Math. Studies, Vol. 7.

[Enr76] Enright, G. M., The structure and subgroups of the Fischer groups F_22 and F_23, Ph.D. thesis, Cambridge (1976).

[Enr77a] Enright, G. M., A description of the Fischer group F_22, J. Algebra, 46 (2) (1977), 334–343.

[Enr78] Enright, G. M., Subgroups generated by transpositions in F_22 and F_23, Comm. Algebra, 6 (8) (1978), 823–837.

[Fis71] Fischer, B., Finite groups generated by 3-transpositions. I, Invent. Math., 13 (1971), 232–246.

[Fla84] Flaass, D. G., 2-local subgroups of Fischer groups, Mat. Zametki, 35 (3) (1984), 333–342
(Russian).

[Hun70] Hunt, D. C., A sporadic simple group of B. Fischer of order 64,561,751,654,400, Ph.D. thesis, Warwick (1970).

[Hun71] Hunt, D. C., Character tables of certain finite simple groups, Bull. Austral. Math. Soc., 5 (1971), 1–42.

[Hun72] Hunt, D. C., A characterization of the finite simple group M(22), J. Algebra, 21 (1972), 103–112.

[Moo81] Moori, J., On certain groups associated with the smallest Fischer group, J. London Math. Soc. (2), 23 (1) (1981), 61–67.

[Par81] Parrott, D., Characterizations of the Fischer groups. I, II, III, Trans. Amer. Math. Soc., 265 (2) (1981), 303–347.

[Wil84a] Wilson, R. A., On maximal subgroups of the Fischer group Fi_22, Math. Proc. Cambridge Philos. Soc., 95 (2) (1984), 197–222.

Harada-Norton group HN

[Bei77] Beisiegel, B., A note on Harada's simple group F, J. Algebra, 48 (1) (1977), 142–149.

[Har76] Harada, K., On the simple group F of order 2^14 * 3^6 * 5^6 * 7 * 11 * 19, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 119–276.

[Har78] Harada, K., The automorphism group and the Schur multiplier of the simple group of order 2^14 * 3^6 * 5^6 * 7 * 11 * 19, Osaka J. Math., 15 (3) (1978), 633–635.

[Nor75] Norton, S. P., F and other simple groups, Ph.D. thesis, Cambridge (1975).

[NW86] Norton, S. P. and Wilson, R. A., Maximal subgroups of the Harada-Norton group, J. Algebra, 103 (1) (1986), 362–376.

[Smi75b] Smith, P. E., On certain finite simple groups, Ph.D. thesis, Cambridge (1975).

Lyons group Ly

[Lyo72] Lyons, R., Evidence for a new finite simple group, J. Algebra, 20 (1972), 540–569.

[Lyo75] Lyons, R., Errata: "Evidence for a new finite simple group" (J. Algebra 20 (1972), 540–569) , J. Algebra, 34 (1975), 188–189.

[MN84] Meyer, W. and Neutsch, W., Über 5-Darstellungen der Lyonsgruppe, Math. Ann., 267 (4) (1984), 519–535.

[MNP85] Meyer, W., Neutsch, W. and Parker, R., The minimal 5-representation of Lyons' sporadic group, Math. Ann., 272 (1) (1985), 29–39.

[Sim73] Sims, C. C., The existence and uniqueness of Lyons' group, in Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam (1973), 138–141. North-Holland Math. Studies, Vol. 7.

[Wil84c] Wilson, R. A., The subgroup structure of the Lyons group, Math. Proc. Cambridge Philos. Soc., 95 (3) (1984), 403–409.

[Wil85a] Wilson, R. A., The maximal subgroups of the Lyons group, Math. Proc. Cambridge Philos. Soc., 97 (3) (1985), 433–436.

Thompson group Th

[Lyo84] Lyons, R., The Schur multiplier of F_3 is trivial, Comm. Algebra, 12 (15-16) (1984), 1889–1898.

[Mar76] Markot, R., A 2-local characterization of the simple group E, J. Algebra, 40 (2) (1976), 585–595.

[Par77] Parrott, D., On Thompson's simple group, J. Algebra, 46 (2) (1977), 389–404.

[Rei76] Reifart, A., A characterization of Thompson's sporadic simple group, J. Algebra, 38 (1) (1976), 192–200.

[Smi75b] Smith, P. E., On certain finite simple groups, Ph.D. thesis, Cambridge (1975).

[Smi76c] Smith, P. E., A simple subgroup of M? and E_8(3), Bull. London Math. Soc., 8 (2) (1976), 161–165.

Fischer group Fi23

[Bue79a] Buekenhout, F., Diagrams for geometries and groups, J. Combin. Theory Ser. A, 27 (2) (1979), 121–151.

[Enr76] Enright, G. M., The structure and subgroups of the Fischer groups F_22 and F_23, Ph.D. thesis, Cambridge (1976).

[Enr77b] Enright, G. M., A description of the Fischer group F_23, J. Algebra, 46 (2) (1977), 344–354.

[Enr78] Enright, G. M., Subgroups generated by transpositions in F_22 and F_23, Comm. Algebra, 6 (8) (1978), 823–837.

[Fis71] Fischer, B., Finite groups generated by 3-transpositions. I, Invent. Math., 13 (1971), 232–246.

[Hun73] Hunt, D. C., A characterization of the finite simple group M(23), J. Algebra, 26 (1973), 431–439.

[Hun74] Hunt, D. C., The character table of Fischer's simple group, M(23), Math. Comp., 28 (1974), 660–661; addendum, ibid. 28 (1974), no. 126, loose microfiche suppl. E6-F9.

[Par81] Parrott, D., Characterizations of the Fischer groups. I, II, III, Trans. Amer. Math. Soc., 265 (2) (1981), 303–347.

[Won77] Wong, S. K., A characterization of the Fischer group M(23) by a 2-local subgroup, J. Algebra, 44 (1) (1977), 143–151.

Conway group Co1

[Con68] Conway, J. H., A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups, Proc. Nat. Acad. Sci. U.S.A., 61 (1968), 398–400.

[Con69a] Conway, J. H., A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc., 1 (1969), 79–88.

[Con69b] Conway, J. H., A characterisation of Leech's lattice, Invent. Math., 7 (1969), 137–142.

[Con71a] Conway, J. H., Three lectures on exceptional groups, in Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London (1971), 215–247.

[Con71b] Conway, J. H., Groups, lattices, and quadratic forms, in Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970), Amer. Math. Soc., Providence, R.I. (1971), 135–139. SIAM-AMS Proc., Vol. IV.

[Con83] Conway, J. H., The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra, 80 (1) (1983), 159–163.

[CPS82] Conway, J. H., Parker, R. A. and Sloane, N. J. A., The covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A, 380 (1779) (1982), 261–290.

[CS82a] Conway, J. H. and Sloane, N. J. A., Twenty-three constructions for the Leech lattice, Proc. Roy. Soc. London Ser. A, 381 (1781) (1982), 275–283.

[CS82b] Conway, J. H. and Sloane, N. J. A., Lorentzian forms for the Leech lattice, Bull. Amer. Math. Soc. (N.S.), 6 (2) (1982), 215–217.

[Cur72] Curtis, R. T., On the Mathieu group M_24 and related topics, Ph.D. thesis, Cambridge (1972).

[Cur73] Curtis, R. T., On subgroups of ^*O. I. Lattice stabilizers, J. Algebra, 27 (1973), 549–573.

[Cur80] Curtis, R. T., On subgroups of * O. II. Local structure, J. Algebra, 63 (2) (1980), 413–434.

[LM82] Lepowsky, J. and Meurman, A., An E_8-approach to the Leech lattice and the Conway group, J. Algebra, 77 (2) (1982), 484–504.

[Nor82] Norton, S., A bound for the covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A, 380 (1779) (1982), 259–260.

[Pat72] Patterson, N. J., On Conway's group .0 and some subgroups, Ph.D. thesis, Cambridge (1972).

[Rei77c] Reifart, A., A remark on Conway's group .1, Arch. Math. (Basel), 29 (4) (1977), 389–391.

[Rei78] Reifart, A., A 2-local characterization of the simple groups M(24)', .1, and J_4, J. Algebra, 50 (1) (1978), 213–227.

[Tho76b] Thompson, J. G., Finite groups and even lattices, J. Algebra, 38 (2) (1976), 523–524.

[Tit80b] Tits, J., Four presentations of Leech's lattice, in Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1980), 303–307.

[Wil83a] Wilson, R. A., The maximal subgroups of Conway's group Co_1, J. Algebra, 85 (1) (1983), 144–165.

Janko group J4

[Ben80] Benson, D. J., The simple group J_4, Ph.D. thesis, Cambridge (1980).

[Gul81a] Güloğlu, I. Ş., A characterization of the simple group J_4, Osaka J. Math., 18 (1) (1981), 13–24.

[Jan76] Janko, Z., A new finite simple group of order 86,775,571,046,077,562,880 which possesses M_24 and the full covering group of M_22 as subgroups, J. Algebra, 42 (2) (1976), 564–596.

[Lem78a] Lempken, W., The Schur multiplier of J_4 is trivial, Arch. Math. (Basel), 30 (1978), 267–270.

[Lem78b] Lempken, W., A 2-local characterization of Janko's simple group J_4, J. Algebra, 55 (2) (1978), 403–445.

[Mas77b] Mason, G., Some remarks on groups of type J_4, Arch. Math. (Basel), 29 (6) (1977), 574–582.

[Nor80] Norton, S., The construction of J_4, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Amer. Math. Soc., Proc. Sympos. Pure Math., 37, Providence, R.I. (1980), 271–277.

[Rei77a] Reifart, A., Some simple groups related M_24, J. Algebra, 45 (1) (1977), 199–209.

[Rei77b] Reifart, A., Another characterization of Janko's simple group J_4, J. Algebra, 49 (2) (1977), 621–627.

[Rei78] Reifart, A., A 2-local characterization of the simple groups M(24)', .1, and J_4, J. Algebra, 50 (1) (1978), 213–227.

[Sta78] Stafford, R. M., A characterization of Janko's new simple group J_4, Notices Amer. Math. Soc., 25 (1978), A-423.

[Sta79] Stafford, R. M., A characterization of Janko's simple group J_4 by centralizers of elements of order 3, J. Algebra, 57 (2) (1979), 555–566.

[Str78] Stroth, G., An odd characterization of J_4, Israel J. Math., 31 (2) (1978), 189–192.

Fischer group Fi24'

[DS81] Davis, S. L. and Solomon, R., Some sporadic characterizations, Comm. Algebra, 9 (17) (1981), 1725–1742.

[Fis71] Fischer, B., Finite groups generated by 3-transpositions. I, Invent. Math., 13 (1971), 232–246.

[Nor] Norton, S. P., Transposition algebras and the group F_24, Cambridge
(preprint).

[Nor75] Norton, S. P., F and other simple groups, Ph.D. thesis, Cambridge (1975).

[Par81] Parrott, D., Characterizations of the Fischer groups. I, II, III, Trans. Amer. Math. Soc., 265 (2) (1981), 303–347.

[Rei77a] Reifart, A., Some simple groups related M_24, J. Algebra, 45 (1) (1977), 199–209.

[Rei78] Reifart, A., A 2-local characterization of the simple groups M(24)', .1, and J_4, J. Algebra, 50 (1) (1978), 213–227.

Baby monster group B

[Bie79b] Bierbrauer, J., A characterization of the "baby monster" F_2, including a note on ^2E_6(2), J. Algebra, 56 (2) (1979), 384–395.

[Hig76] Higman, D. G., A monomial character of Fischer's baby monster, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 277–283.

[KL78] Kroll, O. and Landrock, P., The characters of some 2-blocks of the babymonster, its covering group and the monster, Comm. Algebra, 6 (18) (1978), 1893–1921.

[Leo76] Leon, J. S., On the irreducible characters of a simple group of order 2^41 * 3^13 * 5^6 * 7^2 * 11 * 13 * 17 * 19 * 23 * 31 * 47, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 285–299.

[LS77] Leon, J. S. and Sims, C. C., The existence and uniqueness of a simple group generated by { 3, 4 }-transpositions, Bull. Amer. Math. Soc., 83 (5) (1977), 1039–1040.

[Sim80] Sims, C. C., How to construct a Baby Monster, in Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1980), 339–345.

[Str76b] Stroth, G., A characterization of Fischer's sporadic simple group of the order 2^41 * 3^13 * 5^6 * 7^2 * 11 * 13 * 17 * 19 * 23 * 31 * 47, J. Algebra, 40 (2) (1976), 499–531.

Monster group M

[Con80] Conway, J. H., Monsters and moonshine, Math. Intelligencer, 2 (4) (1979/80), 165–171.

[Con85] Conway, J. H., A simple construction for the Fischer-Griess monster group, Invent. Math., 79 (3) (1985), 513–540.

[CN79] Conway, J. H. and Norton, S. P., Monstrous moonshine, Bull. London Math. Soc., 11 (3) (1979), 308–339.

[DS81] Davis, S. L. and Solomon, R., Some sporadic characterizations, Comm. Algebra, 9 (17) (1981), 1725–1742.

[Fon80] Fong, P., Characters arising in the Monster-modular connection, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Amer. Math. Soc., Proc. Sympos. Pure Math., 37, Providence, R.I. (1980), 557–559.

[FLM84] Frenkel, I. B., Lepowsky, J. and Meurman, A., A natural representation of the Fischer-Griess Monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A., 81 (10, Phys. Sci.) (1984), 3256–3260.

[Gri76] Griess Jr., R. L., The structure of the "monster" simple group, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 113–118.

[Gri81] Griess Jr., R. L., A construction of F_1 as automorphisms of a 196,883-dimensional algebra, Proc. Nat. Acad. Sci. U.S.A., 78 (2, part 1) (1981), 686–691.

[Gri82] Griess Jr., R. L., The friendly giant, Invent. Math., 69 (1) (1982), 1–102.

[Gri85a] Griess Jr., R. L., The Monster and its nonassociative algebra, in Finite groups—coming of age (Montreal, Que., 1982), Amer. Math. Soc., Contemp. Math., 45, Providence, RI (1985), 121–157.

[Kac80b] Kac, V. G., A remark on the Conway-Norton conjecture about the "Monster" simple group, Proc. Nat. Acad. Sci. U.S.A., 77 (9, part 1) (1980), 5048–5049.

[Kro77] Kroll, O., The characters of a non-principal 2-block of the Monster F_1 (?), Preprint Ser. Math. Inst. Aarhus Univ., 31 (1977).

[KL78] Kroll, O. and Landrock, P., The characters of some 2-blocks of the babymonster, its covering group and the monster, Comm. Algebra, 6 (18) (1978), 1893–1921.

[Nor85] Norton, S. P., The uniqueness of the Fischer-Griess Monster, in Finite groups—coming of age (Montreal, Que., 1982), Amer. Math. Soc., Contemp. Math., 45, Providence, RI (1985), 271–285.

[Tho79a] Thompson, J. G., Uniqueness of the Fischer-Griess monster, Bull. London Math. Soc., 11 (3) (1979), 340–346.

[Tho79b] Thompson, J. G., Finite groups and modular functions, Bull. London Math. Soc., 11 (3) (1979), 347–351.

[Tho79c] Thompson, J. G., Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc., 11 (3) (1979), 352–353.

[Tit84] Tits, J., On R. Griess' "friendly giant", Invent. Math., 78 (3) (1984), 491–499.

[Tit85a] Tits, J., Le Monstre (d'après R. Griess, B. Fischer et al.), Astérisque, 121-122 (1985), 105–122
(Seminar Bourbaki, Vol. 1983/84).

[Tra79] Trung, T. V., On the "monster" simple group, J. Algebra, 60 (2) (1979), 559–562.

Cross-referenced Collections

[Atk84] (Atkinson, M. D., Ed.), Computational group theory, Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1984), xii+375 pages.

[AL81] (Auslander, M. and Lluis, E., Eds.), Representations of algebras, Proceedings of the Third International Conference held in Puebla, August 4–8, 1980, Springer-Verlag, Lecture Notes in Mathematics, 903, Berlin (1981), xv+371 pages.

[BH71] (Birkhoff, G. and Hall Jr., M., Eds.), Computers in algebra and number theory, SIAM-AMS Proceedings, Vol. IV, American Mathematical Society, Providence, R.I. (1971), vii+200 pages.

[BS69] (Brauer, R. and Sah, C., Eds.), Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam (1969), xiii+263 pp. (erratum, p. xiii) pages.

[CR82b] (Campbell, C. M. and Robertson, E. F., Eds.), Groups—St. Andrews 1981, Proceedings of the International Conference on Groups held at the Mathematical Institute, University of St. Andrews, St. Andrews, July 25–August 8, 1981, Cambridge University Press, London Mathematical Society Lecture Note Series, 71, Cambridge (1982), viii+360 pages.

[Col80] (Collins, M. J., Ed.), Finite simple groups. II, Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1980), xv+345 pages.

[CM80b] (Cooperstein, B. and Mason, G., Eds.), The Santa Cruz Conference on Finite Groups, American Mathematical Society, Proceedings of Symposia in Pure Mathematics, 37, Providence, R.I. (1980), xviii+634 pages
(Held at the University of California, Santa Cruz, Calif., June 25–July 20, 1979).

[Cur77b] (Curran, M. P. J., Ed.), Topics in group theory and computation, Proceedings of a Summer School held at University College, Galway, from 16th to 21st August, 1973, Academic Press [Harcourt Brace Jovanovich Publishers], London (1977), xiii+118 pages.

[GHS73] (Gagen, T., Hale Jr., M. P. and Shult, E. E., Eds.), Finite groups '72, Proceedings of the Gainesville Conference on Finite Groups, University of Florida, Gainesville, Fla., March 23–24, 1972, North-Holland Publishing Co., Amsterdam (1973), vi+158 pp. (4 plates) pages
(North-Holland Mathematics Studies, Vol. 7).

[JV82] (Jungnickel, D. and Vedder, K., Eds.), Combinatorial theory, Proceedings of a Conference held at Schloss Rauischholzhausen, May 6–9, 1982, Springer-Verlag, Lecture Notes in Mathematics, 969, Berlin (1982), ii+326 pages.

[KN67] (Kovács, L. G. and Neumann, B. H., Eds.), Proceedings of the International Conference on the Theory of Groups, Gordon and Breach Science Publishers, New York (1967), xvii+397 pages.

[McK85] (McKay, J., Ed.), Finite groups—coming of age, Proceedings of the Canadian Mathematical Society conference held at Concordia University, Montreal, Que., June 15–28, 1982, American Mathematical Society, Contemporary Mathematics, 45, Providence, RI (1985), x+350 pages.

[Men82] (Mendelsohn, E., Ed.), Algebraic and geometric combinatorics, North-Holland Publishing Co., North-Holland Mathematics Studies, 65, Amsterdam (1982), xiii+376 pages
(Annals of Discrete Mathematics, 15).

[New74] (Newman, M. F., Ed.), Proceedings of the Second International Conference on the Theory of Groups, Springer-Verlag, Berlin (1974), vii+740 pages
(Held at the Australian National University, Canberra, August 13–24, 1973, With an introduction by B. H. Neumann, Lecture Notes in Mathematics, Vol. 372).

[PH71] (Powell, M. B. and Higman, G., Eds.), Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969, Academic Press, London (1971), xi+327 pages.

[Rei71] (Reiner, I., Ed.), Representation theory of finite groups and related topics, Proceedings of Symposia in Pure Mathematics, Vol. XXI, American Mathematical Society, Providence, R.I. (1971), v+178 pages.

[SG76] (Scott, W. R. and Gross, F., Eds.), Proceedings of the Conference on Finite Groups, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1976), xiii+565 pages
(Held at the University of Utah, Park City, Utah, February 10–13, 1975).

[Kyo82] Topics in finite group theory, Proceedings of a Symposium held at the Research Institute for Mathematical Sciences, Kyoto University, Kyoto, October 21–23, 1982, Kyoto University Research Institute for Mathematical Sciences, Kyoto (1982), i–iii and 1–169 pages
(Sûrikaisekikenkyûsho Kôkyûroku No. 475 (1982)).


File created automatically by GAP on 28-May-2008.