Computations with the GAP
Character Table Library

(Version 1.3.1 of CTblLib)

Thomas Breuer

Thomas Breuer Email: sam@math.rwth-aachen.de
Homepage: http://www.math.rwth-aachen.de/ Thomas.Breuer

mailto://sam@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Thomas.Breuer

Computations with the GAP Character Table Library 2

Copyright

© 2013-2020 by Thomas Breuer
This manuscript may be distributed under the terms and conditions of the GNU Public License Version 3
or later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Maintenance Issues for the GAP Character Table Library 10
1.1 Disproving Possible Character Tables (November 2006) 10
1.1.1 A Perfect Pseudo Character Table (November 2006) 10

1.1.2 An Error in the Character Table of E¢(2) (March 2016) 13

1.1.3 An Error in a Power Map of the Character Table of 2.F;(2).2 (November 2015) 14

1.1.4 A Character Table with a Wrong Name (May 2017) 15

1.2 Some finite factor groups of perfect space groups (February 2014) 16
1.2.1 Constructing the space groups in question 16

1.2.2 Constructing the factor groups in question 17

1.2.3 Examples with point groupAs 18

1.2.4 Examples with point group L3(2) 19

1.2.5 Example with point group SLo(7)o oo 21

1.2.6 Example with point group 2°.L3(2) 22

1.2.7 Examples with point groupAgo 23

1.2.8 Examples with point group L»(8) 25

1.2.9 Example withpoint group Myy o . 26
1.2.10 Example with point group Us(3) 27
1.2.11 Examples with point group Us(2) 28
1.2.12 A remark on one of the example groups 29

1.3 Generality problems (December 2004/October 2015) 29
1.3.1 Listing possible generality problems 29

1.3.2 A generality problem concerning the group J3 (April 2015) 38

1.4 Brauer Tables that can be derived from Known Tables 40
1.4.1 Brauer Tables via Construction Information 40

1.4.2 Liftable Brauer Characters (May 2017) 41

2 Using Table Automorphisms for Constructing Character Tables in GAP 43
2.1 OVeIrVIEW . . . o o o e e e 43
2.2 Theoretical Background 43
2.2.1 Character Table Automorphisms 43

2.2.2 Permutation Equivalence of Character Tables 44

223 ClassFusions 45

2.2.4 Constructing Character Tables of Certain Isoclinic Groups 45

2.2.5 Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016) . 46

2.2.6 Isoclinic Double Covers of Almost Simple Groups 47

2.2.77 Characters of Normal Subgroups 49

23

24

2.5

2.6

2.7

2.8

Computations with the GAP Character Table Library 4

The Constructions o o e e e e 49
2.3.1 Character Tables of Groups of the Structure M.G.A 49
2.3.2 Character Tables of Groups of the Structure G.S3 50
2.3.3 Character Tables of Groups of the Structure G.2> 52
2.3.4 Character Tables of Groups of the Structure 22.G (August 2005) 53
2.3.5 p-Modular Tables of Extensions by p-singular Automorphisms. 55
2.3.6 Character Tables of Subdirect Products of Index Two (July 2007) 56
Examples for the Type M.G.A 57
2.4.1 Character Tables of Dihedral Groups 57
24.2 An M.G.A Type Example with M noncentral in M.G (May 2004) 59
24.3 Atlas Tablesof the Type M.G.A 60
2.44 More Atlas Tables of the Type M.G.A 65
2.4.5 The Character Tables of 4,.L3(4).23 and 125.L3(4).25 68
2.4.6 The Character Tables of 12;.U4(3).2) and 12,.U4(3).2% (December 2015) . . 70
2.4.7 Groups of the Structures 3.U3(8).3; and 3.U3(8).6 (February 2017) 71
2.4.8 The Character Table of (2> x F4(2)):2 < B (March2003) 73
2.49 The Character Table of 2.(S3 X Fi.2) <2.B(March2003) 75
2.4.10 The Character Table of (2 x 2.Fiy) : 2 < Fis4 (November 2008) 78
2.4.11 The Character Table of S3 x 2.U4(3).2, < 2.Fip (September 2002) 79
2.4.12 The Character Table of 4. HS.2 < HN.2 May 2002) 80
2.4.13 The Character Tables of 4.A¢.23, 12.A¢.23, and 4.L5(25).23 83
2.4.14 The Character Table of 9.U3(8).33 (March 2017) 88
2.4.15 Pseudo Character Tables of the Type M.G.A (May 2004) 93
2.4.16 Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005) 95
Examples forthe Type G.S3 L 99
2.5.1 Small Examples L 99
252 AtlasTablesofthe Type G.S3 100
Examples for the Type G.2% 104
2.6.1 The Character Table of Ag.2% o o i o i 104
2.6.2 Atlas Tables of the Type G.2> —Easy Cases 105
2.6.3 The Character Table of 54(9).2> (September 2011) 110
2.6.4 The Character Tables of Groups of the Type 2.L3(4).2> (June 2010) 111
2.6.5 The Character Tables of Groups of the Type 6.L3(4).2> (October 2011) . . . 114
2.6.6 The Character Tables of Groups of the Type 2.U4(3).2? (February 2012) . . . 119
2.6.7 The Character Tables of Groups of the Type 4;.L3(4).2> (October 2011) . . . 122
2.6.8 The Character Tables of Groups of the Type 4,.L3(4).2? (October 2011) . . . 126
2.6.9 The Character Table of Aut(Ly(81)) 130
2.6.10 The Character Table of OF (3).27,, 131
Examples for the Type 22.G i 132
2.7.1 The Character Table of 22.5z(8) i 132
2.7.2 Atlas Tables of the Type 22.G (September 2005) 135
2.7.3 The Character Table of 22.08+ (3) March2009) 139
274 The Character Table of the Schur Cover of L3(4) (September 2005) 139
Examples of Extensions by p-singular Automorphisms 142
2.8.1 Some p-Modular Tables of Groups of the Type M.G.A 142

2.8.2 Some p-Modular Tables of Groups of the Type G.S3 143

Computations with the GAP Character Table Library 5

2.8.3 2-Modular Tables of Groups of the Type G.2% 144
2.8.4 The 3-Modular Table of U3(8).3% 145
2.9 Examples of Subdirect Products of Index Two 146
2.9.1 Certain Dihedral Groups as Subdirect Products of Index Two 146
2.9.2 The Character Table of (D1o x HN).2 <M (June 2008) 146
2.9.3 A Counterexample (August2015) 148
Constructing Character Tables of Central Extensions in GAP 149
3.1 Coprime Central Extensions 149
3.1.1 The Character Table Head 149
3.1.2 The Irreducible Characters 150
3.1.3 Ordering of Conjugacy Classes 151
3.1.4 Compatibility with Smaller Factor Groups 152
3.2 Examples e e e e 153
3.2.1 Central Extensions of Simple Atlas Groups 153
3.2.2 Central Extensions of Other Atlas Groups 155
3.2.3 Compatible Central Extensions of Maximal Subgroups 156
3.2.4 The 2B Centralizer in 3.Fiy, (January 2004) 157
GAP Computations Concerning Hamiltonian Cycles in the Generating Graphs of Finite
Groups 159
4.1 OVEIVIEW o oo e e e e e 159
4.2 Theoretical Background L oo 160
4.2.1 Character-Theoretic Lower Bounds for Vertex Degrees 161
422 CheckingtheCriteria 162
4.3 GAP Functions for the Computations 162
43.1 Computing Vertex Degrees from the Group 163
4.3.2 Computing Lower Bounds for Vertex Degrees 165
4.3.3 Evaluating the (Lower Bounds for the) Vertex Degrees 167
4.4 Character-Theoretic Computations 169
4.4.1 Sporadic Simple Groups, except the Monster 170
442 TheMonster e 170
4.4.3 Nonsimple Automorphism Groups of Sporadic Simple Groups 176
444 Alternating and Symmetric Groups A,, Sy, for5<n <13 177
4.5 Computations With Groups e 178
4.5.1 Nonabelian Simple Groups of Orderupto 107 178
4.5.2 Nonsimple Groups with Nonsolvable Socle of Order at most 10% 180
4.6 The Groups PSL(2,q) o o 183
GAP Computations with Oy (5).S3 and O (2).S3 186
5.1 Overviewo L e e e e e 186
5.2 Constructing Representationsof M.2and S.2 187
5.2.1 A Matrix Representation of the Weyl Groupof Type Eg 187
5.2.2 Embedding the Weyl group of Type Eg into GO (8,5) 187
5.2.3 Compatible Generators of M, M.2, S,and S.2 188
5.3 Constructing Representationsof M.3and S.3 189

5.3.1 TheActionof M3onM 189

Computations with the GAP Character Table Library

5.3.2 TheActionof S3onS
5.4 Constructing Compatible Generatorsof Hand G
5.5 Application: Regular Orbitsof Hon G/H
5.6 Appendix: The Permutation Character (1$)y
5.7 Appendix: TheDataFile

Solvable Subgroups of Maximal Order in Sporadic Simple Groups

6.1 TheResult. e e

6.2 The Approach e
6.2.1 UsetheTableof Marks
6.2.2 Use Information from the Character Table Library

6.3 Cases where the Table of Marks is availablein GAP

6.4 Cases where the Table of Marks is not available in GAP
641 G=Ru
642 G=SuZ e
643 G=O0N
644 G=C00. . . i
645 G=Fian . . . i e e e
646 G=HN. ittt et
647 G=Ly @ e e
648 G=Th
649 G=Fi3 . . . 0 e e
6410 G=C01. . o o v v i
6411 G=Jy . . . e e
6412 G=Fihy e
6413 G=B e
64.14 G=M

Large Nilpotent Subgroups of Sporadic Simple Groups

7.1 TheResult. e
7.2 TheProof e
7.3 Alternative: Use GAP’s Tablesof Marks

Permutation Characters in GAP

8.1 Some Computations with Mpq L
8.2 All Possible Permutation Charactersof My
8.3 The Action of Ug(2) onthe Cosets of Mpp v o v i i i i
8.4 Degree 20736 Permutation Characters of Us(2)
8.5 Degree 57572775 Permutation Characters of Og (3)
8.6 The Action of 07(3).2 onthe Cosets of 27.87
8.7 The Action of 0;(3).21 onthe Cosets of 27 Ag
8.8 The Action of S4(4).4 on the Cosets of 52.[2%]
8.9 The Action of Co; on the Cosets of Involution Centralizers
8.10 The Multiplicity Free Permutation Characters of G2(3)
8.11 Degree 11200 Permutation Characters of Og (2)

8.12 A Proof of Nonexistence of a Certain Subgroup

190
192
192
193
196

198
198
202
202
203
204
206
206
207
208
208
209
210
210
211
211
212
212
213
214
218
223

224
224
226
229

Computations with the GAP Character Table Library 7

8.13 A Permutation Character of the Lyonsgroup 253
8.14 Identifying two subgroups of Aut(U3(5)) (October 2001) 255
8.15 A Permutation Character of Aut(Og (2)) (October 2001) 257
8.16 Four Primitive Permutation Characters of the Monster Group 258
8.16.1 The Subgroup 22.2'1.222,(S3 x May) June2009) 259
8.16.2 The Subgroup 2°.26.212.218 (15(2) x 3.54) (September 2009) 261
8.16.3 The Subgroup 2°.219.220 (S5 x Ls(2)) (October 2009) 266
8.16.4 The Subgroup 2!9716.07/(2) (November 2009) 270
8.17 A permutation character of the Baby Monster (June 2012) 276
8.18 A permutation character of 2.B (October 2017) 278
Ambiguous Class Fusions in the GAP Character Table Library 282
9.1 Some GAP Utilities 282
9.2 Fusions Determined by Factorization through Intermediate Subgroups 283
9.2.1 Co3N5 — Cos (September 2002) 283
922 31:15—=BMarch2003) 284
9.2.3 SuzN3 — Suz (September 2002) 285
924 FByN5—F;; March2002), 286
9.3 Fusions Determined Using Commutative Diagrams Involving Smaller Subgroups . . 287
93.1 BN7—=BMarch2002) 287
932 (A4x0g(2).3).2 > Fiy, November2002) 288
9.3.3 AgxLy(8).3 — Fib, November 2002) 289
934 (32:DgxUs(3).29)2 =B June2007) . . . o oo it 290
935 7TH*:(3x2.8) =M May2009) 292
93.6 37.07(3):2— Fiy (November2010) 293
93.7 2E(2)N3C — 2E¢(2) January 2019) 295
9.4 Fusions Determined Using Commutative Diagrams Involving Factor Groups 298
9.4.1 3.A7 —3.Suz(December2010) 298
942 Se—Us(2) (September 2011) 299
9.5 Fusions Determined Using Commutative Diagrams Involving Automorphic Extensions 300
9.5.1 Us(8).31 — 2E¢(2) (December 2010)o oo oo 300
952 L3(4).2] — Us(2) (December 2010) oot 302
9.6 Conditions Imposed by Braver Tables 304
9.6.1 L[5(16).4 — J3.2 (January 2004) 304
9.62 Lp(17) = Sg(2) July2004) 305
9.63 Ly(19) = J3 (April2003) 306
9.7 Fusions Determined by Information about the Groups 308
9.7.1 U3(3).2— Fib, November 2002) 309
9.7.2 L(13).2 — Fi5, (September 2002) 310
973 My —BApril2009) 312
974 Lr(11):2—=B(April2009) 313
975 L3(3) = B(April2009) 314
9.7.6 Ly(17).2 =B March2004) 314
977 L,(49).23 B June2006) 315
9.7.8 23.L5(2) = Go(5) January 2004) 317

979 S22 A4 S B(April2009) 318

Computations with the GAP Character Table Library 8

9.7.10 The fusion from the character table of 7% : 2L,(7).2 into the table of marks

January 2004) 319

9.7.11 3xUs(2) = 3;.Us(3) March2010) 322
9.7.12 2.3*23.84 —2.A12 (September 2011) 324
9.7.13 127:7 — L7(2) January 2012) 326
9.7.14 Lr(59) =M (May 2009) 327
9.7.15 Ly(71) > M (May 2009) o oot 328
9.7.16 Lp(41) = M (April 2012) 329

10 GAP computations needed in the proof of [DNT13, Theorem 6.1 (ii)] 331
10.1 G/N=Sz(8)and [N|=2"2 331
102 G/N=Myand [N =210 333
103 G/N=Jand [N| =22 336
104 G/N=Jand [N|=5% . . . 337
105 G/N=Jand [N| =22 . . . 340
10.6 G/N=3Dy(2)and [N| =220 341
10.7 G/N=23Dg(2)and [N|=3% 344
11 GAP Computations Concerning Probabilistic Generation of Finite Simple Groups 345
I1.1 OVerview o oo e e e e e 345
11.2 PrerequiSites o oo e e e e e e 349
11.2.1 Theoretical Background 349
11.2.2 Computational Criteria 350

11.3 GAP Functions for the Computations 351
11.3.1 General Utilities e 351
11.3.2 Character-Theoretic Computations 353
11.3.3 Computations with Groups i v i .. 358

11.4 Character-Theoretic Computations 366
11.4.1 Sporadic Simple Groups 366
11.4.2 Automorphism Groups of Sporadic Simple Groups 368
11.4.3 Other Simple Groups —Easy Cases 375
11.4.4 Automorphism Groups of other Simple Groups —Easy Cases 379
1145 Og(3) . . . o 382
1146 O75(2) .« o oo 382
1147 01,(2) . . . o 383
1148 O5,(2) .« o oo 384
1149 O05,(2) .. o 386
T1A10S6(4) . o o oo 387
TLATL % S6(5) o o v o 389
T1A1288(3) . o o o 390
LLAA3UL(4) .« o o e 391
11414 Us(2) . o o o 391

11.5 Computations using Groups oot i 393
11.5.1 A2m+1,2§m§ 11 . 393
1152 As o o o o e 395
1153 A6 - o o o o e e 396

11.5.5 Ly(q)

Computations with the GAP Character Table Library

11.5.6 xLy(q) withprimed
11.5.7 Automorphic Extensions of Ly(gq)

11.5.8 L3(2)
11.59 My, .
11.5.10 My, .
11.5.11 07(3)
11.5.12 0§ (2)
11.5.13 0§ (3)
11.5.14 0§ (4)

115055 00(3) © o o o oo e e

11.5.16 035(3)
11.5.17 07, (2)
11.5.18 05,(3)
11.5.19 * S4(8)
11.5.20 S6(2)
11.5.21 Sg(2)

115225 810(2) « o o v oo e e

11.5.23 Uy (2)
11.5.24 Uy (3)
11.5.25 Ug(3)
11.5.26 Us(2)

References

Index

403
405
407
414
417
419
421
426
432
445
448
450
452
454
456
458
461
462
463
466
469
470

475

476

Chapter 1

Maintenance Issues for the GAP
Character Table Library

This chapter collects examples of computations that arose in the context of maintaining the GAP
Character Table Library. The sections have been added when the issues in question arose; the dates of
the additions are shown in the section titles.

1.1 Disproving Possible Character Tables (November 2006)

I do not know a necessary and sufficient criterion for checking whether a given matrix together with
a list of power maps describes the character table of a finite group. Examples of pseudo character
tables (tables which satisfy certain necessary conditions but for which actually no group exists) have
been given in [Gag86]. Another such example is described in Section 2.4.15. The tables in the GAP
Character Table Library satisfy the usual tests. However, there are table candidates for which these
tests are not good enough. Another question would be whether a given character table belongs to the
group for which it is claimed to belong, see Section 1.1.4 for an example.

1.1.1 A Perfect Pseudo Character Table (November 2006)

(This example arose from a discussion with Jack Schmidt.)

Up to version 1.1.3 of the GAP Character Table Library, the table with identifier
"P41/G1/L1/V4/ext2" was not correct. The problem occurs already in the microfiches that are
attached to [HP89].

In the following, we show that this table is not the character table of a finite group, using the GAP
library of perfect groups. Currently we do not know how to prove this inconsistency alone from the
table.

We start with the construction of the inconsistent table; apart from a little editing, the following
input equals the data formerly stored in the file data/ctoholpl.tbl of the GAP Character Table
Library.

Example

gap> tbl:= rec(

> Identifier:= "P41/G1/L1/V4/ext2",
> InfoText:= Concatenation([

> "origin: Hanrath library,\n",

> "structure is 2°7.L2(8),\n",

10

Computations with the GAP Character Table Library 11

"characters sorted with permutation (12,14,15,13)(19,20)"]),

UnderlyingCharacteristic:= 0,

SizesCentralizers:= [64512,1024,1024,64512,64,64,64,64,128,128,64,
64,128,128,18,18,14,14,14,14,14,14,18,18,18,18,18,18],

ComputedPowerMaps:= [,[1,1,1,1,2,3,3,2,3,2,2,1,3,2,16,16,20,20,22,
22,18,18,26,26,27,27,23,23],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,4,
1,21,22,17,18,19,20,16,15,15,16,16,15],,,,[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,4,1,4,1,4,1,26,25,28,27,23,24]1],

Irr:= 0,

Automorphisms0fTable:= Group([(23,26,27)(24,25,28),(9,13)(10,14),
(17,19,21)(18,20,22)]),

ConstructionInfoCharacterTable:= ["ConstructClifford",[[[1,2,3,4,
5,6,7,8,91,I01,7,8,3,9,2]1,[1,4,5,6,2]1,[1,2,2,2,2,2,2,211,
[["L2(8)"],["Dihedral",18], ["Dihedral",14],["2~3"1]1,[[[1,2,3,4],
[1,1,1,1],["elab",4,25]1]1,[[1,2,3,4,4,4,4,4,4,4],[2,6,5,2,3,4,5,
6,7,8],["elab",10,17]1]1,[[1,2],(3,4],[[t1,1],[-1,11]],((1,3],[4,
2],001,1],0-1,111]0,([1,3],05,3],C[1,11,[-1,111],C[1,3],[6,4],
[f1,11,0-1,1111,001,2],(7,2],C(1,10,01,-1100,C[1,2],08,3],[[1,
11,[0-1,1111,((1,21, 09,51, [[1,1],[1,-1111111,

)s5s

gap> ConstructClifford(tbl, tbl.ConstructionInfoCharacterTable[2]);

gap> ConvertToLibraryCharacterTableNC(tbl);;

VVVVVVVVVVVVVVYVVYVVYVYV

Suppose that there is a group G, say, with this table. Then G is perfect since the table has only one
linear character.

Example
gap> Length(LinearCharacters(tbl));
1
gap> IsPerfectCharacterTable(tbl);
true

The table satisfies the orthogonality relations, the structure constants are nonnegative integers,
and symmetrizations of the irreducibles decompose into the irreducibles, with nonnegative integral

coefficients.
Example

gap> IsInternallyConsistent(tbl);

true

gap> irr:= Irr(tbl);;

gap> test:= Concatenation(List([2 .. 7 1],

> n -> Symmetrizations(tbl, irr, n)));;
gap> Append(test, Set(Temsored(irr, irr)));

gap> fail in Decomposition(irr, test, "nonnegative");

false

gap> if ForAny(Tuples([1 .. NrConjugacyClasses(tbl) 1, 3),

> t -> not ClassMultiplicationCoefficient(tbl, t[1], t[2], t[3])
> in NonnegativeIntegers) then

> Error("contradiction");

> fi;

The GAP Library of Perfect Groups contains representatives of the four isomorphism types of
perfect groups of order |G| = 64512.

Computations with the GAP Character Table Library 12

Example
gap> n:= Size(tbl);
64512
gap> NumberPerfectGroups(n);
4
gap> grps: st([1..41]1, i->PerfectGroup(IsPermGroup, n, i));

= Li
[L2(8) 276 E 271, L2(8) N 276 E 2°1 I, L2(8) N 276 E 271 II,
L2(8) N 276 E 2~1 III]

If we believe that the classification of perfect groups of order |G| is correct then all we have to do
is to show that none of the character tables of these four groups is equivalent to the given table.

Example
gap> tbls:= List(grps, CharacterTable);;
gap> List(tbls,

> x -> TransformingPermutationsCharacterTables(x, tbl));
[fail, fail, fail, fail]

In fact, already the matrices of irreducible characters of the four groups do not fit to the given
table.

Example

gap> List(tbls,

> t -> TransformingPermutations(Irr(t), Irr(tbl)));
[fail, fail, fail, fail]

Let us look closer at the tables in question. Each character table of a perfect group of order 64512
has exactly one irreducible character of degree 63 that takes exactly the values —1, 0, 7, and 63;
moreover, the value 7 occurs in exactly two classes.

Example

gap> testchars:= List(tbls,
> t -> Filtered(Irr(t),
> x -> x[1] = 63 and Set(x) = [-1, 0, 7, 631));;
gap> List(testchars, Length);

[1, 1,1, 1]

gap> List(testchars, 1 -> Number(1[1], x -> x =7));

[2, 2,2, 2]

(Another way to state this is that in each of the four tables ¢ in question, there are ten preimage
classes of the involution class in the simple factor group L (8), there are eight preimage classes of this

class in the factor group 2%.1,(8), and that the unique class in which an irreducible degree 63 character
of this factor group takes the value 7 splits in ¢.)

In the erroneous table, however, there is only one class with the value 7 in this character.

Example
gap> testchars:= List([tbl],
> t -> Filtered(Irr(t),
> x -> x[1] = 63 and Set(x) = [-1, 0, 7, 631));;
gap> List(testchars, Length);
[1]

gap> List(testchars, 1 -> Number(1[1], x -> x =7));
[1]

Computations with the GAP Character Table Library 13

This property can be checked easily for the displayed table stored in fiche 2, row 4, column 7
of [HP89], with the name 6L1<>Z~7<>L2(8); V4; MOD 2, and it turns out that this table is not
correct.

Note that these microfiches contain two tables of order 64512, and there were three tables of
groups of that order in the GAP Character Table Library that contain origin: Hanrath library
in their InfoText (Reference: InfoText) value. Besides the incorrect table, these library tables are
the character tables of the groups PerfectGroup(64512, 1) and PerfectGroup(64512, 3),
respectively. (The matrices of irreducible characters of these tables are equivalent.)

Example
gap> Filtered([1 .. 4], i ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V1/ext2")) <> fail);
[1]
gap> Filtered([1 .. 41, i ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V2/ext2")) <> fail);
[3]
gap> TransformingPermutations(Irr(tbls[1]), Irr(tbls[3])) <> fail;
true

Since version 1.2 of the GAP Character Table Library, the character table with the Identifier
(Reference: Identifier for tables of marks) value "P41/G1/L1/V4/ext2" corresponds to the group
PerfectGroup(64512, 4). The choice of this group was somewhat arbitrary since the vector
system V4 seems to be not defined in [HP89]; anyhow, this group and the remaining perfect group,
PerfectGroup(64512, 2), have equivalent matrices of irreducibles.

Example
gap> Filtered([1 .. 41, 1 ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V4/ext2")) <> fail);

[4]
gap> TransformingPermutations(Irr(tbls([2]), Irr(tbls[4])) <> fail;
true

1.1.2 An Error in the Character Table of E¢(2) (March 2016)

In March 2016, Bill Unger computed the character table of the simple group Eg(2) with Magma (see
[CP96]) and compared it with the table that was contained in the GAP Character Table Library since
2000. It turned out that the two tables did not coincide.

The differences concern irrational character values on classes of element order 91 and power map
values on these classes. (The character values and power maps fit to each other in both tables; thus it
may be that the assumption of a wrong power has implied the wrong character values, or vice versa.)
Specifically, the 11th power map in the GAP table fixed all elements of order 91. Using the smallest
matrix representation of Eg(2) over the field with two elements, one can easily find an element g of
order 91, and show that the characteristic polynomials of g and g'! differ. Hence these two elements
cannot be conjugate in Eg(2). In other words, the GAP table was wrong.

Example

gap> g:= AtlasGroup("E6(2)");;
gap> repeat x:= PseudoRandom(g); until Order(x) = 91;

Computations with the GAP Character Table Library 14

gap> CharacteristicPolynomial(x) = CharacteristicPolynomial(x~11);
false

The wrong GAP table has been corrected in version 1.3.0 of the GAP Character Table Library.
Example

gap> t:= CharacterTable("E6(2)");;

gap> ord91:= Positions(OrdersClassRepresentatives(t), 91);
[163, 164, 165, 166, 167, 168]

gap> PowerMap(t, 11){ ord91l };

[167, 168, 163, 164, 165, 166]

1.1.3 An Error in a Power Map of the Character Table of 2.F;(2).2 (November 2015)

As a part of the computations for [BMO17], the character table of the group 2.F4(2).2 was computed
automatically from a representation of the group, using Magma (see [CP96]). It turned out that the
2-nd power map that had been stored on the library character table of 2.F4(2).2 had been wrong.

In fact, this was the one and only case of a power map for an Atlas group which was not determined
by the character table, and the InfoText (Reference: InfoText) value of the character table had
mentioned the two alternatives.

Note that the ambiguity is not present in the table of the factor group F4(2).2, and only four faithful
irreducible characters of 2.F4(2).2 distinguish the four relevant conjugacy classes.

Example

gap> t:= CharacterTable("2.F4(2).2");;

gap> f:= CharacterTable("F4(2).2");;

gap> map:= PowerMap(t, 2);

r+,1,1,1,1,1,1,1,9,9, 11, 11, 3, 3, 3, 5, 5, 5, 3, 6, 6, 5,
5,7,7,5,8, 7,2, 29,9, 9,9,9, 11, 11,9, 9, 9, 9, 11, 11,
43, 43, 20, 20, 20, 14, 14, 13, 13, 20, 21, 24, 28, 28, 57, 57, 29,
29, 29, 29, 33, 33, 35, 3r, 37, 37, 37, 33, 33, 37, 37, 35, 41, 41,
42, 42, 79, 79, 43, 43, 83, 83, 45, 45, 47, 47, 53, 53, 91, 91, 57,
57, 61, 61, 61, 98, 98, 70, 70, 63, 63, 81, 81, 83, 83, 1, 6, 7,
11, 16, 17, 24, 24, 21, 27, 27, 25, 26, 29, 41, 53, 53, 53, 46, 56,
56, 56, 56, 62, 75, 75, 78, 78, 77, 77, 79, 79, 86, 86, 85, 85, 88,
88, 88, 88, 95, 95, 96, 96]

gap> PositionSublist(map, [86, 86, 85, 85]);

140

gap> OrdersClassRepresentatives(t){ [140 .. 143] };

[32, 32, 32, 32]

gap> SizesCentralizers(t){ [140 .. 143] };

[64, 64, 64, 64]

gap> GetFusionMap(t, f){ [140 ..143] };

[86, 86, 87, 87]

gap> PowerMap(£, 2){ [86, 87 1 };

[50, 50]

gap> pos:= PositionsProperty(Irr(t),

> x -> x[1] <> x[2] and Length(Set(x{ [140 .. 1431 })) > 1);

[144, 145, 146, 147]

gap> List(pos, i -> Irr(t)[i]l{ [140 .. 143] });

[[2#E(16)-2*%E(16) "7, -2*E(16)+2xE(16)"7, 2+E(16)~3-2*E(16)"5,

-2*%E(16)~3+2*E(16)"5 1,

Computations with the GAP Character Table Library 15

[-2+¢E(16)+2*E(16)"7, 2+E(16)-2*E(16)"7, -2*E(16)~3+2*E(16)"5,
2+%E(16) ~3-2*E(16)"5],

[-2%E(16)~3+2*E(16) "5, 2*E(16)~3-2*E(16)"~5, 2*E(16)-2*E(16)"7,
-2*xE(16)+2+E(16)~7 1,

[2xE(16)~3-2%E(16) "5, -2*E(16)~3+2*E(16)"5, -2*E(16)+2*E(16)"7,
2+%E(16) -2*xE(16)"7]]

I had not found a suitable subgroup of 2.F;(2).2 whose character table could be used to decide the
question which of the two alternatives is the correct one.

1.1.4 A Character Table with a Wrong Name (May 2017)

(This example is much older.)

The character table that is shown in [Ost86, p. 126 f.] is claimed to be the table of a Sylow 2
subgroup P of the sporadic simple Lyons group Ly. This table had been contained in the character
table library of the CAS system (see [NPP84]), which was one of the predecessors of GAP.

It is easy to see that no subgroup of Ly can have this character table. Namely, the group of that
table contains elements of order eight with centralizer order 2°, and this does not occur in Ly.

Example

gap> tbl:= CharacterTable("Ly");;

gap> orders:= OrdersClassRepresentatives(tbl);;

gap> order8:= Filtered([1 .. Length(orders)], x -> orders[x] = 8);
[12, 13]

gap> SizesCentralizers(tbl){ order8 } / 276;

[15/2, 3/2]

The table of P has been computed in [Bre91] with character theoretic methods. Nowadays it would
be no problem to take a permutation representation of Ly, to compute its Sylow 2 subgroup, and use
this group to compute its character table. However, the task is even easier if we assume that Ly has a
subgroup of the structure 3.McL.2. This subgroup is of odd index, hence it contains a conjugate of P.
Clearly the Sylow 2 subgroups in the factor group McL.2 are isomorphic with P. Thus we can start
with a rather small permutation representation.

Example

gap> g:= AtlasGroup("McL.2");;

gap> NrMovedPoints(g);

275

gap> syl:= SylowSubgroup(g, 2);;

gap> pc:= Image(IsomorphismPcGroup(syl));;
gap> t:= CharacterTable(pc);;

The character table coincides with the one which is stored in the Character Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable("LyN2")));

true

Computations with the GAP Character Table Library 16

1.2 Some finite factor groups of perfect space groups (February 2014)

If one wants to find a group to which a given character table from the GAP Character Table Library
belongs, one can try the function GroupInfoForCharacterTable (CTblLib: GroupInfoForChar-
acterTable). For a long time, this was not successful in the case of 16 character tables that had
been computed by W. Hanrath (see Section “Ordinary and Brauer Tables in the GAP Character Table
Library” in the CTblLib manual).

Using the information from [HP89], it is straightforward to construct such groups as
factor groups of infinite groups. Since version 1.3.0 of the CTblLib package, calling
GroupInfoForCharacterTable (CTbILib: GrouplInfoForCharacterTable) for the 16 library ta-
bles in question yields nonempty lists and thus allows one to access the results of these constructions,
via the function CTb1lLib.FactorGroupOfPerfectSpaceGroup. This is an undocumented auxil-
iary function that becomes available automatically when GroupInfoForCharacterTable (CTblLib:
GroupInfoForCharacterTable) has been called for the first time.

Example
gap> GroupInfoForCharacterTable("A5");;

gap> IsBound(CTblLib.FactorGroupOfPerfectSpaceGroup) ;
true

Below we list the 16 group constructions. In each case, an epimorphism from the
space group in question is defined by mapping the generators returned by by the func-
tion generatorsOfPerfectSpaceGroup defined below to the generators stored in the at-
tribute Generators0fGroup (Reference: GeneratorsOfGroup) of the group returned by
CTblLib.FactorGroupOfPerfectSpaceGroup.

1.2.1 Constructing the space groups in question

In [HP89], a space group S is described as a subgroup {M(g,t);g € P,t € T} of GL(d + 1,7Z), where

g 0
Mg,t) = [V(g)+t 1 } ’

the point group P of S is a finite subgroup of GL(d,Z), the translation lattice T of S is a sublattice
of Z¢, and the vector system V of S is a map from P to Z¢. Note that V maps the identity matrix I €
GL(d,Z) to the zero vector, and M(T) := {M(I,t);t € T'} is a normal subgroup of S that is isomorphic
with T. More generally, M (nT) is a normal subgroup of S, for any positive integer n.

Specifically, P is given by generators g1,g82,...,8k I is given by a Z-basis B = {by,by,...,by} of
T, and V is given by the vectors V(g1),V(g2), ...,V (gk)-

In the examples below, the matrix representation of P is irreducible, so we need just the following
k+ 1 elements to generate S:

[Vfgll) ?]’[V((g;z) (1)}7,__’[‘/?;() ?]’[l’ll (1)]

These generators are returned by the function generators0fPerfectSpaceGroup, when the in-
puts are [g1,82,-..,8], [V(g1),V(g2),--.,V(gx)], and b;.

Computations with the GAP Character Table Library 17

Example
gap> generatorsOfPerfectSpaceGroup:= function(Pgens, V, t)
local d, result, i, m;
d:= Length(Pgens[1]);
result:= [];
for i in [1 .. Length(Pgens)] do
m:= IdentityMat(d+1);
m{ [1..d]1 ¥ [1..d71 }:=Pgens[il;
ml{d+1 J{ [1 .. d 1] }:=V[il;
result[i] := m;
od;
m:= IdentityMat(d+1);
m[d+t1 J{ [1 ..d1] }:=¢t;
Add(result, m);
return result;
end;;

V VVV VYV VYV VYV VYVVYV

1.2.2 Constructing the factor groups in question

The space group S acts on Z¢, viav-M(g,t) = vg+V(g)+t. A (not necessarily faithful) representation
of S/M(nT) can be obtained from the corresponding action of S on Z¢/(nZ?), that is, by reducing
the vectors modulo n. For the GAP computations, we work instead with vectors of length d + 1,
extending each vector in Z¢ by 1 in the last position, and acting on these vectors by right multiplicaton
with elements of S. Multiplication followed by reduction modulo n is implemented by the action
function returned by multiplicationModulo when this is called with argument 7.

Example
gap> multiplicationModulo:= n -> function(v, g)
> return List(v * g, x -> x mod n); end;;

In some of the examples, the representation of P given in [HP89] is the action on the fac-
tor of a permutation module modulo its trivial submodule. For that, we provide the function
deletedPermutationMat, cf. [HP89, p. 269].

Example
gap> deletedPermutationMat:= function(pi, n)
local mat, j, i;
mat:= PermutationMat(pi, n);
mat:=mat{ [1 .. n-1 1 M [1 .. n-11 };
j:=n "~ pi;
if j <> n then
foriin [1 .. n-11] do
mat [i] [j1:= -1;
od;
fi;
return mat;
end;;

V VV V V V V V V V.YV

After constructing permutation generators for the example groups, we verify that the groups fit to
the character tables from the GAP Character Table Library and to the permutation generators stored
for the construction of the group via CTb1lLib.FactorGroupOfPerfectSpaceGroup.

Computations with the GAP Character Table Library 18

Example
gap> verifyFactorGroup:= function(gens, id)
> local sm, act, stored, hom;
> sm:= SmallerDegreePermutationRepresentation(Group(gens));
> gens:= List(gens, x -> x"sm);
> act:= Images(sm);
> if not IsRecord(TransformingPermutationsCharacterTables(
> CharacterTable(act),
> CharacterTable(id))) then
> return "wrong character table";
> fi;
> GroupInfoForCharacterTable(id);
> stored:= CTblLib.FactorGroupOfPerfectSpaceGroup(id);
> hom:= GroupHomomorphismByImages(stored, act,
> Generators0fGroup(stored), gens);
> if hom = fail or not IsBijective(hom) then
> return "wrong group";
> fi;
> return true;
> end;;

1.2.3 Examples with point group A;

There are two examples with d = 5. The generators of the point group are as follows (see [HP89, p.
272)).

Example
gap> a:= deletedPermutationMat((1,3)(2,4), 6);;
gap> b:= deletedPermutationMat((1,2,3)(4,5,6), 6);;

In both cases, the vector system is V5.

Example
gap> v:i= [[2, 2,0, 0, 11, 0*b[1] 1;;

In the first example, the translation lattice is the sublattice L = 2L; of the full lattice L; = 74,
Example

gap> t:= [2, 0, 0, 0, 0 13;;

The library character table with identifier "P1/G2/L1/V2/ext4" belongs to the factor group of S
modulo the normal subgroup M(4L), so we compute the action on an orbit modulo 8.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b1, v, t);;
gap> g:= Group(sgens);;

gap> fun:= multiplicationModulo(8);;

gap> orb:= Orbit(g, [1, 0, 0, 0, O, 1 1, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P1/G2/L1/V2/ext4");

true

Computations with the GAP Character Table Library 19

In the second example, the translation lattice is the sublattice 2L, of Z¢ where L, has the following
basis.

Example
gap> bas:= [[-1,-1, 1, 1, 1],
> (-1, 1,-1, 1, 11,
> (1,1, 1,-1,-11,
> [1, 1,-1,-1, 117,
> [-1, 1, 1,-1, 11 1;;

For the sake of simplicity, we rewrite the action of the point group to one on L;, and we adjust also
the vector system.

Example
gap> B:= Basis(Rationals~Length(bas), bas);;
gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;
gap> vbas:= List(v, x -> Coefficients(B, x));
L C32,1,2,3/2,-11, 00, 0,0,0,0]]

In order to work with integral matrices (which is necessary because multiplicationModulo uses
GAP’s mod operator), we double both the vector system and the translation lattice.

Example

gap> vbas:= vbas * 2;
[[3, 2,43, -21,
gap> t:= 2 x t;

[4, 0, 0, 0, 0]

[O’ O, O’ O’ O]]

The library character table with identifier "P1/G2/L2/V2/ext4" belongs to the factor group of S
modulo the normal subgroup M (8L,); since we have doubled the lattice, we compute the action on an
orbit modulo 16.

Example
gap> sgens:= generatorsO0fPerfectSpaceGroup([abas, bbas], vbas, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(16);;
gap> orb:= Orbit(g, [0, 0, 0, 0, O, 11, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P1/G2/L2/V2/ext4");
true

1.2.4 Examples with point group L3(2)

There are three examples with d = 6 and one example with d = 8. The generators of the point group
for the first three examples are as follows (see [HP89, p. 290]).

Example
gap> a:= [[0, 1, 0, 1, 0, 01,
> [1, 0, 1, 1, 1, 1],
> [-1,-1,-1,-1, 0, 01,
> [0, 0,-1,-1,-1,-1 17,
> [1, 1, 1,1, 0, 117,
> [0, 0,1, 0,1, 01 1;;

Computations with the GAP Character Table Library

gap> b:= [[-1, 0, 0, O, 0,-11,
> o, 0,-1, 0,-1, 01,
> [1, 1,1, 1,1, 117,
> o, 0,1, 0,0,01,
> [-1,-1,-1, 0, 0, 01,
> [1, 0, 0, 0, 0, 01 1;;

20

The first vector system is the trivial vector system V) (that is, the space group S is a split extension

of the point group and the translation lattice), and the translation lattice is the full lattice L; = Z¢.

The library character table with identifier "P11/G1/L1/V1/ext4" belongs to the factor group of

S modulo the normal subgroup M (4L,), so we compute the action on an orbit modulo 4.
Example

gap> v:= List([1, 21, 1 -> 0 * a[1]);;

gap> t:= [1, 0, 0, 0, 0, 0 1;;

gap> sgens:= generators0fPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;

gap> fun:= multiplicationModulo(4);;

gap> seed:= [1, 0, 0, 0, 0, 0, 1 1;;

gap> orb:= Orbit(g, seed, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V1/ext4");

true

The second vector system is V5, and the translation lattice is 2L .

The library character table with identifier "P11/G1/L1/V2/ext4" belongs to the factor group of

S modulo the normal subgroup M (8L,), so we compute the action on an orbit modulo 8.
Example

(C1,0,1,0,0,01,0=al1] 1;;
gap> t:= [2, 0, 0, 0, 0, O 1;;
gap> sgens:= generators0fPerfectSpaceGroup([a, b1, v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(8);;
gap> orb:= Orbit(g, [1, 0, O, 0, O, O, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V2/ext4");
true

gap> v:=

N

The third vector system is V3, and the translation lattice is 2L;.

The library character table with identifier "P11/G1/L1/V3/ext4" belongs to the factor group of

S modulo the normal subgroup M (8L,), so we compute the action on an orbit modulo 8.
Example

[[O0,1,0,0,1, 0171, 0x*all]l 1;;
gap> t:= [2, 0, 0, 0, 0, 0 1;;
gap> sgens:= generators0fPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(8);;
gap> orb:= Orbit(g, [1, 0, O, 0, 0, O, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V3/ext4");
true

gap> v:=

The generators of the point group for the fourth example are as follows (see [HP89, p. 293]).

Computations with the GAP Character Table Library

ap> a:

ap> b:

VVVVVVV®RR V VYV V VYV V0RO

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-

OrRr P OFRFOFP,LPOOFR,rFP,HOFRr ORFRO
|

OO OO FrRr P ONFRFRFP,LEFEPEFE,OORO

OO FRr PP OOO0OO0OO0OOFr KK, P, OR

-

-
-
-

PP OOFRrRFRPROFRRFPORFRLRFPLOF O

-

-
-
-

-
-
-
-

-
-
-
-

L T e T s Y s N e Y s T s N e Y s T s N e Y s Y s N e I s B |
-
|
-

. .

0,-1, 0,
1, 0, O,
0,-1, 0,
0, 1, 1,
1,-1, 0,
0, 0, 1,
1, 1, 0,
0, 0, O,
1,-1, 1,
0, 0, 1,
1,-1, 0,
1, 2, 0,
0, 0, O,
1, 1, 1,
0, 0, 0,
0, 0, 0

-
-

OO P OFRrOFR,rOOFr OO OO
b L b b e e b e e b b) e L

Example
1,

v e e e .

-

—
-e

C v e e

-

—
.o

21

The vector system is the trivial vector system V;, and the translation lattice is the full lattice

L =74

The library character table with identifier "P11/G4/L1/V1/ext3" belongs to the factor group of
S modulo the normal subgroup M (3L,), so we compute the action on an orbit modulo 3.

Example

gap> v:
gap> t:

true

List([1, 21, i -> 0 * a[1]);;
(1, 0, 0, 0, 0, 0, 0, 0 1;;

gap> sgens:= generators0fPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;

gap> fun:= multiplicationModulo(3);;

gap> seed:= [1, 0, 0, 0, 0, 0, 0, O, 1 1;;
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G4/L1/V1/ext3");

1.2.5 Example with point group SL,(7)

There is one example with d = 8. The generators of the point group are as follows (see [HP89, p.

295]).
Example

gap> a:= KroneckerProduct(IdentityMat(4), [[0, 117,
gap> b:= [[0,-1, 0, 0, 0, 0, 0, O 1,

> [o, 0,1, 0,0,0,0,01,

> (-1, 0, 0, 0, 0, 0, 0, O],

> (o, 0, 0, 0,00, 0,-1, 01,

> (o, o, o0,-1,0,0,0,01,

> [0, 0,0,0,0,1, 0,01,

> [0, 0,0,0,1,0,0,01,

> (0,0,0,0,0,0,0,111;;

[-1, 011);;

Computations with the GAP Character Table Library 22

The vector system is the trivial vector system Vi, and the translation lattice is the sublattice L, of
74 that has the following basis, which is called B(2,8) in [HP89, p. 269].

Example
gap> bas:= [[1, 1, 0, O, O, O, 0, O 1],
> [o, 1,1, 0,0, 0,0,01,
> [0, 0, 1,1, 0,0, 0,01,
> o,o0,o0,1,1,0, 0,01,
> [o, 0, 0,b 0,1, 1, 0,01,
> [0, 0, 0,b0,0,1, 1,01,
> [0, 0, 0,0, 0, 0,1, 11,
> [0, 0, 0, 0, 0, 0,-1, 11 1;;

For the sake of simplicity, we rewrite the action to one on L.
Example
gap> B:= Basis(Rationals~Length(bas), bas);;

gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;

The library character table with identifier "P12/G1/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L,). The action on an orbit modulo 2 is not faithful, its kernel
contains the centre of SL(2,7). We can compute a faithful representation by acting on pairs: One
entry is the usual vector and the other entry carries the action of the point group.
Example
gap> v:= List([1, 2], 1 -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0, 0, 0 1;;
gap> sgens:= generators0fPerfectSpaceGroup([abas, bbas 1, v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(2);;
gap> funpairs:= function(pair, g)
> return [fun(pair[1], g), pair[2] * g]1;

> end;;
gap> seed:= [[1, 0, 0, O, O, O, O, O, 11,
> (1, 0, 0, 0, 0, 0, 0, 0, 01 1;;

gap> orb:= Orbit(g, seed, funpairs);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, funpairs));;
gap> verifyFactorGroup(permgens, "P12/G1/L2/V1/ext2");

true

1.2.6 Example with point group 23.13(2)

There is one example with d = 7. The generators of the point group are as follows (see [HP89, p.
297]).

Example
gap> a:= PermutationMat((2,4)(5,7), 7);;
gap> b:= PermutationMat((1,3,2)(4,6,5), 7);;

gap> c:= DiagonalMat([-1, -1, 1, 1, -1, -1, 11);;

The vector system is the trivial vector system V1, and the translation lattice is the sublattice L, of
Z that has the following basis, which is called B(2,7) in [HP89, p. 269].

Computations with the GAP Character Table Library

Example

gap>

vV V V V Vv V

23

bas:= [

-
[
-

-

L T e B e Y e N s B s B |

-

-

-

-

OOOPOOH
OOOPOI—‘H
OOOPH»—\O
OOO:—*I—‘OO
OO»—LJ—-OOO
l—\»—kr—-POOO
= =, O OO OO

-
-
-
-

For the sake of simplicity, we rewrite the action to one on L.

Example
gap> B:= Basis(Rationals~Length(bas), bas);;
gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;
gap> cbas:= List(bas, x -> Coefficients(B, x * ¢));;

The library character table with identifier "P13/G1/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L,), so we compute the action on an orbit modulo 2.

Example

gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>

vi=List([1 .. 37, i ->0* al1]);;

t:= [1, 0, 0, O, 0, O, O 1;;

sgens:= generatorsO0fPerfectSpaceGroup([abas,bbas,cbas 1, v, t);;
g:= Group(sgens);;

fun:= multiplicationModulo(2);;

orb:= Orbit(g, [1, 0, 0, 0, O, O, O, 11, fun);;

act:= Action(g, orb, fun);;

permgens:= List(sgens, x -> Permutation(x, orb, fun));;

gap>
true

verifyFactorGroup(permgens, "P13/G1/L2/V1/ext2");

1.2.7 Examples with point group Ag

There are two examples with d = 10. In both cases, the generators of the point group are as follows

(see [HP89, p. 307]).

Example
gap> b:=[[O0,-1, 0, 0, O, O, 0, O, O, 01,
> (o, o,o0,0,-1,0,0,0,0,01,
> (o, o0,o0,0,0,0,0,1,0,01,
> [o,o0,0,0,0,0,0,0,1,01,
> [1, 0, 0, 0, 0, 0, O, 0, 0, 01,
> o,o,1,0o0,0,0,0,0,0,01,
> (o, o0,o0,1,0,0,0,0,0,01,
> (o, o0,o0,0,0,1,0,0,0,01,
> [o,o0,o0,0,0,0,1,0,0,01,
> [o, 0,0,0,0,0,0,0,0,111;;
gap> c:= [[o0, 0, O, O, O, O, 0,-1, 0, O 1],
> o, o, o0,o0,0,0,0,-1, 1,-11],
> (o, o,o0,o0,-1,1,0,-1, 0, 01,
> ro,-t1, 1, 0,0,0,0,-1, 0, 01,
> o, o0, 0,0,0,0,0,0,0,-11,

Computations with the GAP Character Table Library

> o, o,o0,o0,0,1,0,0,0,01,
> [o,o,1,o0,0,0,0,0,0,01,
> o, o,o0,o0,0,1,-1, 0,0, 11,
> [o,o,t-10,0,0,0,0, 11,
> [-1, 0, 1, O, 0,-1, 0, 0, 0, 0] 1;;

24

In both examples,
the lattices L, and Ls, respectively, which have the following bases.

the vector system is the trivial vector system V, and the translation lattices are

Example
gap> bas2:= [[0, 1,-1, 0, O, O, 0, O, O, 01,
> ro, o, 11-1,0,0,0,0,0,01,
> o, o, o0,o0,1,-1, 0, 0, 0, 01,
> [o, 0, 0, 0,0, 1,-1, 0, 0, 01,
> [o, 0, 0,0,0,1, 0,-1, 0, 01,
> o, o, 0,0,0,0,0,1,-1, 01,
> o, o, 0,0,0,0,0,0,1,-11,
> o, o, 0,1, 0,0,0,0,0,-11,
> [o, 1, 0,0,0,0,0,1, 0,01,
> [1, 0, O, O, 1, O, O, O, O, O] 1;;
gap> basb:= [[0,-1, 1, 1,-1, 1, 1,-1,-1, 0 1],
> (1, o,-1,-1,-14, 1, 1,-1,-1, 01,
> o, 1, 1,-14, 1, 1,-1, 0, 1, 11,
> [1, 1, 0,-1, 0,-1, 1,-1, 1,-1 1,
> (-1, 0,-1, 1, 1, O0,-1,-1, 1,-1 17,
> ro, 1,-1, 1, 1,-1, 1, 1, 0,-1 1,
> [-1,-1, 1, 1, 0,-1,-1,-1,-1, 0 1,
> [1,-1, 0,-1, 1,-1, 1, 1, 0,-1 1,
> [-1, 1,-1, 1,-1, 0,-1, 1, 0,-1 1,
> r1,-1,-1, 1, 1, 1, 0, 0,-1,-1 1 1;;

For the sake of simplicity, we rewrite the action to actions on L, and Ls, respectively.

Example
gap> B2:= Basis(Rationals~Length(bas2), bas2);;
gap> bbas2:= List(bas2, x -> Coefficients(B2, x * b));;
gap> cbas2:= List(bas2, x -> Coefficients(B2, x *x c));;
gap> B5:= Basis(Rationals~Length(bas5), basb);;
gap> bbasb:= List(basb, x -> Coefficients(B5, x * b));;
gap> cbasb:= List(bas5, x -> Coefficients(B5, x * ¢));;

The library character table with identifier "P21/G3/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M (2L,), so we compute the action on an orbit modulo 2.

gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>

v
t:=
sgen

g:=

fun:=
seed:=
orb:=

Example

List([1, 21, i -> 0 * bbas2[1]);;
[1, 0, O, O, O, O, O, O, O, O 1;;
s:= generatorsOfPerfectSpaceGroup([bbas2,
Group(sgens);;
multiplicationModulo(2);;

(1, o, 0, 0, 0, O, O, 0, O, O,
Orbit(g, seed, fun);;

permgens:= List(sgens, x -> Permutation(x,

cbas2 1, v, t);;

1153

orb, fun));;

Computations with the GAP Character Table Library 25

gap> verifyFactorGroup(permgens, "P21/G3/L2/V1/ext2");
true

The library character table with identifier "P21/G3/L5/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2Ls), so we compute the action on an orbit modulo 2.

Example
gap> sgens:= generators0fPerfectSpaceGroup([bbas5, cbasb 1, v, t);;
gap> g:= Group(sgens);;

gap> orb:= Orbit(g, seed, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;

gap> verifyFactorGroup(permgens, "P21/G3/L5/V1/ext2");

true

1.2.8 Examples with point group L,(8)

There are two examples with d = 7. In both cases, the generators of the point group are as follows
(see [HP89, p. 327]).

Example

[11,
01,
01,
01,
0],
0],
0] 1;;
01,
01,
01,
0],
01,
01,
11 1;;

ap> a:

-
-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

O OO OO0, P OO OO~

-

-

ap> b:

OFRr P OO, OFr P, OOOO

-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

B ORPr PP OFRORREROORO

-

-
-
M
-

OrRr OO FrRr P OFrRrROFR, P, PFEOR
1

-

-
-
-
-

R, O O0OO0OO0OkFRrFP,OOOOOOo
|

-

P O OO0OO0OFr P, OFr OOFr~,O

]
M
L T T s Y s T e T s T e Y s T s Y s T e Y s B s M s |
|

V VV VYV V0@Q V V V VYV VQRE

In both examples, the vector system is V,. The translation lattice in the first example is the lattice
L=37°

Example
gap> v:= [[2,1, 0, 0,0, 1, 41,
> [2, 0,0,0,0,0,011;;
gap> t:= [3, 0, 0, 0, 0, 0, 0 1;;

The library character table with identifier "P41/G1/L1/V3/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L), so we compute the action on an orbit modulo 9.

The orbits in this action are quite long. we choose a seed vector from the fixed space of an element
of order 7.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;

gap> aa:= sgens[1];;

gap> bb:= sgens[2];;

Computations with the GAP Character Table Library 26

gap> elm:= aaxbb;;

gap> Order(elm);

7

gap> fixed:= NullspaceMat(elm - aa~0);
rrt+,1,1,1,1,1,1,01, [-4,1,1, -5, -5, 2, 0, 111
gap> fun:= multiplicationModulo(9);;

gap> seed:= fun(fixed[2], aa~0);

[5,1,1, 4,4, 2,0, 1]

gap> orb:= Orbit(g, seed, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P41/G1/L1/V3/ext3");

true

The translation lattice in the second example is the lattice L = 6Z7.

Example
gap> t:= [6, 0, 0, 0, 0, O, O 1;;

The library character table with identifier "P41/G1/L1/V4/ext3" belongs to the factor group of
S modulo the normal subgroup M(6L), so we compute the action on an orbit modulo 18.

Example
gap> fun:= multiplicationModulo(18);;
gap> sgens:= generatorsO0fPerfectSpaceGroup([a, b1, v, t);;
gap> g:= Group(sgens);;

gap> seed:= fun(fixed[2], aa~0);

[14, 1, 1, 13, 13, 2, 0, 1]

gap> orb:= Orbit(g, seed, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P41/G1/L1/V4/ext3");

true

1.2.9 Example with point group M

There is one example with d = 10. The generators of the point group are as follows (see [HP89, p.
334]).

Example
gap> a:= deletedPermutationMat((1,9)(3,5)(7,11)(8,10), 11);;
gap> b:= deletedPermutationMat((1,4,3,2)(5,8,7,6), 11);;

The vector system is V,, and the translation lattice is L = 274,

Example
gap> v:= [0 * a[1],
> [0, 0,0,0,0,0,0,0,1,111;;
gap> t:= [2, 0, 0, 0, 0, 0, 0, 0, 0, 0 1;;

The library character table with identifier "P48/G1/L1/V2/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L), so we compute the action on an orbit modulo 4.

Computations with the GAP Character Table Library 27

Example

gap> sgens:= generators0fPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(4);;
gap> orb:= Orbit(g, [1, O, O, 0, O, O, 0, O, O, O, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P48/G1/L1/V2/ext2");
true
1.2.10 Example with point group Us(3)
There is one example with d = 7. The generators of the point group are as follows (see [HP89, p.
335]).
Example
gap> a:= [[0, 0,-1, 1, 0,-1, 1 1],
> (1, 0,-1, 1, 1,-1, 01,
> [o, t,-1, 0, 1, 0,-11,
> [o, 1 0,-1, 1, 0,-11,
> [-1, 1, 1,-1, 0, 1, 01,
> [-1, 0, 1,-1, 0, 0, 11,
> [0, 0,0,0,0,0,111;;
gap> b:= [[0, 0, 0, 0, 0, 0, 11,
> [o, 0,-1, 1, 0,-1, 11,
> [1, 0,-1, 1, 1,-1, 0 1],
> [o, 1,-1, 0, 1, 0,-11,
> (o, 1, 0,-1, 1, 0,-11,
> (-1, 1, 1,-1, 0, 1, 01,
> (-1, 0, 1,-1, 0, 0, 11 153

The vector system is V5, and the translation lattice is L = 3Z¢.

gap>
>

gap>

Example
vi=[[2,1, 0,0, 2,1, 01,
0 * b[1] 1;;
t:=[3,0, 0,0, 0,0, 01;;

The library character table with identifier "P49/G1/L1/V2/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L), so we compute the action on an orbit modulo 9.

gap>
gap>
gap>

Example
sgens:= generators0fPerfectSpaceGroup([a, b1, v, t);;
g:= Group(sgens);;

fun:= multiplicationModulo(9);;

The orbits in this action are quite long. we choose a seed vector from the fixed space of an element
of order 12.

Example

gap>
gap>
gap>
gap>

aa:= sgens[1];;
bb:= sgens[2];;
elm:= aaxbb~4;;
Order(elm);

12
gap>

Computations with the GAP Character Table Library

fixed:= NullspaceMat(elm - aa~0);

[[_1, _1, 1: 1’ _1, _1, 1: O]: [O: _33 1} 1: _1: _2’ 0, 1]]

gap>
[o,
gap>
gap>
gap>

seed:= fun(fixed[2], aa~0);

6, 1, 1,8, 7,0, 1]

orb:= Orbit(g, seed, fun);;

permgens:= List(sgens, x -> Permutation(x, orb, fun));;
verifyFactorGroup(permgens, "P49/G1/L1/V2/ext3");

28

true

1.2.11 Examples with point group U4(2)

There are two examples with d = 6. In both cases, the generators of the point group are as follows
(see [HP89, p. 336]).

Example
gap> a:= [[0, 1, 0,-1,-1, 11,
> (1, 0,-1, 0, 1, 01,
> [0, 0, 0,-1, 0, 117,
> [0, 0,-1, 0, 0, 117,
> [0, 0, 0,0,1, 01,
> [0,0,0,0,0,111;;
gap> b:= [[0,-1, 0, 1, 0,-1 1],
> [0, 1, 0,-1,-1, 0 1],
> [0, 0, 1,1, 0,-11],
> [0, 0, O, 0,-1, 01,
> [0, 1, 0, 0, O, 01,
> [1, 0, 0, 0, 0, 01 1;;

In both examples, the vector system is the trivial vector system V;, and the translation lattice is the
full lattice L; = Z<.
Example
gap> v:= List([1, 21, i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0 1;;

The library character table with identifier "P50/G1/L1/V1/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L,), so we compute the action on an orbit modulo 3.

Example
gap> sgens:= generators0fPerfectSpaceGroup([a, b1, v, t);;

gap>
gap>
gap>
gap>
gap>
true

g:= Group(sgens);;

fun:= multiplicationModulo(3);;

orb:= Orbit(g, [1, 0, 0, 0, 0, O, 1], fun);;

permgens:= List(sgens, x -> Permutation(x, orb, fun));;
verifyFactorGroup(permgens, "P50/G1/L1/V1/ext3");

The library character table with identifier "P50/G1/L1/V1/ext4" belongs to the factor group of

S modulo the normal subgroup M(4L,), so we compute the action on an orbit modulo 4.

Computations with the GAP Character Table Library 29

Example
gap> sgens:= generators0fPerfectSpaceGroup([a, b 1, v, t);;
gap> g:= Group(sgens);;

gap> fun:= multiplicationModulo(4);;

gap> orb:= Orbit(g, [1, 0, 0, O, O, O, 1 1, fun);;

gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P50/G1/L1/V1/ext4");

true

1.2.12 A remark on one of the example groups

The (perfect) character table with identifier "P1/G2/L2/V2/ext4" has the property that its character
degrees are exactly the divisors of 60.
Example
gap> degrees:= CharacterDegrees(CharacterTable("P1/G2/L2/V2/ext4"));
[[1, 1]’ [2’ 2]’ [3’ 2], [4, 2]’ [5’ 1]’ [6) 5])

[10, 41, [12, 47, [15, 201, [20, 21, [30,291, [60, 811
gap> List(degrees, x -> x[1]) = DivisorsInt(60);
true

There are nilpotent groups with the same set of character degrees, for example the direct product
of four extraspecial groups of the orders 23, 23, 33, and 53, respectively. This phenomenon has been
described in [NR14].

1.3 Generality problems (December 2004/October 2015)

The term ‘“‘generality problem” is used for problems concerning consistent choices of conjugacy
classes of Brauer tables for the same group, in different characteristics. The definition and some
examples are given in [JLPW95, p. x].

Section 1.3.1 shows how to detect generality problems and lists the known generality problems,
and Section 1.3.2 gives an example that actually arose.

1.3.1 Listing possible generality problems

We use the following idea for finding character tables which may involve generality problems. (The
functions shown in this section are based on GAP 3 code that was originally written by Jiirgen Miiller.)

If the p-modular Brauer table mtbl, say, of a group contributes to a generality problem then some
choice of conjugacy classes is necessary in order to write down this table, in the sense that some sym-
metry of the corresponding ordinary table ¢b/, say, is broken in mtbl. This situation can be detected as
follows. We assume that the class fusion from mtzbl to tbl has been fixed. All possible class fusions are
obtained as the orbit of this class fusion under the actions of table automorphisms of ¢/, via mapping
the images of the class fusion (with the function OnTuples (Reference: OnTuples)), and of the table
automorphisms of mtbl, via permuting the preimages. The case of broken symmetries occurs if and
only if this orbit splits into several orbits when only the action of the table automorphisms of mtzbl is
considered. Equivalently, symmetries are broken if and only if the orbit under table automorphisms of
mtbl is not closed under the action of table automorphisms of ¢bl.

Computations with the GAP Character Table Library 30

Example
gap> BrokenSymmetries:= function(ordtbl, modtbl)
> local taut, maut, triv, fus, orb;
> taut:= Automorphisms0fTable(ordtbl);
> maut:= AutomorphismsOfTable(modtbl);
> triv:= TrivialSubgroup(taut);
> fus:= GetFusionMap(modtbl, ordtbl);
> orb:= MakeImmutable(Set(OrbitFusions(maut, fus, triv)));
> return ForAny(Generators0fGroup(taut),
> x -> ForAny(orb,
> fus -> not OnTuples(fus, x) in orb));
> end;;

Remark: (Thanks to Klaus Lux for discussions on this topic.)

It may happen that some symmetry o, of a Brauer table does not belong to a symmetry o, of
the corresponding ordinary table, in the sense that permuting the preimage classes of a fusion f
between the two tables with 6, and permuting the image classes with ¢, yields f.

For example, consider the group G = 2.A¢.2;, the double cover of the symmetric group S¢ on
six points. The 2-modular Brauer table of G, which is essentially equal to that of S, has a
table automorphism group order two, and the nonidentity element in it swaps the two classes
of element order three. The automorphism group of the ordinary character table of G, however,
fixes the two classes of element order three; note that exactly one of these classes possesses
square roots in the “outer half” G\ G'.

Thus it is not sufficient to compare the orbit of the fixed class fusion under the automorphisms
of the ordinary table with the orbit of the same fusion under the automorphisms of the Brauer
table.

Example

gap> t:= CharacterTable("2.A6.2_1");;
gap> m:= t mod 2;;

gap> GetFusionMap(m, t);

[1, 4,6, 9]

gap> AutomorphismsO0fTable(t);

Group([(16,17), (14,15), (14,15)(16,17) 1)
gap> AutomorphismsOfTable(m);

Group([(2,3) 1)

gap> Display(m);

2.A6.2_1mod2
2 5 2 2 1
3 2 2 2 .
5 1 1
la 3a 3b 5a

2P 1a 3a 3b 5a
3P 1la 1la la 5a
5P 1la 3a 3b 1la

Lol o]
N =
o=
-
1
[\
1
[

Computations with the GAP Character Table Library 31

X.3 4 -2 1 -1
X.4 16 -2 -2 1
gap> Display(t);

2.A6.2_1
2 5 5 4 2 2 2 2 31 1 4 4 3 2 2 2 2
3 2 2 2 2 2 2 . 11 . 1 1 1 1
5 1 1 1 1

la 2a 4a 3a 6a 3b 6b 8a ba 10a 2b 4b 8b 6¢c 6d 12a 12b
2P la 1la 2a 3a 3a 3b 3b 4a 5a ba la 2a 4a 3a 3a 6b 6b
3P la 2a 4a la 2a la 2a 8a 5a 10a 2b 4b 8b 2b 2b 4b 4b
BP la 2a 4a 3a 6a 3b 6b 8a la 2a 2b 4b 8b 6d 6¢ 12b 12a

X.1 1 11 1 1 1 1 1 1 11 1 1
X.2 1 11 1 1 1 1 1 1 1-1-1-1-1-1 -1 -1
X.3 5 5 1 2 2-1-1-1 . .. 3-1 1 . . -1 -1
X.4 5 51 2 2-1-1-1 . -3 1 -1 . . 1 1
X.5 5 5 1-1-1 2 2 -1 . .-1 3 1-1-1
X.6 5 5 1-1-1 2 2-1 . .1 -3-1 1 1
X.7 16 16 -2 -2 -2 -2 1 1 . . .
X.8 9 9 1 1-1 -1 3 3 -1
X.9 9 9 1 . 1-1 -1-3-3 1
X.10 10 10-2 1 1 1 1 . . .22 -1 -1 1
X.11 10 10-2 1 1 1 1 . . .22 .1 1 -1 -1
X.12 4 -4 . -2 2 1-1 . -1 1 B -B
X.13 4 -4 . -2 2 1-1 . -1 1 -B B
X.14 4 -4 . 1-1-2 2 . -1 1 A -A
X.15 4 -4 . 1-1-2 2 . -1 1 -A A
X.16 16 -16 . -2 2-2 2 . 1 -1
X.17 20 -20 . 2 -2 2 -2
A = E(3)-E(3)"2

= Sqrt(-3) = i3
B = -E(12)"7+E(12)~11

Sqrt(3) = r3

When considering several characteristics in parallel, one argues as follows. The possible class
fusions from a Brauer table mtbl to its ordinary table tbl are given by the orbit of a fixed class fusion
under the action of the table automorphisms of ¢bl. If there are several orbits under the action of the
automorphisms of mtbl then we choose one orbit. Due to this choice, only those table automorphisms
of tbl are admissible for other characteristics that stabilize the chosen orbit. For the second charac-
teristic, we take again the set of all class fusions from the Brauer table to ¢b/, and split it into orbits
under the table automorphisms of the Brauer table. Now there are two possibilities. Either the action
of the admissible subgroup of automorphisms of ¢b/ joins these orbits into one orbit or not. In the
former case, we choose again one of the orbits, replace the group of admissible automorphisms of
tbl by the stabilizer of this orbit, and proceed with the next characteristic. In the latter case, we have
found a generality problem, since we are not free to choose an arbitrary class fusion from the set of
possibilities.

The following function returns the set of primes which may be involved in generality problems
for the given ordinary character table. Note that the procedure sketched above does not tell which

Computations with the GAP Character Table Library 32

characteristics are actually involved or which classes are affected by the choices; for example, we
could argue that one is always free to choose a fusion for the first characteristics, and that only the
other ones cause problems. We return all those primes p for which broken symmetries between the
p-modular table and the ordinary table have been detected.

Example

gap> PrimesOfGeneralityProblems:= function(ordtbl)

local consider, p, modtbl, taut, triv, admiss, fusion, maut,

allfusions, orbits, orbit, reps;

Find the primes for which symmetries are broken.

consider:= [];

for p in Filtered(PrimeDivisors(Size(ordtbl)), IsPrimeInt) do
modtbl:= ordtbl mod p;
if modtbl <> fail and BrokenSymmetries(ordtbl, modtbl) then

Add(consider, p);
fi;

od;

Compute the choices and detect generality problems.

taut:= Automorphisms0fTable(ordtbl);

triv:= TrivialSubgroup(taut);

admiss:= taut;

for p in consider do
modtbl:= ordtbl mod p;
fusion:= GetFusionMap(modtbl, ordtbl);
maut:= AutomorphismsOfTable(modtbl);

- We need not apply the action of ’maut’ here,
since ’maut’ will later be used to get representatives.

- We need not apply all elements in ’taut’ but only
representatives of left cosets of ’admiss’ in ’taut’,
since ’admiss’ will later be used to get representatives.

allfusions:= OrbitFusions(maut, fusion, taut);

allfusions:= Set(RightTransversal(taut, admiss),
x -> OnTuples(fusion, x~-1));

For computing representatives, ’RepresentativesFusions’ is not

suitable because ’allfusions’ is in generally not closed

under the actioms.

reps:= RepresentativesFusions(maut, allfusions, admiss);

orbits:= [];

while not IsEmpty(allfusions) do
orbit:= OrbitFusions(maut, allfusions[1], admiss);

Add(orbits, orbit);
SubtractSet(allfusions, orbit);

od;

reps:= List(orbits, x -> x[1]);

if Length(reps) = 1 then
Reduce the symmetries that are still available.
admiss:= Stabilizer(admiss,

Set(OrbitFusions(maut, fusion, triv)),
OnSetsTuples);

#
#
#
#
#
#

else
We have found a generality problem.
return consider;

fi;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVVYVYVYVYV

Computations with the GAP Character Table Library 33

od;
There is no generality problem for this table.
return [];

end;;

vV V V V

Let us look at a small example, the 5-modular character table of the group 2.A45.2. The irreducible
characters of degree 2 have the values +1/—2 on the classes 8a and 8b, and the values ++v/—3 on
the classes 6b and 6c. When we define which of the two classes of element order 8 is called 8a, this
will also define which class is called 6b. The ordinary character table does not relate the two pairs of
classes, there are table automorphisms which interchange each pair independently. This symmetry is

thus broken in the 5-modular character table.

Example
gap> t:= CharacterTable("2.A5.2");;

gap> m:= t mod 5;;

gap> Display(m);

2.A5.2mod5

a w N
>
=D

la 2a 4a 3a 6a 2b 8a 8b 6b 6¢
2P la la 2a 3a 3a la 4a 4a 3a 3a
3P la 2a 4a l1la 2a 2b 8a 8b 2b 2b
BP la 2a 4a 3a 6a 2b 8b 8a 6¢ 6b

X.1 11 1 1 11 1 1 1
X.2 i 111 1-1-1-1-1-1
X.3 3 3 - .. 1 -1 -1 -2 -2
X.4 3 3-1 . .-1 1 1 2 2
X.5 556 1-1-11-1-1 11
X.6 55 1-1-1-1 1 1-1-1
X.7 2-2 .-1 1 . A-A B-B
X.8 2-2 .-1 1 .-A A-B B
X.9 4 -4 1 -1 B -B
X.10 4 -4 1 -1 -B B

A = E(8)+E(8)"3
= Sqrt(-2) = i2
B = E(3)-E(3)"2

Sqrt(-3) = i3

gap> AutomorphismsOfTable(t);
Group([(11,12), (9,100 1)

gap> AutomorphismsOfTable(m);
Group([(7,8)(9,10) 1)

gap> GetFusionMap(m, t);

[1, 2, 3, 4, 5, 8, 9, 10, 11, 12]
gap> BrokenSymmetries(t, m);

true

gap> BrokenSymmetries(t, t mod 2);
false

gap> BrokenSymmetries(t, t mod 3);

Computations with the GAP Character Table Library 34

false
gap> PrimesOfGeneralityProblems(t);
(I

Since no symmetry is broken in the 2- and 3-modular character tables of G, there is no generality
problem in this case. For an example of a generality problem, we look at the smallest Janko group
J1. As is mentioned in [JLPW95, p. x], the unique irreducible 11-modular Brauer character of degree
7 distinguished the two (algebraically conjugate) classes of element order 5. Since also the unique
irreducible 19-modular Brauer character of degree 22 distinguishes these classes, we have to choose
these classes consistently.

Example
gap> t:= CharacterTable("J1");;

gap> m:= t mod 11;;
gap> Display(m, rec(chars:= Filtered(Irr(m), x -> x[1] =7)));
Jimod11

2 3 3 1 1 11 1 1

311 1 1 1 1 . 1 1

51 1 1 1 1 . 1 1 1 1

7 1 1

11 1 .

19 1 1 1 1

la 2a 3a 5a bb 6a 7a 10a 10b 15a 15b 19a 19b 19c
2P l1a l1a 3a 5b ba 3a 7a 5b ba 15b 15a 19b 19c 19a
3P la 2a la 5b ba 2a 7a 10b 10a 5b ba 19b 19c 19a
BP la 2a 3a la la 6a 7a 2a 2a 3a 3a 19b 19c 19a
7P la 2a 3a 5b 5a 6a la 10b 10a 15b 15a 19a 19b 19c
11P l1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 1la 1la 1a

Y.1 7 -1 1 A=xA -1 . B B C xC D E F

=
]

E(B)+E(5)"4

(-1+Sqrt(5))/2 = b5

B = -E(5)-2+E(5)~2-2+E(5)~3-E(5)"4
(3+8qrt(5))/2 = 2+b5

C = -2%E(5)-2*E(5)"4
= 1-Sqrt(5) = 1-rb
D = -E(19)-E(19)~2-E(19) ~3-E(19)"5-E(19) ~7-E(19) ~“8-E(19) ~11-E(19) ~12-E\

(19)~14-E(19)~16-E(19)~17-E(19)"18

E = -E(19)"2-E(19)"3-E(19) ~4-E(19)~5-E(19)"6-E(19) ~9-E(19) ~10-E(19) 13\
-E(19)~14-E(19)~15-E(19) ~16-E(19) ~17

F = -E(19)-E(19)~4-E(19)"6-E(19) ~7-E(19) "8-E(19) "9-E(19) ~10-E(19) ~11-E\
(19)~12-E(19)~13-E(19)~15-E(19) ~18

gap> m:= t mod 19;;

gap> Display(m, rec(chars:= Filtered(Irr(m), x -> x[1] =22)));
Jimod19

w N

Computations with the GAP Character Table Library 35

(¢}

\]
N

19

la 2a 3a ba bb 6a 7a 10a 10b 11a 15a 15b
2P la la 3a 5b 5a 3a 7a 5b b5a 11la 15b 1ba
3P la 2a la 5b 5a 2a 7a 10b 10a 11a 5b ba
BP la 2a 3a la la 6a 7a 2a 2a 1la 3a 3a
7P la 2a 3a 5b ba 6a la 10b 10a 11a 15b 15a
11P la 2a 3a b5a 5b 6a 7a 10a 10b 1a 1ba 15b
19P la 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b

Y.1 22 -2 1 AxA 1 1 -A -%A . B x*B

=
]

E(B)+E(5)"4

= (-1+Sqrt(5))/2 = b5
-2xE(5)-2%E(5) "4
1-Sqrt(5) = 1-r5

o
]

Note that the degree 7 character above also distinguishes the three classes of element order 19,
and the same holds for the unique irreducible degree 31 character from characteristic 7. Thus also the
prime 7 occurs in the list of candidates for generality problems.

Example
gap> PrimesOfGeneralityProblems(t);
[7, 11, 19]

Finally, we list the candidates for generality problems from GAP’s Character Table Library.
Example

gap> list:= [1;;
gap> isGeneralityProblem:= function(ordtbl)
> local res;

> res:= PrimesOfGeneralityProblems(ordtbl);

> if res = [] then

> return false;

> fi;

> Add(list, [Identifier(ordtbl), res]);

> return true;

> end;;

gap> AllCharacterTableNames(IsDuplicateTable, false,

> isGeneralityProblem, true);;

gap> PrintArray(SortedList(list));

[[(2.44x2.G2(4)) .2, [2,5,7,131]11,
[(2-2x3) .L3(4) .2_1, (5,711,
[(2x12) .L3(4), (2,3, 711,
[(4~2x3) .L3(4), (2,3, 711,
[(7:3xHe) : 2, [5,7, 1711,
[(ABxA12) :2, (2,311,
[(D10xHN) .2, [2,3,5, 7,11, 1911,
[(83x2.Fi22) .2, [3, 11, 131 1,
[12.M22, [2,5,7, 1111,

L T e Y s N s Y e Y s N e Y s Y s O e Y s Y e O e Y T s O e Y s T e T e Y s T e N e Y s O e O s Y s T e T e T s T e O T s O e N T s T e Y s Y s N e Y T s T e Y T e O e Y s T s N e Y s Y s B e M |

Computations with the GAP Character Table Library

12.M22.2,
12_1.L3(4).2_1,
12_2.1L3(4),
12_2.1L3(4).2_1,
12_2.13(4).2_2,
12_2.1L3(4).2_3,
2. (A4xG2(4)) .2,
2.2E6(2),
2.2E6(2) .2,
2.A10,
2.A11,
2.A11.2,
2.A12,
2.A12.2,
2.A13,
2.A13.2,
A1t (14),
LA1t(15),
.Alt(16),
A1t (A7),
LA1t(18),
2.B,
2.F4(2),
2.Fi22.2,
2.62(4),
2.62(4) .2,
2.HS,

2.HS.2,
2.13(4).2_1,
2.Ru,

2.S8uz,
2.5uz.2,
2.Sym(15),
2.Sym(16),
2.8ym(17),
2.Sym(18),
2.5z(8),
2°2.2E6(2),
2°2.2E6(2) .2,
2~2.Fi22.2,
2°2.L3(4).2"2,
272.13(4).2_1,
2~2.8z(8),
2x2.F4(2),
2x3.Fi22,
2x6.Fi22,
2x6.M22,
2xFi22.2,
2xFi23,
3.Fi22,
3.Fi22.2,
3.J3,

NDNDNNDDN

[2,3,5,7
[5, 7, 11

[2, 3,5, 7, 11
[5, 7, 13

[2, 3,5,7

[

B B

> B

> B

L B e B e}
w w wN
(2B e e N0
~N N NN
I Wy S Y N T Y N S A N N N S Y VN S N VN S Y AN N N N T VS Y N VN S VN S VN Y [VT S VY VT VR Y VN S N R S AN v |

2,
2,
2, 3, 5,
[17, 23

[2, 7, 13, 17
[11, 13
[2,7

[5, 7, 13
[3, 5,7, 11
[3, 11

[5,7

[5, 7, 13, 29
[2, 5, 11

[3, 7, 13

[13, 19

[3, 11, 13
[5,7

[5,7

[2, 5, 13

[2, 7, 13, 17
[2, 3,5

[2, 3,5

[2, 5, 11

[11, 13

[3, 17, 23
[2, 3,5

[2,5, 11, 13
[2, 17, 19

S L e T T T T e T T e T T e T L T T T T T T R VR VN S N N Y SN W
L T Vv Vv v v ¥ VP

36

L T e Y s N s Y e Y s N e Y s Y s O e Y s Y e O e Y T s O e Y s T e T e Y s T e N e Y s O e O s Y s T e T e T s T e O T s O e N T s T e Y s Y s N e Y T s T e Y T e O e Y s T s N e Y s Y s B e M |

Computations with the GAP Character Table Library

3.J3.2,
3.L3(4).2_3,
3.13(4).3.2.3,
3.L3(7).2,
3.L3(7) .83,
3.McL,
3.McL.2,
3.0N,
3.0N.2,
3.S5uz.2,
3x2.F4(2),
3x2.Fi22.2,
3x2.G2(4),
3xFi23,
3xJ1,
3xL3(7) .2,

4 .HS.2,
4.M22,
4_1.13(4).2_1,
4_2.13(4).2_1,
6.Fi22,
6.Fi22.2,
6.1L3(4).2_1,
6.M22,
6.07(3),
6.07(3).2,
6.Suz,
6.Suz.2,
6x2.F4(2),
Al12,

Al14,

Al17,

A18,

B,

F3+,

F3+.2,
Fi22.2,
Fi23,

HN,

HN.2,

He,

He.2,

Isoclinic(12.M22.
Isoclinic(2.A11.
Isoclinic(2.A12.
Isoclinic(2.A13.

Isoclinic(2.Fi22.

Isoclinic(2.G2(4)

Isoclinic(2.HS.

Isoclinic(2.HS
Isoclinic(2.L3(4).2
Isoclinic(2.Suz

2),
2),
2),
2),
2),
.2),
2),
x2),
1),
.2),

[

[

2, 5, 17, 19

[3,7

[3,7, 19
[2,5, 11
[2, 3, 5, 11

[3, 7, 11, 19, 31
[3, 5,7, 11, 19, 31

[2, 3, 13
2, 7, 13, 17
[11, 13
[2,7
[3, 17, 23
[7, 11, 19
[3,7, 19
[5, 7,1

, 11
[5,7
[5,7

5, 7

3, 5

L B e B e B

[3, 5,

I Ty S Y N T Y T S N A N N N S Y VN S N VN S Y AT N N N T M ST Y AN S T VN S VN Y VU S VY T VS Y VN N N [VN S SN v |

Lo Y Y

-

LV VT v

S S T L L T T T e T T T T L T T L T e T L T T T e T T T R VN VS N TR S SN W
-

-

37

(e IO e T e T s N s Y s T s N e Y s T s N e Y s T s O e Y s T e N s I s T e N e B s B |

Computations with the GAP Character Table Library

Isoclinic(4_1.1L3(4).2_1), (5,711,
Isoclinic(4_2.13(4).2_1), [3,5, 711,
Isoclinic(6.Fi22.2), [2, 5, 11, 131 1,
Isoclinic(6.L3(4).2_1), L[5, 711,
Isoclinic(6.Suz.2), [2,3,5,7, 1311,

Ji, [7, 11, 191 1,

J1x2, [7, 11, 191 1,

J3, [2,17, 1911,

J3.2, [2,5, 17, 1911,

L3(4).2_3, (3,711,

L3(4).3.2_3, [2,3, 711,

L3(7).2, [3,7, 1911,

L3(7) .83, [3,7, 1911,

L3(9).2_1, [3,7,1311,

L5(2).2, [2,7,3711,

Ly, (7, 37,6711,

M23, [2,3,2311,

ON, [3, 7, 11, 19, 311 1,

ON.2, [3, 5,7, 11, 19, 31] 1,

Ru, [5,7, 13, 2911,

S3xFi22.2, [11, 1311,

Suz.2, [3, 13111

Note that this list may become longer as new Brauer tables become available. (For example, the
prime 2 was added to the entries for extensions of F4(2) when the 2-modular table of Fy(2) became
available.)

1.3.2 A generality problem concerning the group J3 (April 2015)

In March 2015, Klaus Lux reported an inconsistency in the character data of GAP:

The sporadic simple Janko group J3 has a unique 19-modular irreducible Brauer character of
degree 110. In the character table that is printed in the Atlas of Brauer characters [JLPW95, p. 219],
the Brauer character value on the class 17A is by7. The Atlas of Group Representations [WWT™]
provides a straight line program for computing class representatives of J3. If we compute the Brauer
character value in question, we do not get b7 but its algebraic conjugate, —1 — by7.

Example

gap>
gap>
gap>
gap>
1
gap>
gap>
18
gap>
>
gap>
gap>
>
gap>

t:= CharacterTable("J3");;

m:= t mod 19;;

cand:= Filtered(Irr(m), x -> x[1] =
Length(cand);

110);;

slp:= AtlasProgram("J3", "classes");;

17a:= Position(slp.outputs, "17A");

info:= OneAtlasGeneratingSetInfo("J3", Characteristic, 19,
Dimension, 110);;

gens:= AtlasGenerators(info);;

reps:= ResultOfStraightLineProgram(slp.program,

gens.generators);;
Quadratic(BrauerCharacterValue(reps[17a]));

Computations with the GAP Character Table Library 39

rec(ATLAS := "-1-b17", a := -1, b := -1, d := 2,
display := "(-1-Sqrt(17))/2", root := 17)

How shall we resolve this inconsistency, by replacing the straight line program or by swapping the
classes 17A and 17B in the character table? Before we decide this, we look at related information.

Table 1.3.2 lists the p-modular irreducible characters of J3, according to [JLPW95], that can be
used to define which of the two classes of element order 17 shall be called 17A; a + sign in the last
column of the table indicates that the representation is available in the Atlas of Group Representations.

[9(1) | ¢(178) | ¢(17B) | Atlas? |

P

2 78 1—by7 2+ b7 +
2 80 3—by7 44+ by +
2 244 by7—2 | —3—by7 -+
2 966 ri7—3 1| =3—ri7 +
19 110 b7 | —1—by7 +
19 214 1—>byy 2+by7 +
19 706 —by7 1+b17 +

19 | 1214 | =1+Dby7 | —2—by7

Table: Representations of J3 that may define 17A

Note that the irreducible Brauer characters in characteristic 3 and 5 that distinguish the two classes
17A and 17B occur in pairs of Galois conjugate characters.

The following computations show that the given straight line program is compatible with the four
characters in characteristic 2 but is not compatible with the three available characters in characteristic
19.

Example

gap> table:= [];;
gap> for pair in [[2, [78, 80, 244, 966] 1],
> [19, [110, 214, 706 1 1] do
> p:= pair[1];
> for d in pair([2] do
> info:= OneAtlasGeneratingSetInfo("J3", Characteristic, p,
> Dimension, d);
> gens:= AtlasGenerators(info);
> reps:= ResultOfStraightLineProgram(slp.program,
> gens.generators) ;
> val:= BrauerCharacterValue(reps[17a]);
> Add(table, [p, d, Quadratic(val).ATLAS,
> Quadratic(StarCyc(val)).ATLAS]);
> od;
> od;
gap> PrintArray(table);
[2, 78, 1-b17, 2+b17 1,

[2, 80, 3-b17, 4+b17 71,

[2, 244, -2+b17, -3-b17 1,

[2, 966, -3+r17, -3-ri7],

[19, 110, -1-b17, b17 1,

[19, 214, 2+b17, 1-b17 1,

[19, 706, 1+b17, -b17 11

Computations with the GAP Character Table Library 40

We see that the problem is an inconsistency between the 2-modular and the 19-modular character
table of J3 in [JLPWOS5]. In particular, changing the straight line program would not help to resolve
the problem.

How shall we proceed in order to fix the problem? We can decide to keep the 19-modular table of
J3, and to swap the two classes of element order 17 in the 2-modular table; then also the straight line
program has to be changed, and the classes of element orders 17 and 51 in the 2-modular character
table of the triple cover 3.J3 of J3 have to be adjusted. Alternatively, we can keep the 2-modular table
of J3 and the straight line program, and adjust the conjugacy classes of element orders divisible by 17
in the 19-modular character tables of J3, 3.J3, J3.2, and 3.J5.2.

We decide to change the 19-modular character tables. Note that these character tables —or equiv-
alently, the corresponding Brauer trees— have been described in [HL89], where explicit choices are
mentioned that lead to the shown Brauer trees. Questions about the consistency with Brauer tables
in other characteristic had not been an issue in this book. (Only the consistency of the Brauer trees
among the 19-blocks of 3.J3 is mentioned.) In fact, the book mentions that the 19-modular Brauer
trees for J3 had been computed already by W. Feit. The inconsistency of Brauer character tables in
different characteristic has apparently been overlooked when the data for [JLPW95] have been put
together, and had not been detected until now.

Remarks:

* Such a change of a Brauer table can in general affect the class fusions from and to this table.
Note that Brauer tables may impose conditions on the choice of the fusion among possible
fusions that are equivalent w. r. t. the table automorphisms of the ordinary table. In this particular
case, in fact no class fusion had to be changed, see the sections 9.6.1 and Section 9.6.3.

* The change of the character tables affects the decomposition matrices. Thus the
PDF files containing the 19-modular decomposition matrices had to be updated, see
http://www.math.rwth-aachen.de/ Thomas.Breuer/ctbllib/dec/tex/J3/index .html.

* Jiirgen Miiller has checked that the conjugacy classes of all Brauer tables of J3, 3.J3, J3.2, 3.J3.2
are consistent after the fix described above.

1.4 Brauer Tables that can be derived from Known Tables

In a few situations, one can derive the p-modular Brauer character table of a group from known
character theoretic information.
For quite some time, a method is available in GAP that computes the Brauer characters of p-
solvable groups (see (Reference: BrauerTable) and (Reference: IsPSolubleCharacterTable)).
The following sections list other situations where Brauer tables can be computed by GAP.

1.4.1 Brauer Tables via Construction Information

If a given ordinary character table #, say, has been constructed from other ordinary character tables
then GAP may be able to create the p-modular Brauer table of ¢ from the p-modular Brauer tables of
the “ingredients”. This happens currently in the following cases.

* t has been constructed with CharacterTableDirectProduct (Reference: Charac-
terTableDirectProduct), and GAP can compute the p-modular Brauer tables of the direct fac-
tors.

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html

Computations with the GAP Character Table Library 41

 t has been constructed with CharacterTableIsoclinic (Reference: CharacterTablelso-
clinic), and GAP can compute the p-modular Brauer table of the table that is stored in ¢ as the
value of the attribute SourceOfIsoclinicTable (Reference: SourceOfIsoclinicTable).

* ¢ has the attribute ConstructionInfoCharacterTable (CTblLib: ConstructionInfoChar-
acterTable) set, the first entry of this list /, say, is one of the strings "ConstructGS3" (see
2.3.2), "ConstructIndexTwoSubdirectProduct" (see 2.3.6), "ConstructMGA" (see 2.3.1),
"ConstructPermuted", "ConstructV4G" (see 2.3.4), and GAP can construct the p-modular
Brauer table(s) of the relevant ordinary character table(s), which are library tables whose names
occur in /.

1.4.2 Liftable Brauer Characters (May 2017)

Let B be a p-block of cyclic defect for the finite group G. It can be read off from the set Irr(B) of
ordinary irreducible characters of B whether all irreducible Brauer characters in B are restrictions of
ordinary characters to the p-regular classes of G, as follows.

If B has only one irreducible Brauer character then all ordinary characters in B restrict to this
Brauer character. So let us assume that B contains at least two irreducible Brauer characters, and
consider the set S, say, of restrictions of Irr(B) to the p-regular classes of G.

The block B contains exactly |S| — 1 irreducible Brauer characters, and the decomposition of the
characters in S into these Brauer characters is described by an |S| by |S| — 1 matrix M, say, whose
entries are zero and one, such that exactly two nonzero entries occur in each column. (See for example
[HL89, Theorem 2.1.5], which refers to [Dad66].)

If all irreducible Brauer characters of B occur in S then the matrix M contains |S| — 1 rows that
contain exactly one nonzero entry, hence the remaining row consists only of 1s. This means that the
element of largest degree in S is equal to the sum of all other elements in S. Conversely, if the element
of largest degree in S is equal to the sum of all other elements in S then the matrix M has the structure
as stated above, hence all irreducible Brauer characters of B occur in S.

Alternatively, one could state that all irreducible Brauer characters of B are restricted ordinary
characters if and only if the Brauer tree of B is a star (see [HL89, p. 2]. If B contains at least
two irreducible Brauer characters then this happens if and only if one of the types x or o occurs for
exactly one node in the Brauer graph of B, see [HL89, Lemma 2.1.13], and the distribution to types is
determined by Irr(B).

The default method for BrauerTableOp (Reference: BrauerTableOp) that is contained in the
GAP library has been extended in version 4.11 such that it checks whether the Sylow p-subgroups of
the given group G are cyclic and, if yes, whether all p-blocks of G have the property discussed above.
(This feature arose from a discussion with Klaus Lux.)

Examples where this method is successful for all blocks are the p-modular character tables of the
groups PSL(2,¢q), where p is odd and does not divide g.

Example
gap> t:= CharacterTable(PSL(2, 11));;
gap> modt:= t mod 5;;

gap> modt <> fail;

true

gap> InfoText(modt);

"computed using that all Brauer characters lift to char. zero"

Another such example is the 5-modular table of the Mathieu group M.

Computations with the GAP Character Table Library 42

Example

gap> lib:= CharacterTable("M11");;
gap> fromgroup:= CharacterTable(MathieuGroup(11));;
gap> DecompositionMatrix(lib mod 5);

s+ o0,o0,0,0,0,00,01,[0,1,0,0,0,0,0,0,01,
tro,o0,10,0,0,0,0,01,000,0,0,1,0,0,0,0,01,
o, o,o0,o0,1,0,0,001,000,0,0,0,0,1,0,0,01,
too,o0,o0,0,0,10,01,I01,0,0,0,1,1,1,0, 01,
too,o0,o00,0,0,1,01,[0,0,0,0,0,0,0,0, 111

gap> fromgroup mod 5 <> fail;

true

There are cases where all Brauer characters of a block lift to characteristic zero but the defect
group of the block is not cyclic, thus the method cannot be used. An example is the 2-modular table
of the Mathieu group M.

Example
gap> DecompositionMatrix(1ib mod 2);
rrt+ o0,0,0,01,[0,1,0,0,071,[0,1,0,0,01,
ro,1o90,0,01,01,1,0,0,01, [0,0,1,0,01,
ro,o0,o0,1,01,00,0,0,0,11,[1,0,0,0,11,
[1, 1, 0,0, 171
gap> fromgroup mod 2;

fail

Chapter 2

Using Table Automorphisms for
Constructing Character Tables in GAP

Date: June 27th, 2004

This chapter has three aims. First it shows how character table automorphisms can be utilized to
construct certain character tables from others using the GAP system [GAP19]; the GAP functions
used for that are part of the GAP Character Table Library [Bre20]. Second it documents several
constructions of character tables which are contained in the GAP Character Table Library. Third it
serves as a testfile for the involved GAP functions.

2.1 Overview

Several types of constructions of character tables of finite groups from known tables of smaller groups
are described in Section 2.3. Selecting suitable character table automorphisms is an important ingre-
dient of these constructions.
Section 2.2 collects the few representation theoretical facts on which these constructions are based.
The remaining sections show examples of the constructions in GAP. These examples use the GAP
Character Table Library, therefore we load this package first.

Example
gap> LoadPackage("ctbllib", "1.1.4", false);

true

2.2 Theoretical Background

2.2.1 Character Table Automorphisms

Let G be a finite group, Irr(G) be the matrix of ordinary irreducible characters of G, CI(G) be the set
of conjugacy classes of elements in G, g© the G-conjugacy class of g € G, and let

pow:Cl(G) — CI(G), &%~ (¢)°

be the p-th power map, for each prime integer p.
A table automorphism of G is a permutation o:CI(G) — CI(G) with the properties that y o ¢ €
Irr(G) holds for all ¥ € Irr(G) and that 6 commutes with pow,, for all prime integers p that divide

43

Computations with the GAP Character Table Library 44

the order of G. Note that for prime integers p that are coprime to the order of G, pow, commutes with
each o that permutes Irr(G), since pow), acts as a field automorphism on the character values.

In GAP, a character table covers the irreducible characters —a matrix M of character values— as
well as the power maps of the underlying group —each power map pow, being represented as a list
pow;7 of positive integers denoting the positions of the image classes. The group of table automor-
phisms of a character table is represented as a permutation group on the column positions of the table;
it can be computed with the GAP function Automorphisms0fTable (Reference: Automorphism-
sOfTable).

In the following, we will mainly use that each group automorphism ¢ of G induces a table auto-
morphism that maps the class of each element in G to the class of its image under ©.

2.2.2 Permutation Equivalence of Character Tables

Two character tables with matrices M;, M> of irreducibles and p-th power maps pow, ,, pow, , are
permutation equivalent if permutations y and 7 of row and column positions of the M; exist such
that [Mi]; j = [Ma]iy,jz holds for all indices i, j, and such that 7 - pow) , = pow ,- 7 holds for all
primes p that divide the (common) group order. The first condition is equivalent to the existence of a
permutation 7 such that permuting the columns of M with & maps the set of rows of M| to the set of
rows of M.

7 is of course determined only up to table automorphisms of the two character tables, that is, two
transforming permutations 7y, 7, satisfy that 7 - 7, ! is a table automorphism of the first table, and
m; ! m is a table automorphism of the second.

Clearly two isomorphic groups have permutation equivalent character tables.

The GAP library function TransformingPermutationsCharacterTables (Reference: Trans-
formingPermutationsCharacterTables) returns a record that contains transforming permutations of
rows and columns if the two argument tables are permutation equivalent, and fail otherwise.

In the example sections, the following function for computing representatives from a list of char-
acter tables w.r.t. permutation equivalence will be used. More precisely, the input is either a list of
character tables or a list of records which have a component table whose value is a character table,
and the output is a sublist of the input.

Example
gap> RepresentativesCharacterTables:= function(list)

return reps,
end;;

> local reps, entry, r;

>

> reps:= [];

> for entry in list do

> if ForAll(reps, r -> (IsCharacterTable(r) and

> TransformingPermutationsCharacterTables(entry, r) = fail)
> or (IsRecord(r) and TransformingPermutationsCharacterTables(
> entry.table, r.table) = fail)) then
> Add(reps, entry);

> fi;

> od;

>

>

Computations with the GAP Character Table Library 45

2.2.3 Class Fusions

For two groups H, G such that H is isomorphic with a subgroup of G, any embedding 1:H — G
induces a class function
fus:CL(H) — CI(G),h% — (1(h))°

the class fusion of H in G via 1. Analogously, for a normal subgroup N of G, any epimorphism
7:G — G/N induces a class function

fusz:CI(G) — CI(G/N),g% v (n(g))°

the class fusion of G onto G/N via 7.

When one works only with character tables and not with groups, these class fusions are the objects
that describe subgroup and factor group relations between character tables. Technically, class fusions
are necessary for restricting, inducing, and inflating characters from one character table to another. If
one is faced with the problem to compute the class fusion between the character tables of two groups
H and G for which it is known that H can be embedded into G then one can use character-theoretic
necessary conditions, concerning that the restriction of all irreducible characters of G to H (via the
class fusion) must decompose into the irreducible characters of H, and that the class fusion must
commute with the power maps of H and G.

With this character-theoretic approach, one can clearly determine possible class fusions only up to
character table automorphisms. Note that one can interpret each character table automorphism of G
as a class fusion from the table of G to itself.

If N is a normal subgroup in G then the class fusion of N in G determines the orbits of the con-
jugation action of G on the classes of N. Often the knowledge of these orbits suffices to identify the
subgroup of table automorphisms of N that corresponds to this action of G; for example, this is always
the case if NV has index 2 in G.

GAP library functions for dealing with class fusions, power maps, and character table automor-
phisms are described in the chapter “Maps Concerning Character Tables” in the GAP Reference Man-
ual.

2.2.4 Constructing Character Tables of Certain Isoclinic Groups

As is stated in [CCNT85, p. xxiii], two groups G, H are called isoclinic if they can be embedded into
a group K such that K is generated by Z(K) and G, and also by Z(K) and H. In the following, two
special cases of isoclinism will be used, where the character tables of the isoclinic groups are closely
related.

(1) G=2xU foragroup U that has a central subgroup N of order 2, and H is the central product
of U and a cyclic group of order four. Here we can set K =2 x H.

(2) G=2xU foragroupU that has a normal subgroup N of index 2, and H is the subdirect product
of U and a cyclic group of order four, Here we can set K =4 x U.

Computations with the GAP Character Table Library 46

Starting from the group K containing both G and H, we first note that each irreducible representa-
tion of G or H extends to K. More specifically, if pg is an irreducible representation of G then we can
define an extension p of K by defining it suitably on Z(K) and then form py, the restriction of p to H.

In our two cases, we set S = GNH, so K=SUG\SUH \ SUzS holds for some element z €
Z(K)\ (GUH) of order four, and G = SUgS for some g € G\ S, and H = SUAS where h=z-g € H\ S.
For defining py, it suffices to consider p(h) = p(z)p(g), where p(z) = €,(z) - I is a scalar matrix.

As for the character table heads of G and H, we have s¢ = s and z(g-s5)¢ = (h-s)! for each
s € S, so this defines a bijection of the conjugacy classes of G and H. For a prime integer p, (h-s)P =
(z-g-s)P =z (g-s)? holds for all s € S, so the p-th power maps of G and H are related as follows:
Inside S they coincide for any p. If p = 1 mod 4 they coincide also outside S, if p = —1 mod 4 the
images differ by exchanging the classes of (% -s)? and z?- (h-s)? (if these elements lie in different
classes), and for p = 2 the images (which lie inside S) differ by exchanging the classes of (% -s)? and
7% (g-s)? (if these elements lie in different classes).

Let p be an irreducible representation of K. Then pg and py are related as follows: pg(s) = pu(s)
and p(z)-pg(g-s) = pu(h-s) for all s € S. If ¥ and xy are the characters afforded by ps and
pu, respectively, then xg(s) = xu(s) and €,(z) - xG(g-5) = Xu(h-s) hold for all s € S. In the case
x6(z%) = x(1) we have €,(z) = £1, and both cases actually occur if one considers all irreducible
representations of K. In the case xg(z*) = —x(1) we have €, (z) = =i, and again both cases occur. So
we obtain the irreducible characters of H from those of G by multiplying the values outside S in all
those characters by i that do not have z? in their kernels.

In GAP, the function CharacterTableIsoclinic (Reference: CharacterTableIsoclinic) can
be used for computing the character table of H from that of G, and vice versa. (Note that in the
above two cases, also the groups U and H are isoclinic by definition, but CharacterTableIsoclinic
(Reference: CharacterTablelsoclinic) does not transfer the character table of U to that of H.)

One could construct the character tables mentioned above by forming the character tables
of certain factor groups or normal subgroups of direct products. However, the construction via
CharacterTableIsoclinic (Reference: CharacterTablelsoclinic) has the advantage that the re-
sult stores from which sources it arose, and this information can be used to derive also the Brauer
character tables, provided that the Brauer character tables of the source tables are known.

2.2.5 Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016)

Since the release of GAP 4.11, CharacterTableIsoclinic (Reference: CharacterTablelsoclinic)
admits the construction of the character tables of the isoclinic variants of groups of the structure p.G.p,

Computations with the GAP Character Table Library 47

also for odd primes p.

This feature will be used in the construction of the character table of 9.U3(8).33, in order to con-
struct the table of the subgroup 3.(3 x Uz(8)) and of the factor group (3 x U3(8)).33, see Section 2.4.14.
These constructions are a straightforward generalization of those described in detail in Section 2.2.4.

There are several examples of Atlas groups of the structure 3.G.3. The character table of one
such group is shown in the Atlas, the tables of their isoclinic variants can now be obtained from
CharacterTableIsoclinic (Reference: CharacterTablelsoclinic).

For example, the group GL(3,4) has the structure 3.L3(4).3. There are three pairwise nonisomor-
phic isoclinic variants of groups of this structure.
Example
gap> t:= CharacterTable("3.L3(4).3");
CharacterTable("3.L3(4).3")
gap> isol:= CharacterTableIsoclinic(t);
CharacterTable("Isoclinic(3.L3(4).3,1)")
gap> iso2:= CharacterTableIsoclinic(t, rec(k:= 2));
CharacterTable("Isoclinic(3.L3(4).3,2)")
gap> TransformingPermutationsCharacterTables(t, isol);

fail

gap> TransformingPermutationsCharacterTables(t, iso2);
fail

gap> TransformingPermutationsCharacterTables(isol, iso2);
fail

The character table of GL(3,4) is in fact the one which is shown in the Atlas.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable(GL(3, 4))));

true

2.2.6 Isoclinic Double Covers of Almost Simple Groups

The function CharacterTableIsoclinic (Reference: CharacterTablelsoclinic) can also be used
to switch between the character tables of double covers of groups of the type G.2, where G is a perfect
group, see [CCN "85, Section 6.7]. Typical examples are the double covers of symmetric groups.

Note that these double covers may be isomorphic. This happens for 2.S¢. More generally, this
happens for all semilinear groups XL(2, p?), for odd primes p. The smallest examples are £L(2,9) =
2.A6.21 and £L(2,25) = 2.L,(25).2,. This implies that the character table and its isoclinic variant are
permutation isomorphic.

Example
gap> t:= CharacterTable("2.A6.2_1");
CharacterTable("2.A6.2_1")
gap> TransformingPermutationsCharacterTables(t,
> CharacterTableIsoclinic(t));
rec(columns := (4,6)(5,7)(11,12)(14,16) (15,17),
group := Group([(16,17), (14,15) 1),
rows := (3,5)(4,6)(10,11)(12,15,13,14))
gap> t:= CharacterTable("2.L2(25).2_2");
CharacterTable("2.L2(25).2_2")
gap> TransformingPermutationsCharacterTables(t,

Computations with the GAP Character Table Library 48

> CharacterTableIsoclinic(t));
rec(columns := (7,9)(8,10)(20,21)(23,24)(25,27)(26,28),
group := <permutation group with 4 generators>,

rows := (3,5)(4,6)(14,15)(16,17)(19,22,20,21))

For groups of the type 4.G.2, two different situations can occur. Either the distinguished central
cyclic subgroup of order four in 4.G is inverted by the elements in 4.G.2\ 4.G, or this subgroup is cen-
tral in 4.G.2. In the first case, calling CharacterTableIsoclinic (Reference: CharacterTablelso-
clinic) with the character table of 4.G.2 yields a character table with the same set of irreducibles,
only the 2-power map will in general differ from that of the input table. In the second case, the one
argument version of CharacterTableIsoclinic (Reference: CharacterTablelsoclinic) returns a
permutation isomorphic table. By supplying additional arguments, there is a chance to construct tables
of different groups.

We demonstrate this phenomenon with the various groups of the structure 4.L3(4).2.

Example
gap> tbls:= [];;
gap> for m in ["4_1", "4_2"] do
> for a in ["2_1", "2_2", "2_3"] do
> Add(tbls, CharacterTable(Concatenation(m, ".L3(4).", a)));
> od;
> od;
gap> tbls;

[CharacterTable("4_1.L3(4).2_1"), CharacterTable("4_1.1L3(4).2_2")
, CharacterTable("4_1.13(4).2_3"),
CharacterTable("4_2.L3(4).2_1"), CharacterTable("4_2.1L3(4).2_2")
, CharacterTable("4_2.13(4).2_3") 1]
gap> casel:= Filtered(tbls, t -> Size(ClassPositionsOfCentre(t)) = 2);
[CharacterTable("4_1.13(4).2_1"), CharacterTable("4_1.1L3(4).2_2")
, CharacterTable("4_2.13(4).2_1"),
CharacterTable("4_2.13(4).2_3") 1]
gap> case2:= Filtered(tbls, t -> Size(ClassPositionsOfCentre(t)) =4);
[CharacterTable("4_1.L3(4).2_3"),
CharacterTable("4_2.L3(4).2_2")]

The centres of the groups 41.L3(4).21, 41.L3(4).22, 45.L3(4).21, and 4,.L3(4).23 have order two,
that is, these groups belong to the first case. Each of these groups is not permutation equivalent to its
isoclinic variant but has the same irreducible characters.

Example
gap> isosl:= List(casel, CharacterTableIsoclinic);;

gap> List([1 .. 41, 1 -> Irr(casel[i]) = Irr(isosi[i]));

[true, true, true, true]

gap> List([1 .. 41,

> i -> TransformingPermutationsCharacterTables(casel[i], isos1[i]));
[fail, fail, fail, fail]

The groups 4,.L3(4).23 and 4,.L3(4).2, belong to the second case because their centres have order
four.

Example
gap> isos2:= List(case2, CharacterTableIsoclinic);;

gap> List([1, 21,

Computations with the GAP Character Table Library 49

> i -> TransformingPermutationsCharacterTables(case2[i], isos2[i]));
[rec(columns := (26,27,28,29)(30,31,32,33)(38,39,40,41) (42,43,44,45)
, group := <permutation group with 5 generators>,
rows := (16,17)(18,19) (20,21) (22,23) (28,29) (32,33) (36,37) (40,
41)),

rec(columns := (28,29,30,31)(32,33)(34,35,36,37) (38,39,40,41) (42,
43,44,45) (46,47,48,49),
group := <permutation group with 3 generators>,
rows := (15,16) (17,18) (20,21) (22,23) (24,25) (26,27) (28,29) (34,
35) (38,39) (42,43) (46,47))]
gap> isos3:= List(case2, t -> CharacterTablelIsoclinic(t,

> ClassPositionsOfCentre(t)));;
gap> List([1, 21,
> i -> TransformingPermutationsCharacterTables(case2[i], isos3[i]));

[fail, fail]

2.2.7 Characters of Normal Subgroups

Let G be a group and N be a normal subgroup of G. We will need the following well-known facts
about the relation between the irreducible characters of G and N.

For an irreducible (Brauer) character y of N and g € G, we define x by x%(n) = x(n8) for all
neN,andsetIg(x) = {g € G, x8 = x} (see [Fei82, p. 86]).

If I6(x) = N then the induced character xG is an irreducible (Brauer) character of G (see [Fei82,
Lemma III 2.11] or [Nav98, Theorem 8.9] or [LP10, Corollary 4.3.8]).

If G/N is cyclic and if I5()) = G then y = yy for an irreducible (Brauer) character y of G, and
each irreducible (Brauer) character 6 with the property y = Oy is of the form 6 = y - €, where € is
an irreducible (Brauer) character of G/N (see [Fei82, Theorem III 2.14] or [Nav98, Theorem 8.12] or
[LP10, Theorem 3.6.13]).

Clifford’s theorem ([Fei82, Theorem III 2.12] or [Nav98, Corollary 8.7] or [LP10, Theorem 3.6.2])
states that the restriction of an irreducible (Brauer) character of G to N has the form e}, ¢; for a
positive integer e and irreducible (Brauer) characters ¢; of N, where 7 is the index of I(¢;) in G.

Now assume that G is a normal subgroup in a larger group H, that G/N is an abelian chief factor
of H and that y is an ordinary irreducible character of G such that Iy (y) = H. Then either ¢t = 1 and
e?isone of 1, |G/N|,ort = |G/N| and e = 1 (see [Isa76, Theorem 6.18]).

2.3 The Constructions

2.3.1 Character Tables of Groups of the Structure M.G.A

(This kind of table construction is described in [Brel1].)

Let N denote a downward extension of the finite group G by a finite group M, let H denote an
automorphic (upward) extension of N by a finite cyclic group A such that M is normal in H, and set
F = H/M. We consider the situation that each irreducible character of N that does not contain M in
its kernel induces irreducibly to H. Equivalently, the action of A = (a) on the characters of N, via
X — x“ has only orbits of length exactly |A| on the set {} € Irr(N); M € ker()}.

Computations with the GAP Character Table Library 50

A G

F

N——H

This occurs for example if M is central in N and A acts fixed-point freely on M, we have M| =
1 mod |A] in this case. If M has prime order then it is sufficient that A does not centralize M.

The ordinary (or p-modular) irreducible characters of H are then given by the ordinary (or p-
modular) irreducible characters of ' and N, the class fusions from the table of N onto the table of G
and from the table of G into that of F, and the permutation 7 that is induced by the action of A on the
conjugacy classes of V.

In general, the action of A on the classes of M is not the right thing to look at, one really must
consider the action on the relevant characters of M.G. For example, take H the quaternion group or
the dihedral group of order eight, N a cyclic subgroup of index two, and M the centre of H; here A
acts trivially on M, but the relevant fact is that the action of A swaps those two irreducible characters
of N that take the value —1 on the involution in M —these are the faithful irreducible characters of N.

If the orders of M and A are coprime then also the power maps of H can be computed from
the above data. For each prime p that divides the orders of both M and A, the p-th power map is
in general not uniquely determined by these input data. In this case, we can compute the (finitely
many) candidates for the character table of H that are described by these data. One possible reason
for ambiguities is the existence of several isoclinic but nonisomorphic groups that can arise from the
input tables (cf. Section 2.2.4, see Section 2.4.12 for an example).

With the GAP function PossibleActionsForTypeMGA (CTblLib: PossibleActionsForType-
MGA), one can compute the possible orbit structures induced by G.A on the classes of M.G, and
PossibleCharacterTables0fTypeMGA (CTblLib: PossibleCharacterTablesOfTypeMGA) com-
putes the possible ordinary character tables for a given orbit structure. For constructing the p-modular
Brauer table of a group H of the structure M.G.A, the GAP function BrauerTableOfTypeMGA
(CTbILib: BrauerTableOfTypeMGA) takes the ordinary character table of H and the p-modular
tables of the subgroup M.G and the factor group G.A as its input. The p-modular table of G is not
explicitly needed in the construction, it is implicitly given by the class fusions from M.G into M.G.A
and from M.G.A onto G.A; these class fusions must of course be available.

The GAP Character Table Library contains many tables of groups of the structure M.G.A as de-
scribed above, which are encoded by references to the tables of the groups M.G and G.A, plus the
fusion and action information. This reduces the space needed for storing these character tables.

For examples, see Section 2.4.

2.3.2 Character Tables of Groups of the Structure G.S3

Let G be a finite group, and H be an upward extension of G such that the factor group H/G is a
Frobenius group ' = KC with abelian kernel K and cyclic complement C of prime order c. (Typical
cases for F are the symmetric group S3 on three points and the alternating group A4 on four points.)
Let N and U denote the preimages of K and C under the natural epimorphism from H onto F.

Computations with the GAP Character Table Library 51

! H U /N\H
% G\U/

For certain isomorphism types of F, the ordinary (or p-modular) character table of H can be
computed from the ordinary (or p-modular) character tables of G, U, and N, the class fusions from the
table of G into those of U and N, and the permutation 7 induced by H on the conjugacy classes of N.
This holds for example for F = S5 and in the ordinary case also for F' = A4.

Each class of H is either a union of m-orbits or an H-class of U \ G; the latter classes are in
bijection with the U-classes of U \ G, they are just |K| times larger since the |K| conjugates of U in H
are fused. The power maps of H are uniquely determined from the power maps of U and N, because
each element in F lies in K or in an F'-conjugate of C.

Concerning the computation of the ordinary irreducible characters of H, we could induce the
irreducible characters of U and N to H, and then take the union of the irreducible characters among
those and the irreducible differences of those. (For the case F' = S3, this approach has been described
in the Appendix of [HLL94].)

The GAP function CharacterTable0fTypeGS3 (CTbILib: CharacterTableOfTypeGS3) pro-
ceeds in a different way, which is suitable also for the construction of p-modular character tables of
H.

By the facts listed in Section 2.2.7, for an irreducible (Brauer) character)y of N, we have Iy ()
equal to either N or H. In the former case,) induces irreducibly to H. In the latter case, there are
extensions Y, 1 <i <|C| (or |C|,»), to H, and we have the following possibilities, depending on the
restriction .

If 6 = e, for an irreducible character ¢ of G, then Iy(¢) = U holds, hence the l//((/i) are |C| (or
|C|,») extensions of y to U. Moreover, we have either e = 1 or ¢* = |K|. In the case ¢ = 1, this
determines the values of the w9 on the classes of U outside G. In the case e=£1, we have the problem
to combine e extensions of ¢ to a character of U that extends to H.

(One additional piece of information in the case of ordinary character tables is that the norm of this
linear combination equals 1+ (|K|—1)/|C|, which determines the IVL(;) ifF=A4~22:30rF=2%:7
holds; in the former case, the sum of each two out of the three different extensions of ¢ extends to U;
in the latter case, the sum of all different extensions plus one of the extensions extends. Note that for
F = S5, the case e#1 does not occur.)

The remaining case is that ¥ is not a multiple of an irreducible character of G. Then)¢ =
@1+ @2+ ...+ @k, for pairwise different irreducible characters @;, 1 <i < |K|, of G with the property
@Y = x. The action of U on G fixes at least one of the ¢;, since |K| = 1 mod |C|. Without loss of
generality, let Iy (¢;) = U, and let (pfi), 1 <i<|C, be the extensions of ¢; to U. (In fact exactly ¢;
is fixed by U since otherwise k € K would exist with (p{‘;é(pl and such that also (p{‘ would be invariant
in U; but then @; would be invariant under both C and C*, which generate F. So each of the |K|
constituents is invariant in exactly one of the |K| subgroups of type U above G.)

Then (((pl(i))H)v = @I = x, hence the values of y') on the classes of U \ G are given by those of

Computations with the GAP Character Table Library 52

((pl(i))H . (These are exactly the values of (pl(i). So in both cases, we take the values of ¥ on N, and on
the classes of U \ G the values of the extensions of the unique extendible constituent of y¢.)

For examples, see Section 2.5.

2.3.3 Character Tables of Groups of the Structure G.2>

Let G be a finite group, and H be an upward extension of G such that the factor group H/G is a Klein
four group. We assume that the ordinary character tables of G and of the three index two subgroups
Uy, U, and U; (of the structures G.21, G.2,, and G.23, respectively) of H above G are known, as well
as the class fusions of G into these groups. The idea behind the method that is described in this section
is that in this situation, there are only few possibilities for the ordinary character table of H.

H U;

U Us G—U,—H

G
Us

Namely, the action of H on the classes of G.2; is given by a table automorphism 7; of G.2;, and H
realizes compatible choices of such automorphisms 7, 7, 73 in the sense that the orbits of all three
m; on the classes of G inside the groups G.2; coincide. Furthermore, if G.2; has n; conjugacy classes
then an action 7; that is a product of f; disjoint transpositions leads to a character table candidate for
G.2? that has 2n; — 3 f; classes, so also the f; must be compatible.

Taking the “inner” classes, i.e., the orbit sums of the classes inside G under the 7;, plus the union
of the m;-orbits of the classes of G.2;\ G gives a possibility for the classes of H. Furthermore, the
power maps of the groups G.2; determine the power maps of the candidate table constructed this way.

Concerning the computation of the irreducible characters of H, we consider also the case of p-
modular characters tables, where we assume that the ordinary character table of H is already known
and the only task is to compute the irreducible p-modular Brauer characters.

Let x be an irreducible (p-modular Brauer) character of G. By the facts that are listed in Sec-
tion 2.2.7, there are three possibilities.

1. Iy(x) = G; then x* is irreducible.

2. Iy(x) =G.2;forioneof 1,2, 3; then I52,(x) = G.2; for this i, so) extends to G.2;; none of
these extensions extends to H (because otherwise ¥ would be invariant in H), so they induce
irreducible characters of H.

3. Iu(x) = H; then yx extends to each of the three groups G.2;, and either all these extensions
induce the same character of H (which vanishes on H \ G) or they are invariant in H and thus
extend to H.

In the latter part of case 3. (except if p = 2), the problem is to combine the values of six irreducible
characters of the groups G.2; to four characters of H. This yields essentially two choices, and we try
to exclude one possibility by forming scalar products with the 2-nd symmetrizations of the known
irreducibles. If several possibilities remain then we get several possible tables.

Computations with the GAP Character Table Library 53

So we end up with a list of possible character tables of H. The first step is to specify a list of
possible triples (7, T, 3), using the table automorphisms of the groups G.2;; this can be done us-
ing the GAP function PossibleActionsForTypeGV4 (CTbILib: PossibleActionsForTypeGV4).
Then the GAP function PossibleCharacterTables0fTypeGV4 (CTbILib: PossibleCharacterTa-
blesOfTypeGV4) can be used for computing the character table candidates for each given triple of
permutations; it may of course happen that some triples of automorphisms are excluded in this second
step.

For examples, see Section 2.6.

2.3.4 Character Tables of Groups of the Structure 2°.G (August 2005)

Let G be a finite group, and H be a central extension of G by a Klein four group Z = (z;,22); set
73 =z122 and Z; = (z;), for 1 <i < 3. We assume that the ordinary character tables of the three factor
groups 2,.G = H/Z; of H are known, as well as the class fusions from these groups to G. The idea
behind the method described in this section is that in this situation, there are only few possibilities for
the ordinary character table of H.

H H/Z,
H—H/Z,— G

Zi Zs H/Zs

Namely, the irreducible (p-modular) characters of H are exactly the inflations of the irreducible
(p-modular) characters of the three factor groups H/Z;. (Note that for any noncyclic central subgroup
C of H and any y € Irr(H), we have |ker()x)NC| > 1. To see this, let N = ker()). Then clearly
IN| > 1, and x can be regarded as a faithful irreducible character of H/N. If N N C would be trivial
then NC/N = C would be a noncyclic central subgroup of H/N. This cannot happen by [Isa76, Thm.
2.32 (a)], so the statement can be regarded as an obvious refinement of this theorem.) So all we have
to construct is the character table head of H —classes and power maps— and the factor fusions from H
to these groups.

For fixed h € H, we consider the question in which H-classes the elements 4, hz;, hzo, and hz3 lie.
There are three possibilities.

1. The four elements are all conjugate in H. Then in each of the three groups H/Z;, the two
preimages of hZ € H /Z are conjugate.

2. We are not in case 1. but two of the four elements are conjugate in H, i. e., g~'hg = hz; for
some g € H and some i; then g~ ' Az 8 = hz,z; for each j, so the four elements lie in exactly two
H-classes. This implies that for i j, the elements & and hz; are not H-conjugate, so hZ; is not
conjugate to hz;Z; in H/Z; and hZ; is conjugate to hz;,Z; in H/Z;.

3. The four elements are pairwise nonconjugate in H. Then in each of the three groups H/Z;, the
two preimages of hZ € H /Z are nonconjugate.

We observe that the question which case actually applies for 4 € H can be decided from the three
factor fusions from H/Z; to G. So we attempt to construct the table head of H and the three factor

Computations with the GAP Character Table Library 54

fusions from H to the groups H/Z;, as follows. Each class g of G yields either one or two or four
preimage classes in H.

In case 1., we get one preimage class in H, and have no choice for the factor fusions.

In case 2., we get two preimage classes, there is exactly one group H/Z; in which g% has two
preimage classes —which are in bijection with the two preimage classes of H— and for the other two
groups H/Z;, the factor fusions from H map the two classes of H to the unique preimage class of g¢.
(In the following picture, this is shown for i = 1.)

H/Z hZ H/Z hZ H/Z hZ
H/Zl th thZl H/22 hZz H/Z3 hZ3
H h hzy H h hzy H h hzy

In case 3., the three factor fusions are in general not uniquely determined: We get four classes,
which are defined as two pairs of preimages of the two preimages of g in H/Z; and in H/Z, —so we
choose the relevant images in the two factor fusions to H/Z; and H/Z,, respectively. Note that the
class of 4 in H is the unique class that maps to the class of 4Z; in H/Z; and to the class of hZ; in
H/Z,, and so on, and we define four classes of H via the four possible combinations of image classes
in H/Z, and H/Z, (see the picture below).

H/Z H/Z hz
H/Z, H/Z hz1Z
H H h 71 ehzp whzz

Due to the fact that in general we do not know which of the two preimage classes of g¥ in H/Z3
is the class of hZ3, there are in general the following rwo possibilities for the fusion from H to H /Z3.

H/Z hZ H/Z hZ
H/Z3 thz3 H/Z3 N\ hZ3
H h 1 %hzp ehz3 H h shzy “ehzp whzz

This means that we can inflate the irreducible characters of H/Z; and of H/Z, to H but that for
the inflations of those irreducible characters of H/Z3 to H that are not characters of G, the values on
classes where case 3. applies are determined only up to sign.

The GAP function PossibleCharacterTables0fTypeV4G (CTblLib: PossibleCharacterTa-
blesOfTypeV4G) computes the candidates for the table of H from the tables of the groups H/Z; by

Computations with the GAP Character Table Library 55

setting up the character table head of H using the class fusions from H/Z; and H/Z, to G, and then
forming the possible class fusions from H to H /Z5.

If case 3. applies for a class g¢ with g of odd element order then exactly one preimage class
in H has odd element order, and we can identify this class in the groups H/Z;, which resolves
the ambiguity in this situation. More generally, if ¢ = k> holds for some k € G then all preim-
ages of k¥ in H square to the same class of H, so again this class can be identified. In fact
PossibleCharacterTables0fTypeV4G (CTblLib: PossibleCharacterTablesOfTypeV4G) checks
whether the p-th power maps of the candidate table for H and the p-th power map of H/Z3 together
with the fusion candidate form a commutative diagram.

An additional criterion used by PossibleCharacterTablesOfTypeV4G (CTbILib: Possi-
bleCharacterTablesOfTypeV4G) is given by the property that the product of two characters inflated
from H/Z, and H /Z,, respectively, that are not characters of G is a character of H that contains Z3 in
its kernel, so it is checked whether the scalar products of these characters with all characters that are
inflated from H /Zs via the candidate fusion are nonnegative integers.

Once the fusions from H to the groups H/Z; are known, the computation of the irreducible p-
modular characters of H from those of the groups H/Z; is straightforward.

The only open question is why this construction is described in this note. That is, how is it related
to table automorphisms?

The answer is that in several interesting cases, the three subgroups Z, Z,, Z3 are conjugate under
an order three automorphism o, say, of H. In this situation, the three factor groups 2;.G = H/Z;
are isomorphic, and we can describe the input tables and fusions by the character table of 2;.G, the
factor fusion from this group to G, and the automorphism ¢’ of G that is induced by 6. Assume that
0(Z1) = Z holds, and choose h € H. Then 6(hZ,) = 6(h)Z, is mapped to o (h)Z = 6'(hZ) under
the factor fusion from 2,.G to G. Let us start with the character table of 2;.G, and fix the class fusion
to the character table of G. We may choose the identity map as isomorphism from the table of 2{.G to
the tables of 2,.G and 23.G, which implies that the class of 47 is identified with the class of hZ; and
in turn the class fusion from the table of 2,.G to that of G can be chosen as the class fusion from the
table of 2;.G followed by the permutation of classes of G induced by ¢’; analogously, the fusion from
the table of 23.G is obtained by applying this permutation twice to the class fusion from the table of
21.G.

For examples, see Section 2.7.

2.3.5 p-Modular Tables of Extensions by p-singular Automorphisms

Let G be a finite group, and H be an upward extension of G by an automorphism of prime order
p, say. H induces a table automorphism of the p-modular character table of G; let & denote the
corresponding permutation of classes of G. The columns of the p-modular character table of H are
given by the orbits of 7, and the irreducible Brauer characters of H are exactly the orbit sums of 7 on
the irreducible Brauer characters of G.

Note that for computing the p-modular character table of H from that of G, it is sufficient to know
the orbits of 7 and not 7 itself. Also the ordinary character table of H is not needed, but since GAP
stores Brauer character tables relative to their ordinary tables, we are interested mainly in cases where
the ordinary character tables of G and H and the p-modular character table of G are known. Assuming
that the class fusion between the ordinary tables of G and H is stored on the table of G, the orbits of
the action of H on the p-regular classes of G can be read off from it.

The GAP function IBrOfExtensionBySingularAutomorphism (CTbILib: IBrOfExtension-
BySingularAutomorphism) can be used to compute the p-modular irreducibles of H.

Computations with the GAP Character Table Library 56

For examples, see Section 2.8.

2.3.6 Character Tables of Subdirect Products of Index Two (July 2007)

Let C, denote the cyclic group of order two, let Gi, G, be two finite groups, and for i € {1,2}, let
¢;: G; — C, be an epimorphism with kernel H;. Let G be the subdirect product (pullback) of G| and
G, w.r.t. the epimorphisms ¢;, i.e.,

G={(g1,82) € Gi x G2;01(g1) = P2(g2) }-

The group G has index two in the direct product G| x G,, and G contains H; X H; as a subgroup of
index two.

In the following, we describe how the ordinary (or p-modular) character table of G can be com-
puted from the ordinary (or p-modular) character tables of the groups G; and H;, and the class fusions
from H; to G;.

(For the case that one of the groups G; is a cyclic group of order four, an alternative way to
construct the character table of G is described in Section 2.2.4. For the case that one of the groups
G; acts fixed point freely on the nontrivial irreducible characters of H;, an alternative construction is
described in Section 2.3.1.)

H; -Gy
Y Y
H, xH, -G G x Gy
A A
H; Gy

Each conjugacy class of G is either contained in H; X H, or not. In the former case, let i; € H; and
g € G;\ H;; in particular, (g1,g2) € G because both ¢;(g;) and ¢,(g2) are not the identity. There are
four possibilities.

L IR =h$" and BS> = h$” then (hy,ha)"1 M2 = (hy,hy)1* G2 holds, hence this class is equal to
(h1,h2)°.

2. If hfl %hlG‘ and hgzyéhzcz then the four H; x H)-classes with the representatives (hj,h,),
(A", hy), (h1,h5?), and (h$',h5?) fall into two G-classes, where (hy,hy) is G-conjugate with
(h3',h§?), and (h§', hy) is G-conjugate with (hy,h5?).

3. If h?‘ = h?' and hg Z#hgz then the two H; x Hj-classes with the representatives (h;,h;) and
(hy,h5?) fuse in G; note that there is & € Cg, (h1) \ Hi, s0 (g1,82) € G holds.

4. The case of h{l’ #hlGl and hgl 2= hgz is analogous to case 3.

Computations with the GAP Character Table Library 57

It remains to deal with the G-classes that are not contained in H; X H,. Each such class is in fact
a conjugacy class of G| X G;. Note that two elements g1,g> € G| \ H; are Gy-conjugate if and only if
they are Hi-conjugate. (If g} = g for x € Gy \ H; then g‘]g]x = g» holds, and g(x € H;.) This implies
(21,82)97% = (g1,g2)"*H2, and thus this class is equal to (g1,g2)°.

The (ordinary or p-modular) irreducible characters of G are given by the restrictions ¥ of all
those irreducible characters) of G| X G, whose restriction to H; X H, is irreducible, plus the induced
characters (pG, where ¢ runs over all those irreducible characters of H; x H, that do not occur as
restrictions of characters of G| X G».

In other words, no irreducible character of H; x H, has inertia subgroup G inside G| X G,. This
can be seen as follows. Let ¢ be an irreducible character of H| x H,. Then ¢ = @, - ¢», where ¢y, ¢
are irreducible characters of H; x H, with the properties that H, C ker(¢;) and H; C ker(¢,). Sloppy
speaking, ¢; is an irreducible character of H;.

There are four possibilities.

1. If @ extends to G and @, extends to G, then @ extends to G, so @ has inertia subgroup G x G,.

2. If @ does not extend to G and @, does not extend to G, then ¢ < is irreducible, so ¢ has
inertia subgroup H, x H,.

3. If ¢, extends to G and ¢, does not extend to G, then ¢ extends to G| x Hj but not to G| X Go,
so @ has inertia subgroup G| x Hj.

4. The case that ¢; does not extend to G| and ¢, extends to G is analogous to case 3, ¢ has inertia
subgroup H; x G.

For examples, see Section 2.9.

2.4 Examples for the Type M.G.A

2.4.1 Character Tables of Dihedral Groups

Let n = 2% . m where k is a nonnegative integer and m is an odd integer, and consider the dihedral group
D»,, of order 2n. Let N denote the derived subgroup of Dy,,.

If k = 0 then Dy, has the structure M.G.A, with M = N and G the trivial group, and A a cyclic
group of order two that inverts each element of N and hence acts fixed-point freely on N. The smallest
nontrivial example is of course that of Dg = S3.

Example
gap> tblMG:= CharacterTable("Cyclic", 3);;
gap> tblG:= CharacterTable("Cyclic", 1);;
gap> tblGA:= CharacterTable("Cyclic", 2);;
gap> StoreFusion(tblMG, [1, 1, 1], tblG);

gap> StoreFusion(tblG, [1], tblGA);

gap> elms:= Elements(Automorphisms0fTable(tblMG));

[O, (2,3) 1]

gap> orbs:= [[1], [2, 311;;

gap> new:= PossibleCharacterTables0fTypeMGA(tblMG, tblG, tblGA, orbs,
> "S3");

[rec(MGfusMGA := [1, 2, 2], table := CharacterTable("S3")) 1]
gap> Display(new[1].table);

S3

Computations with the GAP Character Table Library 58

la 3a 2a
2P 1la 3a 1la
3P la la 2a

el o]
w N =
N~ -
e
1
=

If k£ > 0 then Dy, has the structure M.G.A, with M = N and G a cyclic group of order two such
that M.G is cyclic, and A is a cyclic group of order two that inverts each element of M.G and hence
acts fixed-point freely on M.G. The smallest nontrivial example is of course that of Dg.

Example
gap> tblMG:= CharacterTable("Cyclic", 4);;
gap> tblG:= CharacterTable("Cyclic", 2);;
gap> tblGA:= CharacterTable("272");;
gap> OrdersClassRepresentatives(tblMG);
[1, 4, 2, 4]
gap> StoreFusion(tbIMG, [1, 2, 1, 2], tblG);
gap> StoreFusion(tblG, [1, 2], tblGA);
gap> elms:= Elements(AutomorphismsO0fTable(tblMG));
[O, (2,4)]
gap> orbs:= Orbits(Group(elms[2]), [1 ..41);;
gap> new:= PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, orbs,
> "order8");
[rec(MGfusMGA := [1, 2, 3, 21,
table := CharacterTable("order8")),
rec(MGfusMGA := [1, 2, 3, 2 1],
table := CharacterTable("order8")) 1]

Here we get two possible tables, which are the character tables of the dihedral and the quaternion
group of order eight, respectively.
Example
gap> List(new, x -> OrdersClassRepresentatives(x.table));
[[1,4,2,2,27,[1, 4,2,4417]
gap> Display(new[1].table);
order8

2 3 2 3 2 2

la 4a 2a 2b 2c
2P 1a 2a la la 1la

X.1 11 1 1 1
X.2 11 1-1-1
X.3 1 -1 1 1-1
X.4 1 -1 1-1 1
X.5 2 -2

Computations with the GAP Character Table Library

For each k > 1 and m = 1, we get two possible tables this way, that of the dihedral group of order

2%+1 and that of the generalized quaternion group of order 2€+1,

24.2 An M.G.A Type Example with M noncentral in M.G (May 2004)

The Sylow 7 normalizer in the symmetric group S;, has the structure 7 : 6 X Ss, its intersection N with

the alternating group A5 is of index two, it has the structure (7 : 3 x As) : 2.

Let M denote the normal subgroup of order 7 in N, let G denote the normal subgroup of the type
3XAsin F=N/M =3 xSs,and A = F /G, the cyclic group of order two. Then N has the structure
M.G.A, where A acts fixed-point freely on the irreducible characters of M.G =7 : 3 X As that do not
contain M in their kernels, hence the character table of N is determined by the character tables of M.G

and F', and the action of A on M.G.
Note that in this example, the group M is not central in M.G, unlike in most of our examples.

Example

gap> tblMG:= CharacterTable("7:3") * CharacterTable("A5");;
gap> nsg:= ClassPositions0fNormalSubgroups(tblMG);
rct+1, 01,6 ..111,01..5671,[1,6..211, [1..15],
[1..251]1]
gap> List(nsg, x -> Sum(SizesConjugacyClasses(tbIMG){ x }));
[1, 7, 60, 21, 420, 1260]
gap> tblG:= tblMG / nsg[2];;
gap> tblGA:= CharacterTable("Cyclic", 3) * CharacterTable("A5.2");;
gap> GfusGA:= PossibleClassFusions(tblG, tblGA);
tf1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18],
[1, 2, 3, 4, 4, 15, 16, 17, 18, 18, 8, 9, 10, 11, 11 1 1]
gap> reps:= RepresentativesFusions(Group(()), GfusGA, tblGA);
(f1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18]]
gap> StoreFusion(tblG, reps[1], tblGA);
gap> acts:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
cfcf+1,0231,03831, 04,51, 0[s6, 111, [7,127, [8, 131,
(9,151, [10,14], [16], (171, [18], [19, 20 1],
(2171, [2271, [231, [24,25617]]
gap> poss:= PossibleCharacterTablesO0fTypeMGA(tblMG, tblG, tblGA,
> acts[1], "A12N7");
[rec(
MGfusMGA := [1, 2, 3, 4, 4, 5, 6, 7,8, 9,5, 6, 7,9, 8, 10,
11, 12, 13, 13, 14, 15, 16, 17, 17 1],
table := CharacterTable("A12N7")) 1]

Let us compare the result table with the table of the Sylow 7 normalizer in A;.

Computations with the GAP Character Table Library 60

Example

gap> g:= AlternatingGroup(12);;

gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,

> CharacterTable(Normalizer(g, SylowSubgroup(g, 7)))));
true

Since July 2007, an alternative way to construct the character table of N from other character tables
is to exploit its structure as a subdirect product of index two in the group 7 : 6 x Ss, see Section 2.3.6.

Example
gap> tblhl:= CharacterTable("7:3");;
gap> tblgl:= CharacterTable("7:6");;
gap> tblh2:= CharacterTable("A5");;
gap> tblg2:= CharacterTable("A5.2");;
gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblhl, tblgl,
> tblh2, tblg2, "(7:3xA5).2");;
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> subdir.table));
true

For storing the table of N in the GAP Character Table Library, the construction as a subdirect
product is more suitable, since the “auxiliary table” of the direct product 7 : 3 x As need not be stored
in the library.

2.4.3 Atlas Tables of the Type M.G.A

We show the construction of some character tables of groups of the type M.G.A that are contained
in the GAP Character Table Library. Each entry in the following input list contains the names of the
library character tables of M.G, G, G.A, and M.G.A.

First we consider the situation where G is a simple group or a central extension of a simple group
whose character table is shown in the Atlas, and M and A are cyclic groups such that M is central in
M.G.

In the following cases, the character tables are uniquely determined by the input tables. Note that
in each of these cases, |A| and |M| are coprime.

Example

gap> listMGA:= [

> ["3.A6", "A6", "A6.2_1", "3.A6.2_1" 1,
> ["3.A6", "A6", "A6.2_2", "3.A6.2_2" 1,
> ["6.A6", "2.A6", "2.A6.2_1", "6.A6.2_1" 1,
> ["6.A6", "2.A6", "2.A6.2_2", "6.A6.2_2" 1,
> ["3.A7", "AT", "AT.2", "3.A7.2" 1,
> ["6.A7", "2 AT", "2.A7.2", "6.A7.2" 1,
> ["3.L3(4)", "L3(4)", "L3(4).2_2", "3.L3(4).2_2" 1,
> ["3.L3(4)", "L3(4)", "L3(4).2_3", "3.L3(4).2_3" 1,
> ["6.L3(4)", "2.L3(4)", "2.L3(4).2_2", "6.L3(4).2_2" 1,
> ["6.L3(4)", "2.L3(4)", "2.L3(4).2_3", "6.L3(4).2_3" 1,
> ["12_1.1L3(4)", "4_1.1L3(4)", "4_1.1L3(4).2_2", "12_1.1L3(4).2_2" 1],
> ["12_1.L3(4)", "4_1.L3(4)", "4_1.L3(4).2_3", "12_1.L3(4).2_3" 1,
> ["12_2.1L3(4)", "4_2.L3(4)", "4_2.1L3(4).2_2", "12_2.1L3(4).2_2" 1,
> ["12_2.1L3(4)", "4_2.L3(4)", "4_2.L3(4).2_3", "12_2.L3(4).2_3" 1],
> ["3.U03(B)", "u3(s ", "u3(s).2", "3.U3(5).2" 1,

Computations with the GAP Character Table Library

"M22.2", "3.M22.2" ,
"2.M22.2", "6.M22.2" ,
"4 .M22.2", "12.M22.2" ,
"L3(7).2", "3.L3(7).2" ,
"U4(3).2_1", "3_1.U4(3).2_1" ,
"U4(3).2_2°", "3_1.U4(3).2_2°" 1,
"U4(3).2_1", "3_2.U4(3).2_1" ,
"U4(3).2_3’", "3.2.U4(3).2_.3’" 1,

"2.04(3).2_1",
"2.U4(3).2_2°",
"2.0U4(3).2_1",
"2.04(3).2_3"",
"4.U4(3).2_1",
"4.U04(3).2_1",

"6_1.U4(3).2_1"
"6_1.U4(3).2_2°"
"6_2.U4(3).2_1"
"6_2.U4(3).2_3""
"12_1.U4(3).2_1"
"12_2.U4(3).2_1"

-

v e v .

-

[R Ty S W N N S S N S N S [W T [A VT N N N ST SO W
. .

"G2(3).2", "3.G2(3).2" :
"U3(8).2", "3.U3(8).2"

"U3(8).6", "3.U3(8).6"

nJ3.2", "3.J3.2" ,
"U3(11).2", "3.U3(11).2" ,
"McL.2", "3 McL.2" ,
"Q7(3).2", "3.07(3).2" ,
"2.07(3).2", "6.07(3).2" ,
"Ue(2).2", "3.U6(2).2" ,
"2.U6(2).2", "6.U6(2).2" ,
"Suz.2", "3, Suz.2" ,
"2, Suz.2", "6.Suz.2" ,
"ON.2", "3 0N.2" ,
"Fi22.2", "3 Fi22.2" ,
"2 Fi22.2", "G .Fi22.2" ,
"OE6(2).2", "3.2E6(2).2" ,
"2.2E6(2).2", "6.2E6(2).2" ,
"F3+.2", "3 F3+.2" ,

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYV

["3.M22", "M22",

["6.M22", "2.M22",

["12.M22", "4, M22",

["3.L3(7)", "L3(7)",

["3_1.04(3)", "u4a(d",

["3_1.04(3)", "u4a(d",

["3_2.04(3)", "u4a(3d",

["3_2.04(3)", "u4a(3d",

["6_.1.U4(3)", "2.U4(3)",
["6_1.U04(3)", "2.U4(3)",
["6_2.04(3)", "2.U4(3)",
["6_2.04(3)", "2.U4(3)",
["12_1.04(3)", "4.U04(3)",
["12_2.04(3)", "4.U4(3)",
["3.62(3)", "G2(3)",

["3.U3(8)", "u3(@)",

["3.U3(8).3_1", "U3(8).3_1",
["3.J3", "J3",

["3.U3(11)", "Us(11)",
["3.McL", "McL",

["3.07(3)", "o7(3)",

["6.07(3)", "2.07(3)",
["3.U6(2)", "ue(2)",

["6.U6(2)", "2.U6(2)",
["3.Suz", "Suz",

["6.Suz", "2.Suz",

["3.0N", "ON",

["3.Fi22", "Fi22",

["6.Fi22", "2 . Fi22",
["3.2E6(2)", "2E6(2)",
["6.2E6(2)", "2.2E6(2)",
["3.F3+", "F3+",

1;;

61

(We need not consider groups 3.U3(8).6' and 3.U3(8).6/, see Section 2.4.7.)
Note that the groups of the types 12.L3(4).2; and 12,.L3(4).2; have central subgroups of order

six, so we cannot choose G equal to 4;.L3(4) and 4,.L3(4), respectively, in these cases. See Sec-
tion 2.4.4 for the construction of these tables.

Also in the following cases, |A| and |[M| are coprime, we have [M| =3 and |A| = 2. The group
M.G has a central subgroup of the type 2> x 3, and A acts on this group by inverting the elements in

the subgroup of order 3 and by swapping two involutions in the Klein four group.

vV V. V V V

[

L
L
L
]

"(2~2x3).L3(4)",
"(2-2x3) .L3(4)",
"(2~2x3).U6(2)",
"(2-2x3) .2E6(2)",
)

gap> Append(1listMGA, [

Example

"2°2.L3(4)", "2°2.1L3(4).2_2",
"2~2.L3(4)", "2~2.1L3(4).2_3",
"2°2.U6(2)", "2°2.U6(2).2",

"2°2.2E6(2)", "272.2E6(2).2",

"(2~2x3) .L3(4).2_2" 1,
"(2~2x3) .L3(4).2_3" 1,

"(2~2x3) .U6(2) .2"
"(2~2x3) .2E6(2) .2"

1,
1,

Additionally, there are a few cases where A has order two, and G.A has a factor group of the

type 22, and a few cases where M has the type 22 and A is of order three and acts transitively on the

Computations with the GAP Character Table Library 62

involutions in M.

Example
gap> Append(1istMGA, [
> ["3.A6.2_3", "A6.2_3", "A6.272", "3.A6.272" 1,
> ["3.L3(4).2_1", "L3(4).2_1", "L3(4).2~2", "3.L3(4).2"2" 1,
> ["3.1.U4(3).2_2", "U4(3).2_2", "U4(3).(2~2)_{122}",
> "3.1.04(3).(2~2)_{122}" 1,
> ["3.2.U04(3).2_3", "U4(3).2_3", "U4(3).(2~2)_{133}",
> "3.2.U4(3).(272)_{133}" 1,
> ["372.U04(3).2_3°", "3.2.04(3).2_3’", "3_2.U04(3).(2~2)_{133}",
> "3-2.U4(3).(2~2) _{133}" 1,
> ["272.L3(4)", "L3(4D", "L3(4).3", "272.L3(4).3" 1,
> ["(2~2x3).L3(4)", "3.L3(4", "3.L3(4).3", "(2-2x3).L3(4).3" 1,
> ["2-2.L3(4).2_1", "L3(4).2_1", "L3(4).6", "2~2.13(4).6" 1,
> ["272.8z(8)", "sz(8)", "S5z (8).3", "2~2.8z(8).3" 1,
> ["2~2.U6(2)", "ue(2)", "U6(2).3", "2°2.U6(2).3" 1,
> ["(272x3).U6(2)", "3.U6(2)", "3.U6(2).3", "(2°2x3).U6(2).3" 1,
> ["2~2.08+(2)", "og+(2)", "08+(2).3", "2~2.08+(2).3" 1,
> ["2°2.08+(3)", "08+(3)", "08+(3).3", "2°2.08+(3).3" 1,
> ["272.2E6(2)", "2E6(2)", "2E6(2).3", "272.2E6(2).3" 1,
>1);

The constructions of the character tables of groups of the types 4,.L3(4).23, 12,.13(4).23,
121.U4(3).2), and 12,.U4(3).2) is described in Section 2.4.5 and 2.4.6, in these cases the GAP func-
tions return several possible tables.

The construction of the various character table of groups of the types 4;.L3(4).2% and 4,.13(4).2?
are described in Section 2.6.7.

The following function takes the ordinary character tables of the groups M.G, G, and G.A, a
string to be used as the Identifier (Reference: Identifier for tables of marks) value of the char-
acter table of M.G.A, and the character table of M.G.A that is contained in the GAP Character Table
Library; the function first computes the possible actions of G.A on the classes of M.G, using the func-
tion PossibleActionsForTypeMGA (CTbILib: PossibleActionsForTypeMGA), then computes the
union of possible character tables for these actions, and then representatives up to permutation equiv-
alence; if there is only one solution then the result table is compared with the library table.

Example
gap> ConstructOrdinaryMGATable:= function(tblMG, tblG, tblGA, name, 1ib)

trans:= TransformingPermutationsCharacterTables(poss[1].table,
1lib);

> local acts, poss, trans;

>

> acts:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
> poss:= Concatenation(List(acts, pi ->

> PossibleCharacterTables0fTypeMGA(tblMG, tblG, tblGA, pi,
> name)));

> poss:= RepresentativesCharacterTables(poss);

> if Length(poss) = 1 then

> # Compare the computed table with the library table.
> if not IsCharacterTable(1lib) then

> List(poss, x -> AutomorphismsOfTable(x.table));
> Print("#I no library table for ", name, "\n");

> else

>

>

Computations with the GAP Character Table Library 63

> if not IsRecord(trans) then

> Print("#E computed table and library table for ", name,
> " differ\n");

> fi;

> # Compare the computed fusion with the stored one.

> if OnTuples(poss[1].MGfusMGA, trans.columns)

> <> GetFusionMap(tblMG, 1ib) then

> Print("#E computed and stored fusion for ", name,

> " differ\n");

> fi;

> fi;

> elif Length(poss) = 0O then

> Print("#E no solution for ", name, "\n");

> else

> Print("#E ", Length(poss), " possibilities for ", name, "\n");
> fi;

> return poss;

> end;;

The following function takes the ordinary character tables of the groups M.G, G.A, and M.G.A,
and tries to construct the p-modular character tables of M.G.A from the p-modular character tables of
the first two of these tables, for all prime divisors p of the order of M.G.A. Note that the tables of G
are not needed in the construction, only the class fusions from M.G to M.G.A and from M.G.A to G.A

must be stored.

Example
gap> ConstructModularMGATables:= function(tblMG, tblGA, ordtblMGA)
local name, poss, p, modtblMG, modtblGA, modtblMGA, modlib, trans;

Identifier(ordtblMGA);
poss:= [];
for p in PrimeDivisors(Size(ordtblMGA)) do
modtblMG := tblMG mod p;
modtblGA := tblGA mod p;
if ForAll([modtblMG, modtblGA], IsCharacterTable) then
modtblMGA:= BrauerTableOfTypeMGA(modtblMG, modtblGA, ordtblMGA);
Add(poss, modtblMGA);
modlib:= ordtblMGA mod p;
if IsCharacterTable(modlib) then
trans:= TransformingPermutationsCharacterTables(modtblMGA.table,
modlib);
if not IsRecord(trans) then
Print("#E computed table and library table for ", name,
"mod ", p, " differ\n");

name:

fi;
else

Automorphisms0fTable (modtblMGA.table);

Print("#I no library table for ", name, " mod ", p, "\n");
fi;

else
Print("#I not all input tables for ", name, " mod ", p,
" available\n");

VVVVVVVVVVVVVVVVVYVVYVVVVYVYVYV

fi;

Computations with the GAP Character Table Library 64

od;

return poss;
end;;

vV V V V

Now we run the constructions for the cases in the list. Note that in order to avoid conflicts of the
class fusions that arise in the construction with the class fusions that are already stored on the library
tables, we choose identifiers for the result tables that are different from the identifiers of the library
tables.

Example
gap> for input in 1listMGA do
> tblMG := CharacterTable(input[1]);
> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input([4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
> if 1 <> Length(poss) then
> Print("#I ", Length(poss), " possibilities for ", name, "\n");
> elif 1ib = fail then
> Print("#I no library table for ", input[4], "\n");
> else
> ConstructModularMGATables(tblMG, tblGA, 1lib);
> fi;
> od;
#I not all input tables for 3.2E6(2).2 mod 2 available
#I not all input tables for 3.2E6(2).2 mod 3 available
#I not all input tables for 3.2E6(2).2 mod 5 available
#I not all input tables for 3.2E6(2).2 mod 7 available
#I not all input tables for 3.2E6(2).2 mod 11 available
#I not all input tables for 3.2E6(2).2 mod 13 available
#I not all input tables for 3.2E6(2).2 mod 17 available
#I not all input tables for 3.2E6(2).2 mod 19 available
#I not all input tables for 6.2E6(2).2 mod 2 available
#I not all input tables for 6.2E6(2).2 mod 3 available
#I not all input tables for 6.2E6(2).2 mod 5 available
#I not all input tables for 6.2E6(2).2 mod 7 available
#I not all input tables for 6.2E6(2).2 mod 11 available
#I not all input tables for 6.2E6(2).2 mod 13 available
#I not all input tables for 6.2E6(2).2 mod 17 available
#I not all input tables for 6.2E6(2).2 mod 19 available
#I not all input tables for 3.F3+.2 mod 2 available
#I not all input tables for 3.F3+.2 mod 3 available
#I not all input tables for 3.F3+.2 mod 5 available
#I not all input tables for 3.F3+.2 mod 7 available
#I not all input tables for 3.F3+.2 mod 13 available
#I not all input tables for 3.F3+.2 mod 17 available
#I not all input tables for 3.F3+.2 mod 29 available
#I not all input tables for (272x3).2E6(2).2 mod 2 available
#I not all input tables for (272x3).2E6(2).2 mod 3 available
#I not all input tables for (272x3).2E6(2).2 mod 5 available
#I not all input tables for (2°2x3).2E6(2).2 mod 7 available

Computations with the GAP Character Table Library 65

#I not all input tables for (27°2x3).2E6(2).2 mod 11 available

#I not all input tables for (27°2x3).2E6(2).2 mod 13 available

#I not all input tables for (272x3).2E6(2).2 mod 17 available

#I not all input tables for (272x3).2E6(2).2 mod 19 available

#I not all input tables for 372.U4(3).(2°2)_{133} mod 2 available
#I not all input tables for 372.U4(3).(2°2)_{133} mod 5 available
#I not all input tables for 372.U4(3).(272)_{133} mod 7 available
#I not all input tables for 2°2.08+(3).3 mod 5 available

#I not all input tables for 272.08+(3).3 mod 7 available

#I not all input tables for 272.08+(3).3 mod 13 available

#I not all input tables for 272.2E6(2).3 mod 2 available

#I not all input tables for 272.2E6(2).3 mod 3 available

#I not all input tables for 2°2.2E6(2).3 mod 5 available

#I not all input tables for 272.2E6(2).3 mod 7 available

#I not all input tables for 272.2E6(2).3 mod 11 available

#I not all input tables for 272.2E6(2).3 mod 13 available

#I not all input tables for 272.2E6(2).3 mod 17 available

#I not all input tables for 272.2E6(2).3 mod 19 available

We do not get any unexpected output, so the character tables in question are determined by the
inputs.

Alternative constructions of the character tables of 3.44.22, 3.L3(4).22, and 3,.U4(3).(2?)133 can
be found in Section 2.6.2.

2.44 More Atlas Tables of the Type M.G.A

In the following situations, we have |A| = 2, and |M| is a multiple of 2. The result turns out to be
unique up to isoclinism, see Section 2.3.1.

First, there are some cases where the centre of M.G is a cyclic group of order four, and |M| = 2
holds.

Example

gap> 1listMGA2:= [

> ["4_1.L3(4)", "2.L3(4)", "2.1L3(4).2_1", "4_1.13(4).2_1" 1,
> ["4_1.L3(4)", "2.L3(4)", "2.L3(4).2_2", "4_1.13(4).2_2" 1],
> ["4_2.1L3(4)", "2.L3(4)", "2.L3(4).2_1", "4_2.L3(4).2_1" 1,
> ["4.M22", "2.M22", "2.M22.2", "4 .M22.2" 1,
> ["4.U04(3)", "2.U4(3)", "2.U4(3).2_2", "4.U4(3).2_2" 1,
> ["4.04(3)", "2.04(3)", "2.U4(3).2_3", "4.04(3).2_3" 1,
> 155

Note that the groups 4;.L3(4).23 and 4,.L3(4).2, and their isoclinic variants have centres of or-
der four, so they do not appear here. The construction of the character table of 4,.L3(4).23 is more
involved, it is described in Section 2.4.5.

Also in the following cases, we have |[M| = 2, but the situation is different because M.G has a
central subgroup of the type 2 containing a unique subgroup of order 2 that is central in M.G.A.

Example
gap> Append(listMGA2, [
> ["2~2.L3(4)", "2.1L3(4)", "2.13(4).2_2", "2-2.13(4).2_2" 1],
> ["2~2.L3(4)", "2.L3(4)", "2.L3(4).2_3", "2~2.1L3(4).2_3"],

> ["272.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2"2)_{123}", "272.L3(4).2~2"],

Computations with the GAP Character Table Library 66

> ["272.08+(2)", ".08+(2)", " .08+(2).2", "2-~2.08+(2).2" 1,
> ["2~2.U6(2)", "2.U6(2)", "2.U6(2).2", "2-2.U6(2).2" 1,
> ["22.2E6(2)", "2 .2E6(2)", "2 . 2E6(2).2", "2~2.2E6(2).2" 1,
>1);

Next there are two constructions for G = 6.L3(4), with |M| = 12 and |A| = 2. Note that the groups
124.L3(4).2; and 12,.L3(4).2, have central subgroups of the order six, so we cannot use the factor
groups 41.L3(4).2; and 4,.L3(4).2, respectively, for the constructions.

Example

gap> Append(1listMGA2, [

> ["12_1.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_1.L3(4).2_1" 1],
> ["12_2.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_2.1L3(4).2_1" 1,
>1);

Next there are alternative constructions for tables which have been constructed in Section 2.4.3.
There we had viewed the groups of the structure 12.5.2, for a simple group S, as 3.G.2 with G =4.S.
Here we view these groups as 2.G.2 with G = 6.5, which means that we do not prescribe the 4.5.2
type factor group. So it is not surprising that we get more than one solution, and that the computation
of the 2-power map of 12.5.2 is more involved. Note that the construction of the character table of
12,.L3(4).23 is more involved, it is described in Section 2.4.5.

Example

gap> Append(1listMGA2, [

> ["12.M22", "6.M22", "6.M22.2", "12.M22.2" 1,
> ["12_1.1L3(4)", "6.L3(4)", "6.L3(4).2_2", "12_1.L3(4).2_2" 1,
["12_1.04(3)", "6_1.04(3)", "6_1.U4(3).2_2", "12_1.U4(3).2_2"],
["12_2.04(3)", "6_2.U4(3)", "6_2.U4(3).2_3", "12_2.U4(3).2_3"],
1)

vV V V

Finally, there are alternative constructions for the cases where the group M.G has a central sub-
group of the type 2> x 3, and A acts on this group by inverting the elements in the subgroup of order 3
and by swapping two involutions in the Klein four group.

Example
gap> Append(1listMGA2, [
> ["(2-2x3).L3(4)", "6.L3(4", "6.L3(4).2_2", "(2~2x3).L3(4).2_2"],
> ["(2~2x3).L3(4)", "6.L3(4)", "6.L3(4).2_3", "(2~2x3).L3(4).2_3" 1,
> ["(2~2x3).U6(2)", "6.U6(2)", "6.U6(2).2", "(272x3) .U6(2) .2" 1,
> ["(272x3).2E6(2)", "6.2E6(2)", "6.2E6(2).2", "(272x3).2E6(2).2" 1],
>1);

Now we run the constructions for the cases in the list.
Example

gap> for input in 1istMGA2 do

> tblMG := CharacterTable(input[1]);

> tblG := CharacterTable(input[2]);

> tblGA := CharacterTable(input[3]);

> name := Concatenation("new", input([4]);

> 1lib := CharacterTable(input[4]);

> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, 1lib);

V VVVVVVVVVVYVVVVYVYV

H OH OH HOH HHHHHEHHHEHHEHHEHEHHEHHEHHHEHHEHHE RS
HHHHHHHHHHHHAHEOEOD@ODODEEHAHAHHAHHAHAHAHAHHEMMEMEME @M

Computations with the GAP Character Table Library

if Length(poss) = 2 then
iso:= CharacterTableIsoclinic(poss[1].table);
if IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
iso)) then
Unbind(poss[2]);

fi;
elif Length(poss) = 1 then

Print("#I unique up to permutation equivalence: ", name, "\n");
fi;
if 1 <> Length(poss) then

Print("#I ", Length(poss), " possibilities for ", name, "\n");

elif 1lib = fail then
Print("#I no library table for ", input[4], "\n");
else
ConstructModularMGATables(tblMG, tblGA, 1lib);
fi;
od;
possibilities for new4_1.L3(4).2_1
possibilities for new4_1.L3(4).2_2
possibilities for new4_2.L3(4).2_1
possibilities for new4.M22.2
possibilities for new4.U4(3).2_2
possibilities for new4.U4(3).2_3
unique up to permutation equivalence: new2°2.L3(4).2_2
unique up to permutation equivalence: new2~2.L3(4).2_3
unique up to permutation equivalence: new2"2.L3(4).2°2
unique up to permutation equivalence: new2~2.08+(2).2
unique up to permutation equivalence: new2°2.U6(2).2
unique up to permutation equivalence: new2~2.2E6(2).2
not all input tables for 272.2E6(2).2 mod 2 available
not all input tables for 272.2E6(2).2 mod 3 available
not all input tables for 2°2.2E6(2).2 mod 5 available
2
1
1

NN NNDDNDN

not all input tables for 2°2.2E6(2).2 mod 7 available
possibilities for newl12_1.L3(4).2_

possibilities for newl2_2.L3(4).2_

possibilities for newl2.M22.2

possibilities for newl2_1.L3(4).2_2

possibilities for newl2_1.U4(3).2_2

possibilities for newl2_2.U4(3).2_3

unique up to permutation equivalence: new(2~2x3).L3(4).2_2
unique up to permutation equivalence: new(272x3).L3(4).2_3
unique up to permutation equivalence: new(272x3).U6(2).2
unique up to permutation equivalence: new(2°2x3).2E6(2).2
not all input tables for (2°2x3).2E6(2).2 mod 2 available
not all input tables for (2°2x3).2E6(2).2 mod 3 available
not all input tables for (272x3).2E6(2).2 mod 5 available
not all input tables for (272x3).2E6(2).2 mod 7 available
not all input tables for (272x3).2E6(2).
not all input tables for (2°2x3).2E6(2).
not all input tables for (2°2x3).2E6(2).
not all input tables for (272x3).2E6(2).

NN NDNDDNDN

mod 11 available
mod 13 available
mod 17 available
mod 19 available

N NNNNDDNDDN

67

Computations with the GAP Character Table Library 68

Again, we do not get any unexpected output, so the character tables in question are determined up
to isoclinism by the inputs.

2.4.5 The Character Tables of 4,.13(4).23 and 12,.L3(4).23

In the construction of the character table of M.G.A = 4,.L3(4).23 from the tables of M.G = 4,.L3(4)
and G.A = 2.L3(4).23, the action of A on the classes of M.G is uniquely determined, but we get four
possible character tables.

Example
gap> tblMG := CharacterTable("4_2.L3(4)");;
gap> tblG := CharacterTable("2.L3(4)");;
gap> tblGA := CharacterTable("2.L3(4).2_3");;
gap> name := "new4_2.L3(4).2_3";;
gap> lib := CharacterTable("4_2.L3(4).2_3");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
#E 4 possibilities for new4_2.L3(4).2_3
[rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3")),
rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.13(4).2_3")),
rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.1L3(4).2_3")),
rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3")) 1]

The centre of 4,.L3(4) is inverted by the action of the outer automorphism, so the existence of
two possible tables can be expected because two isoclinic groups of the type 4,.L3(4).23 exist, see
Section 2.2.6.

Indeed the result consists of two pairs of isoclinic tables, so we have to decide which pair of tables
belongs to the groups of the type 4,.L3(4).23.

Example
gap> IsRecord(TransformingPermutationsCEaracterTables(poss[1] .table,
> CharacterTableIsoclinic(poss[4].table)));
true
gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> CharacterTableIsoclinic(poss[3].table)));
true

The possible tables differ only w.r.t. the 2-power map and perhaps the element orders. The Atlas
prints the table of the split extension of M.G, this table is one of the first two possibilities.

Computations with the GAP Character Table Library 69

Example
gap> List(poss, x -> PowerMap(x.table, 2));
rrfs 3,11, 3, 6,38, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13 1],
[+ 3,1, 1, 3, 6,8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13 1],
[1, 3,1, 1, 3, 6,8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 3, 3, 8, 8, 9, 9, 11, 11, 18, 18, 15, 15 1],
[1,3,1,1, 3,6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 3, 3, 8, 8, 11, 11, 9, 9, 18, 18, 15, 15] 1]

The 2-power map is not determined by the irreducible characters (and by the 2-power map of the
factor group 2.L3(4).23). We determine this map using the embedding of 4,.L3(4).23 into 4.U4(3).23.
Note that L3(4).23 is a maximal subgroup of Uy (3).23 (see [CCNT85, p. 52]), and that the subgroup
L3(4) of Us(3) lifts to 4,.L3(4) in 4.U4(3) because no embedding of L3(4), 2.L3(4), or 4;.L3(4) into
4.U4(3) is possible.

Example
gap> PossiblePowerMaps(poss[1].table, 2);
rrai 3,1,1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13],
[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13]]
gap> t:= CharacterTable("4.U4(3)");;
gap> List(["L3(4)", "2.L3(4)", "4_1.L3(4)", "4_2.13(4)"], name ->
> Length(PossibleClassFusions(CharacterTable(name), t)));
[0, 0, 0, 41

So the split extension 4,.L3(4).23 of 4,.L3(4) is a subgroup of the split extension 4.U(3).23 of

4.U4(3), and only one of the two possible tables of 4,.L3(4).23 admits a class fusion into the Atlas
table of 4.U3(4).23; the construction of the latter table is shown in Section 2.4.3.
Example
gap> t2:= CharacterTable("4.U4(3).2_3");;
gap> List(poss, x -> Length(PossibleClassFusions(x.table, t2)));
[0, 16, 0, 01

I do not know a character theoretic argument that would disprove the existence of a group whose
character table is the other candidate (or its isoclinic variant). For example, the table passes the tests
from Section 2.4.15.

(It is straightforward to compute all extensions of 4,.L3(4) by an automorphism of order two. The
extensions with 34 conjugacy classes belong to the second candidate and its isoclinic variant.)

The correct table is the one that is contained in the GAP Character Table Library.
Example
gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> 1ib) J;

true

gap> ConstructModularMGATables(tblMG, tblGA, lib);;

In the construction of the character table of 12;.L3(4).23, the same ambiguity arises. We resolve it
using the fact that 4,.L3(4).23 occurs as a factor group, modulo the unique normal subgroup of order
three.

Computations with the GAP Character Table Library 70

Example
gap> tblMG := CharacterTable("12_2.1L3(4)");;
gap> tblG := CharacterTable("6.L3(4)");;
gap> tblGA := CharacterTable("6.L3(4).2_3");;
gap> name := "newl2_2.L3(4).2_3";;
gap> lib := CharacterTable("12_2.L3(4).2_3");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, 1lib);;

#E 4 possibilities for newl2_2.L3(4).2_3
gap> Length(poss);

4

gap> nsg:= ClassPositions0fNormalSubgroups(poss[1].table);

tf11, 0,531, 01,71, 01,4..73,[1,3..71,
[1..7]1,[1..501, [1..621]

gap> List(nsg, x -> Sum(SizesConjugacyClasses(poss[l].table){ x }));
[1, 3, 2, 4, 6, 12, 241920, 483840]

gap> factlib:= CharacterTable("4_2.L3(4).2_3");;

gap> List(poss, x -> IsRecord(TransformingPermutationsCharacterTables (
> x.table / [1, 51, factlib)));

[false, true, false, false]

gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,

> lib));

true

gap> ConstructModularMGATables(tblMG, tblGA, lib);;

2.4.6 The Character Tables of 12,.U4(3).2} and 12,.U4(3).2} (December 2015)

In the construction of the character table of M.G.A = 12;.U4(3).2), from the tables of M.G = 12,.U4(3)
and G.A = 2.U4(3).2), the action of A on the classes of M.G is uniquely determined, but we get two
possible character tables.

(Note that the groups 2.U4(3).2, and 2.U4(3).2), are isomorphic, but we have to take the latter one

because the stored factor fusion from 12;.U4(3) to 2.U4(3) must be combined with the class fusion
from 2.U4(3) to 2.U4(3).2); using the library table of 2.U4(3).2, would be technically more involved.)

Example
gap> tblMG := CharacterTable("12_1.U4(3)");;
gap> tblG := CharacterTable("2.U4(3)");;
gap> tblGA := CharacterTable("2.U4(3).2_2°");;
gap> name := "newl2_1.U4(3).2_2°";;
gap> 1lib := CharacterTable("12_1.U04(3).2_2°");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);;
#E 2 possibilities for newl2_1.U4(3).2_2’
gap> ConstructModularMGATables(tblMG, tblGA, 1ib);;

This is not surprising, the two tables involve the two isoclinic variants of 4.U4(3).25 (which is

isomorphic with 4.U4(3).2,) as tables of factor groups. The irreducible characters of the two tables
are equal, only the 2-power map and the element orders are different.

Example

gap> Irr(poss[1].table) = Irr(poss[2].table);

true

gap> iso:= CharacterTableIsoclinic(poss[1].table);;

gap> TransformingPermutationsCharacterTables(iso, poss[2].table);

Computations with the GAP Character Table Library 71

rec(columns := (), group := <permutation group with 5 generators>,
rows := ())

The same phenomenon occurs in the construction of the character table of M.G.A = 12,.U4(3).2},
from the tables of M.G = 12,.U4(3) and G.A = 2.U4(3).25.

Example
gap> tblMG := CharacterTable("12_2.U4(3)");;
gap> tblG := CharacterTable("2.U4(3)");;
gap> tblGA := CharacterTable("2.U4(3).2_.3’");;
gap> name := "newl2_2.U4(3).2.3°";;
gap> 1lib := CharacterTable("12_2.U4(3).2_3°");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);;

#E 2 possibilities for newl2_2.U4(3).2_3’

gap> ConstructModularMGATables(tblMG, tblGA, lib);;

gap> iso:= CharacterTableIsoclinic(poss[1].table);;

gap> TransformingPermutationsCharacterTables(iso, poss[2].table);

rec(columns := (), group := <permutation group with 8 generators>,
rows := ())

2.4.7 Groups of the Structures 3.U3(8).3; and 3.U3(8).6 (February 2017)

The list of Improvements to the Atlas of Finite Groups [BN95] states the following, concerning the
group G = Us(8).

“There is a unique group of type 3.G.6 which contains the group of type 3.G.3 shown. But the
(unique) groups of type 3.G.6" and 3.G.6” contain not this 3.G.3 but its isoclines.”

In this section we will show that this statement is not correct, in the sense that the three isoclinic
variants of groups of the structure 3.U3(8).3 are in fact isomorphic.

As a consequence, there is a unique group of the structure 3.U3(8).6, up to isomorphism. Note
that otherwise the strange situation of nonisomorphic groups 3.G.6, 3.G.6/, and 3.G.6” would happen,
which would be also not isoclinic because their centres are trivial.

A group of the structure 3.U3(8).31 can be obtained as the semidirect product G, say, of the group
SU(3,8) with the automorphism of the field with 64 elements that raises each field element to its
fourth power. Note that the semidirect product of SU(3,8) with the field automorphism that squares
each field element yields a group of the structure 3.U3(8).6.

First we create a permutation representation of G.

Example
gap> s:= SU(3,8);;

gap> gens:= GeneratorsO0fGroup(s);;

gap> imgsl:= List(gens, m -> List(m, v -> List(v, x -> x74)));;
gap> imgs2:= List(gens, m -> List(m, v -> List(v, x -> x716)));;
gap> f:= GF(64);;

gap> mats:= List(gens, m -> IdentityMat(9, f));;

gap> for i in [1 .. Length(gens)] do

> mats[il{ [1 .. 31 H [1 .. 3] }:= gens[il;
> mats[il{ [4 .. 61 }{ [4 .. 61 }:= imgs1[il;
> mats[il{ [7 .. 91 H [7 .. 91 }:= imgs2[i];
> od;

gap> fieldaut:= NullMat(9, 9, f);;
gap> fieldaut{ [4 .. 6 1 }{ [1 .. 3] }:= IdentityMat(3, f);;

Computations with the GAP Character Table Library 72

gap> fieldaut{ [7 .. 91 Y{ [4 .. 6] }:= IdentityMat(3, f);;
gap> fieldaut{ [1 .. 31 M [7 .. 91 }:= IdentityMat(3, f)
gap> v:= [1, 0, 0, 1, 0, 0, 1, 0, O] * One(£);;

gap> g:= Group(Concatenation(mats, [fieldaut]));;

gap> orb:= Orbit(g, v);;

gap> Length(orb);

32319

gap> act:= Action(g, orb);;

gap> Size(act) = 3 * Size(s);

true

gap> sm:= SmallerDegreePermutationRepresentation(act);;

gap> NrMovedPoints(Image(sm));

4617

gap> g:= Image(sm);;

E3E

The next step is the construction of the central product of G and a cyclic group of order nine, of

the structure 3.(3 x Us(8).31). We could try to create the factor group of 9 x 3.U3(8).3; modulo a
diagonal subgroup of order three, by just applying the / operation. Since GAP would need too much
time for that, and since we know better in which situation we are, we create the desired action directly
on suitable sets on pairs.

Example

gap> c:= CyclicGroup(IsPermGroup, 9);;
gap> dp:= DirectProduct(g, c);;
gap> u:= Image(Embedding(dp, 1));;
gap> c:= Image(Embedding(dp, 2))
gap> c3:= c.173;

(4618,4621,4624) (4619,4622,4625) (4620,4623,4626)

gap> z:= Centre(u);

<permutation group of size 3 with 1 generators>

gap> diag:= Subgroup(dp, [c3 * z.1 1);;

gap> orb:= Orbit(dp, [1, 4618], OnPairs);;

gap> Length(orb);

41553

gap> orb:= Set(orb);;

gap> orbs:= List(OrbitsDomain(diag, orb, OnSets), Set);;
gap> Length(orbs) ;

13851

gap> cp:= Action(dp, orbs, OnSetsSets);;

gap> Size(cp);

148925952

2

The three isoclinic variants of the structure 3.U3(8).3; appear as subgroups of index three in this

central product. (The fourth subgroup of index three is of course a central product of the structure
3.(3xU3(8)).)

Example

gap> der:= DerivedSubgroup(cp);;

gap> Index(cp, der);

9

gap> inter:= IntermediateSubgroups(cp, der).subgroups;;
gap> z:= Centre(cp);;

Computations with the GAP Character Table Library 73

gap> Size(z);

9

gap> inter:= Filtered(inter, x -> not IsSubset(x, z));;
gap> List(inter, Size);

[49641984, 49641984, 49641984]

Finally, we check that the three groups are isomorphic.

Example
gap> IsomorphismGroups(inter[1], inter[2]) <> fail;
true
gap> IsomorphismGroups(inter[1], inter[3]) <> fail;
true
Remark:

An indication that the groups might be isomorphic is the fact that their character tables are equiv-
alent, which can be shown much easier, as follows.

Example
gap> tl1:= CharacterTable("3.U3(8).3_1");;
gap> t2:= CharacterTableIsoclinic(t1, rec(k:= 1));;
gap> t3:= CharacterTableIsoclinic(t1, rec(k:= 2));;

gap> TransformingPermutationsCharacterTables(t1, t2) <> fail;
true
gap> TransformingPermutationsCharacterTables(t1, t3) <> fail;
true

2.4.8 The Character Table of (22 x F4(2)) : 2 < B (March 2003)

The sporadic simple group B contains a maximal subgroup N of the type (22 x F4(2)) : 2, which is the
normalizer of a 2C element X in B (see [CCN 185, p. 217]).

We will see below that the normal Klein four group V in N contains two 2A elements in B. The
2A centralizer in B, a group of the structure 2.2E(2).2, contains maximal subgroups of the type
22 x F4(2). So the two 2A type subgroups Cy, C in V are conjugate in N, and Z = (x) is the centre of

N. —
N

v
C 7

We start with computing the class fusion of the 22 x F4(2) type subgroup U of N into B; in order
to speed this up, we first compute the class fusion of the F4(2) subgroup of U into B (which is unique),
and use it and the stored embedding into U for prescribing an approximation of the desired class
fusion. Additionally, we prescribe (without loss of generality) that the first involution class in V is
mapped to the class 2C of B.

Example
gap> f42:= CharacterTable("F4(2)");;

gap> v4:= CharacterTable("2°2");;

gap> dp:= v4 *x f42;

Computations with the GAP Character Table Library 74

CharacterTable("V4xF4(2)")

gap> b:= CharacterTable("B");;

gap> f42fusb:= PossibleClassFusions(f42, b);;

gap> Length(f42fusb);

1

gap> f42fusdp:= GetFusionMap(f42, dp);;

gap> comp:= CompositionMaps(f42fusb[1], InverseMap(f42fusdp));

(1, 3,3,3,5,6,6, 7,9, 9,9, 9, 14, 14, 13, 13, 10, 14, 14, 12,
14, 17, 15, 18, 22, 22, 22, 22, 26, 26, 22, 22, 27, 27, 28, 31, 31,
39, 39, 36, 36, 33, 33, 39, 39, 35, 41, 42, 47, 47, 49, 49, 49, 58,
58, 56, 56, 66, 66, 66, 66, 58, 58, 66, 66, 69, 69, 60, 72, 72, 75,
79, 79, 81, 81, 85, 86, 83, 83, 91, 91, 94, 94, 104, 104, 109, 109,
116, 116, 114, 114, 132, 132, 140, 140]

gap> v4fusdp:= GetFusionMap(v4, dp);

[1, 96 .. 286 1]

gap> comp[v4fusdp[2]]:= 4;;

gap> dpfusb:= PossibleClassFusions(dp, b, rec(fusionmap:= comp));;

gap> Length(dpfusb);

4

gap> Set(List(dpfusb, x -> x{ v4fusdp }));

[[1, 4,2, 2171

As announced above, we see that V contains two 24 involutions.
Set G=U/Z,M.G=U, and G.A = N/Z. The latter group is the direct product of F4(2).2 and a
cyclic group of order 2. Next we compute the class fusion from G into G.A.

Example
gap> tblG:= dp / v4fusdp{ [1, 2 1 };;

gap> tblMG:= dp;;

gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblGA:= c2 * CharacterTable("F4(2).2");
CharacterTable("C2xF4(2).2")

gap> GfusGA:= PossibleClassFusions(tblG, tblGA);;

gap> Length(GfusGA);

4

gap> Length(RepresentativesFusions(tblG, GfusGA, tblGA));
1

In principle, we have to be careful which of these equivalent maps we choose, since the underlying
symmetries may be broken in the central extension M.G — G, for which we choose the default factor
fusion.

However, in this situation the fusion G into G.A is unique already up to table automorphisms of
the table of G.A, so we are free to choose one map.
Example
gap> Length(RepresentativesFusions(Group(()), GfusGA, tblGA));
1
gap> StoreFusion(tblG, GfusGA[1], tblGA);

The tables involved determine the character table of M.G.A = N uniquely.

Computations with the GAP Character Table Library 75

Example
gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);;

gap> Length(elms);

1

gap> poss:= PossibleCharacterTables0fTypeMGA(tblMG, tblG, tblGA, elms[1],
> "(272xF4(2)):2");;

gap> Length(poss);

1

gap> tblMGA:= poss[1].table;;

Finally, we compare the table we constructed with the one that is contained in the GAP Character
Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(tblMGA,
> CharacterTable("(2°2xF4(2)):2")));

true

2.4.9 The Character Table of 2.(S3 X Fi;.2) < 2.B (March 2003)

The sporadic simple group B contains a maximal subgroup M of type S3 x Fiy.2. In order to compute
the character table of its preimage M in the Schur cover 2.B, we first analyse the structure of M and
then describe the construction of the character table from known character tables.

Let Z denote the centre of 2.B. We start with M = M/Z. Tts class fusion into B is uniquely
determined by the character tables.

Example
gap> s3:= CharacterTable("Dihedral", 6);;
gap> £i222:= CharacterTable("Fi22.2");;
gap> tblMbar:= s3 * £i222;;

gap> b:= CharacterTable("B");;

gap> Mbarfusb:= PossibleClassFusions(tblMbar, b);;
gap> Length(Mbarfusb);

1

The subgroup of type Fip, lifts to the double cover 2.Fiy, (that is, a group that is not a direct
product 2 X Fip;) in 2.B since 2.B admits no class fusion from Fij;.

Example

gap> 2b:= CharacterTable("2.B");;
gap> PossibleClassFusions(CharacterTable("Fi22"), 2b);
[]

So the preimage of Fiy;.2 is one of the two nonisomorphic but isoclinic groups of type 2.Fix.2,
and we have to decide which one really occurs. For that, we consider the subgroup of type 3 x Fiy;.2
in B, which is a 3A centralizer in B. Its preimage has the structure 3 x 2.Fiy;.2 because the preimage of
the central group of order 3 is a cyclic group of order 6 and thus contains a normal complement of the
2.Fiy; type subgroup. And a class fusion into 2.8 is possible only from the direct product containing
the 2.Fiy,.2 group that is printed in the Atlas.

Computations with the GAP Character Table Library 76

Example
gap> c3:= CharacterTable("Cyclic", 3);;
gap> 2fi222:= CharacterTable("2.Fi22.2");;
gap> PossibleClassFusions(c¢3 * CharacterTableIsoclinic(2£fi222), 2b);
[]

Next we note that the involutions in the normal subgroup S of type S5 in M lift to involutions in
2.B.

Example
gap> s3inMbar:= GetFusionMap(s3, tblMbar);
[1, 113 .. 225]

gap> s3inb:= Mbarfusb[1]{ s3inMbar };
[1,6, 2]

gap> 2bfusb:= GetFusionMap(2b, b);;

gap> 2s3in2B:= InverseMap(2bfusb){ s3inb };
[C1,21,0[8,91, 31

gap> CompositionMaps(OrdersClassRepresentatives(2b), 2s3in2B);
(01,21, 03,61, 2]

Thus the preimage S of S contains elements of order 6 but no elements of order 4, which implies
that S is a direct product 2 x S3.

The two complements C;, C; of Z in S are normal in the preimage N of N = S5 x Fiy,, which is
thus of type S3 x 2.Fiy;. However, they are conjugate under the action of 2.Fi»,.2, as no class fusion

from S3 X 2.Fiy,.2 into 2.B is possible.
Example
gap> PossibleClassFusions(s3 * 2fi222, 2b);

L]

(More specifically, the classes of element order 36 in 2.Fi>.2 have centralizer orders 36 and 72,
so their centralizer orders in S3 X 2.Fiy,.2 are 216 and 432; but the centralizers of order 36 elements
in 2.B have centralizer order at most 216.)

Now let us see how the character table of M can be constructed.

Let Y denote the normal subgroup of order 3 in M, and U its centralizer in M, which has index 2
in M. Then the character table of M is determined by the tables of M /Y, U, U/Y = 2.Fij;.2, and the
action of M on the classes of U.

As for M /Y, consider the normal subgroup N = Ny/(C;) of index 2 in M. In particular, S/Y is
central in N/Y but not in M /Y, so the character table of M /Y is determined by the tables of M /(YZ),
N/Y 22 x2.Fiy,N/(YZ) =2 X Fiy, and the action of M /Y on the classes of N/Y.

Thus we proceed in two steps, starting with the computation of the character table of M /Y, for
which we choose the name according to the structure 22 Fiy.2.

Computations with the GAP Character Table Library

Example

77

gap> c2:= CharacterTable("Cyclic", 2);;

gap> 2fi22:= CharacterTable("2.Fi22");;

gap> tblNmodY:= c2 * 2£fi22;;

gap> centre:= GetFusionMap(2fi22, tblNmodY){

> ClassPositionsOfCentre(2fi22) I};
[1, 2]

gap> tblNmod6:= tblNmodY / centre;;

gap> tblMmod6:= c2 * £i222;;

gap> fus:= PossibleClassFusions(tblNmod6, tblMmod6);;
gap> Length(fus);

1

gap> StoreFusion(tblNmod6, fus[1], tblMmod6);

gap> elms:= PossibleActionsForTypeMGA(tblNmodY, tblNmod6, tblMmod6);;
gap> Length(elms);

1

gap> poss:= PossibleCharacterTablesOfTypeMGA(tblNmodY, tblNmod6, tblMmod6,
> elms[1], "2°2.Fi22.2");;

gap> Length(poss);

1

gap> tblMmodY:= poss[1].table;
CharacterTable("2°2.Fi22.2")

So we found a unique solution for the character table of M /Y. Now we compute the table of M.
For that, we have to specify the class fusion of U /Y into M /Y it is unique up to table automorphisms

of M/Y.

Example
gap> tblU:= c3 *x 2fi222;;

gap> tblUmodY:= tblU / GetFusionMap(c3, tblU);;

gap> fus:= PossibleClassFusions(tblUmodY, tblMmodY);;

gap> Length(RepresentativesFusions(Group(()), fus, tblMmodY));
1

gap> StoreFusion(tblUmodY, fus[1], tblMmodY);

gap> elms:= PossibleActionsForTypeMGA(tblU, tblUmodY, tblMmodY);;
gap> Length(elms);

1

gap> poss:= PossibleCharacterTablesOfTypeMGA(tblU, tblUmodY, tblMmodY,
> elms[1], "(83x2.Fi22).2");;

gap> Length(poss);

1

gap> tblM:= poss[1].table;

CharacterTable("(83x2.Fi22).2")

gap> mfus2b:= PossibleClassFusions(tblM, 2b);;

gap> Length(RepresentativesFusions(tblM, mfus2b, 2b));
1

We did not construct M as a central extension of M, so we verify that the tables fit together; note

that this way we get also the class fusion from M onto M.

Example
gap> Irr(tblM / ClassPositionsOfCentre(tblM)) = Irr(tblMbar);
true

Computations with the GAP Character Table Library 78

Finally, we compare the table we constructed with the one that is contained in the GAP Character
Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(tblM,
> CharacterTable("(S3x2.Fi22).2")));

true

2.4.10 The Character Table of (2 x 2.Fiy,) : 2 < Fip4 (November 2008)

The automorphism group Fi4 of the sporadic simple group Fi}, contains a maximal subgroup N of
the type (2 X 2.Fiy,) : 2, whose intersection with Fi, is 2.Fi.2 (see [CCNT85, p. 207]).

The normal Klein four group V in N contains two 2C elements in Fip4, because the 2C centralizer
in Fiy4, a group of the structure 2 X Fip3, contains maximal subgroups of the type 2 x 2.Fij;, and so
the two 2C type subgroups Cj, C; in V are conjugate in N, and Z = Z(N) is the centre of N N Fi,.

N

u NNFib,

C 7

With U = Cy(C)), a group of the type 2 x 2.Fiy, we set G =U/Z, M.G=U, and G.A=N/Z.
The latter group is the direct product of Fi;.2 and a cyclic group of order 2.

This is exactly the situation of the construction of the character table of the group that is called
22.Fiy.2 in Section 2.4.9, where this group occurs as “M/Y”. Since the character table is uniquely
determined by the input data, it is the table we are interested in here.

So all we have to do is to compute the class fusion from this table into that of Fiy4.

Example
gap> fi24:= CharacterTable("Fi24");;

gap> t:= CharacterTable("272.Fi22.2");;
gap> fus:= PossibleClassFusions(t, £fi24);;
gap> Length(fus);

4

gap> Length(RepresentativesFusions(t, fus, fi24));
1

(It should be noted that we did not need the character table of the 2.Fi,,.2 type subgroup of N in
the above construction, only the tables of 2.Fiy; and Fi>;.2 were used.)

The fact that the character table of a factor of a subgroup of 2.B occurs as the character table of a
subgroup of Fiy4 is not a coincidence. In fact, the groups 3.Fiy4 and 2.B are subgroups of the Monster
group M, and the subgroup U = 2.(S3 X Fip;.2) of 2.B normalizes an element of order three. The full
normalizer of this element in M is 3.Fip4, which means that we have established U as a (maximal)
subgroup of 3.Fiys. Note that we have constructed the character table of U in Section 2.4.9.

Let us compute the class fusion of U into 3.Fiyq.

Example
gap> t:= CharacterTable("(S3x2.Fi22).2");;
gap> 3fi24:= CharacterTable("3.Fi24");;

Computations with the GAP Character Table Library 79

gap> fus:= PossibleClassFusions(t, 3fi24);;
gap> Length(fus);

16

gap> Length(RepresentativesFusions(t, fus, 3fi24));
1

gap> GetFusionMap(t, 3fi24) in fus;

true

Moreover, U turns out to be the full normalizer of a 6A element in M,
Example

gap> m:= CharacterTable("M");;

gap> tfusm:= PossibleClassFusions(t, m);;

gap> Length(tfusm);

4

gap> Length(RepresentativesFusions(t, tfusm, m));

1

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) =6);
[[1, 2, 142, 1431 1]

gap> Set(List(tfusm, x -> x{ nsgl1] }));
[[1,2,4,131]1]

gap> OrdersClassRepresentatives(t){ nsgl[1] };

[1, 2, 3, 6]

gap> PowerMap(m, -1)[13];

13

gap> Size(t) = 2 * SizesCentralizers(m)[13];

true

(Thus U is also the full normalizer of an element of order six in 2.8 and in 3.Fiy4.)

2.4.11 The Character Table of S3 x 2.U4(3).2, < 2.Fiy (September 2002)

The sporadic simple Fischer group Fiy; contains a maximal subgroup M of type S3 x Us(3).2;
(see [CCNT85, p. 163]). We claim that the preimage M of M in the central extension 2.Fiy, has
the structure S3 x 2.U4(3).2,, where the factor of type 2.U4(3).2; is the one printed in the Atlas.

For that, we first note that the normal subgroup S of type S3 in M lifts to a group S which has the

structure 2 x S3. This follows from the fact that all involutions in Fiy, lift to involutions in 2.Fiy, or,
equivalently, the central involution in 2.Fi,, is not a square.

S3

Example

gap> 2Fi22:= CharacterTable("2.Fi22");;
gap> ClassPositions0fCentre(2Fi22);

Computations with the GAP Character Table Library 80

(1, 2]
gap> 2 in PowerMap(2Fi22, 2);
false

Second, the normal subgroup U = Uy(3).2; of Fiy, lifts to a nonsplit extension U in 2.Fiy;, since
2.Fip; contains no Uys(3) type subgroup. Furthermore, U is the 2.U4(3).2;, type group printed in the
Atlas because the isoclinic variant does not admit a class fusion into 2.Fips.

Example
gap> PossibleClassFusions(CharacterTable("U4(3)"), 2Fi22);
[]

gap> tblU:= CharacterTable("2.U4(3).2_2");;

gap> iso:= CharacterTableIsoclinic(tblU);

CharacterTable("Isoclinic(2.U4(3).2_2)")

gap> PossibleClassFusions(iso, 2Fi22);

1

Now there are just two possibilities. Either the two S3 type subgroups in S are normal in M (and
thus M is the direct product of any such S3 with the preimage of the U4(3).2; type subgroup), or they
are conjugate in M.

Suppose we are in the latter situation, let z be a generator of the centre of 2.Fi,,, and let 7, o be
an involution and an order three element respectively, in one of the S3 type subgroups.

Each element g € U \ U’ conjugates T to an involution in the other S3 type subgroup of S, so
g 'tg = 1oz for some i € {0,1,2}. Furthermore, it is possible to choose g as an involution.

Example
gap> derpos:= ClassPositionsOfDerivedSubgroup(tblU);;

gap> outer:= Difference([1 .. NrConjugacyClasses(tblU)], derpos);;
gap> 2 in OrdersClassRepresentatives(tblU){ outer };

true

With this choice, (g7)?> = 76727 = 6z holds, which means that (g7)° squares to z. As we have
seen above, this is impossible, hence M is a direct product, as claimed.

The class fusion of M into 2.Fiy; is determined by the character tables, up to table automorphisms.
Example
gap> tblM:= CharacterTable("Dihedral", 6) * tblU;;
gap> fus:= PossibleClassFusions(tblM, 2Fi22);;
gap> Length(RepresentativesFusions(tblM, fus, 2Fi22));

1

gap> IsRecord(TransformingPermutationsCharacterTables(tblM,
> CharacterTable("2.Fi22M8")));

true

2.4.12 The Character Table of 4. HS.2 < HN.2 (May 2002)

The maximal subgroup U of type 2.HS.2 in the sporadic simple group HN extends to a group N of
structure 4.HS.2 in the automorphism group HN.2 of HN (see [CCN*85, p. 166]).

N is the normalizer of a 4D element g € HN.2\ HN. The centralizer C of g is of type 4.HS, which
is the central product of 2.HS and the cyclic group (g) of order 4. We have Z = Z(N) = (g?). Since
U/Z = HS.2 is a complement of (g)/Z in N/Z, the factor group N/Z is a direct product of HS.2 and
a cyclic group of order 2.

Computations with the GAP Character Table Library 81

N

(8
z

Thus N has the structure 2.G.2, the normal subgroup 2.G being C, the factor group G.2 being
2 x HS.2, and G being 2 x HS. Each element in N\ C inverts g, so N acts fixed point freely on
the faithful irreducible characters of C. Hence we can use PossibleCharacterTables0fTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from
the tables of C and N /Z and the action of N on the classes of C.

We start with the table of the central product C. It can be viewed as an isoclinic table of the direct
product of 2.HS and a cyclic group of order 2, see 2.2.4.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("2.HS") * c2);;

The table of G is given as that of the factor group by the unique normal subgroup of C that consists
of two conjugacy classes.

Example
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) =2);

[[1,31]1
gap> tblCbar:= tblC / ord2[1];;

Finally, we construct the table of the extension G.2 and the class fusion of G into this table (which
is uniquely determined by the character tables).
Example
gap> tblNbar:= CharacterTable("HS.2") * c2;;
gap> fus:= PossibleClassFusions(tblCbar, tblNbar);
tf1, 2, 3, 4,5, 6, 7,38, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32,
33, 34, 35, 36, 35, 36, 37, 38, 39, 40, 41, 42, 41, 42] 1]
gap> StoreFusion(tblCbar, fus[1], tblNbar);

Now we compute the table automorphisms of the table of C that are compatible with the extension
N; we get two solutions.
Example
gap> elms:= PossibleActionsForTypeMGA(tblC, tblCbar, tblNbar);
crc11, 02,471,031, (851, [(6,81, [71,[91, [101],
[11], [12, 147, [131, [151, [16, 181, [171, [191,

[20], [211, [221, [231, [24,261, [251, [271,
[28,30]1, [291, [31, [32,31]1, [33], [31],
[36,381, [371, [391, [40, 421, [411, [431,
[44, 46], [451, [471, [48,501, [491, [51, 531,
[52,54], [55], [56, 58], [571, [591, [601,
[61, 651, [62, 681, [63, 67 1, [64, 661, [691,
[70, 721, L7111, (731, [74,761, [751, [77, 811,

Computations with the GAP Character Table Library 82

[78,81, [79,831, [80, 8211,
(f11,02,41,031,(51,[(6,81, [71,[91, [101,
[11 71, [12, 141, (13171, [15, 171, [161, [181, [191,
[20], [211, [221, [23], [24,261, [251, [271,
[28,30], [29]1, [311]1, [32,341]1, [331], [35, 371,
[36 1, [381, [39]1, [40, 421, [411, [431, [44, 461,
[45], [47, 491, [48], [501, [51, 53], [52, 541,
[65]1, [56,581, [671, [591, [601, [61, 6561,
[62, 68], [63,671, [64,661, [69, 711, [70]1, [721,
L7331, (74,761, (751, [77,831, [78,821, [79, 811,
[80, 84 111

We compute the possible character tables arising from these two actions.

Example
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA (
> tblC, tblCbar, tblNbar, pi, "4.HS.2"));;
gap> List(poss, Length);
[0, 2]

So one of the two table automorphisms turned out to be impossible; the reason is that the cor-
responding “character table” would not admit a 2-power map. (Alternatively, we could exclude this
action on C by the fact that it is not compatible with the action of 2.HS.2 on its subgroup 2.HS, which
occurs here as the restriction of the action of N on C to that of U on CNU.)

The other table automorphism leads to two possible character tables. This is not surprising since
N contains a subgroup of type 2.HS.2, and the above setup does not determine which of the two
isoclinism types of this group occurs. Let us look at the possible class fusions from these tables into

that of HN.2:
Example

gap> result:= poss[2];;

gap> hn2:= CharacterTable("HN.2");;

gap> possfus:= List(result, r -> PossibleClassFusions(r.table, hn2));;

gap> List(possfus, Length);

[32, 0]

gap> RepresentativesFusions(result[1].table, possfus[1], hn2);

[[1, 46, 2, 2, 47, 3, 7, 45, 4, 58, 13, 6, 46, 47, 6, 47, 7, 48,
10, 62, 20, 9, 63, 21, 12, 64, 24, 27, 49, 50, 13, 59, 14, 16,
7o, 30, 18, 53, 52, 17, 54, 20, 65, 22, 36, 56, 26, 76, 39, 77,
28, 59, 58, 31, 78, 41, 34, 62, 35, 65, 2, 45, 3, 45, 6, 48, 7,
47, 17, 54, 13, 49, 13, 50, 14, 50, 18, 53, 18, 52, 21, 56, 25,
57, 27, 59, 30, 60, 44, 72, 34, 66, 35, 66, 41, 71 1]

Only one of the candidates admits an embedding, and the class fusion is unique up to table auto-
morphisms. So we are done.

Finally, we compare the table we have constructed with the one that is contained in the GAP
Character Table Library.

Example
gap> 1libtbl:= CharacterTable("4.HS.2");;
gap> IsRecord(TransformingPermutationsCharacterTables(result[1].table,
> libtbl));

true

Computations with the GAP Character Table Library 83

(The following paragraphs have been added in May 2006.)

The Brauer tables of N =2.G.2 can be constructed as in Section 2.4.3. Note that the Brauer tables
of C =2.G and of N/Z = G.2 are automatically available because the ordinary tables constructed
above arose as a direct product and as an isoclinic table of a direct product, and the GAP Character
Table Library contains the Brauer tables of the direct factors involved.

Example
gap> StoreFusion(tblC, result[1].MGfusMGA, result[1].table);
gap> ForAll(PrimeDivisors(Size(result[1].table)),

> p -> IsRecord(TransformingPermutationsCharacterTables(

> BrauerTableOfTypeMGA(tblC mod p, tblNbar mod p,
> result[1] .table).table, libtbl mod p)));
true

Here it is advantageous that the Brauer table of C/Z = G is not needed in the construction, since
GAP does not know how to compute the p-modular table of the ordinary table of G constructed above.
Of course we have G = 2 x HS, and the p-modular table of HS is known, but in the construction of
the table of G as a factor of the table of 2.G, the information is missing that the nonsolvable simple
direct factor of 2.G corresponds to the library table of HS.

2.4.13 The Character Tables of 4.A¢.23, 12.A¢.23, and 4.1,(25).23

For the “broken box” cases in the Atlas (see [CCN'85, p. xxiv]), the character tables can be con-
structed with the M.G.A construction method from Section 2.3.1. (The situation with 9.U3(8).33 is
more complicated, this group will be considered in Section 2.4.14.)

The group N = 4.A¢.23 (see [CCN'85, p. 5]) can be described as an upward extension of the
normal subgroup C = 4.A¢ —which is a central product of U = 2.A¢ and a cyclic group (g) of order 4—
by a cyclic group of order 2, such that the factor group of N by the central subgroup Z = (g?) of order
2 is isomorphic to a subdirect product N of My = Ag.23 and a cyclic group of order 4 and that N acts
nontrivially on its normal subgroup (g).

(8)
Z

Thus N has the structure 2.G.2, with 2.G = C and G.2 = N. These two groups are isoclinic variants
of 2 x 2.A¢ and of 2 x M, respectively. Each element in N\ C inverts g, so it acts fixed point freely on
the faithful irreducible characters of C. Hence we can use PossibleCharacterTables0fTypeMGA
(CTbILib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from
the tables of C and N/Z and the action of N on the classes of C.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> 2a6:= CharacterTable("2.A6");;

gap> tblC:= CharacterTableIsoclinic(2a6 * c2);;

gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),

Computations with the GAP Character Table Library 84

> x -> Length(x) =2);
[[1,31]1
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
(rf1i1 2, 3, 4, 5, 6,5,6,7,8,9, 10, 9, 101711
gap> StoreFusion(tblG, fus[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
ccft+1,021,031, 041,511,061, [7,111,1[8, 121,
[9, 131, [10, 141, [15, 171, [16, 181, [19, 231,

[20, 241, [21,251, [22, 2611,

tr+1,02, 41,031,051, 061,[7,111],[8, 141,
(9,131, 10,121, [161, [16, 181, [171, [19, 231,
(20,261, [21,251, [22,2411,

tr11, 02, 41,031,051, 061,[7,11],[8, 141,
(9,131, [10,127, [15, 171, [161, [181, [19, 231,

[20, 261, [21,2567, [22,2411]1
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA (
> tblC, tblG, tblNbar, pi, "4.46.2_3"));
tc 1,0 1,
L

rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 1,
table := CharacterTable("4.A6.2_3")) 1]

So we get a unique solution. It coincides with the character table of 4.A¢.23 that is stored in the
GAP Character Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("4.A6.2_3")));

true

Note that the first two candidates for the action lead to tables that do not admit a 2-power map. In
fact the 2-power map of the character table of 4.A4¢.23 is not uniquely determined by the matrix of char-
acter values. However, the 2-power map is unique up to automorphisms of this matrix; the function
PossibleCharacterTables0fTypeMGA (CTbILib: PossibleCharacterTablesOfTypeMGA) takes
this into account, and returns only representatives, in this case one table.

The Atlas states in [CCNT85, Section 6.7] that there is a group of the structure 22 Ag.25 that is
isoclinic with 4.44.23. We construct also the character table of the 22.A¢.23 type group with the M.G.A
construction method from Section 2.3.1.

The group N = 2%.A4.23 can be described as an upward extension of the normal subgroup C =2
2 x 2.A¢ by a cyclic group of order 2, such that the factor group of N by the central subgroup Z of
order 2 that is contained in U = C' = 2.Ag is isomorphic to a subdirect product N of My = Ag.23 and
a cyclic group of order 4 and that N acts nontrivially on the centre of C, which is a Klein four group.

Computations with the GAP Character Table Library 85

N

C

Thus N has the structure 2.G.2, with 2.G = C and G.2 = N. These latter group is an isoclinic vari-
ant of 2 X My, as in the construction of 4.A¢.23. Each element in N \ C swaps the two involutions in
Z(C)\ Z, so it acts fixed point freely on those irreducible characters of C whose kernels do not contain
Z. Hence we can use PossibleCharacterTables0fTypeMGA (CTbILib: PossibleCharacterTable-
sOfTypeMGA) for constructing the character table of N from the tables of C and N/Z and the action

of N on the classes of C.
Example

gap> tblC:= 2a6 * c2;;
gap> z:= GetFusionMap(2a6, tblC){ ClassPositionsOfCentre(2a6) };
[1, 3]
gap> tblG:= tblC / z;;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
rf1 2, 3, 4, 5,6,5,6,7,8,9, 10,9, 1011
gap> StoreFusion(tblG, fus[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
ccrt+1, 021,031,041, [51,C(61, [7,111,[8, 121,
[9, 131, [10, 141, [15, 171, [16, 181, [19, 231,
[20, 241, [21, 251, [22, 2611,
11, 02,411,031, (81,61, [7,111]1, [8, 141,
[9, 131, [10, 121, [151, [16, 181, [17 1, [19, 231,
[20,261, [21, 251, [22, 2411,
1 [2,41, 031, [51,[([61, [7,111,[8, 141,
[9, 131, [10, 1271, [15, 171, [161, [181, [19, 2317,
[20, 261, [21, 256], [22,241 1]
gap> poss:= List(elms, pi -> PossibleCharacterTables0fTypeMGA (
> tblC, tblG, tblNbar, pi, "2°2.A6.2_3"));
tt 1,0 1,
[

rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 1,
table := CharacterTable("2°2.A6.2_3")) 1 1]

So we get a unique solution.

The group N = 12.44.23 (see [CCNT85, p. 5]) can be described as an upward extension of the
normal subgroup C = 12.A¢ —which is a central product of U = 6.A¢ and a cyclic group (g) of order
4— by a cyclic group of order 2, such that the factor group of N by the central subgroup Z = (g?) of
order 2 is isomorphic to a subdirect product N of 3.M}o = 3.A44.23 and a cyclic group of order 4 and
that N acts nontrivially on its normal subgroup (g).

Note that N has a central subgroup Y, say, of order 3, so the situation here differs from that for
groups of the type 12.G.2 with G one of L3(4), Us(3), where the action on the normal subgroup of
order three is nontrivial.

Computations with the GAP Character Table Library

N

C

(8
z

86

Thus N has the structure 2.G.2, with 2.G = C and G.2 = N. These two groups are isoclinic variants
of 2 x 6.A¢ and of 2 x 3.M, respectively. Each element in N \ C inverts g, so it acts fixed point freely
on the faithful irreducible characters of C. Hence we can use PossibleCharacterTables0fTypeMGA
(CTbILib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from

the tables of C and N /Z and the action of N on the classes of C.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("6.A6") * c2);;

gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) =2);
(01,711

gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("3.A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26]

[1, 2, 5, 6, 3, 4, 7, 8, 11, 12, 9, 10, 13, 14, 13, 14, 15, 16,
19, 20, 17, 18, 21, 22, 25, 26, 23, 24, 21, 22, 25, 26, 23, 24
11

gap> rep:= RepresentativesFusions(Group(()), fus, tblNbar);
rr, 2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26

11

gap> StoreFusion(tblG, rep[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
ccc+1, 021, (31,041, (51,61, (71, [81,[91],

101, (111, (121, (131, [141, (151, (161, [171,
181, [19, 231, [20, 24 1, [21, 251, [22, 261,
27, 331, [28,341, [29, 3], [30, 361, [31, 371,
32, 31, [39, 511, [40, 52 1, [41, 531, [42, 541,
43, 551, [44, 561, [45, 57 1, [46, 58 1, [47, 59 1,
48, 60 1, [49, 61], [50, 62 1] 1,
1, 2,81, (31, [4,10]1,[51,0[e6,121, [7]1,
91, (111, 0131, (141, 1571, (161, [171, [181,
19, 231, [20, 261, [21, 25610, [22,241, [271,
28,341, [29]1, 30,31, [311]1, [32,31, [331,
351, (31, [39, 611, [40, 581, [41, 531, [42, 601,
43, 551, [44, 621, [45,571, [46, 521, [47, 59 1,
48, 54 1, [49, 611, [50, 5611,
1, (2,81, (31, [4,10]1,[51,[e6,121, [7]1],
91, [111, [131, (141, [151, [161, [171, [181,
19, 231, [20, 261, [21, 2517, [

(R

LI

L T e T Y s T s Y e T s O s T e T Y T s Y e B s B |

22, 241, [27, 3317,

Computations with the GAP Character Table Library 87

(281, [29,31,[301, [31,371, [321, [31, [361,
[381, [39,5611, [40, 581, [41, 6531, [42, 601,
[43, 55], [44,621, [45, 571, [46, 521, [47, 59 1,
[48, 541, [49, 611, [50, 561 1] 1]
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA (
> tblC, tblG, tblNbar, pi, "12.46.2_3"));
tct 1,0 1,
L
rec(
MGfusMGA := [1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 16, 19, 18, 17, 20, 21, 22,
23, 24, 25, 20, 26, 22, 27, 24, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 29, 36, 31, 38, 33, 40, 35,
30, 37, 32, 39, 341,
table := CharacterTable("12.A6.2_3"))] 1]

So we get again a unique solution. It coincides with the character table that is stored in the GAP
Character Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("12.A6.2_3")));

true

The construction of the character table of 4.L,(25).23 is analogous to that of the table of 4.44.23.
We get a unique table that coincides with the table in the GAP library.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("2.L2(25)") * c2);;
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1,31]1]

gap> tblG:= tblC / ord2[1];;

gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("L2(25).2_3") * c2);;

gap> fus:= PossibleClassFusions(tblG, tblNbar);

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,
16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20 1,

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 17,
18, 17, 18, 19, 20, 19, 20, 15, 16, 15, 16 1,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 19,

20, 19, 20, 15, 16, 15, 16, 17, 18, 17, 18] 1]

gap> rep:= RepresentativesFusions(Group(()), fus, tblNbar);

rr1, 2, 3, 4, 5, 6, 7,8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,
16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20]]

gap> StoreFusion(tblG, rep[1], tblNbar);

gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);

ccc11, 021,031,041, (51,61, [71,[81, [91],
[101]1, [11, 131, [12, 141, [15, 191, [16, 20 1,
[17, 211, [18, 22 1, [23, 251, [24, 261, [27, 331,
[28,341, [29, 311, [30, 321, [35, 391, [36, 4017,
[37, 411, [38, 42 1, [43, 47 1, [44, 48 1, [45, 49 1],
[46, 50 1, [51, 551, [52,561, [53,571, [54, 5811,

Computations with the GAP Character Table Library 88

tf11,02,471,031, (581,611,071, [8,101, [91],
[11], [12, 141, [131, [15, 191, [16, 221, [17, 21 1],
[18, 201, [23,251, [241, [261, [27,311, [28, 341,
[29, 3], [3,32]1, [3,31, [36, 421, [37, 411,
[38, 40 1, [43, 471, [44, 501, [45, 491, [46, 481,
[61, 661, [52, 681, [63, 57 1, [54, 56 11,
tf11,02,41,031, (51,61, [71]1,[8,101, [91],
[11, 1371, [121, [141, [15, 191, [16, 221, [17, 21 1],
[18, 201, [23,251, [241, [261, [27,331, [28, 321,
[29,311, [30,31, [3,31, [3, 421, [37, 411,
[38, 40 1, [43, 471, [44,501, [45, 491, [46, 481,
[61, 661, [652,681, [63, 5671, [54, 66 111
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA (
> tblC, tblG, tblNbar, pi, "4.L2(25).2_3"));
tct 1,0 1,
L
rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 9, 11, 12,

13, 14, 15, 12, 15, 14, 13, 16, 17, 16, 18, 19, 20, 21,

22, 21, 20, 19, 22, 23, 24, 25, 26, 23, 26, 25, 24, 27,

28, 29, 30, 27, 30, 29, 28, 31, 32, 33, 34, 31, 34, 33,

32], table := CharacterTable("4.L2(25).2_3")) 1 1]
gap> IsRecord(TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("4.L2(25).2_3")));
true

2.4.14 The Character Table of 9.U3(8).33 (March 2017)

The group that is called 9.U3(8).35 in the Atlas of Finite Groups occurs as a subgroup of I'U(3,8).
Note that GU(3,8) has the structure 3.(3 x U3(8)).3; (see [CCNT85, p. 66]), and extending the sub-
group C = 3.(3 x U3(8)) by the product of an element outside C with the field automorphism of order
three of GF(64) yields a group N of the structure 3.(3 x U3(8)).33 whose centre has order three.

The character table of N can be constructed with the M.G.A construction method from Sec-
tion 2.3.1. The situation is similar to that with 4.A4.23, see Section 2.4.13, in particular the situation
is described by the same picture that is shown for 4.A4.23 in this section, just the subgroups Z and (g)
have the orders three and nine, respectively, and C has index three in N.

The normal subgroup C = 9.U3(8) is a central product of U = 3.U3(8) and a cyclic group (g)
of order 9, and the factor group of N by the central subgroup Z = (g) of order 3 is isomorphic to
a subdirect product N of U3(8).33 and a cyclic group of order 9, such that N acts nontrivially on its
normal subgroup (g)

Thus N has the structure 3.G.3, with 3.G = C and G.3 = N. Each element in N \ C raises g to its
fourth or seventh power, so it acts fixed point freely on the faithful irreducible characters of C. Hence
we can use PossibleCharacterTables0fTypeMGA (CTblLib: PossibleCharacterTablesOfType-
MGA) for constructing the character table of N from the tables of C and N/Z and the action of N on
the classes of C.

Since we want to construct also Brauer tables of N, we have to choose the class fusion that de-
scribes the embedding of C/Z into N compatibly with the known Brauer tables of U3(8) and U3(8).33.
Note that the 2-modular tables of these groups impose additional conditions on the class fusion.

Computations with the GAP Character Table Library 89

Example

gap> s:= CharacterTable("U3(8)");;

gap> s3:= CharacterTable("U3(8).3.3");;
gap> poss:= PossibleClassFusions(s, s3);;
gap> Length(poss);

gap> Length(RepresentativesFusions(s, poss, s3));

gap> smod2:= s mod 2;;

gap> s3mod2:= s3 mod 2;;

gap> good:= [];; modmap:= 0;;
gap> for map in poss do

> modmap:= CompositionMaps(InverseMap(GetFusionMap(s3mod2, s3)),

> CompositionMaps(map, GetFusionMap(smod2, s)));

> rest:= List(Irr(s3mod2), x -> x{ modmap });

> if not fail in Decomposition(Irr(smod2), rest, "nonnegative") then
> Add(good, map);

> fi;

> od;

gap> Length(good);

2

The class fusion from U3 (8) to U3(8).33 is determined up to complex conjugation by the 2-modular
Brauer tables. We choose the fusion that is stored on the library tables.

Example
gap> good[2] = CompositionMaps(PowerMap(s3, -1), good[1]);
true
gap> GetFusionMap(s, s3) in good;
true

gap> sfuss3:= GetFusionMap(s, s3);;

In the next step, we construct the character tables of C/Z = Us(8) x 3 and N/Z = (U3(8) x 3).33,
and those class fusions between the two tables that are compatible with the fusion between the factors
that was chosen above (w. r. t. the stored factor fusions).

In order not to leave out some candidates, we have to consider also the table of N/Z that is obtained
from the “other” construction as an isoclinic table of 3 x Uz(8).33.

(This may look complicated. It would perhaps be more natural to construct the ordinary tables
first, by considering the possible fusions, and later to adjust the choices to the conditions that are
imposed by the Brauer tables. However, the technical complications of that construction would not be
smaller in the end.)

We get four candidates, two for each of the two tables of N/Z.

Example
gap> c3:= CharacterTable("Cyclic", 3);;
gap> tblG:= s * c3;;

gap> dp:= s3 * c3;;

gap> tblGAl:= CharacterTableIsoclinic(dp, rec(k:
gap> tblGA2:= CharacterTableIsoclinic(dp, rec(k:
gap> good:= [];;

gap> tblGmod2:= tblG mod 2;;

gap> for tblGA in [tblGA1l, tblGA2] do

Il
N =
~

V VV VV V VYV VYV VYVYV

>

Computations with the GAP Character Table Library

tblGAmod2:= tblGA mod 2;
for map in PossibleClassFusions(tblG, tblGA) do
modmap:= CompositionMaps(
InverseMap(GetFusionMap(tblGAmod2, tblGA)),
CompositionMaps(map, GetFusionMap(tblGmod2, tblG)));
rest:= List(Irr(tblGAmod2), x -> x{ modmap });
if not fail in Decomposition(Irr(tblGmod2), rest,
"nonnegative") and
CompositionMaps(GetFusionMap(tblGA, s3), map) =
CompositionMaps(sfuss3, GetFusionMap(tblG, s)) then
Add(good, [tblGA, map]);
fi;
od;
od;

gap> List(good, x -> x[1]);

[CharacterTable("Isoclinic(U3(8).3_3xC3,1)"
CharacterTable("Isoclinic(U3(8).3_3xC3,1)"
CharacterTable("Isoclinic(U3(8).3_3xC3,2)"
CharacterTable("Isoclinic(U3(8).3_3xC3,2)"

-

N
-

90

The character table of C can be constructed with CharacterTableIsoclinic (Reference: Char-
acterTableIsoclinic) from the character table of 3 x 3.U3(8). (Here we need to consider only one
variant of the table.)

Example
gap> 3s:= CharacterTable("3.U3(8)");;
gap> dp:= 3s * c3;;
gap> tblMG:= CharacterTableIsoclinic(dp);;

The construction of this table does not automatically yield a factor fusion to the table of C/Z. We
form the relevant factor table, which has the same ordering of irreducible characters, and use the factor
fusion to this table.

Example

gap>
fail
gap>
(1,
gap>
L1,
gap>
gap>
gap>
0O

O

gap>

GetFusionMap(tblMG, tblG);

cen:= ClassPositionsOfCentre(tblMG);

2,3,4,5,6, 7,8, 91

OrdersClassRepresentatives(tblMG){ cen };

9,9, 3, 9,9, 3,9, 91

facttbl:= tblMG / [1, 4, 7 1;;

tr:= TransformingPermutationsCharacterTables(facttbl, tblG);;
tr.rows; tr.columns;

StoreFusion(tblMG, GetFusionMap(tblMG, facttbl), tblG);

Now we compute the orbits of the possible actions of N on the classes of C, and the resulting
candidates for the character table of N.

Example

gap> posstbls:= [];;

gap>

for pair in good do

Computations with the GAP Character Table Library 91

> tblGA:= pair[1];

> GfusGA:= pair[2];

> tblG:= s * c3;

> StoreFusion(tblG, GfusGA, tblGA);

> for pi in PossibleActionsForTypeMGA(tblMG, tblG, tblGA) do
> for cand in PossibleCharacterTables0fTypeMGA (

> tblMG, tblG, tblGA, pi, "test") do
> Add(posstbls, [tblGA, cand]);

> od;

> od;

> od;

gap> Length(posstbls);

32

Now we discard all those candidates that are not compatible with the 2-modular character tables.

Example

gap> compatible:= [];; r:= 0;; modr:= 0;;
gap> for pair in posstbls do
> tblGA:= pair[1];
r:= pair[2];
comp:= ComputedClassFusions(tblMG);
pos:= PositionProperty(comp, x -> x.name = Identifier(r.table));
if pos = fail then
StoreFusion(tblMG, r.MGfusMGA, r.table);
else
comp[pos]:= ShallowCopy(comp[pos]);
comp[pos].map:= r.MGfusMGA;
fi;
Unbind(ComputedBrauerTables(tblMG) [2]);
modr:= BrauerTableOfTypeMGA(tblMG mod 2, tblGA mod 2, r.table);
rest:= List(Irr(modr.table), x -> x{ modr.MGfusMGA });
dec:= Decomposition(Irr(tblMG mod 2), rest, "nonnegative");
if not fail in dec then
Add(compatible, pair);
fi;
od;
ap> Length(compatible);

00k VV V V V VV VYV VYV VVYVVYVYV

The remaining candidates fall into two equivalence classes.

Example

gap> tbls:= [];;
gap> for pair in compatible do
> if ForAl1(tbls, t -> TransformingPermutationsCharacterTables(
t, pair[2].table) = fail) then
Add(tbls, pair[2].table);
fi;
od;
ap> Length(tbls);

NOR V V V V

Computations with the GAP Character Table Library

92

The two tables can be distinguished by their element orders one contains the element order 54
and the other does not or by their 4th power maps the classes of element order 171 in one table are

not fixed by the 4th power map, the corresponding classes in the other table are fixed.

Example

gap> Set(OrdersClassRepresentatives(tbls[1]));

(1, 2, 3, 4,6, 7, 9, 12, 18, 19, 21, 27, 36, 54, 57, 63, 171]

gap> Set(OrdersClassRepresentatives(tbls[2]));

L1, 2, 3, 4,6, 7,9, 12, 18, 19, 21, 27, 36, 57, 63, 171]

gap> posl71:= Positions(OrdersClassRepresentatives(tbls[1]), 171);;
gap> powd:= PowerMap(tbls[1], 4);;

gap> ForAny([1 .. Length(posl71) 1,

> i -> pos171[i] = pow4[pos171[i]l 1);

false

gap> posl71:= Positions(OrdersClassRepresentatives(tbls[2]), 171);;
gap> PowerMap(tbls[2], 4){ posi71 } = posi7i;

true

Thus we can use the group N to decide which table is correct. For that, we construct a permutation

representation of N.

Example

gap> gu:= GU(3,8);;

gap> orbs:= OrbitsDomain(gu, Elements(GF(64)"3));;

gap> List(orbs, Length);

[1, 32319, 32832, 32832, 32832, 32832, 32832, 32832, 32832]

gap> orb:= SortedList(First(orbs, x -> Length(x) = 32319));;
gap> actgu:= Action(gu, orb, OnRight);;

gap> Size(actgu) = Size(gu);

true

gap> cen:= Centre(actgu);;

gap> Size(cen);

9

gap> u:= ClosureGroup(DerivedSubgroup(actgu), cen);;

gap> aut:= v -> List(v, x -> x74);;

gap> pi:= PermList(List(orb, v -> PositionSorted(orb, aut(v))));;
gap> outer:= First(Generators0OfGroup(actgu), x -> not x in u);;
gap> g:= ClosureGroup(u, pi * outer);;

Before we perform computations with the group, we reduce the degree of the representation by a

factor of 7.

Example
gap> g:= Group(SmallGeneratingSet(g));;
gap> allbl:= AllBlocks(g);;

gap> List(allbl, Length);

[3, 21, 63, 9, 7]

gap> orb:= Orbit(g, First(allbl, x -> Length(x) = 7), OnSets);;
gap> act:= Action(g, orb, OnSets);;

gap> Size(act) = Size(g);

true

gap> NrMovedPoints(act);

4617

Computations with the GAP Character Table Library 93

Now we test whether an element of order 171 in N is conjugate in N to its fourth power.

Example
gap> repeat x:= PseudoRandom(act); until Order(x) = 171;
gap> IsConjugate(act, x, x4);

true

This means that the second of the candidate tables constructed above is the right one. The character
table with the identifier "9.U3(8) .3_3" in the character table library is equivalent to this table.
Example
gap> lib:= CharacterTable("9.U3(8).3_3");;
gap> IsRecord(TransformingPermutationsCharacterTables(tbls[2], 1lib));
true

GAP’s currently available methods for the automatic computation of character tables would re-
quire too much space when called with this permutation group. Using interactive methods, one can
compute the character table with GAP. The table obtained this way is equivalent to the library char-
acter table with the identifier "9.U3(8) .3_3".

I do not know how to disprove the other candidate with character-theoretic arguments. Thus this
table provides an example of a pseudo character table, see Section 2.4.15.

2.4.15 Pseudo Character Tables of the Type M.G.A (May 2004)

With the construction method for character tables of groups of the type M.G.A, one can construct tables
that have many properties of character tables but that are not character tables of groups, cf. [Gag86].
For example, the group 3.A¢.23 has a central subgroup of order 3, so it is not of the type M.G.A with
fixed-point free action on the faithful characters of M.G.

However, if we apply the “M.G.A construction” to the groups M.G = 3.A¢, G = Ag, and G.A =
Ag.23 then we get a (in this case unique) result.
Example
gap> tblMG := CharacterTable("3.A6");;
gap> tblG CharacterTable("A6");;
gap> tblGA := CharacterTable("A6.2_3");;
gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
ttcft1+1,02,831,041, (5,61, 7,81, [91]1, [10, 111,

[12, 151, [13, 17 1, [14, 16 1 1]
gap> poss:= PossibleCharacterTablesOfTypeMGA (
> tb1lMG, tblG, tblGA, elms[1], "pseudo");
[rec(
MGfusMGA := [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 8, 10,
9], table := CharacterTable("pseudo"))]

Such a table automatically satisfies the orthogonality relations, and the tensor product of two “irre-
ducible characters” of which at least one is a row from G.A decomposes into a sum of the “irreducible
characters”, where the coefficients are nonnegative integers.

In this example, any tensor product decomposes with nonnegative integral coefficients, n-th sym-
metrizations of “irreducible characters” decompose, for n < 5, and the “class multiplication coeffi-
cients” are nonnegative integers.

Computations with the GAP Character Table Library

94

Example
gap> pseudo:= poss[1].table;
CharacterTable("pseudo")
gap> Display(pseudo);
pseudo
2 4 3 4 3 2 2 3 3
3 3 311 2 1 1 1 1 1
5 1 1 1 1 1

la 3a 2a 6a 3b 4a 12a 5a 15a 15b 4b 8a 8b
2P 1la 3a l1la 3a 3b 2a 6a ba 15a 15b 2a 4a 4a
3P la 1la 2a 2a la 4a 4a 5a ba ba 4b 8a 8b
BP la 3a 2a 6a 3b 4a 12a l1la 3a 3a 4b 8b 8a

X.1 1 11 1 1 1 1 1 1 1 1 1 1
X.2 1 11 1 1 1 1 1 1 1-1-1-
X.3 10 10 2 2 1 -2 -2 . . .
X.4 16 16 . . -2 . .1 1 1 . .
X.5 9 9 1 1 1 1-1 -1 -1 1-1-1
X.6 9 9 1 1 . 1 1-1 -1 -1-1 1 1
X.7 10 10 -2 -2 1 . .o . . . B-B
X.8 10 10 -2 -2 1 . .o . . . -B B
X.9 6 -3-2 1 . 2 -1 1 A /A
X.10 6 -3-2 1 . 2 -1 1 /A
X.11 12 -6 4 -2 . . o2 -1 -1
X.12 8 -9 2 -1 . 2 -1-2 1 1
X.13 30 -16 -2 1 . -2 1
A = -E(15)-E(15)~2-E(15)~4-E(15)"8

= (-1-Sqrt(-15))/2 = -1-b1b
B = E(8)+E(8)"3

Sqrt(-2) = i2

gap> IsInternallyConsistent(pseudo);

true

gap> irr:= Irr(pseudo);;

gap> test:= Concatenation(List([2 .. 51,

> n -> Symmetrizations(pseudo, irr, n)));;
gap> Append(test, Set(Tensored(irr, irr)));

gap> fail in Decomposition(irr, test, "nonnegative");

false

gap> if ForAny(Tuples([1 .. NrConjugacyClasses(pseudo)], 3),

> t -> not ClassMultiplicationCoefficient(pseudo, t[1], t[2], t[3])
> in NonnegativeIntegers) then

> Error("contradiction");

> fi;

I do not know a character-theoretic argument for showing that this table is not the character table
of a group, but we can use the following group-theoretic argument. Suppose that the group G, say, has
the above character table. Then G has a unique composition series with factors of the orders 3, 360,
and 2, respectively. Let N denote the normal subgroup of order 3 in G. The factor group F = G/N is
an automorphic extension of Ag, and according to [CCNT85, p. 4] it is isomorphic with Mg = Ag.23

Computations with the GAP Character Table Library 95

and has Sylow 3 normalizers of the structure 3% : Qg. Since the Sylow 3 subgroup of G is a self-
centralizing nonabelian group of order 3° and of exponent 3, the Sylow 3 normalizers in G have the
structure 3L+2 : Og, but the Qs type subgroups of Aut(35r+2) act trivially on the centre of 3lr+2, contrary
to the situation in the above table.

In general, this construction need not produce tables for which all symmetrizations of irreducible
characters decompose properly. For example, applying PossibleCharacterTables0fTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) to the case M.G = 3.L3(4) and G.A = L3(4).2,
does not yield a table because the function suppresses tables that do not admit p-th power maps, for
prime divisors p of the order of M.G.A, and in this case no compatible 2-power map exists.

Example
gap> tblMG := CharacterTable("3.L3(4)");;
gap> tblG CharacterTable("L3(4)");;
gap> tblGA := CharacterTable("L3(4).2_1");;
gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
rrc11,02,31, 041,056,611, [71,[81,[9, 101,

[111, [12, 131, (141, [15, 161, [17, 201, [18, 2217,

[19, 2171, [23, 261, [24, 281, [25, 27111
gap> PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, elms[1], "?");
L]

Also, it may happen that already PossibleActionsForTypeMGA (CTbILib: PossibleActions-
ForTypeMGA) returns an empty list. Examples are M.G = 31.U4(3), G.A = U4(3).2; and M.G =
3,.Us(3), G.A =Ux(3).25.

Example
gap> tblG := CharacterTable("U4(3)");;
gap> tblMG := CharacterTable("3_1.U4(3)");;

gap> tblGA := CharacterTable("U4(3).2_2");;

gap> PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
L 1]

gap> tblMG:= CharacterTable("3_2.U4(3)");;

gap> tblGA:= CharacterTable("U4(3).2_3");;

gap> PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[]

Also the sections 2.4.5 and 2.4.14 provide examples of pseudo character tables. If one does not
use the arguments about Brauer tables then the latter section presents in fact several pseudo character
tables.

2.4.16 Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005)

For a group M.G.A in the sense of Section 2.3.1 such that not all ordinary irreducible characters x
have the property that M is contained in the kernel of x or y is induced from M.G, it may happen that
there are primes p such that all irreducible p-modular characters have this property. This happens if
and only if the preimages in M.G.A of each p-regular conjugacy class in G.A \ G form one conjugacy
class.

The following function can be used to decide whether this situation applies to a character table
in the GAP Character Table Library; here we assume that for the library table of a group with the
structure M.G.A, the class fusions from M.G and to G.A are stored.

Computations with the GAP Character Table Library

Example

gap> FindExtraordinaryCase:= function(tblMGA)
local result, der, nsg, tblMGAclasses, orders, tblMG,
tb1lMGfustblMGA, tblMGclasses, pos, M, Mimg, tblMGAfustblGA, tblGA,
outer, inv, filt, other, primes, p;
result:= [];
der:= ClassPositionsOfDerivedSubgroup(tblMGA);
nsg:= ClassPositions0fNormalSubgroups(tblMGA);
tblMGAclasses:= SizesConjugacyClasses(tblMGA);
orders:= OrdersClassRepresentatives(tblMGA);
if Length(der) < NrConjugacyClasses(tblMGA) then
Look for tables of normal subgroups of the form $M.GS$.
for tblMG in Filtered(List(NamesOfFusionSources(tblMGA),
CharacterTable), x -> x <> fail) do
tblMGfustblMGA:= GetFusionMap(tblMG, tblMGA);
tblMGclasses:= SizesConjugacyClasses(tblMG);
pos:= Position(nsg, Set(tblMGfustblMGA));
if pos <> fail and
Size(tblMG) = Sum(tblMGAclasses{ nsg[pos] }) then
Look for normal subgroups of the form M.
for M in Difference(ClassPositionsOfNormalSubgroups(tblMG),
[L1]1, [1.. NrConjugacyClasses(tblMG) 1 1) do
Mimg:= Set(tblMGfustblMGA{ M });
if Sum(tblMGAclasses{ Mimg }) = Sum(tblMGclasses{ M }) then
tb1MGAfustblGA:= First(ComputedClassFusions(tblMGA),
r -> ClassPositionsO0fKernel(r.map) = Mimg);
if tblMGAfustblGA <> fail then
tblGA:= CharacterTable(tblMGAfustblGA.name);
tb1MGAfustblGA:= tblMGAfustblGA.map;
outer:= Difference([1 .. NrConjugacyClasses(tblGA) 1],
CompositionMaps(tblMGAfustblGA, tblMGfustblMGA));
inv:= InverseMap(tblMGAfustblGA){ outer I};
filt:= Flat(Filtered(inv, IsList));
if not IsEmpty(filt) then
other:= Filtered(inv, IsInt);
primes:= Filtered(PrimeDivisors(Size(tblMGA)
p -> ForAll(orders{ filt }, x -> x mod p = 0
and ForAny(orders{ other }, x -> x mod p <> 0));
for p in primes do
Add(result, [Identifier(tblMG),
Identifier(tblMGA),
Identifier(tblGA), p 1);

),
)

od;
fi;
fi;
fi;
od;
fi;
od;

fi;

return result;
end;;

VVVYVVVVYVYVYV

Computations with the GAP Character Table Library

Let us list the tables which are found by this function.
Example

97

gap> cases:= [];;
gap> for name in AllCharacterTableNames(IsDuplicateTable, false) do

> Append(cases, FindExtraordinaryCase(CharacterTable(name)));
> od;

gap> for i in Set(cases) do

> Print(i, "\n");

od;
"2 A6", "2.A6.2_1", "A6.2_1", 3]
"2 Fi22", "2.Fi22.2", "Fi22.2", 3]
"2.L2(25)", "2.L2(25).2_2", "L2(25).2_2", 5]
"2.L2(49)", "2.L2(49).2_2", "L2(49).2_2", 7]
"2.L2(81)", "2.L2(81).2_1", "L2(81).2_1", 3]
"2.L2(81)", "2.L2(81).4_1", "L2(81).4_1", 3]
"2.L2(81).2_1", "2.L2(81).4_1", "L2(81).4_1", 3]
"2.L4(3)", "2.L4(3).2_2", "L4(3).2_2", 3]
"2.L4(3)", "2.L4(3).2_3", "L4(3).2_3", 3]
"2,83", "2,D12", "S3x2", 3]
"2.U4(3).2_1", "2.U4(3).(2~2) _{12%2%}", "U4(3).(2~2)_{122}", 3]
"2.U4(3).2_1", "2.U4(3).(2~2)_{122}", "U4(3).(2~2)_{122}", 3]
"2.U4(3).2_1", "2.U4(3).(2°2) _{13%3x}", "U4(3).(2~2)_{133}", 3]
"2.U4(3).2_1", "2.U4(3).(2~2)_{133}", "U4(3).(2~2)_{133}", 3]
"3.U3(8)", "3.U3(8).3_1", "U3(8).3_1", 2]
"3.U3(8)", "3.U3(8).6", "U3(8).6", 2]
"3.U3(8)", "3.U3(8).6", "U3(8).6", 3]
"3.U3(8).2", "3.U3(8).6", "U3(8).6", 2]
"3~2:8", "2 A8N3", "s3wrs2", 3]
"5~(1+2):8:4", "2 .HS.2N5", "HS.2N5", 5]
"6.A6", "6.A6.2_1", "3.A6.2_1", 3]
"6.A6", "6.A6.2_1", "A6.2_1", 3]
"6.Fi22", "6.Fi22.2", "3.Fi22.2", 3]
"6.Fi22", "6.Fi22.2", "Fi22.2", 3]
"Tsoclinic(2.U4(3).2_1)", "2.U4(3).(2~2) _{1x2*x2}",
"U4(3).(2~2) _{122}", 3]
"Isoclinic(2.U4(3).2_1)", "2.U4(3).(272) _{1%3%3}",
"U4(3).(2~2)_{133}", 3]
["bd10", "2.D20", "D20", 5]

L B B B e e T e T e T e T s O e R s O s T s TR s T e T s T s T e, T e T e T e B e B e B e IR VA

M

The smallest example in this list is 2.A4¢.21, the double cover of the symmetric group on six points.

The 3-modular table of this group looks as follows.

Example
gap> Display(CharacterTable("2.A6.2_1") mod 3);
2.A6.2_1mod3
2 5 5 4 3 1 1 4 4 3
3 2 2 . 1 1
5 1 1 1 1

la 2a 4a 8a 5a 10a 2b 4b 8b
2P 1a 1la 2a 4a 5a ba l1la 2a 4a
3P 1la 2a 4a 8a 5a 10a 2b 4b 8b

5P 1la
X.1 1
X.2 1
X.3 6
X.4 4
X.5 4
X.6 9
X.7 9
X.8 4
X.9 12 -

Computations with the GAP Character Table Library

2a 4a 8a la
1 1 1 1
1 1 1 1
6 -2 2 1
4 -2 -1
4 . -2 -1
9 1 1 -1
9 1 1 -1
-4 . . -1
12 . . 2

2a 2b 4b 8b
11 1 1
1 -1-1-1
1 . .

-1 2 -2

-1 -2 2 .

-1 3 3 -1

-1 -3-3 1
1

-2

98

We see that the two faithful irreducible characters vanish on the three classes outside 2.Ag.

For the groups in the above list, the function BrauerTable0fTypeMGA (CTbILib: BrauerTable-
OfTypeMGA) can be used to construct the p-modular tables of M.G.A from the tables of M.G and

G A, for the given special primes p. The computations can be performed as follows.

Example

p:=
modt

modt

VVVVVVVVVVVVVVVVVYVVYVYVYV

el
fi;
else
Pr

fi;

od;

#I not all
#I not all
#I not all
#I not all

input [4];

gap> for input in cases do

b1lMG:= CharacterTable(input[1]) mod p;

ordtblMGA:= CharacterTable(input[2]);

blGA:= CharacterTable(input[3]) mod p;

modlib);
if not IsRecord(trans) then
Print("#E computed table and library table for ", name,
" differ\n");
fi;
se

Print("#I no library table for ", name, "\n");

>

int("#I not

input tables
input tables
input tables
input tables

all input tables for ", name, " available\n");

for 2.L2(49).2_2 mod 7
for 2.L2(81).2_1 mod 3
for 2.L2(81).4_1 mod 3
for 2.12(81).4_1 mod 3

name:= Concatenation(Identifier(ordtblMGA), " mod ", String(p));
if ForAll([modtblMG, modtblGA], IsCharacterTable) then

poss:= BrauerTableOfTypeMGA(modtblMG, modtblGA, ordtblMGA);

modlib:= ordtblMGA mod p;

if IsCharacterTable(modlib) then
trans:= TransformingPermutationsCharacterTables(poss.table,

available
available
available
available

The examples 2.A¢.21, 2.L,(25).2,, and 2.L,(49).2; belong to the infinite series of semiliniear groups
YL(2,p?), for odd primes p. All groups in this series have the property that all faithful irreducible
characters vanish on the p-regular classes outside SL(2, p?). (Cf. Section 2.2.6 for another property

of the groups in

this series.)

Computations with the GAP Character Table Library 99

2.5 Examples for the Type G.S3

2.5.1 Small Examples

The symmetric group S4 on four points has the form G.S3 where G is the Klein four group V4, G.2
is the dihedral group Dg of order 8, and G.3 is the alternating group A4. The trivial character of A4
extends twofold to S4, in the same way as the trivial character of V4 extends to the dihedral group. The
nontrivial linear characters of A4 induce irreducibly to S4. The irreducible degree three character of
Ay is induced from any of the three nontrivial linear characters of Vy, it extends to Sy in the same way
as the unique constituent of the restriction to V4 that is invariant in the chosen Dg extends to Ds.
Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> t:= c2 * c2;;
gap> tC:= CharacterTable("Dihedral", 8);;
gap> tK:= CharacterTable("Alternating", 4);;
gap> tfustC:= PossibleClassFusions(t, tC);
(C1,38,4,47]1,01,3,5,51,[1,4,3,471,1[1,4,4,3],

[1,5,3,5]1,[1,5,5,31]1
gap> StoreFusion(t, tfustC[1], tC);
gap> tfustK:= PossibleClassFusions(t, tK);
[[1,2,2,21]
gap> StoreFusion(t, tfustK[1], tK);
gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);
[(3,4)]
gap> new:= CharacterTableOfTypeGS3(t, tC, tK, elms[1], "S4");
rec(table := CharacterTable("S4"),

tblCfustblKC := [1, 4, 2, 2, 5], tblKfustblKC := [1, 2, 3, 3])
gap> Display(new.table);
S4

w N

la 2a 3a 4a 2b
2P 1a 1la 3a 2a 1la
3P la 2a la 4a 2b

X.1 11 1 1 1
X.2 11 1-1-1
X.3 3 -1 . 1-1
X.4 3-1 . -1 1
X.5 2 2 -1

The case e > 1 occurs in the following example. We choose G the cyclic group of order two, G.C
the cyclic group of order six, G.K the quaternion group of order eight, and construct the character
table of G.F = SLy(3), with F = Ay.

We get three extensions of the trivial character of G.K to G.F, a degree three character induced
from the nontrivial linear characters of G.K, and three extensions of the irreducible degree 2 character
of GK.

Example
gap> t:= CharacterTable("Cyclic", 2);;
gap> tC:= CharacterTable("Cyclic", 6);;

Computations with the GAP Character Table Library

gap> tK:= CharacterTable("Quaternionic", 8);;

gap> tfustC:= PossibleClassFusions(t, tC);

[[1,41]1

gap> StoreFusion(t, tfustC[1], tC);

gap> tfustK:= PossibleClassFusions(t, tK);

[[1,31]1]

gap> StoreFusion(t, tfustK[1], tK);

gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);

[(2,5,4) 1]

gap> new:= CharacterTable0fTypeGS3(t, tC, tK, elms[1], "SL(2,3)");

rec(table := CharacterTable("SL(2,3)"),
tblCfustblkKC := [1, 4, 5, 3, 6, 7],
tblKfustblKC := [1, 2, 3, 2, 2])

gap> Display(new.table);

SL(2,3)

2 3 2 3 1 1 1 1
3 1 1 1 1 1 1
la 4a 2a 6a 3a 3b 6b
2P 1a 2a l1la 3a 3b 3a 3b
3P la 4a 2a 2a 1la 1la 2a

X.1 1 1 1 1 1 1 1
X.2 11 1 A /A A/A
X.3 11 1 /A A /A A
X.4 3 -1 3 . . .
X.5 2 . -2 /A -A-/A
X.6 2 .-2 1 -1 -1 1
X.7 2 -2 A -/A -A /A
A = E@)

= (-1+Sqrt(-3))/2 = b3

100

2.5.2 Atlas Tables of the Type G.S3

We demonstrate the construction of all those ordinary and modular character tables in the GAP Char-
acter Table Library that are of the type G.S3 where G is a simple group or a central extension of a sim-
ple group whose character table is contained in the Atlas. Here is the list of Identifier (Reference:
Identifier for tables of marks) values needed for accessing the input tables and the known library

tables corresponding to the output.

Example

gap> 1istGS3:= [

> ["u3()", "U3(5).2", "u3(5).3", "U3(5).83" 1,
> ["3.U3(5)", "3.U3(5).2", "3.U3(5).3", "3.03(5).83" 1,
> ["L3(4)", "1L.3(4).2_2", "L3(4).3", "1.3(4).3.2_2" 1,
> ["L3(4)", "1.3(4).2_3", "L3(4).3", "1.3(4).3.2_3" 1,
> ["3.L3(4)", "3.1L3(4).2_2", "3.L3(4).3", "3.1.3(4).3.2_2" 1,
> ["3.L3(4)", "3.1L3(4).2_3", "3.L3(4).3", "3.1.3(4).3.2_3" 1,
> ["272.L3(4)", "2~2.L3(4).2_2","2~2.L3(4).3", "2~2.L3(4).3.2_.2" 1],
> ["272.L3(4)", "2°2.1L3(4).2_3","2°2.13(4).3", "2°2.1L3(4).3.2_3" 1],

V VVVV VYV VYV VYV VYVVYV

e e T e T e T e T e Y e T s TR s Y e Y e T e O e B e B |

B

Computations with the GAP Character Table Library

"us(2)", "U6(2).2",
"3.u6(2)", "3.U6(2).2",
"2°2.U6(2)", "2°2.U6(2).2",
"08+(2)", "08+(2).2",
"2°2.08+(2)", "272.08+(2).2",
"L3(7)", "L3(7).2",
"3.L3(7)", "3.L3(7).2",
"us(8)", "u3(8).2",
"3.03(8)", "3.03(8).2",
"U3(1", "U3(11).2",
"3.U3(11)", "3.03(11).2",
"08+(3)", "08+(3).2_2",
"2E6(2)", "2E6(2) .2",
"2°2.2E6(2).2",

"U6(2).3", "u6(2).3.2" 1,
"3.U6(2).3", "3.U6(2).3.2" 1,
"2~2.U6(2).3", "2°2.U6(2).3.2" 1],
"08+(2).3", "08+(2).3.2" 1,
"2~2.08+(2).3", "2°2.08+(2).3.2" 1],
"L3(7).3", "L3(7).S3" 1,
"3.L3(7).3", "3.L3(7).83" 1,
"U3(8).3_2", "U3(8).S3" 1,
"3.U3(8).3_2", "3.U3(8).s3" 1,
"U3(11).3", "U3(11).83" 1,
"3.U3(11).3", "3.U3(11).83" 1,
"08+(3).3", "08+(3).83" 1,
"2E6(2).3", "2E6(2) .S3" 1,
"2~2 2E6(2).3", "2°2.2E6(2).83"],

101

"2°2.2E6(2)",

B

(For G one of L3(4), Us(2), O3 (2), and *E¢(2), the tables of 2°.G, 22.G.2, and 2°.G.3 can be
constructed with the methods described in Section 2.3.4 and Section 2.3.1, respectively.)

Analogously, the automorphism groups of L3(4), Us(8), and Oy (3) have factor groups isomorphic
with S3; in these cases, we choose G = L3(4).21, G = Us(8).31, and G = Oy (3).23,,, respectively.

Example
gap> Append(1istGS3, [
> ["L3(4).2_1", "L3(4).272",
> ["272.L3(4).2_1", "2°2.L3(4).2~2",
> ["U3(8).3_1", "U3(8).6",
> ["08+(3).(2~2)_{111}", "08+(3).D8",
>1);

"L3(4).6", "L3(4).D12" 1,
"2~2.L3(4).6", "2~2.L3(4).D12"],
"U3(8).3°2", "U3(8).(sS3x3)" 1,
"08+(3).A4", "08+(3).S84" 1,

In all these cases, the required table automorphism of G.3 is uniquely determined. We first com-
pute the ordinary character table of G.S3 and then the p-modular tables, for all prime divisors p of the
order of G such that the GAP Character Table Library contains the necessary p-modular input tables.

In each case, we compare the computed character tables with the ones in the GAP Character Table
Library. Note that in order to avoid conflicts of the class fusions that arise in the construction with
the class fusions that are already stored on the library tables, we choose identifiers for the result tables
that are different from the identifiers of the library tables.

V VV V V V V VYV YV V\VYV

Example

gap> ProcessGS3Example:= function(t, tC, tK, identifier, pi)

local tF, 1lib, trans, p, tmodp, tCmodp, tKmodp, modtF;

tF:= CharacterTable0fTypeGS3(t, tC, tK, pi,
Concatenation(identifier, "new"));
lib:= CharacterTable(identifier);

if 1ib <> fail then

trans:= TransformingPermutationsCharacterTables(tF.table, 1ib);
if not IsRecord(trans) then

Print("#E

"> differ\n");

fi;
else

computed table and library table for ‘", identifier,

Print("#I no library table for ‘", identifier, "’\n");

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

fi;
Stor
Stor
for

Computations with the GAP Character Table Library

eFusion(tC, tF.tblCfustblKC, tF.table);
eFusion(tK, tF.tblKfustblKC, tF.table);
p in PrimeDivisors(Size(t)) do

tmodp := t mod p;

tC
tK
if

modp:= tC mod p;
modp:= tK mod p;
IsCharacterTable(tmodp) and
IsCharacterTable(tCmodp) and
IsCharacterTable(tKmodp) then
modtF:= CharacterTableOfTypeGS3(tmodp, tCmodp, tKmodp,
tF.table,
Concatenation(identifier, "mod", String(p)));
if Length(Irr(modtF.table)) <>
Length(Irr(modtF.table)[1]) then
Print("#E nonsquare result table for ‘",
identifier, " mod ", p, "’\n");
elif 1ib <> fail and IsCharacterTable(1lib mod p) then
trans:= TransformingPermutationsCharacterTables(modtF.table,
1lib mod p);
if not IsRecord(trans) then
Print("#E computed table and library table for ‘",

102

identifier, " mod ", p, "’ differ\n");
fi;
else
Print("#I no library table for ‘", identifier, " mod ",
p, "’\n");
fi;
else
Print("#I not all inputs available for ‘", identifier,
"mod ", p, "’\n");
fi;
od;
end;;
Now we call the function for the examples in the list.
Example
gap> for input in 1istGS3 do
> t := CharacterTable(input[1]);
> tC:= CharacterTable(input[2]);
> tK:= CharacterTable(input[3]);
> identifier:= input[4];
> elms:= PossibleActionsForTypeGS3(t, tC, tK);
> if Length(elms) = 1 then
> ProcessGS3Example(t, tC, tK, identifier, elms[1]);
> else
> Print("#I ", Length(elms), " actions possible for ‘",
> identifier, "’\n");
> fi;
> od;

#I not all inputs available for €08+(3).S3 mod 3’
#I not all inputs available for ‘2E6(2).S3 mod 2’

Computations with the GAP Character Table Library 103

#I not all inputs available for ‘2E6(2).S3 mod 3’

#I not all inputs available for ‘2E6(2).S3 mod 5°

#I not all inputs available for ‘2E6(2).S3 mod 7’

#I not all inputs available for ‘2E6(2).S3 mod 11’

#I not all inputs available for ‘2E6(2).S3 mod 13’

#I not all inputs available for ‘2E6(2).S3 mod 17’

#I not all inputs available for ¢2E6(2).S3 mod 19’

#I not all inputs available for ‘272.2E6(2).S3 mod 2’
#I not all inputs available for ¢272.2E6(2).S3 mod 3’
#I not all inputs available for €272.2E6(2).S3 mod 5’
#I not all inputs available for ¢2°2.2E6(2).S3 mod 7’
#I not all inputs available for ‘272.2E6(2).S3 mod 11’
#I not all inputs available for ¢2°2.2E6(2).S3 mod 13’
#I not all inputs available for ¢272.2E6(2).S3 mod 17°
#I not all inputs available for ¢272.2E6(2).S3 mod 19°
#I not all inputs available for ‘U3(8).(S3x3) mod 2’
#I not all inputs available for ‘U3(8).(S3x3) mod 19’
#I not all inputs available for ¢08+(3).S4 mod 3’

Also the ordinary character table of the automorphic extension of the simple Atlas group 0;(3)
by A4 can be constructed with the same approach. Here we get four possible permutations, which lead
to essentially the same character table.

Example
gap> input:= ["08+(3)", "08+(3).3", "08+(3).(2°2) _{111}", "08+(3).A4" 1;;
gap> t := CharacterTable(input[1]);;
gap> tC:= CharacterTable(input[2]);;
gap> tK:= CharacterTable(input[3]);;
gap> identifier:= input[4];;
gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);;
gap> Length(elms);
4
gap> differ:= MovedPoints(Group(List(elms, x -> x / elms[1])));;
gap> List(elms, x -> RestrictedPerm(x, differ));
[(118,216,169) (119,217,170) (120,218,167) (121,219,168),
(118,216,170) (119,217,169) (120,219,168) (121,218,167),
(118,217,169) (119,216,170) (120,218,168) (121,219,167) ,
(118,217,170) (119,216,169) (120,219,167) (121,218,168)]
gap> poss:= List(elms, pi -> CharacterTable0fTypeGS3(t, tC, tK, pi,
> Concatenation(identifier, "new")));;
gap> 1lib:= CharacterTable(identifier);;
gap> ForAll(poss, r -> IsRecord(
> TransformingPermutationsCharacterTables(r.table, 1ib)));
true

Also the construction of the p-modular tables of Og (3).A4 works.

Example
gap> ProcessGS3Example(t, tC, tK, identifier, elms[1]);
#I not all inputs available for €08+(3).A4 mod 3’

Computations with the GAP Character Table Library 104

2.6 Examples for the Type G.2°

2.6.1 The Character Table of A¢.2>

As the first example, we consider the automorphism group Aut(Ag) = Ag.2? of the alternating group
Ag on six points.

In this case, the triple of actions on the subgroups Ag.2; is uniquely determined by the condition
on the number of conjugacy classes in Section 2.3.3.

Example
gap> tblG:= CharacterTable("A6");;

gap> tblsG2:= List(["A6.2_1", "A6.2_2", "A6.2_3"], CharacterTable);;
gap> List(tblsG2, NrConjugacyClasses);

[11, 11, 8]
gap> possact:= List(tblsG2, x -> Filtered(Elements(
> AutomorphismsOfTable(x)), y -> Order(y) <=2));

L LO, 3,49(,8(0,11) 1,
L O, 8,9, (5,6)(10,11), (5,6)(8,9)(10,11) 1, [O, (7,8) 11

Note that n; = n; implies f] = f>, and n; —n3 =3 implies f; — fz =2,sowe get fi =3 and f3 =1,
and Ag.2° has2-11—3-3=2-8—3-1 = 13 classes.

(The compatibility on the classes inside A¢ yields only that the classes 3 and 4 of Ag.2; =2 S must
be fused in Ag.22, as well as the classes 5 and 6 of Ag.2, = PGL(2,9).)

Example
X -> GetFusionMap(tblG, x));
, 6,61, [1,2, 3,3, 4,5,61,
5, 511

2, 3, 4,
2, 3, 3

S o

> B > >

These arguments are used by the GAP function PossibleActionsForTypeGV4 (CTblLib: Pos-
sibleActionsForTypeGV4), which returns the list of all possible triples of permutations such that the
i-th permutation describes the action of Ag.2% on the classes of Ag.2;.

Example
gap> acts:= PossibleActionsForTypeGV4(tblG, tblsG2);
[[3,4(7,8)(10,11), (5,6)(8,9)(10,11), (7,8) 1]

For the given actions, the GAP function PossibleCharacterTables0fTypeGV4 (CTbILib:
PossibleCharacterTablesOfTypeGV4) then computes the possibilities for the character table of
Ag.2%; in this case, the result is unique.

Example
gap> poss:= PossibleCharacterTablesOfTypeGV4(tblG, tblsG2, acts[1],
> "AG.272") ;
[rec(
G2fusGv4 := [[1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 81,
[1, 2, 3, 4, 5, 5, 9, 10, 10, 11, 11 1,
(1, 2, 3, 4, 5, 12, 13, 131 1],
table := CharacterTable("A6.2°2")) 1]
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTable("A6.272")));
true

Computations with the GAP Character Table Library 105

Finally, possible p-modular tables can be computed from the p-modular input tables and the ordi-
nary table of Ag.2%; here we show this for p = 3.

Example
gap> PossibleCharacterTables0fTypeGV4(tblG mod 3,
> List(tblsG2, t -> t mod 3), poss[l].table);
[rec(
G2fusGV4 :=

[[1: 2’ 3, 4: 5’ 55 6], [1, 2: 3’ 4, 4: 7, 85 8: 9: 9]:
[1, 2, 3, 4, 10, 11, 11] 1,
table := BrauerTable("A6.2°2", 3))]

2.6.2 Atlas Tables of the Type G.2°> — Easy Cases

We demonstrate the construction of all those ordinary and modular character tables in the GAP Char-
acter Table Library that are of the type G.2> where G is a simple group or a central extension of a sim-
ple group whose character table is contained in the Atlas. Here is the list of Identifier (Reference:
Identifier for tables of marks) values needed for accessing the input tables and the result tables.

(The construction of the character table of Oy (3).2%,; is more involved and will be described in
Section 2.6.10. The construction of the character tables of groups of the type 2.13(4).2% and 6.13(4).2?
is described in the sections 2.6.4 and 2.6.5, respectively. The construction of the character tables of
groups of the type 2.Uy(3).2% is described in Section 2.6.6.)

Example
gap> listGV4:= [
> ["A6", "A6.2_1", "A6.2_2", "A6.2_3", "A6.272" 1,
> ["3.A6", "3.A6.2_1", "3.A6.2_2", "3.A6.2_3", "3.46.2°2" 1,
> ["L2(25)", "L2(25).2_1", "L2(25).2_2", "L2(25).2_3", "L2(25).2°2" 1,
> ["L3(4)", "L3(4).2_1", "L3(4).2_2", "L3(4).2_.3", "L3(4).272" 1,
> ["2°2.13(4)", "2°2.L3(4).2_1", "2°2.13(4).2_2", "2°2.13(4).2_3",
> "2-2.L3(4).2"2"],
> ["3.L3(4)", "3.L3(4).2_1", "3.L3(4).2_2", "3.L3(4).2_3", "3.L3(4).272"],
> ["U4(3)", "U4(3).2_1", "U4(3).2_2", "U4(3).2_.2°",
N "U4(3).(2~2) _{122}" 1,
> ["U4(3)", "U4(3).2_1", "U4(3).2_3", "U4(3).2.3°",
> "U4(3).(2~2)_{133}" 1,
> ["3.1.U4(3)", "3_1.U4(3).2_1", "3_1.U4(8).2_2", "3_1.U4(3).2_2"",
> "3_1.U4(3).(272) _{122}" 1,
> ["3_2.U4(3)", "3_2.U4(3).2_1", "3_2.U4(3).2_3", "3_2.U4(3).2_3°",
> "3_2.U4(3).(2~2)_{133}" 1,
> ["L2(49)", "L2(49).2_1", "L2(49).2_2", "L2(49).2_3", "L2(49).2~2" 1,
> ["L2(81)", "L2(81).2_1", "L2(81).2_2", "L2(81).2_3", "L2(81).272" 1],
> ["L3(9)", "L3(9).2_1", "L3(9).2_2", "L3(9).2_3", "L3(9).272" 1,
> ["08+(3)", "08+(3).2_1", "08+(3).2_2", "08+(3).2_2°",
> "08+(3).(272) _{122}" 1],
> ["08-(3)", "08-(3).2_1", "08-(3).2_2", "08-(3).2_.3", "08-(3).272" 1,
>1;;

Analogously, the automorphism groups L3(4).D1» of L3(4) and Us(3).Dg of Us(3), and the sub-
group Oé” (3).Ds of the automorphism group O; (3).S4 have factor groups that are isomorphic with 2%;
in these cases, we choose G = L3(4).3, G = U4(3).2y, and G = Oy (3).2y, respectively.

Computations with the GAP Character Table Library

106

Also the group 22.L3(4).D1; has a factor group isomorphic with 22. Note that the character tables

of L3(4).Dy; and 2%.L3(4).D1; have been constructed already in Section 2.5.2.

The automorphism groups of L4(4) and Uy(5) have the structure Ly (4).2% and Uy(5).22, respec-

tively; their tables are contained in the GAP Character Table Library but not in the Atlas.

Example
gap> Append(listGv4, [
> ["L3(4).3", "L3(4).6", "L3(4).3.2_2", "L3(4).3.2_3", "L3(4).D12" 1],
> ["22.L3(4).3", "2"2.L3(4).6", "2°2.L3(4).3.2_2", "272.1L3(4).3.2_3",
> "2°2.1L3(4).D12" 1,
> ["U4(3).2_1", "U4(3).4", "U4(3).(2~2)_{122}", "U4(3).(2~2)_{133}",
> "U4(3).D8" 1,
> ["08+(3).2_1", "08+(3).(2~2)_{111}", "08+(3).(2"2)_{122}", "08+(3).4",
> "08+(3).D8"],
> ["L4a)", "L4(4).2_1", "L4(4).2_2", "L4(4).2_3", "L4(4).272" 1],
> ["ua(s)", "U4(5).2_1", "u4(5).2_2", "U4(5).2_3", "u4(5).2"2" 1,
>1);

Now we proceed in two steps, the computation of the possible ordinary character tables from the
ordinary tables of the relevant subgroups, and then the computation of the Brauer tables from the

Brauer tables of the relevant subgroups and from the ordinary table of the group.

The following function first computes the possible triples of actions on the subgroups G.2;, us-
ing the function PossibleActionsForTypeGV4 (CTbILib: PossibleActionsForTypeGV4). Then
the union of the candidate tables for these actions is computed, this list is returned in the end. and
representatives of classes of permutation equivalent candidates are inspected further with consistency
checks. If there is a unique solution up to permutation equivalence, this table is compared with the

one that is contained in the GAP Character Table Library.
Example

gap> ConstructOrdinaryGV4Table:= function(tblG, tblsG2, name, lib)
local acts, nam, poss, reps, i, trans;

Compute the possible actions for the ordinary tables.
acts:= PossibleActionsForTypeGV4(tblG, tblsG2);

Compute the possible ordinary tables for the given actions.
nam:= Concatenation("new", name);

poss:= Concatenation(List(acts, triple ->

Test the possibilities for permutation equivalence.
reps:= RepresentativesCharacterTables(poss);
if 1 < Length(reps) then
Print("#I ", name, ": ", Length(reps),
" equivalence classes\n");
elif Length(reps) = O then
Print("#E ", name, ": no solution\n");
else
Compare the computed table with the library table.
if not IsCharacterTable(1lib) then
Print("#I no library table for ", name, "\n");
PrintToLib(name, poss[1].table);
foriin [1 .. 3] do
Print(LibraryFusion(tblsG2[i],

VVVVVVVVVVVVVVVVYVVYVVVYV

PossibleCharacterTables0fTypeGV4(tblG, tblsG2, triple, nam)));

Computations with the GAP Character Table Library

> rec(name:= name, map:= poss[1].G2fusGV4[i])));
> od;

> else

> trans:= TransformingPermutationsCharacterTables(poss[1].table,
> lib);

> if not IsRecord(trans) then

> Print("#E computed table and library table for ", name,

> " differ\n");

> fi;

> # Compare the computed fusions with the stored ones.

> if List(poss[1].G2fusGV4, x -> OnTuples(x, trans.columns))
> <> List(tblsG2, x -> GetFusionMap(x, 1ib)) then

> Print("#E computed and stored fusions for ", name,

> " differ\n");

> fi;

> fi;

> fi;

> return poss;

> end;;

107

The following function computes, for all those prime divisors p of the group order in question such
that the p-modular Brauer tables of the subgroups G.2; are available, the possible p-modular Brauer
tables. If the solution is unique up to permutation equivalence, it is compared with the table that is

contained in the GAP Character Table Library.

It may happen (even in the case that the ordinary character table is unique up to permutation
equivalence) that some candidates for the ordinary character table are excluded due to information
provided by some p-modular table. In this case, a message is printed, and the ordinary character table

from the GAP Character Table Library is checked again under the additional restrictions.

Example

gap> ConstructModularGV4Tables:= function(tblG, tblsG2, ordposs,
ordlibtblGV4)
local name, modposs, primes, checkordinary, i, record, p, tmodp,
t2modp, poss, modlib, trans, reps;

if not IsCharacterTable(ordlibtblGV4) then
Print("#I no ordinary library table ...\n");
return [];
fi;
name:= Identifier(ordlibtblGV4);
modposs:= List(ordposs, x -> [1);
primes:= ShallowCopy(PrimeDivisors(Size(tblG)));
ordposs:= ShallowCopy(ordposs);
checkordinary:= false;
for i in [1 .. Length(ordposs)] do
record:= ordposs[i];
for p in primes do
tmodp := tblG mod p;
t2modp:= List(tblsG2, t2 -> t2 mod p);
if IsCharacterTable(tmodp) and
ForAll(t2modp, IsCharacterTable) then
poss:= PossibleCharacterTables0fTypeGV4(tmodp, t2modp,

VVVVVVVVVVVVVVVVYVVYVYVYV

VVYVVYVVYVYVYVYV

Computations with the GAP Character Table Library

record.table, record.G2fusGV4);
poss:= RepresentativesCharacterTables(poss);
if Length(poss) = O then
Print("#I excluded cand. ", i, " (out of ",
Length(ordposs), ") for ", name, " by ", p,
"_mod. table\n");
Unbind(ordposs[i]);
Unbind (modposs([i]);
checkordinary:= true;
break;
elif Length(poss) = 1 then
Compare the computed table with the library table.
modlib:= ordlibtblGV4 mod p;
if IsCharacterTable(modlib) then
trans:= TransformingPermutationsCharacterTables(
poss[1] .table, modlib);
if not IsRecord(trans) then
Print("#E computed table and library table for ",

name, " mod ", p, " differ\n");

fi;
else

Print("#I no library table for ",

name, " mod ", p, "\n");

PrintToLib(name, poss[1].table);

fi;
else

Print("#I ", name, " mod ", p, ": ", Length(poss),

" equivalence classes\n");
fi;
Add (modposs[i], poss);
elif i = 1 then
Print("#I not all input tables for ", name,
" available\n");
primes:= Difference(primes, [p]);
fi;
od;
od;
if checkordinary then
Test whether the ordinary table is admissible.
ordposs:= Compacted(ordposs);
modposs:= Compacted(modposs) ;
reps:= RepresentativesCharacterTables(ordposs);
if 1 < Length(reps) then
Print("#I ", name, ": ", Length(reps),
" equivalence classes (ord. table)\n");
elif Length(reps) = O then
Print("#E ", name, ": no solution (ord. table)\n");
else
Compare the computed table with the library table.
trans:= TransformingPermutationsCharacterTables(
ordposs[1] .table, ordlibtblGV4);
if not IsRecord(trans) then

mod ", p,

108

Computations with the GAP Character Table Library

> Print("#E computed table and library table for ", name,

> " differ\n");

> fi;

> # Compare the computed fusions with the stored ones.

> if List(ordposs[1].G2fusGV4, x -> OnTuples(x, trans.columns))
> <> List(tblsG2, x -> GetFusionMap(x, ordlibtblGV4)) then
> Print("#E computed and stored fusions for ", name,

> " differ\n");

> fi;

> fi;

> fi;

> return rec(ordinary:= ordposs, modular:= modposs);

> end;;

109

Finally, here is the loop over the list of tables.
Example

gap> for input in 1istGV4 do

> tblG := CharacterTable(input[1]);

> tblsG2 := List(input{ [2 .. 4] }, CharacterTable);

> lib = CharacterTable(input[5]);

> poss := ConstructOrdinaryGV4Table(tblG, tblsG2, input[5], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);

> od;

(out of 2) for L3(4).2"2
(out of 8) for 2°2.L3(4).
(out of 8) for
(out of 8) for

#I excluded cand.
#I excluded cand.
#I excluded cand. 272
#I excluded cand. 272
#I excluded cand. (out of 8) for 272
#I excluded cand. (out of 8) for 2~2.L3(4).
272
3.L
272

y 3-mod. table

~2 by 7-mod. table
by 5-mod. table
by 5-mod. table
by 5-mod. table
by 5-mod. table
by 7-mod. table

~N O O W N

#I excluded cand. (out of 8) for
#I excluded cand. 2 (out of 2) for 3.L3(4).2"2 by 3-mod. table
#I not all input tables for L2(49). mod 7 available

#I not all input tables for L2(81).2"2 mod 3 available

#I excluded cand. 2 (out of 2) for L3(9).2°2 by 7-mod. table
#I not all input tables for 08+(3).(272)_{122} mod 3 available
#I not all input tables for 08-(3).2"2 mod 3 available

#I not all input tables for 08-(3).2"2 mod 5 available

#I not all input tables for 08-(3).2°2 mod 7 available

#I not all input tables for 08-(3).2"2 mod 13 available

#I not all input tables for 08-(3).2°2 mod 41 available

#I excluded cand. 2 (out of 2) for L3(4).D12 by 3-mod. table
#I excluded cand. 2 (out of 2) for 2°2.L3(4).D12 by 7-mod. table
#I not all input tables for 08+(3).D8 mod 3 available

#I not all input tables for L4(4). mod 3 available

#I not all input tables for L4(4). mod 5 available

#I not all input tables for L4(4). mod 7 available

#I not all input tables for L4(4). mod 17 available

#I not all input tables for U4(5). mod 2 available

#I not all input tables for U4(5). mod 3 available

#I not all input tables for U4(5). mod 5 available

#I not all input tables for U4(5). mod 7 available

#I not all input tables for U4(5). mod 13 available

)))

)

)))

MMK\)[\)!\?!\)I\)M[\)
NNDNDNNDDNDNDDNDDN

)

Computations with the GAP Character Table Library 110

The groups 3.4¢.22, 3.13(4).22, and 3,.U4(3).(2%)133 have also the structure M.G.A, with M.G
equal to 3.A¢.23, 3.L3(4).21, and 3,.U4(3).23, respectively, and G.A equal to Ag.2%, L3(4).2%, and
Uy (3).(22)133, respectively (see Section 2.4.3).

Similarly, the group L3(4).Dy5 has also the structure G.S3, with G = L3(4).2;, G.2 = L3(4).22,
and G.3 = L3(4).6, respectively (see Section 2.5.2).

2.6.3 The Character Table of S4(9).2? (September 2011)

The available functions yield two possibilities for the ordinary character table of S4(9).22.
Example
gap> tblG:= CharacterTable("S4(9)");;
gap> tblsG2:= List(["S4(9).2_1", "S4(9).2_2", "S4(9).2_3"],

> CharacterTable);;

gap> 1lib:= CharacterTable("S4(9).2°2");;

gap> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, "newS4(9).2~2", 1lib);;
#I newS4(9).272: 2 equivalence classes

gap> poss:= RepresentativesCharacterTables(poss);;

The two candidates differ w. r. t. the action of S4(9).2> on the classes of element order 80 in
S4(9).2,. In the two possible tables, each element of order 80 is conjugate to its third power or to its
13-th power, respectively.

Example
gap> order80:= PositionsProperty(DrdersglassRepresentatives(tblsG2[2]),
> x ->x =280);
[98, 99, 100, 101, 102, 103, 104, 105]
gap> List(poss, r -> r.G2fusGV4[2]{ order80 });
t(wr, 77, 78, 79, 80, 78, 79, 80 1,
[77, 78, 79, 79, 77, 80, 80, 78 1]
gap> PowerMap(tblsG2[2], 3){ order80 };
[99, 98, 103, 104, 105, 100, 101, 102]
gap> PowerMap(tblsG2[2], 13){ order80 };
[102, 105, 101, 100, 98, 104, 103, 99]

We claim that the first candidate is the correct one. For that, first note that S4(9).2; is the extension
of the simple group by a diagonal automorphism. (An easy way to see this is that for any subgroup of
S4(9) isomorphic with S,(81) = L,(81), the extension by a diagonal automorphism contains elements
of order 80 —this group is isomorphic with PGL(2,81)— and only S4(9).2, contains elements of order
80.)

Example

gap> List(tblsG2, x -> 80 in OrdersClassRepresentatives(x));
[false, true, false]

Now the field automorphism of S4(9).2> maps each element x of order 80 in S4(9).2; to a conjugate

of x3.

Example

gap> tbl:= poss[1].table;;
gap> IsRecord(TransformingPermutationsCharacterTables(tbl, lib));
true

Computations with the GAP Character Table Library 111

2.6.4 The Character Tables of Groups of the Type 2.L3(4).2> (June 2010)

The outer automorphism group of the group L3(4) is a dihedral group of order 12; its Sylow 2-
subgroups are Klein four groups, so there is a unique almost simple group H of the type L3(4).22,
up to isomorphism. In this section, we construct the character tables of the double covers of this group
with the approach from Section 2.3.3.

The group H has three subgroups of index two, of the types L3(4).2y, L3(4).25, and L3(4).23,
respectively. So any double cover of H contains one subgroup of each of the types 2.L3(4).2,
2.L3(4).25, and 2.L3(4).23, and there are two isoclinic variants of each of these group to consider,
see Section 2.2.6. So we start with eight different inputs for the construction of the character tables of
double covers.

Example

gap> names:= List([1 .. 3],

> i -> Concatenation("2.L3(4).2_", String(i)));;

gap> tbls:= List(names, CharacterTable);

[CharacterTable("2.L3(4).2_1"), CharacterTable("2.L3(4).2_2"),
CharacterTable("2.L3(4).2_3") 1

gap> isos:= List(names, nam -> CharacterTable(Concatenation(nam, "*")));

[CharacterTable("Isoclinic(2.L3(4).2_1)"),
CharacterTable("Isoclinic(2.L3(4).2_2)"),
CharacterTable("Isoclinic(2.L3(4).2_3)") 1]

gap> inputs:= [

[tbls[1], tbls[2], tbls[3], "2.L3(4).(2~2)_{123}"],

tbls[1], isos[2], tbls[3], "2.L3(4).(2~2)_{12%3}" 1],

tbls[1], tbls[2], isos[3], "2.L3(4).(2~2)_{123*}"],

tbls[1], isos[2], isos[3], "2.L3(4).(2~2)_{12x3%x}"],

isos[1], tbls[2], tbls[3], "2.L3(4).(2~2) _{1*23}"],

isos[1], isos[2], tbls[3], "2.L3(4).(272) _{1%2*3}" 1],

isos[1], tbls[2], isos[3], "2.L3(4).(272) _{1%23x%}"],

[isos[1], isos[2], isos[3], "2.L3(4).(2~2) _{1x2x3*x}"] J;;

gap> tblG:= CharacterTable("2.L3(4)");;

gap> result:= [];;

gap> for input in inputs do

> tblsG2:= input{ [1 .. 31 };
lib:= CharacterTable(input[4]);
poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], 1lib);
ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
Append(result, RepresentativesCharacterTables(poss));

od;

#I excluded cand. 2 (out of 8) for 2.L3(4).(272)_{123} by

5-mod. table

#I excluded cand. 3 (out of 8) for 2.L3(4).(2°2)_{123} by

5-mod. table

#I excluded cand. 4 (out of 8) for 2.L3(4).(272)_{123} by

7-mod. table

#I excluded cand. 5 (out of 8) for 2.L3(4).(272)_{123} by

7-mod. table

#I excluded cand. 6 (out of 8) for 2.L3(4).(2°2)_{123} by

5-mod. table

#I excluded cand. 7 (out of 8) for 2.L3(4).(272)_{123} by

5-mod. table

#I excluded cand. 2 (out of 8) for 2.1L3(4).(2°2)_{12%3*} by

V V V V V V V V
L B s T e B e W e M |

V V. V V V

5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

[CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(

Computations with the GAP Character Table Library

3 (out of

4 (out of

5 (out of

6 (out of

7 (out of

2 (out of

3 (out of

4 (out of

5 (out of

6 (out of

7 (out of

2 (out of

3 (out of

4 (out of

5 (out of

6 (out of

7 (out of

gap> result:= List(result, x
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).
"new2.L3(4).

8) for 2.L3(4).(272) _{12%3%}

8) for 2.L3(4).(272)_{12%3x}

8) for 2.L3(4).(272)_{12%3%}

8) for 2.L3(4).(272)_{12%3x}

8) for 2.L3(4).(272)_{12%3x}

8) for 2.L3(4).(2°2) _{1x2*3}

8) for 2.L3(4).(2~2)_{1%2%3}

8) for 2.L3(4).(272) _{1x2*3}

8) for 2.L3(4).(272) _{1x2%3}

8) for 2.L3(4).(272)_{1%2*3}

8) for 2.L3(4).(272) _{1x2*3}

8) for 2.L3(4).(2~2)_{1%23x}

8) for 2.L3(4).(272) _{1%23%}

8) for 2.L3(4).(272) _{1%23*}

8) for 2.L3(4).(2~2)_{1%23x}

8) for 2.L3(4).(272) _{1%23%}

8) for 2.L3(4).(272) _{1x23%}

-> x.table);
(2~2) _{123}"),
(272) _{12%3}"),
(272) _{123%}"),
(272) _{12%3%}"),
(272) _{1%23}"),
(272) _{1*2%3}"),
(272) _{1*23*}"),

(272) _{1*%2%3%}")]

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

by

112

We get exactly one character table for each input. For each of these tables, there are three possi-

bilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that
the eight solutions form two orbits under forming some isoclinic table. Tables in different orbits are

essentially different, already their numbers of conjugacy classes differ.

Example

gap> List(result, NrConjugacyClasses);
[39, 33, 33, 39, 33, 39, 39, 331

Computations with the GAP Character Table Library 113

gap> t:= result[i];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[4, 7, 6]

gap> t:= result[2];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[3,8,5]1]

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

The group Ug(2).2 contains a maximal subgroup M of the type L3(4).2%, see [CCN*85, p. 115].
Its derived subgroup M’ of the type L3(4) lies inside Ug(2), and we claim that the preimage of M’
under the natural epimorphism from 2.Ug(2) to Ug(2) is a double cover of L3(4). Unfortunately, L3(4)
admits class fusions into 2.Ug(2), so this criterion cannot be used.

Example

gap> 134:= CharacterTable("L3(4)");;

gap> u:= CharacterTable("UB(2)");;

gap> 2u:= CharacterTable("2.U6(2)");;

gap> cand:= PossibleClassFusions(134, 2u);

[[1, 5, 12, 16, 22, 22, 23, 23, 41, 41 1],
[1, 5, 12, 22, 16, 22, 23, 23, 41, 41 1],
[1, 5, 12, 22, 22, 16, 23, 23, 41, 41] 1

gap> OrdersClassRepresentatives(134);

(1,2, 3,4, 4,4,5,5,7, 7]

Consider the three classes of elements of order four in L3(4). Under the possible fusions into
2.Ug(2), they are mapped to the classes 16 and 22, which are preimages of the classes 10 and 14 (4C
and 4G) of Us(2). Note that the maximal subgroups of type L3(4).2 in Ug(2) extend to L3(4).6 type
subgroups in Ug(2).3, and the three classes 4C, 4D, 4E form one orbit under the action of an outer
automorphism of order three of Ug(2).

Example

gap> GetFusionMap(2u, u){ [16, 22] };

[10, 14]

gap> ClassNames(u, "ATLAS"){ [10, 14] };

["4c", "4G"]

gap> GetFusionMap(u, CharacterTable("U6(2).3"));

(1, 2, 3, 4, 5, 6, 7,8, 9, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 36, 36, 37, 38, 39, 40]

This means that any L3(4) type subgroup of Us(2) that extends to an L3(4).6 type subgroup in
Us(2).3 either contains elements from all thrre classes 4C, 4D, 4E of Ug(2), or contains no element from

Computations with the GAP Character Table Library 114

these classes. Thus we know that any double cover of Ug(2).2 contains a double cover of L3(4).22.
Only the first of our result tables admits a class fusion into the table of 2.Ug(2).2.

Example
gap> 2u2:= CharacterTable("2.U6(2).2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, 2u2));;
gap> List(fus, Length);

[4, 0, 0, 0,0, 0,0, 0]

As a consequence, the fourth result table is established as that of a maximal subgroup of the group
isoclinic to 2.Us(2).2.

Example
gap> 2u2iso:= CharacterTableIsoclinic(2u2);;

gap> fus:= List(result, x -> PossibleClassFusions(x, 2u2iso));;
gap> List(fus, Length);

[0, O, O, 4, 0, 0, 0, O]

Similarly, the group HS.2 contains a maximal subgroup M of the type L3(4).2%, see [CCN*85, p.
80]. Its derived subgroup M’ of the type L3(4) lies inside HS, and the preimage of M’ under the natural
epimorphism from 2.HS to HS is a double cover of L3(4), because L3(4) does not admit a class fusion
into 2.HS.2.

Example
gap> h2:= CharacterTable("HS.2");;

gap> 2h2:= CharacterTable("2.HS.2");;
gap> PossibleClassFusions(134, 2h2);

]

Only the fifth of our result tables admits a class fusion into 2.HS.2, which means that
2.L3(4).(2%) 1423 is a subgroup of 2.HS.2, and the eighth result table —2.L3(4).(22).2.3+— admits a
class fusion into the isoclinic variant of 2.HS.2 This shows the existence of groups for the tables from
the second orbit.

Example
gap> fus:= List(result, x -> PossibleClassFusions(x, 2h2));;
gap> List(fus, Length);

Lo, 0,0,0, 4,0,0, 0]

gap> 2h2iso:= CharacterTableIsoclinic(2h2);;

gap> fus:= List(result, x -> PossibleClassFusions(x, 2h2iso));;
gap> List(fus, Length);

(o, 0,0,0,0,0,0, 4]

2.6.5 The Character Tables of Groups of the Type 6.13(4).2> (October 2011)

We have two approaches for constructing the character tables of these groups.

First, we may regard them as normal products of the three normal subgroups of index two, each
of them having the structure 6.L3(4).2, and use the approach from Section 2.3.3, as we did in Sec-
tion 2.6.4 for the groups of the structure 2.13(4).22.

Second, we may use the approach from Section 2.3.1. Note that the factor group L3(4).2% contains
each of the three groups L3(4).2; as a subgroup, for 1 <i < 3, and the groups of the type 6.L3(4).2;
have a centre of order six, whereas the centres of the 6.L3(4).2, and 6.L3(4).23 type groups have order

Computations with the GAP Character Table Library 115

two. For that, the character tables of the subgroups 6.L3(4).2; and 6.L3(4).2} are needed, as well as
the character tables of the eight possible factor groups 2.L3(4).2%; the latter tables are known from
Section 2.6.4.

We show both approaches. (The second approach is better suited for storing the character tables in
the Character Table Library, since the irreducible characters need not be stored, and since the Brauer
tables of the groups can be derived from the Brauer tables of the compound tables.)

Example

gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("6.L3(4).2_", i)));
[CharacterTable("6.L3(4).2_1"), CharacterTable("6.L3(4).2_2"),
CharacterTable("6.L3(4).2_3") 1
gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("6.L3(4).2_", i, "x")));
[CharacterTable("Isoclinic(6.L3(4).2_1)"),
CharacterTable("Isoclinic(6.L3(4).2_2)"),
CharacterTable("Isoclinic(6.L3(4).2_3)") 1]
ap> inputs:= [
tbls[1], tbls[2], tbls[3], "6.L3(4).(2~2)_{123}" 1,
tbls[1], isos[2], tbls[3], "6.L3(4).(2~2)_{12*3}"],
tbls[1], tbls[2], isos[3], "6.L3(4).(2~2)_{123%}"],
tbls[1], isos[2], isos[3], "6.L3(4).(2°2)_{12%3%}"],
isos[1], tbls[2], tbls[3], "6.L3(4).(272)_{1x23}" 1],
isos[1], isos[2], tbls[3], "6.L3(4).(272) _{1%2*3}"],
isos[1], tbls[2], isos[3], "6.L3(4).(2~2) _{1%23x%}"],
[isos[1], isos[2], isos[3], "6.L3(4).(2~2)_{1*2x3*}"] 1;;
gap> tblG:= CharacterTable("6.L3(4)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 31 };
lib:= CharacterTable(input[4]);
poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], 1lib);
ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
Append(result, RepresentativesCharacterTables(poss));
od;
#I excluded cand. 2 (out of 8) for 6.L3(4).(2°2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2°2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(272)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2°2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2°2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(272)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.1L3(4).(272)_{12%3*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(272)_{12%3%} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(272)_{12%3x} by
7-mod. table

L T e I e Y e B s Y e B |

g
>
>
>
>
>
>
>
>

V V V V V

Computations with the GAP Character Table Library 116

#I excluded cand. 5 (out of 8) for 6.L3(4).(272)_{12%3%} by

7-mod. table

#I excluded cand. 6 (out of 8) for 6.1L3(4).(272)_{12%3*} by

5-mod. table

#I excluded cand. 7 (out of 8) for 6.L3(4).(272)_{12%3%} by

5-mod. table

#I excluded cand. 2 (out of 8) for 6.L3(4).(2°2)_{1%2*3} by

5-mod. table

#I excluded cand. 3 (out of 8) for 6.L3(4).(272)_{1*2%3} by

5-mod. table

#I excluded cand. 4 (out of 8) for 6.L3(4).(272)_{1x2*3} by

7-mod. table

#I excluded cand. 5 (out of 8) for 6.L3(4).(2°2)_{1%2*3} by

7-mod. table

#I excluded cand. 6 (out of 8) for 6.L3(4).(272)_{1*2%3} by

5-mod. table

#I excluded cand. 7 (out of 8) for 6.L3(4).(272)_{1x2*3} by

5-mod. table

#I excluded cand. 2 (out of 8) for 6.L3(4).(272) _{1*23%} by

5-mod. table

#I excluded cand. 3 (out of 8) for 6.L3(4).(272)_{1%23%} by

5-mod. table

#I excluded cand. 4 (out of 8) for 6.L3(4).(272)_{1%23x} by

7-mod. table

#I excluded cand. 5 (out of 8) for 6.L3(4).(272)_{1%*23%} by

7-mod. table

#I excluded cand. 6 (out of 8) for 6.L3(4).(272)_{1%23%} by

5-mod. table

#I excluded cand. 7 (out of 8) for 6.L3(4).(2°2)_{1%23%} by

5-mod. table

gap> result:= List(result, x -> x.table);

[CharacterTable("new6.L3(4).(2-2)_{123}"),
CharacterTable("new6.L3(4).(2°2)_{12%3}"),
CharacterTable("new6.L3(4).(272)_{123%}"),
CharacterTable("new6.L3(4).(272)_{12*3x}"),
CharacterTable("new6.L3(4).(2~2)_{1%23}"),
CharacterTable("new6.L3(4).(272) _{1*2x%3}"),
CharacterTable("new6.L3(4).(2°2) _{1%23x%}"),
CharacterTable("new6.L3(4).(272) _{1%2*3%}")]

As in Section 2.6.4, we get exactly one character table for each input, and the eight solutions lie
in two orbits under isoclinism.
Example
gap> List(result, NrConjugacyClasses);
[59, 53, 53, 59, 53, 59, 59, 53]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[7,6, 4]

Computations with the GAP Character Table Library 117

gap> t:= result[2];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[8, 5, 3]

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

We have shown in Section 2.6.4 that the maximal subgroups M of the type L3(4).2% in Us(2).2 lift
to double covers 2.L3(4).2% in 2.Us(2).2. The preimages of these groups under the natural epimor-
phism from 6.Ug(2).2 have the structure 6.L3(4).22, where the derived subgroup is the six-fold cover
of L3(4); this follows from the fact that 6.Ug(2) does not admit a class fusion from the double cover
2.L3(4).

Example
gap> 2134:= CharacterTable("2.L3(4)");;
gap> 6u:= CharacterTable("6.U6(2)");;

gap> cand:= PossibleClassFusions(2134, 6u);
[1]

This establishes the first and the fourth result as character tables of subgroups of 6.Ug(2) and its

isoclinic variant, respectively.

Example
gap> 6u2:= CharacterTable("6.U6(2).2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, 6u2));;
gap> List(fus, Length);

[8, 0, 0, O, 0, O, O, O]

gap> 6u2iso:= CharacterTableIsoclinic(6u2);;

gap> fus:= List(result, x -> PossibleClassFusions(x, 6u2iso));;
gap> List(fus, Length);

[0, 0, O, 8 0, O, O, 0]

Similarly, the group G(4).2 contains a maximal subgroup M of the type 3.L3(4).22, see [CCN*85,
p. 97]. Its derived subgroup M’ of the type 3.L3(4) lies inside G(4), and the preimage of M’ under
the natural epimorphism from 2.G»(4) to G»(4) is a double cover of 3.L3(4), because 3.L3(4) does
not admit a class fusion into 2.G,(4).2.

Example
gap> 3134:= CharacterTable("3.L3(4)");;
gap> g2:= CharacterTable("G2(4).2");;
gap> 2g2:= CharacterTable("2.G2(4).2");;
gap> PossibleClassFusions(3134, 2g2);

L]

Only the third and eighth of our result tables admit a class fusion into 2.G,(4).2 and its isoclinic
variant, respectively. This shows the existence of groups for the tables from the second orbit.

Computations with the GAP Character Table Library

Example

118

gap> fus:= List(result, x -> PossibleClassFusions(x, 2g2));;
gap> List(fus, Length);

[0, O, 16, 0, O, O, 0, O]

gap> 2g2iso:= CharacterTableIsoclinic(2g2);;

gap> fus:= List(result, x -> PossibleClassFusions(x, 2g2iso));;
gap> List(fus, Length);

[o, 0, O, O, O, O, 0, 16]

Now we try the second approach and compare the results.

Example
gap> names:= ["L3(4).(2°2)_{123}", "L3(4).(272)_{12%3}",
> "L3(4).(272) _{123%}", "L3(4).(272) _{12*3*}" 1;;
gap> inputsl:= List(names, nam -> ["6.L3(4).2_1", "2.L3(4).2_1",
> Concatenation("2.", nam), Concatenation("6.", nam)]);;
gap> names:= List(names, nam -> ReplacedString(nam, "1", "1x"));;
gap> inputs2:= List(names, nam -> ["6.L3(4).2_1x", "2.L3(4).2_1%",
> Concatenation("2.", nam), Concatenation("6.", nam)]);;
gap> inputs:= Concatenation(inputsl, inputs2);
[["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2~2)_{123}",
"6.L3(4).(2~2) _{123}" 1,
["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2~2)_{12*x3}",
"6.L3(4).(2~2)_{12%3}" 1],
["6.L3(4).2_1", "2.L3(4).2_1", "2.1L3(4).(2~2)_{123*}",
"6.L3(4).(272) _{123%}" 1,
["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2~2) _{12*3x*}",
"6.L3(4).(272) _{12%3*}" 1,
["6.L3(4).2_1x", "2.L3(4).2_1x", "2.L3(4).(2~2)_{1*23}",
"6.L3(4).(272) _{1%23}" 1],
["6.L3(4).2_1x", "2.13(4).2_1%", "2.1L3(4).(272) _{1%2x3}",
"6.L3(4).(2°2) _{1%2%3}" 17,
["6.L3(4).2_1x", "2.L3(4).2_1x", "2.L3(4).(2~2) _{1*%23*}",
"6.0L3(4).(272) _{1x23x}"],
["6.L3(4).2_1x", "2.L3(4).2_1x", "2.L3(4).(272) _{1*2*3*}",
"6.L3(4).(272) _{1%2%3x}"]]
gap> result2:= [];;
gap> for input in inputs do

> tblMG := CharacterTable(input[1]);

> tblG := CharacterTable(input[2]);

> tblGA := CharacterTable(input[3]);

> name := Concatenation("new", input[4]);

> 1ib := CharacterTable(input[4]);

> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, 1lib);
> Append(result2, poss);

> od;

gap> result2:= List(result2, x -> x.table);

[CharacterTable("new6.L3(4).(2~2)_{123}"),
CharacterTable("new6.L3(4).(2°2)_{12%3}"),
CharacterTable("new6.L3(4).(2°2)_{123*}"),
CharacterTable("new6.L3(4).(2°2) _{12%3*}"),
CharacterTable("new6.L3(4).(2°2)_{1%23}"),
CharacterTable("new6.L3(4).(2°2)_{1%2%3}"),

Computations with the GAP Character Table Library 119

CharacterTable("new6.L3(4).(2~2) _{1%23%}"),
CharacterTable("new6.L3(4).(272) _{1*2*3*x}")]
gap> trans:= List([1 .. 8], i ->

> TransformingPermutationsCharacterTables(result[i],
> result2[i]));;

gap> ForAll(trans, IsRecord);

true

2.6.6 The Character Tables of Groups of the Type 2.U4(3).2> (February 2012)

The outer automorphism group of the group Us(3) is a dihedral group of order 8. There are two almost
simple groups of the type Uy(3).22, up to isomorphism, denoted as Uy (3).(2%)122 and Uy(3).(2%)133,
respectively. Note that Us(3).2; is the extension by the central involution of the outer automorphism
group of Uy(3), the other two subgroups of index two in Us(3).(2%)122 are Us(3).2, and Us(3).2),
respectively, and the other two subgroups of index two in Uy(3).(2%)133 are Us(3).23 and Us(3).25,
respectively.

Since Aut(Uy(3)) possesses a double cover (see [CCNT85, p. 52]), double covers of Uy(3).(22)122
and Uy (3).(22)133 exist.

First we deal with the double covers of Uy(3).(2%)122. Any such group contains one subgroup
of the type 2.U4(3).2; and two subgroups of the type 2.Us(3).2;, and there are two isoclinic variants
of each of these group to consider, see Section 2.2.6. Thus we start with six different inputs for the
construction of the character tables of double covers.

Example
gap> tbls:= List(["1", "2", "2>"], i —>
> CharacterTable(Concatenation("2.U4(3).2_", i)));;
gap> isos:= List(["1", "2", "2°"], i ->
> CharacterTable(Concatenation("Isoclinic(2.U4(3).2_", i, ")")));;

gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "2.U4(3).(2~2)_{122}"],

> [isos[1], tbls[2], tbls[3], "2.U4(3).(2~2)_{1x22}"],

> [tbls[1], isos[2], tbls[3], "2.U4(3).(2~2)_{12x2}" 1],

> [isos[1], isos[2], tbls[3], "2.U4(3).(2~2)_{1*x2x2}" T,

> [tbls[1], isos[2], isos[3], "2.U4(3).(27°2)_{12%2%}"],

> [isos[1], isos([2], isos[3], "2.U4(3).(272)_{1*2*2%}"] 1;;

gap> tblG:= CharacterTable("2.U4(3)");;
gap> result:= [];;

gap> for input in inputs do

> tblsG2:= input{ [1 .. 3] };

> lib:= CharacterTable(input[4]);

> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, inputl[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);

> Append(result, RepresentativesCharacterTables(poss));

> od;

gap> result:= List(result, x -> x.table);

[CharacterTable("new2.U4(3).(2"2)_{122}"),
CharacterTable("new2.U4(3).(27°2)_{1%22}"),
CharacterTable("new2.U4(3).(2~2) _{12*2}"),
CharacterTable("new2.U4(3).(272) _{1*x2%2}"),
CharacterTable("new2.U4(3).(272) _{12%2%}"),
CharacterTable("new2.U4(3).(2°2) _{1%2%2%}")]

Computations with the GAP Character Table Library 120

We get exactly one character table for each input. For each of these tables, there are three pos-
sibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out
that the six solutions form two orbits under forming some isoclinic table. Tables in different orbits are
essentially different, already their numbers of conjugacy classes differ.

Example
gap> List(result, NrConjugacyClasses);

[87, 102, 102, 87, 87, 102]

gap> t:= result[1];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[4, 4, 5]

gap> t:= result[2];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[3, 3,61

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

The group O (3) contains maximal subgroups of the type 2.Us(3).2%, see [CCN*85, p. 140].
Only the first of our result tables admits a class fusion into the table of OF (3).

Example
gap> u:= CharacterTable("08+(3)");;

gap> fus:= List(result, x -> PossibleClassFusions(x, u));;
gap> List(fus, Length);

[24, 0, 0, 0, 0, O]

A table in the second orbit belongs to a maximal subgroup of 07(3).2, see [CCN*85, p. 109].
Example
gap> u:= CharacterTable("07(3).2");;

gap> fus:= List(result, x -> PossibleClassFusions(x, u));;
gap> List(fus, Length);

[0, 16, 0, 0, 0, O]

Note that this subgroup of 07(3).2 = SO(7,3) is the orthogonal group GO (3).

Now we deal with the double covers of Uy(3).(2%)133. The constructions of the character tables
are completely analogous to those in the case of Uy(3).(22)12.
Example
gap> tbls:= List(["1", "3", "3’"],
> i -> CharacterTable(Concatenation("2.U4(3).2_", i)));;
gap> isos:= List(["1", "3", "3>"], i ->
> CharacterTable(Concatenation("Isoclinic(2.U4(3).2_", i, ")")));;
gap> inputs:= [

\

> [tbls[1], tbls[2], tbls[3], "2.U4(3).(2~2)_{133}"],

> [isos[1], tbls[2], tbls[3], "2.U4(3).(2~2)_{1x33}" 1],

> [tbls[1], isos[2], tbls[3], "2.U4(3).(2~2)_{13*3}" 1],

> [isos[1], isos[2], tbls[3], "2.U4(3).(2~2)_{1*3*3}"],

> [tbls[1], isos[2], isos[3], "2.U4(3).(272)_{13x3%}" 1],

> [isos[1], isos[2], isos[3], "2.U4(3).(272) _{1*3*3*}"] 1;;
gap> tblG:= CharacterTable("2.U4(3)");;

gap> result:= [];;

gap> for input in inputs do

> tblsG2:= input{ [1 .. 3] };

> lib:= CharacterTable(input[4]);

> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);

> Append(result, RepresentativesCharacterTables(poss));
> od;

#I excluded
3-mod. table
#I excluded
3-mod. table
#I excluded
3-mod. table
#I excluded
3-mod. table
#I excluded
3-mod. table
#I excluded
3-mod. table

Computations with the GAP Character Table Library

cand. 2 (out of 4) for 2.U4(3).(2"2)_{1*33} by

cand.

cand.

cand.

cand.

cand.

3 (out of 4)

2 (out of 4)

3 (out of 4)

2 (out of 4)

3 (out of 4)

gap> result:= List(result, x
[CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(

"new2.U4(3).
"new2.U4(3).
"new2.U4(3).
"new2.U4(3).
"new2.U4(3).
"new2.U4(3).
gap> List(result, NrConjugacyClasses);

[69, 72, 72, 69, 69, 72]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

>

x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

for

for

for

for

2.U4(3).(2°2) _{1*33} by
2.U4(3).(272)_{13%3} by
2.U4(3).(2°2) _{13*3} by
2.U4(3).(272) _{1%3%3*} by

for 2.U4(3).(272) _{1%3*3*} by

-> x.table);

(2-2) _{133}"),
(272) _{1%33}"),
(2~2) _{13%3}"),
(272) _{1*3%3}"),
(272) _{13%3*}"),
(272) _{1%3%3%}")]

gap> List(iso, x -> PositionProperty(result, y ->

>
[4, 4, 5]

TransformingPermutationsCharacterTables(x, y) <> fail));

gap> t:= result[2];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

>

x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

>
[3,3,6]

TransformingPermutationsCharacterTables(x, y) <> fail));

121

Computations with the GAP Character Table Library 122

2.6.7 The Character Tables of Groups of the Type 4,.L3 (4).22 (October 2011)

The situation with 4;.L3(4).2? is analogous to that with 6.L3(4).22, see Section 2.6.5.

Example
gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_1.L3(4).2_", i)));
[CharacterTable("4_1.L3(4).2_1"), CharacterTable("4_1.1L3(4).2_2")
, CharacterTable("4_1.L3(4).2_3") 1]

gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_1.L3(4).2_", i, "x")));
[CharacterTable("Isoclinic(4_1.L3(4).2_1)"),

CharacterTable("Isoclinic(4_1.L3(4).2_2)"),

CharacterTable("4_1.L3(4).2_3%")]

Note that the group 41.L3(4).23 has a centre of order four, so one cannot construct the isoclinic
variant by calling the one argument version of CharacterTableIsoclinic (Reference: Charac-
terTablelsoclinic).

Example
gap> List(tbls, ClassPositionsOfCentre);

tft1+ 371, 01,31,0[01,2,3,41]1

gap> IsRecord(TransformingPermutationsCharacterTables(tbls[3],
> CharacterTableIsoclinic(tbls[3])));

true

Again, we get eight different character tables, in two orbits.

Example

ap> inputs:= [

[tbls[1], tbls[2], tbls[3], "4_1.L3(4).(2~2)_{123}"],
isos[1], tbls[2], tbls[3], "4_1.L3(4).(2~2)_{1*23}"],
tbls[1], isos[2], tbls[3], "4_1.L3(4).(2~2)_{12%3}" 1],
isos[1], isos[2], tbls[3], "4_1.L3(4).(272)_{1%2%3}" 1],
tbls[1], tbls[2], isos[3], "4_1.L3(4).(272)_{123%}"],
isos[1], tbls[2], isos[3], "4_1.L3(4).(2°2)_{1%23*}"],
tbls[1], isos[2], isos[3], "4_1.L3(4).(2~2)_{12%3*x}"],

[isos[1], isos[2], isos[3], "4_1.L3(4).(2~2) _{1*2*3*x}"] 1;;
gap> tblG:= CharacterTable("4_1.L3(4)");;

gap> result:= [1;;

gap> for input in inputs do

> tblsG2:= input{ [1 .. 31 };

lib:= CharacterTable(input[4]);

poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);

ConstructModularGV4Tables(tblG, tblsG2, poss, lib);

Append(result, RepresentativesCharacterTables(poss));
od;

#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2"2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2"2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2°2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2"2)_{123} by

L T e B s B s B e B |

g
>
>
>
>
>
>
>
>

V V V VvV V

7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table
#I excluded
7-mod. table
#I excluded
7-mod. table
#I excluded
5-mod. table
#I excluded
5-mod. table

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

cand.

Computations with the GAP Character Table Library

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

for 4_1.1L3(4).(272)_{123} by

for 4_1.L3(4).(272)_{123} by

for 4_1.13(4).(272) _{1%23} by
for 4_1.1L3(4).(272)_{1*23} by
for 4_1.13(4).(272) _{1%23} by
for 4_1.13(4).(272) _{1%23} by
for 4_1.13(4).(272) _{1%23} by
for 4_1.13(4).(272) _{1%23} by
for 4_1.13(4).(272)_{12%3} by
for 4_1.13(4).(272) _{12x3} by
for 4_1.13(4).(272)_{12%3} by
for 4_1.1L3(4).(272)_{12%3} by
for 4_1.1L3(4).(272)_{12%3} by
for 4_1.13(4).(272)_{12%3} by
for 4_1.1L3(4).(2°2) _{1%2x3} by
for 4_1.1L3(4).(272)_{1%2%3} by
for 4_1.1L3(4).(272)_{1%2%3} by
for 4_1.1L3(4).(2°2) _{1%2x3} by
for 4_1.1L3(4).(272)_{1%2%3} by

for 4_1.1L3(4).(272)_{1x2x3} by

gap> result:= List(result, x -> x.table);
[CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable (
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
gap> List(result, NrConjugacyClasses);
[48, 48, 48, 48, 42, 42, 42, 42]

"new4_1.L3(4).
"newd_1.L3(4).
"newd_1.L3(4).
"new4_1.L3(4).
"new4_1.L3(4).
"new4_1.L3(4).
"newd_1.1L3(4).
"newd_1.1L3(4).

(2~2) _{1233}"),
(272) _{1%23}"),
(2~2) _{12%3}"),
(272) _{1%2*3}"),
(272) _{123%}"),
(2~2) _{1%23%}"),
(2~2) _{12%3%}"),
(2~2) _{1%2%3%}")]

123

Computations with the GAP Character Table Library 124

gap> t:= result[i];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));
[3,2,4]

gap> t:= result[5];;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),

> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;

gap> List(iso, x -> PositionProperty(result, y ->

> TransformingPermutationsCharacterTables(x, y) <> fail));

[7,6, 8]

Note that only two out of the eight tables of the type 2.L3(4).2? occur as factors of the eight tables.

Example
gap> facts:= [CharacterTable("2.L3(4).(2~2)_{123}"),
> CharacterTable("2.L3(4).(272)_{123x}") 1;;

gap> factresults:= List(result, t -> t / ClassPositionsOfCentre(t));;
gap> List(factresults, t -> PositionProperty(facts, f ->

> IsRecord(TransformingPermutationsCharacterTables(t, £))));
[1,1,1,1,2,2,2, 2]

This is not surprising; note that for 1 <i < 2, the two isoclinic variants of 4;.L3(4).2; have iso-
morphic factor groups of the type 2.L3(4).2;. (For i = 3, this is not the case.)

Example
gap> test:= [CharacterTable("4_1.L3(4).2_1"),
> CharacterTable("4_1.L3(4).2_1x") 1;;

gap> List(test, ClassPositionsOfCentre) ;

(01,31, 01,311

gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;

gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

gap> test:= [CharacterTable("4_1.1L3(4).2_2"),

> CharacterTable("4_1.1L3(4).2_2x") 1;;

gap> List(test, ClassPositionsOfCentre);

(01,371, 01,31]1

gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;

gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

Now we try the second approach and compare the results. By the abovementioned asymmetry, it
is clear that the tables are not uniquely determined by the input data.

Example
gap> names:= ["L3(4).(2°2)_{123}", "L3(4).(2°2)_{1%23}",
> "L3(4).(272) _{12%3}", "L3(4).(2°2) _{1x2x3}" 1;;
gap> inputsl:= List(names, nam -> ["4_1.L3(4).2_3", "2.L3(4).2_3",
> Concatenation("2.", nam), Concatenation("4_1.", nam)]);;

gap> names:= List(names, nam -> ReplacedString(nam, "3}", "3%}"));;

gap> inputs2:= List(names, nam -> ["4_1.L3(4).2_3x", "2.L3(4).2_3%",
Concatenation("2.", nam), Concatenation("4_1.", nam)]);;

>

Computations with the GAP Character Table Library

gap> inputs:= Concatenation(inputsl, inputs2);
[["4.1.L3(4).2_3", "2.1L3(4).2_3", "2.L3(4).(2~2)_{123}",

ga
ga
>

V V V V V V V

#E
#E
#E
#E
#E
#E
#E
#E
ga
8

ga
L

"4_1.L3(4).(2~2)_{123}" 1,

["4_1.0L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2"2) _{1%23}",

"4_1.13(4).(2°2) _{1%23}" 1,

["4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(272)_{12%3}",

"4_1.L3(4).(272) _{12*3}"],

["4_1.13(4).2_3", "2.L3(4).2_3", "2.L3(4).(2~2) _{1%2*3}",

"4_1.13(4).(2°2) _{1*2%3}" 1,

["4_1.13(4).2_3%x", "2.L3(4).2_3%",
"4_1.13(4).(2"2)_{123%}" 1,

["4_1.1L3(4).2_3%", "2.L3(4).2_3x%",
"4_1.13(4).(2°2) _{1%23x}"],

["4_1.L3(4).2_3%", "2.L3(4).2_3x%",
"4_1.13(4).(272) _{12*3%}" 1],

["4_1.1.3(4).2_3%", "2.L3(4).2_3x%",
"4_1.L3(4).(272) _{1%2%3%}"]]

p> result2:= [];;

p> for input in inputs do

"2.L3(4).(2°2) _{123%}",
"2.L3(4).(272) _{1%23%}",
"2.L3(4).(272) _{12%3x*}",

"2.L3(4).(272) _{1x2%3x*}",

tblMG := CharacterTable(input[1]);
tblG := CharacterTable(input[2]);
tblGA := CharacterTable(input[3]);

name := Concatenation("new",

input[4]);

1lib := CharacterTable(input[4]);

poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);

Append(result2, poss);
od;
4 possibilities for new4_1.L3(4).

(2-2)_{123}

no solution for new4_1.L3(4).(2°2)_{1%23}
no solution for new4_1.L3(4).(2°2)_{12%3}
no solution for new4_1.L3(4).(2~2)_{1*2%3}

4 possibilities for new4_1.L3(4).

(272) _{123%}

no solution for new4_1.L3(4).(2"2)_{1%23%}
no solution for new4_1.L3(4).(2°2)_{12x3%}
no solution for newd_1.L3(4).(2°2)_{1%2%3*}

p> Length(result2);

p> result2:= List(result2, x -> x.table);

CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)
CharacterTable("new4_1.L3(4).(2°2)

_{123}"),
_{1233}"),
_{1233}"),
_{1233}"),
_{123%}"),
_{123%}"),
_{123%}"),
_{123%}")]

gap> List(result, tl -> PositionsProperty(result2, t2 -> IsRecord(
TransformingPermutationsCharacterTables(t1, t2))));

>

L

(11, 0471,0381, 021,71,

(el, [5]1,[81]1]

125

Computations with the GAP Character Table Library 126

At the moment, I do not know interesting groups that contain one of the 4;.L3(4).2% type groups
and whose character tables are available.

2.6.8 The Character Tables of Groups of the Type 4,.L3(4).2> (October 2011)

The situation with 4,.L3(4).22 is analogous to that with 6.L3(4).22, see Section 2.6.5.
Example

gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_2.L3(4).2_", i)));
[CharacterTable("4_2.1L3(4).2_1"), CharacterTable("4_2.13(4).2_2")
, CharacterTable("4_2.13(4).2_3") 1]

gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_2.1L3(4).2_", i, "x")));
[CharacterTable("Isoclinic(4_2.L3(4).2_1)"),

CharacterTable("4_2.L3(4).2_2x"),

CharacterTable("Isoclinic(4_2.L3(4).2_3)") 1

Note that the group 41.L3(4).2; has a centre of order four, so one cannot construct the isoclinic
variant not by calling the one argument version of CharacterTableIsoclinic (Reference: Char-
acterTablelsoclinic).

Example
gap> List(tbls, ClassPositionsOfCentre);
(1,31, [1,2,3,41, [1,31]1]1

gap> IsRecord(TransformingPermutationsCharacterTables(tbls[2],
> CharacterTableIsoclinic(tbls[2])));

true

Again, we get eight different character tables, in two orbits.
Example

p> inputs:= [
[tbls[1], tbls[2], tbls[3], "4_2.L3(4).(2~2)_{123}"],
isos[1], tbls[2], tbls[3], "4_2.L3(4).(2~2)_{1x23}"],
tbls[1], isos[2], tbls[3], "4_2.L3(4).(2~2)_{12*%3}" 1],
tbls[1], tbls[2], isos[3], "4_2.L3(4).(2~2)_{123*}" 1,
isos[1], isos[2], tbls[3], "4_2.L3(4).(2~2)_{1*2x3}"],
isos[1], tbls[2], isos[3], "4_2.L3(4).(2~2)_{1%23*}"],
tbls[1], isos[2], isos[3], "4_2.L3(4).(2~2)_{12*%3x}"],
[isos[1], isos[2], isos[3], "4_2.L3(4).(2°2) _{1*2x3*%}"]];;
gap> tblG:= CharacterTable("4_2.L3(4)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3 1 };
lib:= CharacterTable(input[4]);
poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], 1lib);
ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
Append(result, RepresentativesCharacterTables(poss));
od;
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2"2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2°2)_{123} by

L T e T e T e B s B |

ga
>
>
>
>
>
>
>
>

V V V V V

5-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

7-mod. table

#I excluded cand.

5-mod. table

#I excluded cand.

5-mod. table

Computations with the GAP Character Table Library

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

2 (out of 8)

3 (out of 8)

4 (out of 8)

5 (out of 8)

6 (out of 8)

7 (out of 8)

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.13(4).

for 4_2.1L3(4).

for 4_2.13(4).

for 4_2.13(4).

for 4_2.13(4).

for 4_2.13(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.13(4).

for 4_2.1L3(4).

for 4_2.13(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.1L3(4).

for 4_2.13(4).

for 4_2.1L3(4).

for 4_2.13(4).

gap> result:= List(result, x -> x.table);
(272) _{123}"),

(272) _{1%23}"),
(272) _{12%3}"),
(272) _{123*}"),
(272) _{1%2x3}"),
(272) _{1%23%}"),

[CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(
CharacterTable(

"new4_2.L3(4).
"new4_2.L3(4).
"newd_2.1L3(4).
"newd_2.L3(4).
"new4d_2.L3(4).
"new4_2.L3(4).

(2~2) _{123} by
(2~2) _{123} by
(2~2) _{123} by

(2°2)_{123} by

(2°2) _{1%23} by
(272) _{1%23} by
(2~2) _{1%23} by
(272) _{1%23} by
(272) _{1%23} by
(2~2) _{1%23} by
(2~2)_{123%} by
(2~2) _{123%} by
(272) _{123%} by
(2~2)_{123%} by
(2~2) _{123%} by
(2~2)_{123%} by
(2~2) _{1*23*} by
(272) _{1%23%} by
(2°2) _{1*23*} by
(272) _{1%23%} by
(2~2) _{1*23*} by

(2~2) _{1*23*} by

127

Computations with the GAP Character Table Library 128

CharacterTable("new4_2.L3(4).(272)_{12%3%}"),
CharacterTable("new4_2.L3(4).(2°2) _{1*%2x3x}")]
gap> List(result, NrConjugacyClasses);
[50, 50, 44, 50, 44, 50, 44, 44]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[4, 2, 61
gap> t:= resultl[3];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[7,5, 8]

Note that only two out of the eight tables of the type 2.L3(4).2? occur as factors of the eight tables.

Example
gap> facts:= [CharacterTable("2.L3(4).(2~2)_{123}"),
> CharacterTable("2.L3(4).(2°2)_{12*3}") 1;;

gap> factresults:= List(result, t -> t / ClassPositionsOfCentre(t));;
gap> List(factresults, t -> PositionProperty(facts, f ->

> IsRecord(TransformingPermutationsCharacterTables(t, £))));
[1,1,2,1,2,1, 2, 2]

This is not surprising; note that for i € {1,3}, the two isoclinic variants of 4;.L3(4).2; have iso-
morphic factor groups of the type 2.L3(4).2;. (For i = 2, this is not the case.)

Example
gap> test:= [CharacterTable("4_2.L3(4).2_1"),
> CharacterTable("4_2.L3(4).2_1%") 1;;

gap> List(test, ClassPositionsOfCentre) ;

(01,31, 01,31]1

gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;

gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

gap> test:= [CharacterTable("4_2.13(4).2_3"),

> CharacterTable("4_2.13(4).2_3*") 1;;

gap> List(test, ClassPositionsOfCentre);

(01,31, 01,31]1

gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;

gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

Now we try the second approach and compare the results. By the abovementioned asymmetry, it
is clear that the tables are not uniquely determined by the input data.

Example
gap> names:= ["L3(4).(272)_{123}", "L3(4).(2~2)_{1%23}",
> "L3(4).(272) _{123%}", "L3(4).(272)_{1%23%}" 1;;

Computations with the GAP Character Table Library

gap> inputsl:= List(names, nam -> ["4_2.L3(4).2_2", "2.L3(4).2_2",
> Concatenation("2.", nam), Concatenation("4_2.", nam)]);;
gap> names:= List(names, nam -> ReplacedString(nam, "23", "2x3"));;
gap> inputs2:= List(names, nam -> ["4_2.L3(4).2_2x", "2.L3(4).2_2%",
> Concatenation("2.", nam), Concatenation("4_2.", nam)]);;
gap> inputs:= Concatenation(inputsl, inputs2);
[["4_2.13(4).2_2", "2.L3(4).2_2", "2.L3(4).(2~2)_{123}",
"4_2.13(4).(2°2) _{123}" 1,
["4_2.1L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2~2)_{1*23}",
"4_2.13(4).(2"2) _{1%23}" 1,
["4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2~2)_{123*}",
"4_2.13(4).(272) _{123%}" 1,
["4_2.1L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2"2) _{1%23%}",
"4_2.13(4).(2°2) _{1%23%}" 1],
["4_2.1L3(4).2_2*", "2.L3(4).2_2*x", "2.L3(4).(2~2)_{12*3}",
"4 _2.13(4).(2°2) _{12*3}" 1,
["4_2.L3(4).2_2*", "2.L3(4).2_2*x", "2.L3(4).(2~2) _{1*2*3}",
"4_2.13(4).(272) _{1*2%3}" 1,
["4_2.13(4).2_2x", "2.0L3(4).2_2%", "2.L3(4).(2°2)_{12x3%*}",
"4_2.1L3(4).(272) _{12%3%}" 1],
["4_2.L3(4).2_2*%", "2.L3(4).2_2*x", "2.L3(4).(272) _{1*2*3*}",
"4_2.L3(4).(272) _{1*2x3*}"]]
gap> result2:= [1;;
gap> for input in inputs do

> tblMG := CharacterTable(input[1]);

> tblG := CharacterTable(input[2]);

> tblGA := CharacterTable(input[3]);

> name := Concatenation("new", input([4]);

> lib := CharacterTable(input[4]);

> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, 1lib);
> Append(result2, poss);

> od;

#E 4 possibilities for new4_2.L3(4).(2~2)_{123}

#E no solution for new4_2.L3(4).(2"2)_{1x23}

#E no solution for new4_2.L3(4).(2°2)_{123%}

#E no solution for new4_2.L3(4).(2°2) _{1%23%}

#E 4 possibilities for new4_2.L3(4).(272)_{12%3}

#E no solution for new4_2.L3(4).(272) _{1%2x3}

#E no solution for new4_2.L3(4).(272)_{12%3x}

#E no solution for new4_2.L3(4).(2°2) _{1%2x3x}

gap> Length(result2);

8

gap> result2:= List(result2, x -> x.table);

[CharacterTable("new4_2.L3(4).(2~2)_{123}")
CharacterTable("new4_2.L3(4).(2°2)_{123}")
CharacterTable("new4_2.L3(4).(2~2)_{123}"),
CharacterTable("new4_2.L3(4).(2°2)_{123}"),
CharacterTable("new4_2.L3(4).(2°2)_{12%3}")
CharacterTable("new4_2.L3(4).(2°2)_{12%3}"),
CharacterTable("new4_2.L3(4).(2°2)_{12%3}")
CharacterTable("new4_2.L3(4).(2°2)_{12%3}") 1]

gap> List(result, tl1 -> PositionsProperty(result2, t2 -> IsRecord(

129

>

Computations with the GAP Character Table Library

TransformingPermutationsCharacterTables(t1, t2))));

(C11,

[4],

t71, 031,061, 021, (51, [81]]

The group ON.2 contains a maximal subgroup M of the type 4,.13(4).22, see [CCN*85, p. 132].
Only the third result table admits a class fusion into ON.2. This shows the existence of groups for the

tables from the second orbit.

Example

gap> on2:= CharacterTable("ON.2");;

gap> fus:= List(result, x -> PossibleClassFusions(x, on2));;
gap> List(fus, Length);

(o, 0, 16, 0, 0, 0, 0, 0]

2.6.9 The Character Table of Aut(L,(81))

The group Aut(L,(81)) = L,(81).(2 x 4) has the structure G.2? where G = L,(81).2;. Here we get
two triples of possible actions on the tables of the groups G.2;, and one possible character table for

each triple.

Example

gap>
>

gap>
gap>
gap>
gap>
gap>

2

input:=

tblG

tblsG2 :

name
1ib
poss

[

"L2(81).2_1", "L2(81).4_1", "L2(81).4_2", "L2(81).2"2",
"L2(81).(2x4)" 1;;

CharacterTable(input[1]);;

List(input{ [2 .. 4] }, CharacterTable);;

Concatenation("new", input[5]);;

CharacterTable(input[5]);;

ConstructOrdinaryGV4Table(tblG, tblsG2, name, lib);;

#I newlL2(81).(2x4): 2 equivalence classes
gap> reps:= RepresentativesCharacterTables(poss);;
gap> Length(reps);

Due to the different underlying actions, the power maps of the two candidate tables differ.

Example

gap>
gap>
true
gap>
33
gap>
34
gap>
33

ord:
ord

pos:

OrdersClassRepresentatives(reps[1].table);;
OrdersClassRepresentatives(reps[2].table);

Position(ord, 80);

PowerMap(reps[1].table, 3)[pos];

PowerMap(reps[2].table, 3) [pos 1;

Aut(L,(81)) can be generated by PGL(2,81) = L,(81).2, and the Frobenius automorphism of
order four that is defined on GL(2,81) as the map that cubes the matrix entries. The elements of order
80 in Aut(L,(81)) are conjugates of diagonal matrices modulo scalar matrices, which are mapped to
their third powers by the Frobenius homomorphism. So the third power map of Aut(L,(81)) fixes the

classes of elements of order 80. In other words, the second of the two tables is the right one.

Computations with the GAP Character Table Library 131

Example
gap> trans:= TransformingPermutationsCharacterTables(reps[2].table, 1lib);;
gap> IsRecord(trans);

true

gap> List(reps[2].G2fusGV4, x -> OnTuples(x, trans.columns))

> List(tblsG2, x -> GetFusionMap(x, lib));

true

gap> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);;

#I not all input tables for L2(81).(2x4) mod 3 available

#I not all input tables for L2(81).(2x4) mod 41 available

2.6.10 The Character Table of OF (3).2%,

The construction of the character table of the group Of (3).2},, is not as straightforward as the con-
structions shown in Section 2.6.2. Here we get 26 triples of actions on the tables of the three subgroups
G.2; of index two, but only one of them leads to candidates for the desired character table. Specifically,
we get 64 such candidates, in two equivalence classes w.r.t. permutation equivalence.

Example
gap> input:= ["08+(3)", "08+(3).2_1", "08+(3).2_1’", "08+(3).2_1°7",
> "08+(3).(2~2) _{111}" 1;;
gap> tblG = CharacterTable(input[1]);;
gap> tblsG2 := List(input{ [2 .. 4] }, CharacterTable);;
gap> name := Concatenation("new", input[5]);;
gap> lib := CharacterTable(input[5]);;
gap> poss = ConstructOrdinaryGV4Table(tblG, tblsG2, name, 1ib);;

#I new08+(3).(272)_{111}: 2 equivalence classes
gap> Length(poss);

64

gap> reps:= RepresentativesCharacterTables(poss);;
gap> Length(reps);

2

The two candidate tables differ only in four irreducible characters involving irrationalities on the
classes of element order 28. All three subgroups G.2; contain elements of order 28 that do not lie in the
simple group G; these classes are roots of the same (unique) class of element order 7. The centralizer
C of an order 7 element in G.22 has order 112 = 2*-7, the intersection of C with G has the structure
22 x 7 since G contains three classes of cyclic subgroups of the order 14, and each of the intersections
of C with one of the subgroups G.2; has the structure 2 x 4 x 7, so the structure of C is 4% x 7 22 4 x 28,

Example

gap> t:= reps[1].table;;
gap> ord7:= Filtered([1 .. NrConjugacyClasses(t) 1,

> i -> OrdersClassRepresentatives(t)[i] =7);
[37 1]

gap> SizesCentralizers(t){ ord7 };

[112]

gap> ord28:= Filtered([1 .. NrConjugacyClasses(t)],

> i -> OrdersClassRepresentatives(t)[i] = 28);

[112, 113, 114, 115, 161, 162, 163, 164, 210, 211, 212, 213]
gap> List(reps[1].G2fusGV4, x -> Intersection(ord28, x));
[[112, 113, 114, 1151, [161, 162, 163, 164 1],

Computations with the GAP Character Table Library 132

[210, 211, 212, 213]]
gap> sub:= CharacterTable("Cyclic", 28) * CharacterTable("Cyclic", 4);;
gap> List(reps, x -> Length(PossibleClassFusions(sub, x.table)));
[0, 961

It turns out that only one of the two candidate tables admits a class fusion from the character table
of C, thus we have determined the ordinary character table of 0;(3).2%11. It coincides with the table
from the library.

Example
gap> trans:= TransformingPermutationsCharacterTables(reps[2].table, 1lib);;
gap> IsRecord(trans);

true

gap> List(reps[2].G2fusGV4, x -> OnTuples(x, trans.columns))

> List(tblsG2, x -> GetFusionMap(x, lib));

true

(If we do not believe the statement about the structure of C then we can check all 14 groups of
order 112 that contain a central subgroup of order 7. A unique such group admits a class fusion into
at least one of the two candidate tables.)

The wrong candidate for the ordinary table cannot be excluded via conditions that are forced by
the construction of the p-modular tables of Og (3).23,,. Thus we restrict the ordinary tables used for
this construction to those candidates that are equivalent to the correct table.

Example

gap> poss:= Filtered(poss,

> r -> TransformingPermutationsCharacterTables(r.table, lib)
> <> fail);;

gap> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);;

#I not all input tables for 08+(3).(2°2)_{111} mod 3 available

So also the p-modular tables of O (3) .2%11 can be computed this way, provided that the p-modular
tables of the index 2 subgroups are available.

2.7 Examples for the Type 22.G

We compute the character table of a group of the type 22.G from the character tables of the three
factor groups of the type 2.G, using the function PossibleCharacterTables0fTypeV4G (CTblLib:
PossibleCharacterTablesOfTypeV4G), see Section 2.3.4.

2.7.1 The Character Table of 22.57(8)

The three central involutions in 22.5z(8) are permuted cyclicly by an outer automorphism ¢ of order
three. In order to apply PossibleCharacterTables0fTypeV4G (CTbILib: PossibleCharacterTa-
blesOfTypeV4G), we need the character table of the group 2.5z(8) and the action on the classes of
Sz(8) that is induced by «.

The ordinary character table of G = Sz(8) admits exactly five table automorphisms of order di-
viding 3. Each of these possibilities leads to exactly one possible character table of 22.G, and the
five tables are permutation equivalent. From this point of view, we need not know which of the table
automorphisms are induced by outer group automorphisms of G.

Computations with the GAP Character Table Library 133

Example

gap> t:= CharacterTable("Sz(8)");;
gap> 2t:= CharacterTable("2.5z(8)");;
gap> aut:= AutomorphismsOfTable(t);;
gap> elms:= Set(List(Filtered(aut, x -> Order(x) in [1, 3 1),
> SmallestGeneratorPerm));
L O, (9,10,11), (6,7,8), (6,7,8)(9,10,11), (6,7,8)(9,11,10)]
gap> poss:= List(elms,
> pi -> PossibleCharacterTablesOfTypeV4G(t, 2t, pi, "272.85z(8)"));
[[CharacterTable("2-2.Sz(8)") 1, [CharacterTable("2-2.Sz(8)") 1]
, [CharacterTable("2°2.Sz(8)") 1,
[CharacterTable("2°2.8z(8)") 1,
[CharacterTable("2°2.85z(8)")] 1]
gap> reps:= RepresentativesCharacterTables(Concatenation(poss));
[CharacterTable("2°2.Sz(8)")]

The tables coincide with the one that is stored in the GAP library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(reps[1],
> CharacterTable("2°2.5z(8)")));

true

The computation of the p-modular character table of 22.G from the p-modular character table of
2.G and the three factor fusions from 22.G to 2.G is straightforward, as is stated in Section 2.3.4. The
three fusions are stored on the tables returned by PossibleCharacterTables0fTypeV4G (CTblLib:
PossibleCharacterTablesOf TypeV4G).

Example

gap> GetFusionMap(poss([1][1], 2t, "1");

[+ 1,2,2,3, 4,5,6,6,7,7,8,8,9,9, 10, 10, 11, 11, 12,
12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19 1]

gap> GetFusionMap(poss([1][1], 2t, "2");

(1, 2,1, 2,3, 4,5,6,7,6,7,8,9, 38,9, 10, 11, 10, 11, 12,
13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19 1]

gap> GetFusionMap(poss([1][1], 2t, "3");

[+, 2,2,1, 3, 4,5,6,7,7, 6,8, 9,9,38, 10, 11, 11, 10, 12,
13, 13, 12, 14, 15, 15, 14, 16, 17, 17, 16, 18, 19, 19, 18 1]

The GAP library function BrauerTable0fTypeV4G (CTblLib: BrauerTableOfTypeV4G) can
be used to derive Brauer tables of 22.G. We have to compute the p-modular tables for prime divisors
p of |G|, that is, for p € {2,5,7,13}.

Example

gap> PrimeDivisors(Size(t));
[2,5,7, 13]

Clearly p = 2 is uninteresting from this point of view because the 2-modular table of 22.G can be
identified with the 2-modular table of G.

For each of the five ordinary tables (corresponding to the five possible table automorphisms of
G) constructed above, we get one candidate of a 5-modular table. However, these tables are not all
equivalent. There are two equivalence classes, and one of the two possibilities is inconsistent in the
sense that not all tensor products of irreducibles decompose into irreducibles.

Computations with the GAP Character Table Library 134

Example
gap> cand:= List(poss, 1 -> BrauerTableOfTypeV4G(1[1], 2t mod 5,
> ConstructionInfoCharacterTable(1[1])[3]));

[BrauerTable("2~2.Sz(8)", 5), BrauerTable("2~2.Sz(8)", 5),
BrauerTable("2°2.Sz(8)", 5), BrauerTable("2°2.Sz(8)", 5),
BrauerTable("2°2.8z(8)", 5) 1]

gap> Length(RepresentativesCharacterTables(cand));

2

gap> List(cand, CTblLib.Test.TensorDecomposition);

[false, true, false, true, true]

gap> Length(RepresentativesCharacterTables(cand{ [2, 4, 51 }));

1

gap> IsRecord(TransformingPermutationsCharacterTables(cand[2],

> CharacterTable("2°2.8z(8)") mod 5));

true

This implies that only those table automorphisms of G can be induced by an outer group automor-
phism that move the classes of element order 13.

The 7-modular table of 22.G is uniquely determined, independent of the choice of the table auto-
morphism of G.

Example
gap> cand:= List(poss, 1 -> BrauerTableOfTypeV4G(1[1], 2t mod 7,
> ConstructionInfoCharacterTable(1[1])[3]));

[BrauerTable("2°2.Sz(8)", 7), BrauerTable("2~2.Sz(8)", 7),
BrauerTable("2°2.Sz(8)", 7), BrauerTable("2°2.Sz(8)", 7),
BrauerTable("2°2.8z(8)", 7)]

gap> Length(RepresentativesCharacterTables(cand));

1

gap> IsRecord(TransformingPermutationsCharacterTables(cand[1],
> CharacterTable("2°2.5z(8)") mod 7));

true

We get two candidates for the 13-modular table of 22.G, also if we consider only the three admis-
sible table automorphisms.

Example

gap> elms:= elms{ [2, 4, 5] };

[(9,10,11), (6,7,8)(9,10,11), (6,7,8)(9,11,10)]

gap> poss:= poss{ [2, 4, 51 };;

gap> cand:= List(poss, 1 -> BrauerTableOfTypeV4G(1[1], 2t mod 13,

> ConstructionInfoCharacterTable(1[1])[3]));

[BrauerTable("2°2.Sz(8)", 13), BrauerTable("2°2.Sz(8)", 13),
BrauerTable("2°2.5z(8)", 13)]

gap> Length(RepresentativesCharacterTables(cand));

2

gap> List(cand, CTblLib.Test.TensorDecomposition);

[true, true, true]

The action of the outer automorphism of order three of G can be read off from the 2-modular table
of G. Note that the ordinary and the 5-modular character table of G possess two independent table
automorphisms of order three, whereas the group of table automorphisms of the 2-modular table has

Computations with the GAP Character Table Library 135

order three. (The reason is that the irrational values on the classes of the element orders 7 and 13
appear in the same irreducible 2-modular Brauer characters.)

Example
gap> mod2:= CharacterTable("Sz(8)") mod 2;
BrauerTable("Sz(8)", 2)

gap> AutomorphismsOfTable(mod2);

Group([(3,4,5)(6,7,8) 1)

gap> OrdersClassRepresentatives(mod2);
(1, 5,7,7, 7, 13, 13, 13]

This means that the first candidate is ruled out; this determines the 13-modular character table of
22.G.
Example
gap> Length(RepresentativesCharacterTables(cand{ [2, 3] }));
1
gap> IsRecord(TransformingPermutationsCharacterTables(cand[2],
> CharacterTable("2°2.5z(8)") mod 13));
true

2.7.2 Atlas Tables of the Type 22.G (September 2005)

Besides 22.5z(8) (cf. Section 2.7.1), 22.0¢ (3) (cf. Section 2.7.3), and certain central extensions of
L3(4) (cf. Section 2.7.4), the following examples of central extensions of nearly simple Atlas groups
G by a Klein four group occur.

Example

gap> listV4G:= [

> ["2°2.13(4)", "2.L3(4)", "L3(4)" 1,
> ["2°2.13(4).2_1", "2.L3(4).2_1", "L3(4).2_1" 1,
> ["(2~2x3).L3(4)", "6.L3(4)", "3.L3(4)" 1,
> ["(2-2x3).L3(4).2_1", "6.L3(4).2_1", "3.L3(4).2_1" 1],
> ["2°2.08+(2)", "2.08+(2)", "08+(2)" 1,
> ["2°2.U6(2)", "2.U6(2)", "ue(2)" 1,
> ["(2~2x3).U6(2)", "6.U6(2)", "3.U6(2)" 1,
> ["2~2.2E6(2)", "2, 2E6(2)", "2E6(2)" 1,
> ["(2~2x3).2E6(2)", "6.2E6(2)", "3.2E6(2)" 1,
> 155

(For the tables of (22 x 3).G, with G one of L3(4), Us(2), or 2E¢(2), we could alternatively use the
tables of 22.G and 3.G, and the construction described in Chapter 3.)

The function for computing the candidates for the ordinary character tables is similar to the one
from Section 2.6.2.

Example
gap> ConstructOrdinaryV4GTable:= function(tblG, tbl2G, name, 1lib)
local ord3, nam, poss, reps, trans;

Compute the possible actions for the ordinary tables.
ord3:= Set(List(Filtered(AutomorphismsO0fTable(tblG),
x -> Order(x) = 3),
SmallestGeneratorPerm));

V V V V V V

Computations with the GAP Character Table Library 136

if 1 < Length(ord3) then
Print("#I ", name,
": the action of the automorphism is not unique");
fi;
Compute the possible ordinary tables for the given actions.
nam:= Concatenation("new", name);
poss:= Concatenation(List(ord3, pi ->
PossibleCharacterTables0fTypeV4G(tblG, tbl2G, pi, nam)));
Test the possibilities for permutation equivalence.
reps:= RepresentativesCharacterTables(poss);
if 1 < Length(reps) then
Print("#I ", name, ": ", Length(reps),
" equivalence classes\n");
elif Length(reps) = O then
Print("#E ", name, ": no solution\n");
else
Compare the computed table with the library table.
if not IsCharacterTable(1lib) then

Print("#I no library table for ", name, "\n");
PrintToLib(name, poss[1].table);
else

trans:= TransformingPermutationsCharacterTables(reps[1], 1lib);
if not IsRecord(trans) then
Print("#E computed table and library table for ", name,
" differ\n");
fi;
fi;
fi;
return poss;
end;;

VVVVVVVVVVVVVVVVVVVVVVVVYVVYVVYVYV

Concerning the Brauer tables, the same ambiguity problem may occur as in Section 2.6.2: Some
candidates for the ordinary table may be excluded due to information provided by some p-modular
table, see Section 2.7.1 for an easy example. Our strategy is analogous to the one used in Section 2.6.2.

Example
gap> ConstructModularV4GTables:= function(tblG, tbl2G, ordposs,

ordlibtblV4G)
local name, modposs, primes, checkordinary, i, p, tmodp, 2tmodp, aut,
poss, modlib, trans, reps;
if not IsCharacterTable(ordlibtblV4G) then
Print("#I no ordinary library table ...\n");
return [];
fi;

name:= Identifier(ordlibtblV4G);
modposs:= [];
primes:= ShallowCopy(PrimeDivisors(Size(tblG)));
ordposs:= ShallowCopy(ordposs);
checkordinary:= false;
for i in [1 .. Length(ordposs)] do
modposs[i]:= [];
for p in primes do

V VVVVVV VYV YV VVVYVVYV

VVYVVYVVYVYVYVYV

Computations with the GAP Character Table Library

tmodp := tblG mod p;
2tmodp:= tbl2G mod p;
if IsCharacterTable(tmodp) and IsCharacterTable(2tmodp) then
aut:= ConstructionInfoCharacterTable(ordposs[i]) [3];
poss:= BrauerTableOfTypeV4G(ordposs([i], 2tmodp, aut);
if CTblLib.Test.TensorDecomposition(poss, false) = false then
Print("#I excluded cand. ", i, " (out of ",
Length(ordposs), ") for ", name, " by ", p,
"_mod. table\n");
Unbind(ordposs[i]);
Unbind(modposs[i]);
checkordinary:= true;
break;
fi;
Add (modposs[i], poss);
else
Print("#I not all input tables for ", name, " mod ", p,
" available\n");
primes:= Difference(primes, [p]);
fi;
od;
if IsBound(modposs[i]) then
Compare the computed Brauer tables with the library tables.
for poss in modposs[i] do
p:= UnderlyingCharacteristic(poss);
modlib:= ordlibtblV4G mod p;
if IsCharacterTable(modlib) then
trans:= TransformingPermutationsCharacterTables(
poss, modlib);
if not IsRecord(trans) then
Print("#E computed table and library table for ",
name, " mod ", p, " differ\n");
fi;
else
Print("#I no library table for ",
name, " mod ", p, "\n");
PrintToLib(name, poss);
fi;
od;
fi;
od;
if checkordinary then
Test whether the ordinary table is admissible.
ordposs:= Compacted(ordposs);
modposs:= Compacted(modposs);
reps:= RepresentativesCharacterTables(ordposs) ;
if 1 < Length(reps) then
Print("#I ", name, ": ", Length(reps),
" equivalence classes (ord. table)\n");
elif Length(reps) = 0 then
Print("#E ", name, ": no solution (ord. table)\n");
else

137

Computations with the GAP Character Table Library 138

Compare the computed table with the library table.
trans:= TransformingPermutationsCharacterTables(reps[1],
ordlibtblV4G);
if not IsRecord(trans) then
Print("#E computed table and library table for ",
" differ\n");

name,

fi;
fi;
fi;
Test the uniqueness of the Brauer tables.
for poss in TransposedMat(modposs) do
reps:= RepresentativesCharacterTables(poss);
if Length(reps) <> 1 then
Print("#I ", name, ": ", Length(reps), " candidates for the ",
UnderlyingCharacteristic(reps[1]), "-modular table\n");
fi;
od;
return rec(ordinary:= ordposs, modular:=
end;;

modposs) ;

VV VVVVVVVVVVVVVVYVVYV

In our examples, the action of the outer automorphism of order three on the classes of G turns out
to be uniquely determined by the table automorphisms of the character table of G.
Example

gap> for input in 1istV4G do

> tblG := CharacterTable(input[3]);

> tbl2G := CharacterTable(input[2]);

> 1ib = CharacterTable(input[1]);

> poss := ConstructOrdinaryV4GTable(tblG, tbl2G, input[1], 1ib);
> ConstructModularV4GTables(tblG, tbl2G, poss, 1ib);

> od;

#I excluded cand. 1 (out of 16) for 2°2.L3(4).2_1 by 7-mod. table

#I excluded cand. 2 (out of 16) for 2°2.L3(4).2_1 by 7-mod. table

#I excluded cand. 7 (out of 16) for 2°2.L3(4).2_1 by 7-mod. table

#I excluded cand. 10 (out of 16) for 2°2.L3(4).2_1 by 7-mod. table

#I excluded cand. 15 (out of 16) for 272.L3(4).2_1 by 7-mod. table

#I excluded cand. 16 (out of 16) for 2°2.L3(4).2_1 by 7-mod. table

#I excluded cand. 1 (out of 16) for (272x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 2 (out of 16) for (272x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 7 (out of 16) for (2-2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 10 (out of 16) for (2-2x3).L3(4).2_1 by

7-mod. table

#I excluded cand. 15 (out of 16) for (272x3).L3(4).2_1 by

7-mod. table

#I excluded cand. 16 (out of 16) for (272x3).L3(4).2_1 by

7-mod. table

#I not all input tables for 272.2E6(2) mod 2 available

#I not all input tables for 272.2E6(2) mod 3 available

#I not all input tables for 2°2.2E6(2) mod 5 available

#I not all input tables for 2°2.2E6(2) mod 7 available

#I not all input tables for (272x3).2E6(2) mod 2 available

#I not all input tables for (272x3).2E6(2) mod 3 available

#I not all input tables for (272x3).2E6(2) mod 5 available

Computations with the GAP Character Table Library

#I not all input tables for (2°2x3).2E6(2) mod 7 available
#I not all input tables for (272x3).2E6(2) mod 11 available
#I not all input tables for (272x3).2E6(2) mod 13 available
#I not all input tables for (272x3).2E6(2) mod 17 available
#I not all input tables for (2°2x3).2E6(2) mod 19 available

139

2.7.3 The Character Table of 22.07 (3) (March 2009)

When one tries to construct the character table of the central extensions of G = O (3) by a Klein four
group, in the same way as in Section 2.7.2, one notices that the order three automorphism that relates

the three central extensions of G by an involution is not uniquely determined.

Example
gap> entry:= ["2°2.08+(3)", "2.08+(3)", "08+(3)" 1;;

gap> tblG:= CharacterTable(entry[3]);;

gap> aut:= AutomorphismsOfTable(tblG);;

gap> ord3:= Set(List(Filtered(aut, x -> Order(x) = 3),
> SmallestGeneratorPerm));;

gap> Length(ord3);

4

However, the table candidates one gets from the four possible automorphisms turn out to be all

equivalent, hence the character table of 22.0§ (3) can be constructed as follows.

Example

gap> poss:= [];;

gap> tbl2G:= CharacterTable(entry[2]);
CharacterTable("2.08+(3)")

gap> for pi in ord3 do

> Append(poss,

> PossibleCharacterTables0fTypeV4G(tblG, tbl2G, pi, entry[1]));
> od;

gap> Length(poss);

32

gap> poss:= RepresentativesCharacterTables(poss);;
gap> Length(poss);
1

The computed table coincides with the library table.

Example
gap> lib:= CharacterTable(entry[1]);;
gap> if TransformingPermutationsCharacterTables(poss[1], lib) = fail then
> Print("#E differences for ", entry[1], "\n");

> fi;

2.7.4 The Character Table of the Schur Cover of L3(4) (September 2005)

The Schur cover of G = L3(4) has the structure (4% x 3).L3(4). Following [CCNT85, p. 23], we regard

the multiplier of G as

M = {a,b,c,d | [a,b] = [a,c] = [a,d] = [b,c] = [b,d] = [c,d] = a* = b* = ¢* = d* = abc),

Computations with the GAP Character Table Library 140

and we will consider the automorphism ¢ of M.G that acts as (a,b,c)(d) on M.
The subgroup lattice of the subgroup (a,b,c) = (a,b) = 4% of M looks as follows. (The subgroup
in the centre of the picture is the Klein four group (a?,b%,¢?) = (a?,b?).)

(The symmetry w.r.t. & would be reflected better in a three dimensional model, with (a, b), (a?, b?),
and the trivial subgroup on a vertical symmetry axis, and with the remaining subgroups on three circles
such that & induces a rotation.)

The following is a 3D variant of the picture, which shows the symmetry of order three of the group
4 x4.

We have (M/(a)).G = (M/{b)).G = (M/({c)).G = 12,.G and (M/{(ab*)).G = (M/{bc?)).G =
(M/{ca®)).G = 12,.G. This is because the action of G.2, fixes a, and swaps b and c; so b is inverted
modulo (a) but fixed modulo (ab?), and the normal subgroup of order four in 4,.G.2; is central but
that in 4,.G.2, is not central.

The constructions of the character tables of 4%.G and (4 x 3).G are essentially the same. We start
with the table of 4%.G. It can be regarded as a central extension H = V.22.G of 22.G by a Klein four
group V. The three subgroups of order two in V are cyclicly permuted by the automorphism of M /(d)
induced by «, so the three factors by these subgroups are isomorphic groups F, say, with the structure
(2x4).G.

The group F itself is a central extension of 2.G by a Klein four group, but in this case the three
factor groups by the order two subgroups of the Klein four group are nonisomorphic groups, of the
types 41.G, 4,.G, and 22.G, respectively. The GAP function PossibleCharacterTables0fTypeV4G
(CTblLib: PossibleCharacterTablesOfTypeV4G) can be used to construct the character table of F
from the three factors. Note that in this case, no information about table automorphisms is required.

Computations with the GAP Character Table Library

Example

141

gap> tblG:= CharacterTable("2.L3(4)");;

gap> tbls2G:= List(["4_1.L3(4)", "4_2.13(4)", "2°2.L3(4)"],

> CharacterTable);;

gap> poss:= PossibleCharacterTables0fTypeV4G(tblG, tbls2G, "(2x4).L3(4)");;
gap> Length(poss);

2

gap> reps:= RepresentativesCharacterTables(poss);

[CharacterTable("(2x4).L3(4)")]

gap> lib:= CharacterTable("(2x4) .L3(4)");;

gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], 1lib));
true

In the second step, we construct the table of 4°.G from that of (2 x 4).G and the table automor-
phism of 22.G that is induced by ¢; it turns out that the group of table automorphisms of 2°.G contains

a unique subgroup of order three.

Example

gap> tblG:= tbls2G[3];

CharacterTable("272.L3(4)")

gap> tbl2G:= lib;

CharacterTable("(2x4).L3(4)")

gap> aut:= AutomorphismsOfTable(tblG);;

gap> ord3:= Set(List(Filtered(aut, x -> Order(x) = 3),

> SmallestGeneratorPerm));

[(2,3,4)(6,7,8)(10,11,12) (13,15,17)(14,16,18) (20,21,22) (24,25,26) (28,
29,30)(32,33,34) 1

gap> pi:= ord3[1];;

gap> poss:= PossibleCharacterTables0fTypeV4G(tblG, tbl2G, pi, "4°2.L3(4)");;

gap> Length(poss);

4

gap> reps:= RepresentativesCharacterTables(poss);

[CharacterTable("4°2.L3(4)")]

gap> 1lib:= CharacterTable("4°2.L3(4)");;

gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], 1ib));

true

With the same approach, we compute the table of (2 x 12).G = 22.6.G from the tables of the three
nonisomorphic factor groups 12;.G, 12,.G, and (2% x 3).G, and we compute the table of (4> x 3).G =

22.(2% x 3).G from the three tables of the factor groups (2 x 12).G and the action induced by a.
Example

gap> tblG:= CharacterTable("6.L3(4)");;

gap> tbls2G:= List(["12_1.1L3(4)", "12_2.L3(4)", "(272x3).L3(4)"],

> CharacterTable);;

gap> poss:= PossibleCharacterTablesOfTypeV4G(tblG, tbls2G, "(2x12).L3(4)");;
gap> Length(poss);

2

gap> reps:= RepresentativesCharacterTables(poss);

[CharacterTable("(2x12).L3(4)")]

gap> lib:= CharacterTable("(2x12).L3(4)");;

gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], 1ib));
true

Computations with the GAP Character Table Library 142

gap> tblG:= CharacterTable("(2°2x3).L3(4)");

CharacterTable("(2°2x3).L3(4)")

gap> tbl2G:= CharacterTable("(2x12).L3(4)");

CharacterTable("(2x12).L3(4)")

gap> aut:= AutomorphismsOfTable(tblG);;

gap> ord3:= Set(List(Filtered(aut, x -> Order(x) = 3),

> SmallestGeneratorPerm));

[(2,7,8)(3,4,10)(6,11,12) (14,19,20) (15,16,22) (18,23,24) (26,27,28) (29,
35,41)(30,37,43) (31,39,45) (32,36,42) (33,38,44) (34,40,46) (48,53,
54) (49,50,56) (52,57,58) (60,65,66) (61,62,68) (64,69,70) (72,77,
78) (73,74,80) (76,81,82) (84,89,90) (85,86,92) (88,93,94)]

gap> pi:= ord3[1];;

gap> poss:= PossibleCharacterTables0fTypeV4G(tblG, tbl2G, pi,

> "(4°2x3) .L3(H")3

gap> Length(poss);

4

gap> reps:= RepresentativesCharacterTables(poss);

[CharacterTable("(472x3).L3(4)")]

gap> lib:= CharacterTable("(4°2x3).L3(4)");;

gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], 1lib));

true

2.8 Examples of Extensions by p-singular Automorphisms

2.8.1 Some p-Modular Tables of Groups of the Type M.G.A

We show an alternative construction of p-modular tables of certain groups that have been met in
Section 2.4.3. Each entry in the GAP list 1istMGA contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types M.G, G, G.A, and M.G.A. For
each entry with |A| = p, a prime integer, we fetch the p-modular table of G and the ordinary table of
G.A, compute the action of G.A on the p-regular classes of G, and then compute the p-modular table
of G.A. Analogously, we compute the p-modular table of M.G.A from the p-modular table of M.G
and the ordinary table of M.G.A.

Example
gap> for input in 1listMGA do
ordtblMG := CharacterTable(input[1]);
ordtblG := CharacterTable(input[2]);
ordtblGA := CharacterTable(input([3]);

ordtblMGA := CharacterTable(input[4]);
p:= Size(ordtblGA) / Size(ordtblG);
if IsPrimeInt(p) then
modtblG:= ordtblG mod p;
if modtblG <> fail then
modtblGA := CharacterTableRegular(ordtblGA, p);
SetIrr(modtblGA, IBrOfExtensionBySingularAutomorphism(modtblG,
ordtblGA));
modlibtblGA:= ordtblGA mod p;
if modlibtblGA = fail then
Print("#E ", p, "-modular table of ’", Identifier(ordtblGA),
"> is missing\n");

V VVVVV VYV YV VVVYVVYV

VVVVVVVVVVVVVVVVVVVVYVVYV

Computations with the GAP Character Table Library

elif TransformingPermutationsCharacterTables(modtblGA,
modlibtblGA) = fail then
Print("#E computed table and library table for ", input[3],
"mod ", p, " differ\n");
fi;
fi;
modtblMG:= ordtblMG mod p;
if modtblMG <> fail then
modtblMGA := CharacterTableRegular(ordtblMGA, p);
SetIrr(modtblMGA, IBrOfExtensionBySingularAutomorphism(modtblMG,
ordtblMGA));
modlibtblMGA:= ordtblMGA mod p;
if modlibtblMGA = fail then
Print("#E ", p, "-modular table of ’", Identifier(ordtblMGA),
"> is missing\n");
elif TransformingPermutationsCharacterTables(modtblMGA,
modlibtblMGA) = fail then
Print("#E computed table and library table for ", input[4],
"mod ", p, " differ\n");
fi;
fi;
fi;
od;

143

2.8.2 Some p-Modular Tables of Groups of the Type G.S3

We show an alternative construction of 2- and 3-modular tables of certain groups that have been met in
Section 2.5.2. Each entry in the GAP list 1istGS3 contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types G, G.2, G.3, and G.S3. For each
entry, we fetch the 2-modular table of G and the ordinary table of G.2, compute the action of G.2 on
the 2-regular classes of G, and then compute the 2-modular table of G.2. Analogously, we compute the
3-modular table of G.3 from the 3-modular table of G and the ordinary table of G.3, and we compute
the 2-modular table of G.S3 from the 2-modular table of G.3 and the ordinary table of G.S3.

V VV VYV VV VYV YV VVVYVVYV

Example

gap> for input in 1istGS3 do

modtblG:= CharacterTable(input[1]) mod 2;
if modtblG <> fail then
ordtblG2 := CharacterTable(input[2]);
modtblG2 := CharacterTableRegular(ordtblG2, 2);
SetIrr(modtblG2, IBrOfExtensionBySingularAutomorphism(modtblG,
ordtblG2));
modlibtblG2:= ordtblG2 mod 2;
if modlibtblG2 = fail then
Print("#E 2-modular table of ’", Identifier(ordtblG2),
"’ is missing\n");
elif TransformingPermutationsCharacterTables(modtblG2,
modlibtblG2) = fail then
Print("#E computed table and library table for ", input[2],
" mod 2 differ\n");
fi;
fi;

Computations with the GAP Character Table Library 144

modtblG:= CharacterTable(input[1]) mod 3;
if modtblG <> fail then
ordtblG3 := CharacterTable(input[3]);
modtblG3 := CharacterTableRegular(ordtblG3, 3);
SetIrr(modtblG3, IBrOfExtensionBySingularAutomorphism(modtblG,
ordtblG3));
modlibtblG3:= ordtblG3 mod 3;
if modlibtblG3 = fail then
Print("#E 3-modular table of ’", Identifier(ordtblG3),
"’ is missing\n");
elif TransformingPermutationsCharacterTables(modtblG3,
modlibtblG3) = fail then
Print("#E computed table and library table for ", input[3],
" mod 3 differ\n");

fi;
fi;
modtblG3:= CharacterTable(input[3]) mod 2;
if modtblG3 <> fail then
ordtblGS3 := CharacterTable(input[4]);
modtblGS3 := CharacterTableRegular(ordtblGS3, 2);
SetIrr(modtblGS3, IBrOfExtensionBySingularAutomorphism(modtblG3,
ordtblGS3));
modlibtblGS3:= ordtblGS3 mod 2;
if modlibtblGS3 = fail then
Print("#E 2-modular table of ’", Identifier(ordtblGS3),
"’ is missing\n");
elif TransformingPermutationsCharacterTables(modtblGS3,
modlibtblGS3) = fail then
Print("#E computed table and library table for ", input[4],
" mod 2 differ\n");

fi;
fi;
od;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYV

2.8.3 2-Modular Tables of Groups of the Type G.2°

We show an alternative construction of 2-modular tables of certain groups that have been met in
Section 2.6.2. Each entry in the GAP list 1istGV4 contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types G, G.2, G.2,, G.23, and G.2?.
For each entry, we fetch the 2-modular table of G and the ordinary tables of the groups G.2;, and
compute the 2-modular tables of G.2;; Then we compute from this modular table and the ordinary
table of G.2? the 2-modular table of G.22.

Example

gap> for input in 1listGV4 do
modtblG:= CharacterTable(input[1]) mod 2;
if modtblG <> fail then
ordtblsG2:= List(input{ [2 .. 4] }, CharacterTable);
ordtblGV4:= CharacterTable(input[5]);
for tblG2 in ordtblsG2 do
modtblG2:= CharacterTableRegular(tblG2, 2);
SetIrr(modtblG2, IBrOfExtensionBySingularAutomorphism(modtblG,

V V V V V V V

Computations with the GAP Character Table Library 145

tblG2));
modlibtblG2:= tblG2 mod 2;
if modlibtblG2 = fail then
Print("#E 2-modular table of ’", Identifier(tblG2),
"> is missing\n");
elif TransformingPermutationsCharacterTables(modtblG2,
modlibtblG2) = fail then
Print("#E computed table and library table for ",
Identifier(tblG2), " mod 2 differ\n");
fi;
modtblGV4:= CharacterTableRegular(ordtblGV4, 2);
SetIrr(modtblGV4, IBrOfExtensionBySingularAutomorphism(modtblG2,
ordtblGV4));
modlibtblGV4:= ordtblGV4 mod 2;
if modlibtblGV4 = fail then
Print("#E 2-modular table of ’", Identifier(ordtblGV4),
"> is missing\n");
elif TransformingPermutationsCharacterTables(modtblGV4,
ordtblGV4 mod 2) = fail then
Print("#E computed table and library table for ", input[5],
" mod 2 differ\n");
fi;
od;
fi;
od;

VVVVVVVVVVVVVVVVVVYVVVVYVYVYV

2.8.4 The 3-Modular Table of Us(8).3>

The only example of an Atlas group of the structure G.33 is U3(8).3%. Its 3-modular character table
can be constructed from the known 3-modular character table of any of its index 3 subgroups, plus the
action of U3(8).3% on the classes of this subgroup.
Example
gap> ordtblG3:= CharacterTable("U3(8).372");;

gap> modlibtblG3:= ordtblG3 mod 3;

BrauerTable("U3(8).3"2", 3)

gap> for nam in ["U3(8).3_1", "U3(8).3_2", "U3(8).3_.3"] do

> modtblG:= CharacterTable(nam) mod 3;

> if modtblG = fail then

> Error("no 3-modular table of ", nam);

> fi;

> modtblG3:= CharacterTableRegular(ordtblG3, 3);

> SetIrr(modtblG3, IBrOfExtensionBySingularAutomorphism(modtblG,
> ordtblG3));

> if TransformingPermutationsCharacterTables(modtblG3,
> modlibtblG3) = fail then

> Print("#E computed table and library table for ",
> Identifier(ordtblG3), " mod 3 differ\n");
> fi;

> od;

As expected, we get the same 3-modular table for any choice of the index 3 subgroup.

Computations with the GAP Character Table Library 146

Note that all 3-modular Brauer characters of Us(8).3? lift to characteristic zero.

Example
gap> rest:= RestrictedClassFunctions(Irr(ordtblG3), modlibtblG3);;

gap> IsSubset(rest, Irr(modlibtblG3));
true

2.9 Examples of Subdirect Products of Index Two

Typical examples of this construction are those maximal subgroups of alternating groups A,, that ex-
tend in the corresponding symmetric groups S, to direct products of the structures S, X S,—;, for
2 <m < n/2. Also certain subgroups of these maximal subgroups that have this structure can be
interesting, see Section 2.4.2.

2.9.1 Certain Dihedral Groups as Subdirect Products of Index Two

Also dihedral groups of order 2n with n divisible by at least two different primes have the required
structure: Let n = nyny with coprime ny, ny, and let the normal subgroups H;, H> be cyclic subgroups
of order n; and ny, respectively, inside the cyclic subgroup of index two. Then the factors G/N;, G/N,
are themselves dihedral groups.

So an example (with n; = 3 and n, = 5) is the construction of the dihedral group D3 as a subdirect
product of index two in the direct product Dg X D1g.

Example
gap> tblhl:= CharacterTable("C3");;

gap> tblgl:= CharacterTable("S3");;

gap> StoreFusion(tblhl, PossibleClassFusions(tblhl, tblgl)[1], tblgl);
gap> tblh2:= CharacterTable("C5");;

gap> tblg2:= CharacterTable("D10");;

gap> StoreFusion(tblh2, PossibleClassFusions(tblh2, tblg2)[1], tblg2);
gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblhl, tblgl,

> tblh2, tblg2, "D30");;

gap> IsRecord(TransformingPermutationsCharacterTables(subdir.table,
> CharacterTable("Dihedral", 30)));

true

2.9.2 The Character Table of (Do x HN).2 < M (June 2008)

The sporadic simple Monster group contains maximal subgroups with the structure (Djo x HN).2
(see [CCNT85, p. 234]), the factor group modulo Dy is the automorphism group HN.2 of HN, and
the factor group modulo HN is the Frobenius group 5 : 4 of order 20.

Example
gap> tblhl:= CharacterTable("D10");;

gap> tblgl:= CharacterTable("5:4");;

gap> tblh2:= CharacterTable("HN");;

gap> tblg2:= CharacterTable("HN.2");;

gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblhl, tblgl,
> tblh2, tblg2, "(D10xHN).2");;

gap> IsRecord(TransformingPermutationsCharacterTables(subdir.table,
> CharacterTable("(D10xHN).2")));

Computations with the GAP Character Table Library

true

gap> m:= CharacterTable("M");;

gap> fus:= PossibleClassFusions(subdir.table, m);;

gap> Length(fus);

16

gap> Length(RepresentativesFusions(subdir.table, fus, m));
1

147

An alternative construction is the one described in Section 2.3.1, as (D19 x HN).2 = M.G.A with
G=2xHN,M.G=Djyx HN, and G.A the subdirect product of HN.2 and a cyclic group of order

four (which can be constructed as the isoclinic variant of 2 x HN.2, see Section 2.2.4).

Here is this construction:

Example

gap> c2:= CharacterTable("C2");;
gap> hn:= CharacterTable("HN");;
gap> g:= c2 * hn;;

gap> d10:= CharacterTable("D10");;

gap>

mg:= d10 * hn;;

gap> nsg:= ClassPositionsOfNormalSubgroups(mg
L

LC1]1, 01,55 ..1091, [1, 55 ..
[1..1621, [1 .. 2161 1]

gap> SizesConjugacyClasses(mg){ nsgl[2] };

[1, 2, 2]

gap> g:= mg / nsgl2];

CharacterTable("D10xHN/[1, 55, 109 1")

gap> help:= c2 * CharacterTable("HN.2");

CharacterTable("C2xHN.2")

gap> ga:= CharacterTableIsoclinic(help);

CharacterTable("Isoclinic(C2xHN.2)")

gap> gfusga:= PossibleClassFusions(g, ga);

(f1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11, 11, 12,

163 1,

>

)
1

13,

. 54 1],

14,

15, 16, 17,

18,

19, 20, 21,

22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,

32, 32, 33, 33,
43, 43, 44, 44,
90, 91, 92, 93,
103, 103, 104,
112, 113, 114,

34,
79,
94,
105,
115,

35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
95, 96, 97, 98, 99, 100, 101, 101, 102,
106, 107, 108, 109, 110, 110, 111, 111,
115, 116, 117, 118, 118, 119, 120, 120,

121, 121, 122, 122 1],
[1: 23 3; 4: 5’ 6,

18, 19, 20, 21,
32, 32, 33, 33,
43, 43, 44, 44,
90, 91, 92, 93,
103, 103, 104,
113, 112, 114,
121, 121, 122,

7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17,

22,
35,
79,
94,
105,
115,

23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,
34, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
95, 96, 97, 98, 99, 100, 101, 101, 102,
106, 107, 108, 109, 110, 110, 111, 111,
115, 116, 117, 118, 118, 119, 120, 120,

122 1 1]

gap> StoreFusion(g, gfusgalll, ga);

gap> acts:= PossibleActionsForTypeMGA(mg, g, ga);;

gap> Length(acts);

1

gap> poss:= PossibleCharacterTablesOfTypeMGA(mg, g, ga, acts[1],
> "(D10xHN) .2");;

Computations with the GAP Character Table Library 148

gap> Length(poss);

1

gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTable("(D10xHN).2")));

true

2.9.3 A Counterexample (August 2015)

A group G is called real if each of its elements is conjugate in G to its inverse. Equivalently, a group
is real if and only if all its character values are real. One might ask whether the Sylow 2-subgroup of
a real group is itself real. Counterexamples can be found by a search through GAP’s library of small
groups. Using the facts we have collected about index two subdirect products in Section 2.3.6, we can
demonstrate such a counterexample without using GAP.

Let Hy = A4, G| = S4, Hy = Cy4, and G, a nonabelian group of order 8, and consider the unique
index two subgroup G of G| x G, that is different from H; x G, and G| x H;.

Each irreducible character of G either extends to G| x G, or it is induced from an irreducible
character of H; x H,. In the former case, the character is integer valued. Irrational values in the latter
case arise as follows.

Let x be an irreducible character of H; x Hy; then it is the product of irreducible characters }; and
x> of Hy and H», respectively. If y has irrational values then) takes primitive third roots of unity
o, ®? on elements of order three in Hj, or x> takes primitive fourth roots of unity i on elements of
order four in H,, or both. In the first two cases, inducing) to G yields an integer valued character,
because each pair of Galois conjugate classes fuses in G on which y takes irrational values. In the
last case, y takes primitive 12-th roots of unity i and +i®?> on elements of order 12; since G fuses
the classes with the character values i@ and —i®?, we get the character value i® — i®> = —+/3 in the
induced character ¥©. This means that this character is real valued. Hence G is real.

Now we consider a Sylow 2-subgroup of G. It has also the structure of a subdirect product, as
follows. Let H; = Vu4, G| = Dg, and H, and G» as above, and consider the unique index two subgroup
G of G| x G, that is different from H; X G, and G| X H,.

As above, irrational values in an irreducible character of G arise only if this character is induced
from a character J, say, that is the product of irreducible characters)| and }» of H; and H;, re-
spectively. In this case, x, takes primitive fourth roots of unity £ on elements of order four in Hj.
Moreover, x; takes different values +1 on the two classes of H; that are fused in G if the induced
character has irrational values, and these values are £2i. Hence the group G is not real.

(In fact the above two groups of order 96 are the smallest real groups with non-real Sylow 2-
subgroup, and there are no other such groups of this order.)

Chapter 3

Constructing Character Tables of Central
Extensions in GAP

Date: February 19th, 2004

This chapter has three aims. First it shows how the GAP system [GAP19] can be utilized to con-
struct character tables of certain central extensions from known character tables; the GAP functions
used for that are part of the GAP Character Table Library [Bre20]. Second it documents several con-
structions of character tables which are contained in the GAP Character Table Library. Third it serves
as a testfile for the GAP functions.

A typo (wrong sign of £°) in the picture in Section 3.1.4 has been corrected in 2013.

3.1 Coprime Central Extensions

In this section, we will deal with the following situation. Let H be a group, Z be a cyclic central
subgroup in H, and Z = Z,Z, for subgroups Z; and Z, of coprime orders m and n, say. For the sake
of simplicity, suppose that both m and n are primes; the general case is then obtained by iterating the
construction process.

Our aim is to compute the character table of H from the character tables of H/Z; and H/Z,. We
assume that the factor fusions from these tables to that of the common factor group H/Z are known.
Again for the sake of simplicity, we will take the character table of H/Z as an input. (See Section 3.2.4
for an example where two different orderings of classes and characters of H/Z arise from the tables
of H/Z, and H/Z;.)

For example, the character table of H = 12.M;, can be computed from those of 6.M7; and 4.My;,
and the character table of 6.M>; can be computed from those of 3.M»; and 2.M>; (see Section 3.2.1).

3.1.1 The Character Table Head

The conjugacy classes and power maps of H are uniquely determined by the input data specified
above.

149

Computations with the GAP Character Table Library 150

H H/Z
3 H/Z \H /7
8 - \ /
H

Suppose that a class C of elements of H/Z has nc preimage classes in H/Z; and m¢ preimage
classes in H/Zy; then nc is either 1 or n, and m¢ is either 1 or m. The preimage classes of C in H/Z;
and H/Z, are parametrized by {j;0 < j < nc} and {i;0 < i < mc}, respectively, and the preimage
classes in H are parametrized by the pairs {(i, j);0 <i < m¢,0 < j <nc}.

The centralizer orders of these classes in H are mcnc times the centralizer order of C in H/Z.

The factor fusion onto H/Z, is then given by mapping the class with the parameter (i, j) to the
class with the parameter j; analogously, the factor fusion onto H/Z, maps this class to the class with
the parameter i. To see this, let Z = (z), and set z1 = 7" and 7z, = 7". Now take an element g € H for
which gZ lies in C. Then the elements gz} 2,1 <i<mec, 1< j<nc form a set of representatives
of the preimage classes of C in H. In H/Z; and H /Z,, these elements map to gzéZl, 1< j<ncand
gz’iZz, 1 <i < mg, respectively, which are sets of representatives of the classes in question in these
groups.

For each prime p, the factor fusions determine the p-th power map of H from the p-th power maps
of H/Z, and H/Z,. To see this, take a class Cp in H that is a preimage of the class C of H/Z, and let
K be the class of p-th powers of the elements in C. Then the image of Cy under the p-th power map
is one of the preimages of K. We know the images of Cj under the factor fusions to H/Z; and H/Z,,
and thus also their images K; and K, under the p-th power maps of these groups. So the class of p-th
powers of the elements in Cy is the unique class that is mapped to K; and K3 under the factor fusions.

The construction of the character table head of H from the input data specified above is imple-
mented by the GAP function CharacterTableOfCommonCentralExtension (CTbILib: Charac-
terTableOfCommonCentralExtension).

3.1.2 The Irreducible Characters

First of all, it should be said that it is not obvious how the irreducible characters of H can be computed
from the irreducible characters of H/Z, and H /Z,. Clearly the irreducible characters of the two factor
groups can be inflated to H via the factor fusions, so we have to find those irreducibles that have
neither Z; nor Z, in their kernels.

For that, we use the following heuristic. Let & be a complex primitive |z|-th root of unity. For
integers i, set Irr, ;(H) = {y € Irr(H); x(z) = €!x(1)}. Then Irr(H) = Uﬁal Irr, ;(H), as a disjoint
union. If i is a multiple of m or n, respectively, then Irr.;(H) consists of the inflations of certain
irreducible characters of H/Z; or H /Z,, respectively. The remaining irreducible characters of H lie in
Irr, ;(H) with i coprime to |z|. These characters are algebraic conjugates of Irr, ; (H), so it suffices to
compute this subset; the conjugates are then derived as the last step.

Since Irr, ;(H) @ Irr, j(H) C Z[Irr ;4 j(H)] holds, we start with the tensor products of the known
irreducible characters in Irr, ;(H) and Irr, ;(H) with the property i+ j = 1 mod mn.

Computations with the GAP Character Table Library 151

For example, if we have m = 2 and n = 3 then Irr 3(H) consists of the inflations of those characters
inIrr(H /Z,) that are not characters of H/Z, and Irr, 4(H) consists of the inflations of certain characters
in Irr(H /Z;) that are not characters of H/Z. The tensor products of these sets of characters lie in the
span of Irr, | (H).

In general these tensor products are reducible, but some of them may be in fact irreducible, so we
first take these irreducibles, and reduce the other tensor products with them. (If H is a direct product
of Z and H /Z then all missing irreducibles are obtained this way.)

Then we tensor algebraic conjugates of the known characters in the span of Irr,;(H) with
characters in suitable sets Irr.;(H), in order to get more characters in Irr,;(H); for example,
Irr, | (H) ®1Irr, o(H) is a subset of Z[Irr, | (H)].

In the case m =2 and n = 3, also Irr, 5(H) ® Irr_»(H) yields linear combinations of Irr. i (H).
Note that Irr, 5(H) consists of the complex conjugates of Irr, ; (H).

In the next step, we apply the LLL algorithm (implemented via the GAP function LLL (Reference:
LLL)) to the set of reducible characters in Z[Irr, ; (H)] which we got from the tensor products, and
hope to find irreducibles. In the examples shown below, this step yields all desired irreducible charac-
ters.

The GAP function CharacterTableOfCommonCentralExtension (CTblLib: Charac-
terTableOfCommonCentralExtension) implements the strategy sketched above.

3.1.3 Ordering of Conjugacy Classes

One “natural” choice for the ordering of the columns in the character table of H is given by respect-
ing the ordering of columns in the character table of H/Z, and taking the preimage of the class C
corresponding to the parameter (k mod mc,k mod n¢) as the k-th class for C.

If the preimages of C in H/Z, and H/Z, have class representatives gZ;, gz271, gz%Zl, ... and
87, 82120, gz%Zz, ..., respectively (in this ordering), then the above rule yields representatives of
preimages in H in the ordering g, g(z122), g(z122)%,

In the case m = 2, n = 3, the following pattern arises for classes of H/Z that have m and n
preimages in H/Z, and H /Z,, respectively. The vertices are labelled by the roots of unity with which
the values of the characters in the set Irr, | (H) on the first preimage must be multiplied in order to
obtain the values on the given class; we have @ = exp(27i/3).

1 0] > 3.G

1\w>w2<w/wz "
1\ /1 e
1

Computations with the GAP Character Table Library 152

3.1.4 Compatibility with Smaller Factor Groups

It may happen that a cyclic central subgroup Zy of H contains Z properly. Then we choose a class
ordering relative to that in the factor group H/Zj, mainly because the Atlas tables of this type are
sorted this way.

The typical case is the character table of a central extension of the type 12.G that shall be con-
structed from the character tables of the groups of the types 4.G and 6.G; here we prefer to order the
preimages of a class in the smaller factor group of the type G according to the above rule. This results
in the following pattern, where € = exp(2mi/12) holds (cf. Section “ATLAS Tables” in the manual of
the GAP Character Table Library).

N N

12.G

4.G

2.G

1 G

A more important aspect concerns the computation of the irreducible characters. Let Zy = (zo).
Instead of computing Irr, | (H), we compute the set Irr,, | (H).

In the computation of the character table of a central extension of the type 12.G as mentioned
above, with |zo| = 12, we start with the characters

Trry, 3(H) @Trrgy 10(H) Ulrrg 4 (H) @Trrgy 0 (H) © Z[Irry, 1 (H),

and later form tensor products involving algebraic conjugates of the characters in the span of Irr,, | (H),
using that

Irrp 1 (H) @ Trr, o(H) Ulrrg, 2 (H) @Iy 11 (H) Ulrrg, s(H) @ I, g (H) Ulrrg, 6 (H) @ Iy, 7(H)

is a subset of Z[Irr, 1 (H)].
Without that modification, the computation of irreducibles is significantly more involved.

Computations with the GAP Character Table Library 153

The GAP function CharacterTableOfCommonCentralExtension (CTbILib: Charac-
terTableOfCommonCentralExtension) chooses the class ordering relative to larger cyclic factor
groups, as in the above picture, and also uses the above refinement for the computation of irreducible
characters.

3.2 Examples

The following examples use the GAP Character Table Library, so we first load this package.

Example
gap> LoadPackage("ctbllib", false);
true

3.2.1 Central Extensions of Simple Atlas Groups

For the following groups, the Atlas contains the character tables of central extensions M.G of simple
groups G with |M| divisible by two different primes; in all these cases, we have M € {6,12}.

(The entry concerning 6.2E4(2) has been added to the list after the character table of 3.2E4(2)
became available. This table has been computed by Frank Liibeck.)

Example
gap> list:= [
> # G m.G n.G mn.G
>
> ["AB", "2.AB6", "3.A6", "6.A6"],
> ["AT™, "2 AT", "3.AT7", "6.AT" 1,
> ["L3(4)", "2.L3(4)", "3.L3(4)", "6.L3(4)" 1,
> ["2.L3(4)", "4_1.L3(4)", "6.L3(4)", "12_1.L3(4)"],
> ["2.L3(4)", "4_2.L3(4)", "6.L3(4)", "12_2.L3(4)" 1,
> ["M22", "2, M22", "3.M22", "6.M22"],
> ["2.M22", "4 .M22", "6.M22", "12 . M22"],
> ["U4(3)", "2.U4(3)", "3_1.U4(3)", "6_1.U4(3)" 1,
> ["U4(3)", "2.U4(3)", "3_2.U4(3)", "6_2.U4(3)" 1,
> ["2.04(3)", "4.U4(3)", "6_1.U4(3)", "12_1.U4(3)"],
> ["2.U04(3)", "4.U4(3)", "6_2.U4(3)", "12_2.U4(3)" 1,
> ["07(3)", "2.07(3)", "3.07(3)", "6.07(3)" 1,
> ["ue(2)", "2.U6(2)", "3.U6(2)", "6.U6(2)" 1,
> ["Suz", "2.Suz", "3.Suz", "6.Suz"],
> ["Fi22", "2 . Fi22", "3.Fi22", "6.Fi22"],
> ["2E6(2)", "2.2E6(2)", "3.2E6(2)", "6.2E6(2)" 1,
> 155

As was discussed in the sections 3.1.3 and 3.1.4, the class ordering of the result tables is the same
as that in the GAP library tables, so it is enough to check whether the set of characters in the computed
table coincides with the set of characters in the library table.

In order to list information about the progress, we set the relevant info level to 1.

Example
gap> SetInfolLevel(InfoCharacterTable, 1);
gap> for entry in list do

> id entry[4];

> tblG := CharacterTable(entry[1]);

Computations with the GAP Character Table Library

> tblmG := CharacterTable(entry[2]);

> tblnG := CharacterTable(entry[3]);

> 1ib := CharacterTable(id);

> res:= CharacterTableOfCommonCentralExtension(tblG, tblmG, tblnG, id);
> if not res.IsComplete then

> Print("#E not complete: ", id, "\n");
> fi;

> if not IsSubset(Irr(1lib), res.irreducibles) then
> Print("#E inconsistent: ", id, "\n");
> fi;

> od;

#I 6.A6: need 4 faithful irreducibles

#I 6.A6: 4 found by tensoring

#I 6.A7: need 5 faithful irreducibles

#I 6.A7: 5 found by tensoring

#I 6.L3(4): need 7 faithful irreducibles

#I 6.L3(4): 7 found by LLL

#I 12_1.L3(4): need 5 faithful irreducibles
#I 12_1.L3(4): 2 found by tensoring

#I 12_1.L3(4): 3 found by tensoring

#I 12_2.L3(4): need 6 faithful irreducibles
#I 12_2.L3(4): 6 found by LLL

#I 6.M22: need 10 faithful irreducibles

#I 6.M22: 1 found by tensoring

#I 6.M22: 9 found by LLL

#I 12.M22: need 7 faithful irreducibles

#I 12.M22: 7 found by LLL

#I 6_1.U4(3): need 15 faithful irreducibles
#I 6_1.U4(3): 1 found by tensoring

#I 6_1.U4(3): 14 found by LLL

#I 6_2.U4(3): need 12 faithful irreducibles
#I 6_2.U4(3): 12 found by LLL

#I 12_1.U4(3): need 12 faithful irreducibles
#I 12_1.U4(3): 4 found by tensoring

#I 12_1.U4(3): 8 found by tensoring

#I 12_2.U4(3): need 9 faithful irreducibles
#I 12_2.U4(3): 9 found by LLL

#I 6.07(3): need 12 faithful irreducibles

#I 6.07(3): 2 found by tensoring

#I 6.07(3): 10 found by LLL

#I 6.U6(2): need 28 faithful irreducibles

#I 6.U6(2): 2 found by tensoring

#I 6.U6(2): 26 found by LLL

#I 6.Suz: need 29 faithful irreducibles

#I 6.8uz: 29 found by LLL

#I 6.Fi22: need 34 faithful irreducibles

#I 6.Fi22: 4 found by tensoring

#I 6.Fi22: 30 found by LLL

#I 6.2E6(2): need 60 faithful irreducibles
#I 6.2E6(2): 60 found by LLL

gap> SetInfolevel(InfoCharacterTable, 0);

154

Computations with the GAP Character Table Library 155

We see that in all cases, the irreducible characters of the groups M.G are obtained by reducing
tensor products and applying the LLL algorithm.

3.2.2 Central Extensions of Other Atlas Groups

The following cases also fit to the pattern introduced above.

(The following examples were added in October 2006.)

The group (22 x 3).L3(4) can be viewed as a common central extension of its factor group 2.L3(4)
by the two groups 22.L3(4) and 6.L3(4).

Analogously, the group (4% x 3).L3(4) can be viewed as a common central extension of its factor
group (2 x 4).L3(4) by the two groups 4%.L3(4) and (2 x 12).L3(4).

Finally, the group (2 x 12).L3(4) can be viewed as a common central extension of the factor group
22.13(4) by the two groups (2 x 4).L3(4) and (2% x 3).L3(4).

The construction of the character tables of the involved factor groups 22.L3(4) and (2 x 4).L3(4),
as well as an alternative construction of the table of (2 x 12).L3(4) can be found in the sections 2.7.2
and 2.7.4.

Example
gap> list2:= [
> ["2.L3(4)", "2~2.L3(4)", "6.L3(H)", "(2~2x3) .L3(4)" 1,
> ["2~2.L3(4)", "(2x4) .L3(4)", "(272x3).L3(4)", "(2x12).L3(4)" 1,
> ["(2x4).L3(4)", "4~2.L3(4)", "(2x12) .L3(4)", "(4~2x3).L3(4)" 1,
> 155

(The following examples were added in December 2010.)

The group (32 x 2).U4(3) can be viewed as a common central extension of its factor group 31.Us(3)
by the two groups 6,.U4(3) and 3%.U4(3), or as a common central extension of its factor group 3,.U4(3)
by the two groups 6,.U4(3) and 32.U,(3).

Analogously, the group (3% x 4).U,4(3) can be viewed as a common central extension of its factor
group 61.U4(3) by the two groups 12.U4(3) and (3% x 2).U4(3), or as a common central extension of
its factor group 6,.U4(3) by the two groups 125.U4(3) and (32 x 2).U4(3).

Example
gap> Append(list2, [
> ["3.1.04(3)", "6_1.04(3)", "3~2.04(3)", "(3~2x2).U4(3)" 1,
> ["3_2.U4(3)", "6_2.U4(3)", "3~2.04(3)", "(3~2x2).U4(3)" 1,
> ["6_.1.U04(3)", "12_1.04(3)", "(372x2).U4(3)", "(3~2x4).U4(3)" 1,
> ["6_2.U4(3)", "12_2.U4(3)", "(372x2).U4(3)", "(372x4).U4(3)" 1,
> 1);

gap> SetInfolLevel(InfoCharacterTable, 1);
gap> for entry in list2 do
> id := entry[4];

tblG := CharacterTable(entry[1]);
tblmG := CharacterTable(entry[2]);
tblnG := CharacterTable(entry[3]);

1ib := CharacterTable(id);
res:= CharacterTableOfCommonCentralExtension (
tblG, tblmG, tblnG, id);
if not res.IsComplete then
Print("#E not complete: ", id, "\n");
fi;

V V V V V V V VYV

Computations with the GAP Character Table Library 156

> if TransformingPermutationsCharacterTables(res.tblmnG, lib)
> = fail then

> Print("#E inconsistent: ", id, "\n");

> fi;

> od;

#I (272x3).L3(4): need 14 faithful irreducibles
#I (272x3).L3(4): 14 found by tensoring

#I (2x12) .L3(4): need 11 faithful irreducibles
#I (2x12) .L3(4): 7 found by tensoring

#I (2x12) .L3(4): 4 found by LLL

#I (472x3).L3(4): need 22 faithful irreducibles
#I (472x3).L3(4): 14 found by tensoring

#I (472x3).L3(4): 8 found by LLL

#I (372x2).U4(3): need 39 faithful irreducibles
#I (372x2).U4(3): 27 found by tensoring

#I (372x2).U4(3): 12 found by LLL

#I (372x2).U4(3): need 42 faithful irreducibles
#I (372x2).U4(3): 2 found by tensoring

#I (372x2).U4(3): 40 found by LLL

#I (372x4).U4(3): need 30 faithful irreducibles
#I (372x4).U4(3): 6 found by tensoring

#I (372x4).U4(3): 8 found by tensoring

#I (372x4) .U4(3): 16 found by LLL

#I (372x4) .U4(3): need 33 faithful irreducibles
#I (372x4).U4(3): 9 found by tensoring

#I (372x4).U4(3): 18 found by tensoring

#I (372x4) .U4(3): 6 found by further tensoring
gap> SetInfolevel(InfoCharacterTable, 0);

3.2.3 Compatible Central Extensions of Maximal Subgroups

The GAP Character Table Library contains the character tables of all maximal subgroups of the groups
4.M»>, 3.M>,, 2.5uz, and 3.Suz. So we can use the approach from Section 3.1 for computing the
character tables of the maximal subgroups of 6.My;, 12.M;,, and 6.Suz.

These tables are contained in the GAP Character Table Library. Several of the groups are direct
products, and the library tables of direct products are usually stored in the form of Kronecker products
of the tables of the factors, so the class ordering of the result tables does not necessarily coincide with
the class ordering in the library tables.

Example

gap> sublist:= list{ [6, 7, 14] };
[["mM22", "2.M22", "3.M22", "6.M22"],
["2.M22", "4.M22", "6.M22", "12.M22"],
["Suz", "2.Suz", "3.Suz", "6.Suz"]]
gap> for entry in sublist do

> tblG := CharacterTable(entry[1]);

> tblmG := CharacterTable(entry[2]);

> tblnG := CharacterTable(entry[3]);

> 1lib = CharacterTable(entry[4]);

>

> maxesG = List(Maxes(tblG), CharacterTable);
> maxesmG := List(Maxes(tblmG), CharacterTable);

Computations with the GAP Character Table Library 157

> maxesnG := List(Maxes(tblnG), CharacterTable);

> maxeslib := List(Maxes(1lib), CharacterTable);

>

> for i in [1 .. Length(maxesG)] do

> id:= Identifier(maxeslib[i]);

> res:= CharacterTableOfCommonCentralExtension(maxesG[i],

> maxesmG[i], maxesnG[i], id);

> if not res.IsComplete then

> Print("#E not complete: ", id, "\n");

> fi;

> if not IsSubset(Irr(maxeslib[i]), res.irreducibles) then

> trans:= TransformingPermutationsCharacterTables(maxeslib[i],
> res.tblmnG);
> if not IsRecord(trans) then

> Print("#E not transformable: ", id, "\n");

> fi;

> fi;

> od;

> od;

Since we get no output, all tables in question can be computed with the GAP functions, and
coincide (up to permutations of rows and columns) with the library tables.

3.2.4 The 2B Centralizer in 3.F i’24 (January 2004)

As is stated in [CCNT85, p. 207], the 2B centralizer N in the sporadic simple Fischer group Fij,
has the structure 2 1++12.3U4(3) .2,. The character table of Ny is contained in the GAP Character Table
Library since the year 2000.

Our aim is to compute the character table of the preimage N of Nj in the central extension 3.F),
of Fil; let Z; denote the centre of 3.F,.

Using the “dihedral group method” in the faithful permutation representation of degree 920808
for 3.Fi,,, we first compute a generating set of N. This group has three orbits of the lengths 774 144,
145152, and 1512; the actions on the first two orbits are faithful, and the action on the orbit of length
1512 (which consists of the fixed points of the central involution of N) has kernel exactly the central
subgroup Z,, say, of order 2 in V.

Since the permutation representation on 1512 points is so small, it is straightforward to compute
the character table of N/Z, using the implementation of Dixon’s algorithm in GAP; now this table is
part of the GAP Character Table Library.

Note that N is a central extension of Ny/Z(Ny) by the cyclic group Z = Z;Z, of order 6, and that
we know the character tables of the groups N/Z; and N/Z,. So we can apply the method described in
Section 3.1 for computing the character table of N.

First we fetch the input data.

Example
gap> tblmG := CharacterTable("F3+N2B");;
gap> tblG = tblmG / ClassPositions0OfCentre(tblmG);;
gap> tblnG := CharacterTable("2°12.372.U4(3).2_2°");;

The character tables of the library table of Ny and the character table of N/Z, obtained from the
permutation group are not compatible in the sense that the tables of the factor groups modulo the
centres are not sorted compatibly, so we have to compute and store the fusion from tb1lnG to tblG.

Computations with the GAP Character Table Library 158

Example

gap> £2:= tblnG / ClassPositions0fCentre(tblnG);;

gap> trans:= TransformingPermutationsCharacterTables(f2, tblG);;
gap> tblnGfustblG:= OnTuples(GetFusionMap(tblnG, £f2),

> trans.columns);;

gap> StoreFusion(tblnG, tblnGfustblG, tblG);

gap> IsSubset(Irr(tblnG),

> List(Irr(tblG), x -> x{ tblnGfustblG }));
true

Now we apply CharacterTable0fCommonCentralExtension (CTblLib: CharacterTableOf-
CommonCentralExtension).

Example
gap> SetInfolLevel(InfoCharacterTable, 1);

gap> id:= "3.27(1+12).3U4(3).2";;

gap> res:= CharacterTableOfCommonCentralExtension(

> tblG, tblmG, tblnG, id);;

#I 3.27(1+12).3U4(3) .2: need 36 faithful irreducibles
#I 3.27(1+12).3U4(3).2: 16 found by tensoring

#I 3.27(1+12).3U4(3).2: 20 found by LLL

gap> SetInfolLevel(InfoCharacterTable, 0);

So we have found all missing irreducibles of N. Let us check whether the result table coincides
with the table in the GAP Character Table Library.

Example

gap> 1lib:= CharacterTable("3.F3+N2B");;

gap> IsRecord(TransformingPermutationsCharacterTables(
> res.tblmnG, 1lib));

true

We were interested in the character table because N is a maximal subgroup of 3.Fi,. So the class
fusion into the table of this group is an interesting information. We assume that the class fusion of Ny
into Fi), is known, and compute only those possible class fusions that are compatible with this map.

Example

gap> 3f3p:= CharacterTable("3.F3+");;
gap> £3p:= CharacterTable("F3+");;
gap> approxfus:= CompositionMaps(

> InverseMap(GetFusionMap(3f3p, f3p)),

> CompositionMaps(GetFusionMap(tblmG, f3p),
> GetFusionMap(1lib, tblmG)));;

gap> poss:= PossibleClassFusions(1ib, 3f3p,

> rec(fusionmap:= approxfus));;

gap> Length(poss);

1

It turns out that only one map has this property. (Without the condition on the compatibility, we
would have got 128 possibilities, which form one orbit under table automorphisms.)

Chapter 4

GAP Computations Concerning
Hamiltonian Cycles in the Generating
Graphs of Finite Groups

Date: April 24th, 2012

This is a collection of examples showing how the GAP system [GAP19] can be used to compute
information about the generating graphs of finite groups. It includes all examples that were needed for
the computational results in [BGL*10].

The purpose of this writeup is twofold. On the one hand, the computations are documented this
way. On the other hand, the GAP code shown for the examples can be used as test input for automatic
checking of the data and the functions used.

A first version of this document, which was based on GAP 4.4.12, is available in the arXiv at
http://arxiv.org/abs/0911.5589v1 since November 2009. The differences between this file
and the current document are as follows.

* The format of the GAP output was adjusted to the changed behaviour of GAP 4.5.

* The records returned by IsomorphismTypeInfoFiniteSimpleGroup (Reference: Isomor-
phismTypelInfoFiniteSimpleGroup) contain a component "shortname" since GAP 4.11.

* The sporadic simple Monster group has exactly one class of maximal subgroups of the type
PSL(2,41) (see [NW13]), and has no maximal subgroups which have the socle PSL(2,27)
(see [Will0]). As a consequence, the lower bounds computed in Section 4.4.2 have been im-
proved.

4.1 Overview

The purpose of this note is to document the GAP computations that were carried out in order to obtain
the computational results in [BGL*10].

In order to keep this note self-contained, we first describe the theory needed, in Section 4.2. The
translation of the relevant formulae into GAP functions can be found in Section 4.3. Then Section 4.4
describes the computations that only require (ordinary) character tables in the GAP Character Table
Library [Bre20]. Computations using also the groups are shown in Section 4.5.

159

http://arxiv.org/abs/0911.5589v1

Computations with the GAP Character Table Library 160

The examples use the GAP Character Table Library and the GAP Library of Tables of Marks, so
we first load these packages in the required versions.

Example
gap> if not CompareVersionNumbers(GAPInfo.Version, "4.5") then
> Error("need GAP in version at least 4.5");
> fi;
gap> LoadPackage("ctbllib", "1.2", false);
true
gap> LoadPackage("tomlib", "1.1.1", false);
true

4.2 Theoretical Background

Let G be a finite noncyclic group and denote by G* the set of nonidentity elements in G. We define
the generating graph T'(G) as the undirected graph on the vertex set G* by joining two elements
x,y € G* by an edge if and only if (x,y) = G holds. For x € G*, the vertex degree d(T',x) is |[{y €
G*;(x,y) = G}|. The closure cl(I") of the graph I" with m vertices is defined as the graph with the
same vertex set as I', where the vertices x,y are joined by an edge if they are joined by an edge in I or
if d(T',x) +d(T,y) > m. We denote iterated closures by c1'”)(I") = cl(cI“~"(T")), where c1®(I") =T..

In the following, we will show that the generating graphs of the following groups contain a Hamil-
tonian cycle:

+ Nonabelian simple groups of orders at most 107,

« groups G containing a unique minimal normal subgroup N such that N has order at most 10°, N
is nonsolvable, and G/N is cyclic,

* sporadic simple groups and their automorphism groups.

Clearly the condition that G/N is cyclic for all nontrivial normal subgroups N of G is necessary
for ['(G) being connected, and [BGL' 10, Conjecture 1.6] states that this condition is also sufficient.
By [BGL ™10, Proposition 1.1], this conjecture is true for all solvable groups, and the second entry in
the above list implies that this conjecture holds for all nonsolvable groups of order up to 10°.

The question whether a graph I" contains a Hamiltonian cycle (i. e., a closed path in I that visits
each vertex exactly once) can be answered using the following sufficient criteria (see [BGL™10]). Let
di <dp <--- <dp be the vertex degrees in .

Posa’s criterion:
If d; > k+ 1 holds for 1 <k < m/2 then I" contains a Hamiltonian cycle.

Chvatal’s criterion:
Ifdy > k+1ord, ;> m—kholds for 1 <k < m/2 then I contains a Hamiltonian cycle.

Closure criterion:
A graph contains a Hamiltonian cycle if and only if its closure contains a Hamiltonian cycle.

Computations with the GAP Character Table Library 161

4.2.1 Character-Theoretic Lower Bounds for Vertex Degrees

Using character-theoretic methods similar to those used to obtain the results in [BGKOS8] (the compu-
tations for that paper are shown in [Breb]), we can compute lower bounds for the vertex degrees in
generating graphs, as follows.

Let R be a set of representatives of conjugacy classes of nonidentity elements in G, fix s € G*, let
M(G, s) denote the set of those maximal subgroups of G that contain s, let M((G, s)/ ~ denote a set of
representatives in M((G, s) w. 1. t. conjugacy in G. For a subgroup M of G, the permutation character
1§ is defined by

137(g) := (IG|- s M)/ (1M] - [g°)),

where g€ = {g*;x € G}, with g* = x " gx, denotes the conjugacy class of g in G. So we have 1§;(1) =
(GI/IM] and thus g% N M| = [g] - 1G () /15(1).

Doubly counting the set {(s*, M*);x,y € G,s* € M’} yields |[M°| - |s° "\M| = |s°| - |[{M*;x € G,s €
M*}| and thus [{M*;x € G,s € M*}| = [M°|-1§,(s)/15,(1) < 1§,(s). (If M is a maximal subgroup of
G then either M is normal in G or self-normalizing, and in the latter case the inequality is in fact an
equality.)

Let IT denote the multiset of primitive permutation characters of G, i. e., of the permutation char-
acters 11?/1 where M ranges over representatives of the conjugacy classes of maximal subgroups of
G.

Define

8(s.8%) = g° 'maX{Oal—) ﬂ(g)'ﬂ(S)/ﬂ(l)}

nell

and d(s,g%) := |{x € g% (s,x) = G}|, the contribution of the class g¢ to the vertex degree of s. Then
we have d(['(G),s) = Yrcgd(s,x%) and

d(s,g%) = g% -1 | {xegxs) M}
Me#(G,s)
> maX{O,\gGI— Y \gGﬂM\}
MeZ(G.s)

= Igc\'maX{O,l—), 1/?4(g)/1§’}(1)}

Me#(G.,s)

> IgG\'maX{Oal— Y lﬁ(g)-lﬁ(S)/lﬁ(l)}

Met(G,s)/~
= 8(s,8%)

S0 8(s) := ¥,cx 8(s,x9) is a lower bound for the vertex degree of s; this bound can be computed
if IT is known.
For computing the vertex degrees of the iterated closures of I'(G), we define d(©) (s, g%) := d(s,g%)
and
4D (s,g6) = { 187 . dO(D(G),s) +dD(1(G),g) > |G| - 1
e d¥(s,g% ; otherwise

and 80 (s) := Y. cx 87 (s5,x%), alower bound for d(cl)(I'(G)), s) that can be computed if IT is known.

Computations with the GAP Character Table Library 162

4.2.2 Checking the Criteria

Let us assume that we know lower bounds f3(s) for the vertex degrees d(cl® (I'(G)), s), for some fixed
i, and let us choose representatives sy,s7,...,s; of the nonidentity conjugacy classes of G such that
B(s1) < B(s2) <--- < B(s;) holds. Let cx = |sC| be the class lengths of these representatives.

Then the first ¢; vertex degrees, ordered by increasing size, are larger than or equal to (s1), the
next ¢, vertex degrees are larger than or equal to 3(s2), and so on.

Then the set of indices in the k-th nonidentity class of G for which Pésa’s criterion is not guaran-
teed by the given bounds is

e+t +a<x<citer+cpx < (|G —1)/2,B(sk) <x+1}.
This is an interval {Lg,L;+1,...,U; } with
Ly =max{l+ci+cr+--+ck_1,B(s)}
and
Uy =min{c; +c2+---+c, ||G|/2] —1}.

(Note that the generating graph has m = |G| — 1 vertices, and that x < m/2 is equivalent to x <
161/2) ~ 1)

The generating graph I'(G) satisfies Pdsa’s criterion if all these intervals are empty, i. e., if Ly > Uy
holds for 1 <k <.

The set of indices for which Chvétal’s criterion is not guaranteed is the intersection of

{m—k;1 <m—k<m/2,dy <k}

with the set of indices for which Pdsa’s criterion is not guaranteed.

Analogously to the above considerations, the set of indices m — x in the former set for which
Chvatal’s criterion is not guaranteed by the given bounds and such that x is an index in the k-th
nonidentity class of G is

{m—x;c14+cr++e1<x<ci+cr+--c,1 <m—x<(|G|—1)/2,B(sx) < x}.
This is again an interval {L;, L, +1,...,U/} with
Ly=max{l,m—(ci +ca+-+c)}

and
U,=min{m—(c; +c2+ - +c—1)—1,||G|/2] = 1,m—1—B(sx)}.

The generating graph I'(G) satisfies Chvital’s criterion if the union of the intervals {L;,L; +1,..., U/},
for 1 < k <1 is disjoint to the union of the intervals {L;,Ly +1,...,U}, for 1 <k <.

4.3 GAP Functions for the Computations

We describe two approaches to compute, for a given group G, vertex degrees for the generating graph
of G or lower bounds for them, by calculating exact vertex degrees from G itself (see Section 4.3.1)
or by deriving lower bounds for the vertex degrees using just character-theoretic information about
G and its subgroups (see Section 4.3.2). Finally, Section 4.3.3 deals with deriving lower bounds of
vertex degrees of iterated closures.

Computations with the GAP Character Table Library 163

4.3.1 Computing Vertex Degrees from the Group

In this section, the task is to compute the vertex degrees d(s,g®) using explicit computations with the
group G.

The function IsGenerators0fTransPermGroup checks whether the permutations in the list 1ist
generate the permutation group G, provided that G is transitive on its moved points. (Note that testing
the necessary condition that the elements in 1ist generate a transitive group is usually much faster
than testing generation.) This function has been used already in [Breb].

Example
gap> IsGeneratorsOfTransPermGroup:= function(G, list)
local S;

if not IsTransitive(G) then

Error("<G> must be transitive on its moved points");
fi;
S:= SubgroupNC(G, list);

return IsTransitive(S, MovedPoints(G))
and Size(S) = Size(G);

V VV V V V V V V.YV

end;;

The function VertexDegreesGeneratingGraph takes a transitive permutation group G (in order
to be allowed to use IsGenerators0fTransPermGroup), the list classes of conjugacy classes of
G (in order to prescribe an ordering of the classes), and a list normalsubgroups of proper normal
subgroups of G, and returns the matrix [d(s,g%)];, of vertex degrees, with rows and columns indexed
by nonidentity class representatives ordered as in the list classes. (The class containing the identity
element may be contained in classes.)

The following criteria are used in this function.

¢ The function tests the (non)generation only for representatives of C;(g)-Cs(s)-double cosets,
where Cg(g) := {x € G;gx = xg} denotes the centralizer of g in G. Note that for ¢; € C5(g),
c2 € Cg(s), and a representative r € G, we have (s,g1"2) = (5,¢")2. If (s,¢") = G then the
double coset D = C5(g)rCq(s) contributes |D|/|Cg(g)| to the vertex degree d(s,g%), otherwise
the contribution is zero.

» We have d(s,8%) - |Cs(g)| = d(g,5%) - |Cs(s)|. (To see this, either establish a bijection of the
above double cosets, or doubly count the edges between elements of the conjugacy classes of s
and g.)

o If (s;) = (s2) and (g1) = (g2) hold then we have d(s1,g¥) = d(s2,8¥) = d(s1,85) = d(s52,85),
so only one of these values must be computed.

» If both s and g are contained in one of the normal subgroups given then d(s, g%) is zero.

» If G is not a dihedral group and both s and g are involutions then d(s, g%) is zero.

Example
gap> BindGlobal("VertexDegreesGeneratingGraph",
> function(G, classes, normalsubgroups)
> local nccl, matrix, cents, powers, normalsubgroupspos, i, j, g_i,

> nsg, g_j, gen, pair, d, pow;

VVYVVYVVYVYVYVYV

Computations with the GAP Character Table Library

if not IsTransitive(G) then
Error("<G> must be transitive on its moved points");
fi;

classes:= Filtered(classes,

C -> Order(Representative(C)) <> 1);
nccl:= Length(classes);
matrix:= [];

cents:= [];

powers:= [];

normalsubgroupspos:= [];

for i in [1 .. nccl] do
matrix[i]:= [];

if IsBound(powers[i]) then
The i-th row equals the earlier row ’powers[i]’.
for jin [1 .. 1] do
matrix[i] [j]:= matrix[powers[i] 1[j];
matrix[j][i]:= matrix[j][powers[i]];
od;
else
We have to compute the values.
g_i:= Representative(classes[i]);
nsg:= Filtered([1 .. Length(normalsubgroups) 1,
i -> g_i in normalsubgroups[i]);
normalsubgroupspos[i] := nsg;
cents[i] := Centralizer(G, g_i);
for jin [1 .. 1] do
g_j:= Representative(classes[j]);
if IsBound(powers[j]) then
matrix[i] [j]:= matrix[i] [powers[j] 1;
matrix[j] [i]:= matrix[powers[j]l]1[i];
elif not IsEmpty(Intersection(nsg, normalsubgroupspos[j]))
or (Order(g_i) = 2 and Order(g_j) = 2
and not IsDihedralGroup(G)) then
matrix[i] [j]:= 0O;
matrix[j][i]:= O;

else
Compute $d(g_i, g_j~®$.
gen:= 0;

for pair in DoubleCosetRepsAndSizes(G, cents[j],
cents[i]) do
if IsGenerators0fTransPermGroup(G,
[g_i, g_j pair[1] 1) then
gen:= gen + pair[2];

fi;
od;
matrix[i] [j]:= gen / Size(cents[j]l);
if 1 <> j then

matrix[j]1[i]l:= gen / Size(cents[i]);
fi;

fi;

164

Computations with the GAP Character Table Library 165

> od;

>

> # For later, provide information about algebraic conjugacy.
> for d in Difference(PrimeResidues(Order(g_i)), [1]) do
> pow:= g_i~d;

> for j in [i+l .. nccl] do

> if not IsBound(powers[j]) and pow in classes[j] then
> powers[jl:= 1i;

> break;

> fi;

> od;

> od;

> fi;

> od;

>

> return matrix;

> end);

4.3.2 Computing Lower Bounds for Vertex Degrees

In this section, the task is to compute the lower bounds &(s,g®) for the vertex degrees d(s,g) using
character-theoretic methods.

We provide GAP functions for computing the multiset IT of the primitive permutation characters
of a given group G and for computing the lower bounds & (s, g%) from IT.

For many almost simple groups, the GAP libraries of character tables and of tables of marks con-
tain information for quickly computing the primitive permutation characters of the group in question.
Therefore, the function PrimitivePermutationCharacters takes as its argument not the group G
but its character table 7', say. (This function is shown already in [Breb].)

If T is contained in the GAP Character Table Library (see [Bre20]) then the complete set of prim-
itive permutation characters can be easily computed if the character tables of all maximal subgroups
and their class fusions into 7" are known (in this case, we check whether the attribute Maxes (CTblLib:
Maxes) of T is bound) or if the table of marks of G and the class fusion from 7 into this table of marks
are known (in this case, we check whether the attribute FusionToTom (CTblLib: FusionToTom) of
T is bound). If the attribute UnderlyingGroup (Reference: UnderlyingGroup for tables of marks)
of T is bound then the group stored as the value of this attribute can be used to compute the primitive
permutation characters. The latter happens if T was computed from the group G; for tables in the
GAP Character Table Library, this is not the case by default.

The GAP function PrimitivePermutationCharacters tries to compute the primitive permu-
tation characters of a group using this information; it returns the required list of characters if this can
be computed this way, otherwise fail is returned. (For convenience, we use the GAP mechanism of
attributes in order to store the permutation characters in the character table object once they have been
computed.)

Example
gap> DeclareAttribute("PrimitivePermutationCharacters",

> IsCharacterTable);

gap> InstallOtherMethod(PrimitivePermutationCharacters,
> [IsCharacterTable],

> function(tbl)

> local maxes, i, fus, poss, tom, G;

Computations with the GAP Character Table Library

if HasMaxes(tbl) then
maxes:= List(Maxes(tbl), CharacterTable);
for i in [1 .. Length(maxes)] do
fus:= GetFusionMap(maxes[i], tbl);
if fus = fail then
fus:= PossibleClassFusions(maxes[i], tbl);
poss:= Set(List(fus,
map -> InducedClassFunctionsByFusionMap(
maxes[i], tbl,
[TrivialCharacter(maxes[i])], map)[1]));
if Length(poss) = 1 then
maxes[i] := poss[1];

else
return fail;
fi;
else
maxes[i] := TrivialCharacter(maxes[i])~tbl;
fi;

od;

return maxes;
elif HasFusionToTom(tbl) then

tom:= TableOfMarks(tbl);

maxes:= MaximalSubgroupsTom(tom) ;

return PermCharsTom(tbl, tom){ maxes[1] };
elif HasUnderlyingGroup(tbl) then

G:= UnderlyingGroup(tbl);

return List(MaximalSubgroupClassReps(G),

M -> TrivialCharacter(M)~tbl);

fi;

return fail;
end);

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYV

166

The next function computes the lower bounds &(s,g“) from the two lists classlengths of con-
jugacy class lengths of the group G and prim of all primitive permutation characters of G. (The first
entry in classlengths is assumed to represent the class containing the identity element of G.) The
return value is the matrix that contains in row i and column j the value §(s,g%), where s and g are in
the conjugacy classes represented by the (i 4 1)-st and (j + 1)-st column of tbl, respectively. So the

row sums of this matrix are the values d(s).

Example
gap> LowerBoundsVertexDegrees:= function(classlengths, prim)
local sizes, nccl;

nccl:= Length(classlengths);
return List([2 .. nccl],
i ->List([2 .. nccl],
j -> Maximum(O, classlengths[j] - Sum(prim,
pi -> classlengths[j] * pil[j] * pilil
/ pilll))))

V VV V V V V V.V

end;;

Computations with the GAP Character Table Library 167

4.3.3 Evaluating the (Lower Bounds for the) Vertex Degrees

In this section, the task is to compute (lower bounds for) the vertex degrees of iterated closures of a
generating graph from (lower bounds for) the vertex degrees of the graph itself, and then to check the
criteria of Pésa and Chvital.

The arguments of all functions defined in this section are the list classlengths of conjugacy
class lengths for the group G (including the class of the identity element, in the first position)
and a matrix bounds of the values d)(s,g%) or §\)(s,g¢), with rows and columns indexed by
nonidentity class representatives s and g, respectively. Such a matrix is returned by the functions
VertexDegreesGeneratingGraph or LowerBoundsVertexDegrees, respectively.

The function LowerBoundsVertexDegrees0fClosure returns the corresponding matrix of the
values d+1)(s,g%) or 81 (s, g%), respectively.
Example

gap> LowerBoundsVertexDegreesO0fClosure:= function(classlengths, bounds)
local delta, newbounds, size, i, j;

delta:= List(bounds, Sum);
newbounds:= List(bounds, ShallowCopy);
size:= Sum(classlengths);
for i in [1 .. Length(bounds)] do
for j in [1 .. Length(bounds)] do
if deltal[i] + deltal[j] >= size - 1 then
newbounds [i] [j]:= classlengths[j+1 1;
fi;
od;
od;

return newbounds;
end;;

V VVV VYV VYV VYV VVYVVYV

Once the values d)(s,g%) or 8 (s,g%) are known, we can check whether Pésa’s or Chvital’s
criterion is satisfied for the graph c1¥)(I'(G)), using the function CheckCriteriaOfPosaAndChvatal
shown below. (Of course a negative result is meaningless in the case that only lower bounds for the
vertex degrees are used.)

The idea is to compute the row sums of the given matrix, and to compute the intervals {Ly,L; +
1,...,Ux} and {L;,L; +1,...,U}} that were introduced in Section 4.2.2.

The function CheckCriteriaOfPosaAndChvatal returns, given the list of class lengths of G and
the matrix of (bounds for the) vertex degrees, a record with the components badForPosa (the list of
those pairs [Ly, Uy| with the property L; < Uy), badForChvatal (the list of pairs of lower and upper
bounds of nonempty intervals where Chvdtal’s criterion may be violated), and data (the sorted list of
triples [8(gk), g%, 1(k)], where 1 (k) is the row and column position of g in the matrix bounds). The
ordering of class lengths must of course be compatible with the ordering of rows and columns of the
matrix, and the identity element of G must belong to the first entry in the list of class lengths.

Example
gap> CheckCriteriaOfPosaAndChvatal:= function(classlengths, bounds)
> local size, degs, addinterval, badForPosa, badForChvatall, pos,

> half, i, lowl, upp2, uppl, low2, badForChvatal, intervall,
> interval?2;
>

Computations with the GAP Character Table Library 168

size:= Sum(classlengths);
degs:= List([2 .. Length(classlengths) 1],

i -> [Sum(bounds[i-1]), classlengths[i], i]);
Sort(degs);

addinterval:= function(intervals, low, upp)
if low <= upp then
Add(intervals, [low, upp]);
fi;
end;

badForPosa:= [];

badForChvatall:= [];

pos:= 1;

half:= Int(size / 2) - 1;

for i in [1 .. Length(degs)] do
We have pos = c_1 + c_2 + \cdots + c_{i-1} + 1
lowl:= Maximum(pos, degs[i][1]); # L_i
upp2:= Minimum(half, size-1-pos, size-1-degs[il[1]); # U’_i
pos:= pos + degs[i] [2];
uppl:= Minimum(half, pos-1); # U_i
low2:= Maximum(1, size-pos); # L’_i
addinterval (badForPosa, lowl, uppl);
addinterval (badForChvatall, low2, upp2);

od;

Intersect intervals.
badForChvatal:= [];
for intervall in badForPosa do
for interval2 in badForChvatall do
addinterval(badForChvatal,
Maximum(intervali[1], interval2[1]),
Minimum(intervall[2], interval2[2]));
od;
od;

return rec(badForPosa:= badForPosa,
badForChvatal:= Set(badForChvatal),
data:= degs);

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVYVVYVVYV

end;;

Finally, the function HamiltonianCycleInfo assumes that the matrix bounds contains lower
bounds for the vertex degrees in the generating graph I', and returns a string that describes the minimal
i with the property that the given bounds suffice to show that ¢/() (T) satisfies P6sa’s or Chvatal’s
criterion, if such a closure exists. If no closure has this property, the string "no decision" is returned.

Example
gap> HamiltonianCycleInfo:= function(classlengths, bounds)
> local i, result, res, oldbounds;

i:= 0;
result:= rec(Posa:= fail, Chvatal:= fail);
repeat

vV V V V

Computations with the GAP Character Table Library

res:= CheckCriteriaOfPosaAndChvatal(classlengths, bounds);
if result.Posa = fail and IsEmpty(res.badForPosa) then
result.Posa:= i;
fi;
if result.Chvatal = fail and IsEmpty(res.badForChvatal) then
result.Chvatal:= i;
fi;
ii= i+1;
oldbounds:= bounds;
bounds:= LowerBoundsVertexDegrees0fClosure(classlengths,
bounds) ;
until oldbounds = bounds;

if result.Posa <> fail then
if result.Posa <> result.Chvatal then
return Concatenation(
"Chvatal for ", Ordinal(result.Chvatal), " closure, ",
"Posa for ", Ordinal(result.Posa), " closure");
else
return Concatenation("Posa for
" closure");

", Ordinal(result.Posa),

VVVVVVVVVVVVVVVVVVVVVYVVVVYVYVVYV

fi;

elif result.Chvatal <> fail then
return Concatenation("Chvatal for ", Ordinal(result.Chvatal),

" closure");

else
return "no decision";

fi;

end;;

169

4.4 Character-Theoretic Computations

In this section, we apply the functions introduced in Section 4.3 to character tables of almost simple

groups that are available in the GAP Character Table Library.

Our first examples are the sporadic simple groups, in Section 4.4.1, then their automorphism
groups are considered in Section 4.4.3. Small alternating and symmetric groups are treated in Sec-

tion 4.4.4.

For our convenience, we provide a small function that takes as its argument only the character
table in question, and returns a string, either "no prim. perm. characters" or the return value

of HamiltonianCycleInfo for the bounds computed from the primitive permutation characters.

Example

gap> HamiltonianCycleInfoFromCharacterTable:= function(tbl)
local prim, classlengths, bounds;

prim:= PrimitivePermutationCharacters(tbl);
if prim = fail then
return "no prim. perm. characters";
fi;
classlengths:= SizesConjugacyClasses(tbl);
bounds:= LowerBoundsVertexDegrees(classlengths, prim);

V V V V V V V V

Computations with the GAP Character Table Library 170

> return HamiltonianCycleInfo(classlengths, bounds);
> end;;

4.4.1 Sporadic Simple Groups, except the Monster

The GAP Character Table Library contains the tables of maximal subgroups of all sporadic simple
groups except M.

So the function PrimitivePermutationCharacters can be used to compute all primitive per-
mutation characters for 25 of the 26 sporadic simple groups.

Example
gap> spornames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);

["B", "Col", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",
"Jiv, wgJ2", "Jj3v, "j4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th"]

gap> for tbl in List(spornames, CharacterTable) do

> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for Oth closure" then

> Print(Identifier(tbl), ": ", info, "\n");

> fi;

> od;

M: no prim. perm. characters

It turns out that only for the Monster group, the information available in the GAP Character Table
Library is not sufficient to prove that the generating graph contains a Hamiltonian cycle.

4.4.2 The Monster

Currently 44 classes of maximal subgroups of the Monster group M are known, but there may be more,
see [NW13]. For some of the known ones, the character table is not known, and for some of those with
known character table, the permutation character is not uniquely determined by the character tables
involved.

Nevertheless, we will show that the generating graph of M satisfies P6sa’s criterion. For that, we
use the information that is available.

For some of the known maximal subgroups S, the character tables are available in the GAP Char-
acter Table Library, and we derive upper bounds for the values of the primitive permutation characters
1’5” from the possible class fusions from § into M. For the other subgroups S, the permutation charac-
ters lg” have been computed with other methods.

The list prim defined below has length 44. The entry at position i is a list of length one or two. If
prim[i] has length one then its unique entry is the identifier of the library character table of the i-th
maximal subgroup of M. If prim[i] has length two then its entries are a string describing the structure
of the i-th maximal subgroup S of M and the permutation character lg/’ .

(The construction of the explicitly given characters in this list will be documented elsewhere.
Some of the constructions can be found in Section 8.16.)

Example
gap> m:= CharacterTable("M");;

gap> primdata:= [

> ["2.B" 1,

VVYVVYVVYVYVYVYV

[B e B e B |

L

L
L

L
L

Computations with the GAP Character Table Library

"2~1+24.Col" 1],

"3.F3+.2"],

"2~2.2E6(2).3.2" 1],

"2~ (10+16) .010+(2)",

Character(m, [512372707698741056749515292734375,
405589064025344574375, 29628786742129575, 658201521662685,
215448838605, 0, 121971774375, 28098354375, 335229607, 108472455,
164587500, 4921875, 2487507165, 2567565, 26157789, 6593805,
398925, 0, 437325, 0, 44983, 234399, 90675, 21391, 41111, 12915,

6561, 6561, 177100, 7660, 6875, 315, 275, 0, 113373, 17901, 57213,
0, 4957, 1197, 909, 301, 397, 0, O, O, 3885, 525, 0, 2835, 90, 45,
o0, 103, 67, 43, 28, 81, 189, 9, 9, 9, 0, 540, 300, 175, 20, 15, 7,

420, o0, 0, 0, 0, 0, 0, O, 165, 61, 37, 37, 0, 9, 9, 13, 5, 0, O,

o, o, 0, 0, 77, 45, 13, 0, O, 45, 115, 19, 10, 0, 5, 5, 9, 9, 1,

i, o, 0, 4, 0, 0, 9, 9, 3, 1,60, 0, O, O, O, O, 4, 1, 1, O, 24, O,
o, o, 0, o0, 6, 0, 0, 0, 0, O, O, 1, O, 4, 0, O, O, O, 1, O, O, O,
0, o, 3,3,1,1,2,0,3,3,0,0,0,0,0,0,0,0,0,0,0,0O0,
2, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 01)

"27(2+11+22) . (M24xS3) ",
Character(m, [16009115629875684006343550944921875,
7774182899642733721875, 120168544413337875, 4436049512692980,

215448838605, 131873639625, 760550656275, 110042727795, 943894035,

568854195, 1851609375, 0, 4680311220, 405405, 78624756, 14467005,
178605, 248265, 874650, 0, 76995, 591163, 224055, 34955, 29539,
20727, 0, 0, 375375, 15775, 0, 0, O, 495, 116532, 3645, 62316,
1017, 11268, 357, 1701, 45, 117, 705, 0, 0, 4410, 1498, 0, 3780,
810, 0, 0, 83, 135, 31, 0, 0, 0, 0, 0, 0, O, 255, 195, 0, 215, O,
0, 210, 0, 42, 0, 35, 15, 1, 1, 160, 48, 9, 92, 25, 9, 9, 5, 1,
21, 0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 0, 120, 76, 10, 0, O, O, O,
0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 0, 0, O,
18, o, 10, 0, 3, 3, 0, 1, 1, 1, 1, 0, 0, 2, 0, O, O, O, O, O, 2,
0, 0 0
0, 0, 2,0,2,00,1,1, 1,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0 1,
"3~(1+12).2.Suz.2" 1],
"2~ (5+10+20) . (S3xL5(2))",
Character(m, [391965121389536908413379198941796875,
23914487292951376996875, 474163138042468875, 9500455925885925,
646346515815, 334363486275, 954161764875, 147339103275,

1481392395, 1313281515, 0, 8203125, 9827885925, 1216215, 91556325,
9388791, 115911, 587331, 874650, 0, 79515, 581955, 336375, 104371,

62331, 36855, 0, 0, 0, O, 28125, 525, 1125, 0, 188325, 16767,
88965, 2403, 9477, 1155, 891, 207, 351, 627, O, O, 4410, 1498, O,
o, o, 30, 150, 91, 151, 31, O, O, O, O, O, O, O, O, O, 125, O, 5,

, 0, 6, 12, 0, 0, 2, 0, 0, 0, 2, 0, O, 1, 1, O, O, O, O,

5, 210, O, 42, 0, 0, 0, O, O, 141, 45, 27, 61, 27, 9, 9, 7, 3, 15,
o, o, o0, 0, o, 98, 74, 42, 0, 0, 30, 0, 0, O, 6, 6, 6, 3, 3, 1, 1,
o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, 1, O, 18, O,

io0, o, o0, o0, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, 2, O, O, O,
o, 0, 0, 0, 2, 2, 0, 2, 3, 3, 0, O, O, O, O, O, O, O, O, O, O, O,
2, 0, 2,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,01)

B > B B > B B > B

"S3xTh" 1],
"[2~39]. (L3(2)x3s86)",

1,

1,

171

VVYVVYVVYVYVYVYV

Computations with the GAP Character Table Library

Character(m, [4050306254358548053604918389065234375,
148844831270071996434375, 2815847622206994375, 14567365753025085,
3447181417680, 659368198125, 3520153823175, 548464353255,
5706077895, 3056566695, 264515625, 0, 19572895485, 6486480,
186109245, 61410960, 758160, 688365, 58310, 0, 172503, 1264351,
3761565, 137935, 99127, 52731, 0, 0, 119625, 3625, 0, 0, 0, O,
402813, 29160, 185301, 2781, 21069, 1932, 4212, 360, 576, 1125, O,
0, 1302, 294, o0, 2160, 810, O, O, 111, 179, 43, 0, 0, 0, 0, O, O,
o0, 185, 105, O, 65, 0, O, 224, 0, 14, 0, O, O, O, O, 337, 105, 36,
is7, 37, 18, 18, 16, 4, 21, O, O, O, O, O, 70, 38, 14, 0, 0, O,

60, 40, 10, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 10, O, O, 0, O, O, 0, O,
0, 0,0,5,1, 0, 0,0, 24, 0, 6, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 3,
0, 0, 0, 0,0,0,2,0,0,0,0,0,6,8,0,0,2,0,0,0,0,O0,
0, 0,0, 2,0,0,0,0,0,0, 4,0,2,0,0,0,0,0,0,0,0,O0,
0, 0, 0, 0, 0, 4, 0, 0, 01) 1,

["3°8.08-(3).2_3",

Character(m, [6065553341050124859256025907200000000,
117457246944126566400000, 2373192769339392000, 4237313863946240,
1528370386400, 480247040000, 1485622476800, 207447654400,
3523215360, 1124597760, 2926000000, 0, 4720235520, 18601440,
49864704, 14602080, 1914720, 645120, 0, 168070, O, 811008, 133120,
204800, 0, 8192, 3621, 4250, 308000, 28800, O, O, O, O, 53504,
1520, 68992, 3584, 2304, 672, 7216, 240, 192, 960, 156, 0, O, O,
70, 7840, 550, 0, O, O, O, O, O, 48, 93, 57, 18, 24, 0, 160, 200,
o, 320, 0, 0, O, 49, O, 4, 0, 0, O, O, 144, 0, O, 80, 0, 20, 64,

o, o, 8, 0, 12, 0, 2, 2, 0, 0, O, 6, O, O, 20, 24, 30, O, O, O,

2, 0, 0, 0, 20, 8, 0O,

, , 0, 12, 0, 0, O,

, 0, 0, 0, 0, O,
o, 0, 0, 0, O,

N

> B B > B B B B > B B > B B

B

0

5, 0, 4,
» 2,

0

0

0
> 1,
» 0,

0

B

> B > B ’ > B ’ B

0
0,
0

B

B > > B > > B > B ’

O O b O
O N O O
O b O O
O O+~ O
O O o wm
O N O N
O O O N
O O O O
O O O O
O?O!—‘
O O O

> > B B > B > > B > > B > B

O O O O O
O O N OO
— O O O O

, 0, 01)
["(D10xHN).2"],
["(3~2:2x08+(3)) .s4",

Character(m, [377694424605514962329798663208960000000,
23596671505687942666240000, 28756421759729664000,
377826645416419584, 16593035298840, 5193792576000, 14007297638400,
1715997638656, 5830082560, 2683699200, 5266800000, 0, 47782831360,
241801560, 626008320, 48633880, 9541080, 483840, 2332400, O,
16384, 3964928, 926720, 102400, 16384, 32256, 51030, 7371, 800800,
41600, 0, 0, 0, O, 248640, 120480, 200656, 13440, 13696, 1260,
4708, 1120, 1864, O, 26, O, 7840, 336, 0, 4284, 180, 0, 0, 0, O,
o0, 0, 265, 418, 270, 99, 81, O, 480, 456, 0, 0, O, O, 455, 0, 56,
o, o, 0, 0, 0, 680, 64, 4, 16, 32, 18, 26, 16, 4, 0, 0, 10, 0, 9,

B

o, 28, 24, 8, o0, 0, 0, 160, 20, 20, 0, O, O, O, O, O, O, O, O, O,
o, o, 18, 3, 4,1, 0, 8, 2, 0, 0, 20, 8, 0, O, O, 19, 0, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, 2, O, 1, O, 4, 0, O, O, O, O, 6,
o, o, o, 0, o0, o0, 0, 0, 0, 0, 0, 0, O, O, O, O, 4, 0, O, 1, O, O,
o, 0, 0, 0, 0, 0, O, O, O, O, O, O, 2, 2, 0, 0, 0, 0]) 1,

["3~(2+5+10) . (M11x2S54) ",

Character(m, [16458603283969466072643078298009600000000,
20359256136981938176000000, 145987312780574720000,
724314893457326080, 21414300718720, 18249387520000, 540226355200,

172

VVYVVYVVYVYVYVYV

Computations with the GAP Character Table Library

1703254425600, 4697620480, 4771020800, 23408000000, O,
43256012800, 98483840, 909246464, 213623680, 8362880, 4444160, O,
0, 0, 475136, 998400, 81920, O, 35840, 25312, 10597, 0O, 128000, O,
0, 0, 440, 93184, 160, 134400, 1792, 7168, 560, 15888, 160, 64,
320, 0, 0, 0, O, O, 19880, 2240, 0, 0, O, O, O, O, 301, 148, 200,
221, &3, 0, 640, 0, 0, 0, 0, O, O, O, O, O, O, 40, O, O, 224, O,
o, 32, 32, 20, 156, 8, O, 8, O, O, O, 1, 1, O, O, O, O,

io04, 80, 0, 0, 0, 0, 0, 0, O, 8, 8, 0, O, O, 4, 1, 6, 1, 0, O, O,
o, o, o, 16, 0, 0, 0, 0, O, O, O, 4, 4, 2, 0, 0, O, O, O, O, O, O,

o, o, 0, 1, 0, 0, 0, 0, 0, 0, O, O, 4, 0, O, O, O, O, O, O, 4, O,
o, o, o0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, 2, 2, O, O, O, O, O, O,
0, 0,0,0,0,0,0,01)1,

["3~(3+2+6+6) : (L3(3)xSD16)",

Character(m, [69632552355255433384259177414656000000000,
10962676381451812864000000, 276872489756262400000,
816070626832384000, 52168426710400, 4994569216000, 29712449536000,
917136998400, 32883343360, 14313062400, 0, 0, 53947801600,
445244800, 995491840, 268777600, 8579200, 2007040, 0, 0, O,
4505600, 588800, 245760, O, 35840, 24760, 4105, 0, 0, O, O, O, O,
148480, 8800, 134400, 1792, 13312, 1680, 20784, 1120, 448, 960,
is6, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 241, 304, 184, 121, 49,
o, o, o0, o0, 0, 0, 0, 0, 0, 0, O, 0, 0, O, O, 416, 0, O, 96, 32,

20, 92, 24, 0, 8, 0, 28, 0, 1, 1, 0, 0, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, 0, O, O, O, O, 4, 1, 12, 1, 0, 12, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, 12, O,
i, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 4, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 4,
4, 0, 0,0,01)1,

"5~(1+6):2.J2.4" 1],

"(7:3xHe):2" 1,
"(ABxA12):2" 1,
"5~(3+3).(2xL3(5))" 1,

" (A6xA6xA6) . (2xS4)" 1,
"(A5xU3(8):3):2" 1,

"5~ (2+2+4) : (S3xGL2(5))" 1,
"(L3(2)xS4(4):2).2" 1,
"7~(1+4) : (3x2.87)"],
"(5~2:[2~4]1xU3(5)).83" 1],
"(L2(11)xM12):2"],
"(A7x(ABxAB) :2°2):2"],
"5~4:(3x2.12(25)).2"],
"7~ (2+142) :GL2(7T)" 1,
"M11xA6.2°2"],

" (S5x85x85) :83" 1],
"(L2(11)xL2(11)):4" 1,
"13~2:2.12(13).4"],
"(7~2:(3x244)xL2(7)).2" 1,
"(13:6xL3(3)).2" 1,
"13~(1+2): (3x484)" 1],
"L2(71)" 1,

"L2(59)" 1,
"11-~2:(5x2.A5)"],

L B e T e T s T e IO s N s Y s Y s O s Y s Y e O e Y s T e N e Y s Y s N s Y s T s N s Y s B |

173

Computations with the GAP Character Table Library 174

> ["L2¢41)" 1],

> ["L2(29).2"],

> ["72:2ps1(2,7)" 1,
> ["L2(19).2"],

> ["41:40"],

> 153

We compute upper bounds for the permutation character values in the cases where the charac-
ters are not given explicitly. (We could improve this by using additional information about the class
fusions, but this will not be necessary.)

Example

gap> for entry in primdata do

> s:= CharacterTable(entry[1]);

> if not IsBound(entry[2]) then

> fus:= PossibleClassFusions(s, m);

> poss:= Set(List(fus,

> x -> InducedClassFunctionsByFusionMap(s, m,
> [TrivialCharacter(s) 1, x)[1]));
> entry[2]:= List([1 .. NrConjugacyClasses(m) 1],

> i -> Maximum(List(poss, x -> x[i])));

> fi;

> od;

According to [NW13], any maximal subgroup of the Monster besides the above 44 known classes
is an almost simple group whose socle is one of L, (13), Sz(8), Us(4), and U3(8).

We show that the elements of such subgroups are contained in the union of 55 conjugacy classes
of the Monster that cover less than one percent of the elements in the Monster. For that, we compute
the possible class fusions from the abovementioned simple groups S into the Monster, and then the
possible class fusions from the automorphic extensions of S into the Monster, using the possible class
fusions of S. (This approach is faster than computing each class fusion from scratch.)

After the following computations, the list badclasses will contain the positions of all those
classes of M that may contain elements in some of the hypothetical maximal subgroups.

For each simple group in question, we enter the identifiers of the character tables of the auto-
morphic extensions that can occur. Note that the automorphism groups of the four groups have the
structures L,(13).2, Sz(8).3, Us(4).4, and U3z(8).(3 x S3), respectively. We need not consider the
groups U3(8).3% and U3(8).(3 x S3) because already U;(8).3, does not admit an embedding into M,
and we need not consider the group Us3(8).53 because its set of elements is covered by its subgroups
of the types U3(8).2 and U3(8).3;.

Example
gap> PossibleClassFusions(CharacterTable("U3(8).3_2"), m);

(R

gap> badclasses:= [];;

gap> names:= [

> ["L2(13)", "L2(13).2" 1],

["sz(8)", "5z(8).3" 1,

["U3(4)", "U3(4).2", "U3(4).4" 1,

["U3(8)", "U3(8).2", "UB(S).B_].", "U3(8).3_2", "U3(8).3_3",
"U3(8).6" 1,

vV V. V V V

1;;

Computations with the GAP Character Table Library 175

gap> for list in names do
t:= CharacterTable(list[1]);
tfusm:= PossibleClassFusions(t, m);

UniteSet(badclasses, Flat(tfusm));
for nam in list{ [2 .. Length(list)] } do
ext:= CharacterTable(nam);
for mapl in PossibleClassFusions(t, ext) do
inv:= InverseMap(mapl);
for map2 in tfusm do
init:= CompositionMaps(map2, inv);
UniteSet(badclasses, Flat(PossibleClassFusions(ext, m,
rec(fusionmap:= init))));
od;
od;
od;

od;

gap> badclasses;

L1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22,
24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46,
48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 70, 72, 73, 78,
82, 85, 86]

gap> Length(badclasses);

55

gap> classlengths:= SizesConjugacyClasses(m);;

gap> bad:= Sum(classlengths{ badclasses }) / Size(m);;

gap> Int(10000 * bad);

97

V VV VYV VV VYV YV VVYVVYV

In the original version of this file, also hypothetical maximal subgroups with socle 1,(27) had
been considered. As a consequence, the list badclasses computed above had length 59 in the original
version, the list contained also the classes at the positions 90,94,95, and 96, that is, the classes 26B,
28B, 28C, 28D. The proportion bad of elements in the classes of M described by badclasses was
about 2.05 percent of |M|, compared to the about 0.98 percent in the current version.

Now we estimate the lower bounds &(s,g) introduced in Section 4.3.2. Let % denote the union
of the classes described by badclasses, and let M denote a set of representatives of the 44 known
classes of maximal subgroups of M.

If s ¢ % then

8(s,89) = Is°I = s) 15/ (s) - 1§/ () /15 (1),
SeM
hence O(s) can be computed from the corresponding primitive permutation characters, and a lower
bound for &(s) can be computed from the upper bounds for the characters 1? which are given by the
list primdata.

If s € 4 then the above equation for §(s,g%) holds at least for g ¢ %, so Yoer\ 2 5(s,g% is a
lower bound for d(s). So primdata yields a lower bound for §(s) also for s € 4, by ignoring the
pairs (s,g) where both s and g lie in 4.

This means that modifying the output of LowerBoundsVertexDegrees as follows really yields
lower bounds for the vertex degrees. (Note that the row and column positions in the matrix returned
by LowerBoundsVertexDegrees are shifted by one, compared to badclasses.)

Computations with the GAP Character Table Library 176

Example
gap> prim:= List(primdata, x -> x[2]);;
gap> badpos:= Difference(badclasses, [1]) - 1;;
gap> bounds:= LowerBoundsVertexDegrees(classlengths, prim);;
gap> for i in badpos do
> for j in badpos do

bounds[i] [j]:= 0;

od;

od;

vV V V

Now we sum up the bounds for the individual classes. It turns out that the minimal vertex degree
is more than 99 percent of |M|. This proves that the generating graph of the Monster satisfies Pdsa’s
criterion.

(And the minimal vertex degree of elements outside .2 is more than 99.99998 percent of |M|.)

In the original version of this file, we got only 97.95 percent of |M| as the lower bound for the
minimal vertex degree. The bound for elements outside B was the same in the original version. The
fact that the maximal subgroups of type L(41) had been ignored in the original version did not affect
the lower bound for the minimal vertex degree.

Example

gap> degs:= List(bounds, Sum);;
gap> Int(10000 * Minimum(degs) / Size(m));

9902
gap> goodpos:= Difference([1 .. NrConjugacyClasses(m) - 1 1],
> badpos);;

gap> Int(100000000 * Minimum(degs{ goodpos }) / Size(m));
99999987

4.4.3 Nonsimple Automorphism Groups of Sporadic Simple Groups

Next we consider the nonsimple automorphism groups of the sporadic simple groups. Nontrivial outer
automorphisms exist exactly in 12 cases, and then the simple group has index 2 in its automorphism
group. The character tables of the groups and their maximal subgroups are available in GAP.

Example
gap> spornames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);;
gap> sporautnames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false,
> O0fThose, AutomorphismGroup);;

gap> sporautnames:= Difference(sporautnames, spornames);

["F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "Mi12.2",
"M22.2", "McL.2", "ON.2", "Suz.2"]

gap> for tbl in List(sporautnames, CharacterTable) do

> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> Print(Identifier(tbl), ": ", info, "\n");
> od;

F3+.2: Chvatal for Oth closure, Posa for 1st closure
Fi22.2: Chvatal for Oth closure, Posa for 1st closure
HN.2: Chvatal for Oth closure, Posa for 1st closure
HS.2: Chvatal for 1st closure, Posa for 2nd closure
He.2: Chvatal for Oth closure, Posa for 1st closure

Computations with the GAP Character Table Library 177

J2.2: Chvatal for Oth closure, Posa for 1st closure
J3.2: Chvatal for Oth closure, Posa for 1st closure
M12.2: Chvatal for Oth closure, Posa for 1st closure
M22.2: Posa for 1st closure

McL.2: Chvatal for Oth closure, Posa for 1st closure
ON.2: Chvatal for Oth closure, Posa for 1st closure
Suz.2: Chvatal for Oth closure, Posa for 1st closure

4.44 Alternating and Symmetric Groups A,, S, for 5 <n <13

For alternating and symmetric groups A, and S, respectively, with 5 < n < 13, the table of marks
or the character tables of the group and all its maximal subgroups are available in GAP. So we can
compute the character-theoretic bounds for vertex degrees.

Example
gap> for tbl in List([5 .. 13], i -> CharacterTable(

> Concatenation("A", String(i)))) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for Oth closure" then

> Print(Identifier(tbl), ": ", info, "\n");

> fi;

>

od;

No messages are printed, so the generating graphs of the alternating groups in question satisfy
Pésa’s criterion.

Example
gap> for tbl in List([5 .. 13], i -> CharacterTable(
> Concatenation("S", String(i)))) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> Print(Identifier(tbl), ": ", info, "\n");

> od;

A5.2: no decision

A6.2_1: Chvatal for 4th closure, Posa for 5th closure
A7.2: Posa for 1st closure

A8.2: Chvatal for 2nd closure, Posa for 3rd closure
A9.2: Chvatal for 2nd closure, Posa for 3rd closure
A10.2: Chvatal for 2nd closure, Posa for 3rd closure
A11.2: Posa for 1st closure

A12.2: Chvatal for 2nd closure, Posa for 3rd closure
A13.2: Posa for 1st closure

We see that sufficiently large closures of the generating graphs of the symmetric groups in question
satisfy Pésa’s criterion, except that the bounds for the symmetric group S5 are not sufficient for the
proof. In Section 4.5.2, it is shown that the 2nd closure of the generating graph of S5 satisfies Pdsa’s
criterion.

(We could find slightly better bounds derived only from character tables which suffice to prove
that the generating graph for S5 contains a Hamiltonian cycle, but this seems to be not worth while.)

Computations with the GAP Character Table Library 178

4.5 Computations With Groups

We prove in Section 4.5.1 that the generating graphs of the nonabelian simple groups of order up
to 10 satisfy Pésa’s criterion, and that the same holds for those nonabelian simple groups of order
between 10° and 107 that are not isomorphic with some PSL(2,q). (In Section 4.6, it is shown that the
generating graph of PSL(2, g) satifies P6sa’s criterion for any prime power ¢.) Nonsimple nonsolvable
groups of order up to 10° are treated in Section 4.5.2.

(We could increase the bounds 10° and 107 with more computations, using the same methods.)

For our convenience, we provide a small function that takes as its argument only the group in
question, and returns a string, the return value of HamiltonianCycleInfo for the vertex degrees
computed from the group. (In order to speed up the computations, the function computes the proper
normal subgroups that contain the derived subgroup of the given group, and enters the list of these
groups as the third argument of VertexDegreesGeneratingGraph.)

Example
gap> HamiltonianCycleInfoFromGroup:= function(G)

local ccl, nsg, der, degrees, classlengths;
ccl:= ConjugacyClasses(G);
if IsPerfect(G) then

nsg:= [];
else

der:= DerivedSubgroup(G);

nsg:= Concatenation([der],

IntermediateSubgroups(G, der).subgroups);

fi;

degrees:= VertexDegreesGeneratingGraph(G, ccl, nsg);

classlengths:= List(ccl, Size);

return HamiltonianCycleInfo(classlengths, degrees);
end;;

V VVV V V VYV YV VVYVYV

4.5.1 Nonabelian Simple Groups of Order up to 10’

Representatives of the 56 isomorphism types of nonabelian simple groups of order up to 10° can be
accessed in GAP with the function A11SmallNonabelianSimpleGroups.

Example

gap> grps:= AllSmallNonabelianSimpleGroups([1 .. 1076]);;

gap> Length(grps);

56

gap> List(grps, StructureDescription);

["A5", "PSL(3,2)", "A6é", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",
"PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",
"PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "Mii", "PSL(2,27)",
"PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "0(5,3)",
"Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",
"PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",
"PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",
"PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",
"PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",
"PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",
"PSL(2,121)", "PSL(2,125)", "0(5,4)"]

gap> for g in grps do

Computations with the GAP Character Table Library 179

info:= HamiltonianCycleInfoFromGroup(g);
if info <> "Posa for Oth closure" then
Print(StructureDescription(g), ": ", info, "\n");
fi;
od;

vV V V V V

Nothing is printed during these computations, so the generating graphs of all processed groups
satisfy Pdsa’s criterion.

(On my notebook, the above computations needed about 6300 seconds of CPU time.)

For simple groups of order larger than 10°, there is not such an easy way (yet) to access repre-
sentatives for each isomorphism type. Therefore, first we compute the orders of nonabelian simple
groups between 10 and 107.

Example
gap> orders:= Filtered([10"6+4, 10°6+8 .. 1077],
> n -> IsomorphismTypeInfoFiniteSimpleGroup(n) <> fail);

[1024128, 1123980, 1285608, 1342740, 1451520, 1653900, 1721400,
1814400, 1876896, 1934868, 2097024, 2165292, 2328648, 2413320,
2588772, 2867580, 2964780, 3265920, 3483840, 3594432, 3822588,
3940200, 4245696, 4680000, 4696860, 5515776, 5544672, 5663616,
5848428, 6004380, 6065280, 6324552, 6825840, 6998640, 7174332,
7906500, 8487168, 9095592, 9732420, 9951120, 9999360]

gap> Length(orders);

41

gap> info:= List(orders, IsomorphismTypeInfoFiniteSimpleGroup);;
gap> Number(info, x -> IsBound(x.series) and x.series = "L"

> and x.parameter[1] = 2);

31

We see that there are 31 groups of the type PSL(2,¢) and 10 other nonabelian simple groups with
order in the range from 10° to 107. The former groups can be ignored because the generating graphs
of any group PSL(2,q) satisfies Pésa’s criterion, see Section 4.6. For the latter groups, we can apply
the character-theoretic method to prove that the generating graph satisfies P6sa’s criterion.

Example
gap> info:= Filtered(info, x -> not IsBound(x.series) or
> x.series <> "L" or x.parameter[1l] <> 2);
[rec(name := "B(3,2) = 0(7,2) ~ C(3,2) = S(6,2)",
parameter := [3, 2], series := "B", shortname := "S6(2)"),
rec(name := "A(10)", parameter := 10, series := "A",
shortname := "A10"),
rec(name := "A(2,7) = L(3,7) ", parameter := [3, 7],
series := "L", shortname := "L3(7)"),
rec(name := "2A(3,3) = U(4,3) ~ 2D(3,3) = 0-(6,3)",
parameter := [3, 3], series := "2A", shortname := "U4(3)"),
rec(name := "G(2,3)", parameter := 3, series := "G",
shortname := "G2(3)"),
rec(name := "B(2,5) = 0(5,5) ~ C(2,5) = S(4,5)",
parameter := [2, 5], series := "B", shortname := "S4(5)"),
rec(name := "2A(2,8) = U(3,8)", parameter := [2, 8],
series := "2A", shortname := "U3(8)"),
rec(name := "2A(2,7) = U(3,7)", parameter := [2, 7],

Computations with the GAP Character Table Library 180

series := "2A", shortname := "U3(7)"),
rec(name := "A(3,3) = L(4,3) "~ D(3,3) = 0+(6,3) ",
parameter := [4, 3], series := "L", shortname := "L4(3)"),
rec(name := "A(4,2) = L(5,2) ", parameter := [5, 2],
series := "L", shortname := "L5(2)")]
gap> names:= ["S6(2)", "A10", "L3(7)", "U4(3)", "G2(3)", "sS4(5)",
> "u3(@", "u3(7)", "L4(3)", "Ls5(2)" 1;;
gap> for tbl in List(names, CharacterTable) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for Oth closure" then
> Print(Identifier(tbl), ": ", info, "\n");
> fi;
> od;

4.5.2 Nonsimple Groups with Nonsolvable Socle of Order at most 10°

Let G be a nonsolvable group such that G/N is cyclic for all nontrivial normal subgroups N of G. Then
the socle Soc(G) of G is the unique minimal normal subgroup. Moreover, Soc(G) is nonsolvable and
thus a direct product of isomorphic nonabelian simple groups, and G is isomorphic to a subgroup of
Aut(Soc(G)).

In order to deal with all such groups G for which additionally |Soc(G)| < 10 holds, it is sufficient
to run over the simple groups S of order up to 10° and to consider those subgroups G of Aut(S"), with
|S|" < 106, for which Inn(G) is the unique minimal normal subgroup and G/Inn(G) is cyclic.

We show that for each such group, a sufficient closure of the generating graph satisfies Pésa’s
criterion.

Example
gap> grps:= AllSmallNonabelianSimpleGroups([1 .. 1076 1);;
gap> epi:= "dummy";; # Avoid a message about an unbound variable ...
gap> for simple in grps do
> for n in [1 .. LogInt(1076, Size(simple))] do

Compute the n-fold direct product S°n.
soc:= CallFuncList(DirectProduct,
ListWithIdenticalEntries(n, simple));
Compute Aut(S"n) as a permutation group.
aut:= Image(IsomorphismPermGroup(AutomorphismGroup(soc)));
aut:= Image(SmallerDegreePermutationRepresentation(aut));
Compute class representatives of subgroups of
Aut(S~n)/Inn(S"n).
socle:= Socle(aut);
epi:= NaturalHomomorphismByNormalSubgroup(aut, socle);
Compute the candidates for G. (By the above computations,
we need not consider simple groups.)
reps:= List(ConjugacyClassesSubgroups(Image(epi)),
Representative);
reps:= Filtered(reps, x -> IsCyclic(x) and Size(x) <> 1);
greps:= Filtered(List(reps, x -> PreImages(epi, x)),
x -> Length(MinimalNormalSubgroups(x)) =1);
for g in greps do
We have to deal with a *transitive* permutation group.
(Each group in question acts faithfully on an orbit.)
if not IsTransitive(g) then

VVVVVVVVVVVVVVVYVVVYVYVYV

Computations with the GAP Character Table Library

> g:= First(List(Orbits(g, MovedPoints(g)),
> x -> Action(g, x)),

> x -> Size(x) = Size(g));

> fi;

> # Check this group G.

> info:= HamiltonianCycleInfoFromGroup(g);

> Print(Name(simple), "~", n, ".", Size(g) / Size(soc),
> ": " info, "\n");

> od;

> od;

> od;

A5"1.2: Posa for 2nd closure

A5~2.2: Posa for Oth closure

A5°2.4: Posa for Oth closure

A5°3.3: Posa for Oth closure

A5~3.6: Chvatal for 1st closure, Posa for 2nd closure

PSL(2,7)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,7)"2.2: Posa for Oth closure
PSL(2,7)~2.4: Posa for 0Oth closure

A6-1.2: Chvatal for Oth closure, Posa for 1st closure
A6~1.2: Chvatal for 4th closure, Posa for 5th closure
A6-1.2: Chvatal for Oth closure, Posa for 1st closure
A672.2: Posa for Oth closure
A6~2.4: Posa for Oth closure
A6°2.4: Posa for Oth closure
A672.4: Posa for Oth closure

PSL(2,8)~1.3: Posa for Oth closure

PSL(2,8)"2.2: Posa for Oth closure

PSL(2,8)"2.6: Chvatal for Oth closure, Posa for 1st closure
PSL(2,11)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,11)~2.2: Posa for 0Oth closure

PSL(2,11)"2.4: Posa for Oth closure

PSL(2,13)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,17)"1.2: Chvatal for Oth closure, Posa for 1st closure
A7~1.2: Posa for 1st closure

PSL(2,19)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,16)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,16)"1.4: Chvatal for Oth closure, Posa for 1st closure
PSL(3,3)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSU(3,3)"1.2: Chvatal for Oth closure, Posa for 1st closure

PSL(2,23)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,25)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,25)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,25)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,27)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,27)~1.3: Posa for Oth closure

PSL(2,27)~1.6: Chvatal for Oth closure, Posa for 1st closure
PSL(2,29)"1.2: Chvatal for Oth closure, Posa for 1st closure

PSL(2,31)"1.2: Chvatal for Oth closure, Posa for 1st closure
A8~1.2: Chvatal for 2nd closure, Posa for 3rd closure

PSL(3,4)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(3,4)~1.2: Chvatal for 1st closure, Posa for 2nd closure

181

Computations with the GAP Character Table Library

PSL(3,4)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(3,4)"1.3: Posa for Oth closure

PSL(3,4)"1.6: Chvatal for Oth closure, Posa for 1st closure
PSL(2,37)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSp(4,3)~1.2: Chvatal for 1st closure, Posa for 2nd closure
Sz(8)~1.3: Posa for Oth closure

PSL(2,32)"1.5: Posa for Oth closure

PSL(2,41)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,43)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,47)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,49)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,49)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,49)"1.2: Chvatal for Oth closure, Posa for 1st closure

PSU(3,4)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSU(3,4)~1.4: Chvatal for Oth closure, Posa for 1st closure
PSL(2,53)"1.2: Chvatal for Oth closure, Posa for 1st closure
M12~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,59)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,61)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSU(3,5)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSU(3,5)~1.3: Posa for Oth closure

PSL(2,67)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,71)"1.2: Chvatal for Oth closure, Posa for 1st closure
A9~1.2: Chvatal for 2nd closure, Posa for 3rd closure
PSL(2,73)~1.2: Chvatal for Oth closure, Posa for 1st closure

PSL(2,79)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,64)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,64)"1.3: Posa for Oth closure

PSL(2,64)"1.6: Chvatal for Oth closure, Posa for 1st closure
PSL(2,81)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,81)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,81)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,81)"1.4: Chvatal for Oth closure, Posa for 1st closure
PSL(2,81)"1.4: Chvatal for Oth closure, Posa for 1st closure
PSL(2,83)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,89)~1.2: Chvatal for Oth closure, Posa for 1st closure

PSL(3,5)~1.2: Chvatal for Oth closure, Posa for 1st closure
M22~1.2: Posa for 1st closure

PSL(2,97)"1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,101)~1.2: Chvatal for 0Oth closure, Posa for 1st closure
PSL(2,103)~1.2: Chvatal for Oth closure, Posa for 1st closure
J_271.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,107)~1.2: Chvatal for Oth closure, Posa for 1st closure
PSL(2,109)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,113)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,121)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,121)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,121)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,125)"1. Chvatal for Oth closure, Posa for 1st closure
PSL(2,125)"1. Posa for Oth closure

PSL(2,125)"1. Chvatal for Oth closure, Posa for 1st closure
PSp(4,4)"1.2: Chvatal for Oth closure, Posa for 1st closure

O')OJN)[\')I\JI\)M[\')

182

Computations with the GAP Character Table Library 183

‘ PSp(4,4)~1.4: Posa for Oth closure

4.6 The Groups PSL(2,q)

We show that the generating graph of any group PSL(2,q), for ¢ > 2, satisfies Pésa’s criterion.
Throughout this section, let ¢ = p/ for a prime integer p, and G = PSL(2,q). Set k = gcd(q — 1,2).
Lemma 1: (see [Hup67, 11., § 8]) The subgroups of G are

(1) cyclic groups of order dividing (¢ & 1)/k, and their normalizers, which are dihedral groups of
order 2(q+ 1) /k,

(2) subgroups of Sylow p normalizers, which are semidirect products of elementary abelian groups
of order ¢ with cyclic groups of order (¢ — 1) /k,

(3) subgroups isomorphic with PSL(2, p™) if m divides f, and isomorphic with PGL(2, p™) if 2m
divides f,

(4) subgroups isomorphic with A4, S4, or As, for appropriate values of q.

G contains exactly one conjugacy class of cyclic subgroups of each of the orders (¢ — 1)/k and
(¢ +1)/k, and each nonidentity element of G is contained in exactly one of these subgroups or in
exactly one Sylow p subgroup of G.

We estimate the number of elements that are contained in subgroups of type (3).

Lemma 2: Let ngr(g) denote the number of those nonidentity elements in G that are contained
in proper subgroups of type (3). Then ny(q) < ¢*(2p(\/g—1)/(p—1)—1). If f is a prime then
nsr(q) < (2p — 1)g? holds, and if p = g then we have of course n,¢(q) = 0.

Proof: The group PGL(2, p™) is equal to PSL(2,p™) for p = 2, and contains PSL(2,p") as a
subgroup of index two if p # 2. So the largest element order in PGL(2, p™) is at most p™ + 1. Let C
be a cyclic subgroup of order (¢ + €)/k in G, for € € {41}. The intersection of C with any subgroup
of G isomorphic with PGL(2, p™) or PSL(2, p™) is contained in the union of the unique subgroups
of the orders ged(|C|, p™ + 1) and ged(|C|, p™ — 1) in C. So C contains at most 2p"™ — 2 nonidentity
elements that can lie inside subgroups isomorphic with PGL(2, p™) or PSL(2, p™). Hence C contains
at most Y, (2p™ — 2) nonidentity elements in proper subgroups of type (3), where m runs over the
proper divisors of f. This sum is bounded from above by me/jl (2p"—-2)<2p(\/g—1)/(p—1)—2.

The numbers of cyclic subgroups of the orders (¢ + €)/k in G are g(q — €)/2, so G contains
altogether ¢* such cyclic subgroups. They contain at most ¢*>(2p(/g —1)/(p — 1) — 2) elements
inside proper subgroups of the type (3).

All elements of order p in G are contained in subgroups of type (3), and there are exactly ¢> — 1
such elements. This yields the claimed bound for nss(g). The better bound for the case that f is a
prime follows from Y, (2p™ —2) = 2p — 2 if m ranges over the proper divisors of f. U

Using these bounds, we see that the vertex degree of any element in G that does not lie in sub-
groups of type (4) is larger than |G|/2. (In fact we could use the calculations below to derive a better
asymptotic bound, but this is not an issue here.)

Lemma 3: Let s € G be an element of order larger than 5. Then |{g € G;(g,s) = G}| > |G|/2.

Proof: First suppose that the order of s divides (¢+ 1) /kor (4—1)/k. If g € G such that U = (s, g)
is a proper subgroup of G then U < Ng((s)) or U lies in a Sylow p normalizer of G or U lies in
a subgroup of type (3). Since s is contained in at most two Sylow p normalizers (each Sylow p

Computations with the GAP Character Table Library 184

normalizer contains g cyclic subgroups of order (¢ — 1) /k, and G contains ¢ + 1 Sylow normalizers
and ¢g(g+ 1)/2 cyclic subgroups of order (¢ — 1)/k), the number of g € G with the property that
(s,8)#G is at most N = 2(q + 1) /k +2q(q — 1) /k + nsr(q) = 2(q> + 1) /k + nsf(q); for s of order
equal to (g +1)/k or (g—1)/k, we can set N = 2(q*> + 1) /k.

Any element s of order p (larger than 5), lies only in a unique Sylow p normalizer and in subgroups
of type (3), so the bound N holds also in this case.

For f = 1, N is smaller than |G|/2 = q(¢* — 1)/(2k) if ¢ > 5. (The statement of the lemma is
trivially true for g <35.)

For primes f, N is smaller than |G| /2 if ¢*(¢ —8p) > q+4 holds, which is true for p/ > 8p. Only
the following values of p/ with prime f do not satisfy this condition: 2> and 3> (where no element of
order larger than 5 exists), 2° (where only elements of order equal to ¢+ 1 must be considered), 5
and 7% (where ny(q) < (p—1)q(q+ 1) because in these cases the cyclic subgroups of order (¢+1)/k
cannot contain nonidentity elements in subgroups of type (3)).

Finally, if f is not a prime then N is smaller than |G|/2 if ¢*(¢ —8p(,/g—1)/(p—1)) > q+4
holds, which is true for ¢ > 256. The only values of p/ with non-prime f that do not satisfy this
condition are 24, 2°, and 3*. In all three cases, we have in fact N < |G|/2, where we have to use the
better bound n,¢(¢q) < 164 in the third case. U

In order to show that the generating graph of G satisfies Pésa’s criterion, it suffices to show that
the vertex degrees of involutions is larger than the number of involutions, and that the vertex degrees
of elements of orders 2, 3, 4, and 5 are larger than the number of elements whose order is at most 5.

Lemma 4: Let n(q,m) denote the number of elements of order m in G, and let @(m) denote the
number of prime residues modulo m.

» We have n(g,2) = ¢> — 1 if g is even and n(q,2) < g(g+1)/2 if ¢ is odd.
» Form € {3,4,5}, we have n(q,m) < @(m)q(q+1)/2.

* We have n(q, (¢ +1)/k) = 9((g+1)/k)q(g—1)/2.

Lemma 5: If g > 11 then each involution in G has vertex degree larger than n(g,2).

If ¢((q+1)/k) > 12 then each element of order 3, 4, or 5 has vertex degree larger than
ZrSnZZ I’l(q, m) :

Proof: Let s € G of order at most 5. For each element g € G of order (¢+1)/k, U = (g, s) is either
G or contained in the dihedral group of order 2(g+ 1) /k that normalizes (g).

If s is an involution then the number of such dihedral groups that contain s is at most (g +3)/2,
and at least n(q, (g +1)/k) — @((g+1)/k)(g+3)/2 = ¢((g+1)/k)(q* — 2q — 3) /2 elements of order
(g+1)/k contribute to the vertex degree of s. This number is larger than ¢> — 1 > n(g,2) if ¢ > 11
(and hence ¢((g+ 1)/k) > 3) holds.

If s is an element of order 3, 4, or 5 then U#G means that s € (g), so at least n(q,(g+1)/k) — 4
elements of order (¢+ 1) /k contribute to the vertex degree of s. This number is larger than 5g(g+1) >
Y5, ynlgm) if 9((q+1)/k) > 12, 0

It remains to deal with the values ¢ where ¢((g+1)/k) < 12, thatis, (¢+ 1)/k < 30. We compute
that the statement of Lemma 5 is true also for prime powers g with 11 < g <59.

Example

gap> TestL2q:= function(t)
> local name, orders, nccl, cl, prim, bds, n, ord;

>
> name:= Identifier(t);
> orders:= OrdersClassRepresentatives(t);

Computations with the GAP Character Table Library 185

nccl:= Length(orders);
cl:= SizesConjugacyClasses(t);
prim:= PrimitivePermutationCharacters(t);
bds:= List(LowerBoundsVertexDegrees(cl, prim), Sum);
n:=List([1 .. 5], i -> Sum(cl{ Filtered([1 .. nccl],
x -> orders[x] =i) }));
if ForAny(Filtered([1 .. nccl], i -> orders[i] > 5),
i -> bds[i-1] <= Size(t) / 2) then
Error("problem with large orders for ", name);
elif ForAny(Filtered([1 .. nccl], i -> orders[i]
i -> bds[i-1] <= n[2]) then
Error("problem with order 2 for ", name, "\n");
elif ForAny(Filtered([1 .. nccl],
i -> orders[i] in [3 .. 51),
i -> bds[i-1] <= Sum(n{ [2 .. 51 })) then
Error("problem with order in [3 .. 5] for ", name);
fi;
end;;
ap> for q in Filtered([13 .. 59], IsPrimePowerInt) do
TestL2q(CharacterTable(
Concatenation("L2(", String(q), ")")));

2),

VVV00EgG VYV VVVVVVVVVVVVVYVYVYV

od;

For 2 < g < 11, the statement of Lemma 5 is not true but Pésa’s criterion is satisfied for the
generating graphs of the groups PSL(2,g) with 2 < g < 11.

Example
gap> for q in Filtered([2 .. 11], IsPrimePowerInt) do
> info:= HamiltonianCycleInfoFromGroup(PSL(2, q));
if info <> "Posa for Oth closure" then
Print(q, ": ", info, "\n");

fi;
od;

vV V V V

Chapter 5

GAP Computations with O3 (5).S; and
07 (2).5;

Date: October 08th, 2006

This chapter shows how to construct a representation of the automorphic extension G of the simple
group S = 0; (5) by a symmetric group on three points, together with an embedding of the normalizer
H of an Of (2) type subgroup of O (5).

As an application, it is shown that the permutation representation of G on the cosets of H has a
base of length two. This question arose in [BGS11].

5.1 Overview

Let S denote the simple group Og (5) = PQ"(8,5), that is, the nonabelian simple group that occurs as
a composition factor of the general orthogonal group GO™(8,5) of 8 x 8 matrices over the field with
five elements.

The outer automorphism group of S is isomorphic to the symmetric group on four points. Let G
be an automorphic extension of S by the symmetric group on three points. By [Kle87], the group S
contains a maximal subgroup M of the type 0; (2) such that the normalizer H, say, of M in G is an
automorphic extension of M by a symmetric group on three points. (In fact, H is isomorphic to the
full automorphism group of OF (2).)

Let S.2 and S.3 denote intermediate subgroups between S and G, in which S has the indices 2 and
3, respectively. Analogously, let M.2 =HNS.2and M.3=HNS.3.

In Section 5.2, we use the following approach to construct representations of M.2 and S.2.
By [CCNT85, p. 85], the Weyl group W of type Eg is a double cover of M.2, and the reduction of its
rational 8-dimensional representation modulo 5 embeds into the general orthogonal group GO™ (8,5),
which has the structure 2.05 (5).2%. Then the actions of GO™(8,5) and an isomorphic image of W in
GO™(8,5) on 1-spaces in the natural module of GO (8,5) yield M.2 as a subgroup of (a supergroup
of) S.2, where both groups are represented as permutation groups on N = 19656 points.

In Section 5.3, first we use GAP to compute the automorphism group of M. Then we take an outer
automorphism @ of M, of order three, and extend « to an automorphism of S. Concretely, we compute
the images of generating sets of S and M under ¢ and . This yields permutation representations of
S.3 and its subgroup M.3 on 3N = 58968 points.

In Section 5.4, we put the above information together, in order to construct permutation represen-
tations of G and M, on 3N points.

186

Computations with the GAP Character Table Library 187

As an application, it is shown in Section 5.5 that the permutation representation of G on the cosets
of H has a base of length two; this question arose in [BGS11].

In two appendices, it is discussed how to derive a part of this result from the permutation character
(16) (see Section 5.6), and a file containing the data used in the earlier sections is described (see
Section 5.7).

5.2 Constructing Representations of /.2 and S.2

5.2.1 A Matrix Representation of the Weyl Group of Type Eg

Following the recipe listed in [CCN "85, p. 85, Section Weyl], we can generate the Weyl group W of
type Eg as a group of rational 8 x 8 matrices generated by the reflections in the vectors

(£1/2,£1/2,0,0,0,0,0,0)
plus the vectors obtained from these by permuting the coordinates, plus those those vectors of the form
(£1/2,£1/2,+1/2,£1/2,+1/2,4£1/2,+1/2,+1/2)

that have an even number of negative signs. (Clearly it is sufficient to consider only one vector form a
pair +v.)

Example
gap> rootvectors:= [];;
gap> for i in Combinations([1 .. 81, 2) do
> vi=0*x[1..81;
> v{i}:=[1, 11;
> Add(rootvectors, v);
> vi=0x*x[1..81;
> v{i}:= [1, -1 1;
> Add(rootvectors, v);
> od;
gap> Append(rootvectors,
> 1/2 * Filtered(Tuples([-1, 1], 8),
> x -> x[1] = 1 and Number(x, y -> y =1) mod 2 =0));
gap> we8:= Group(List(rootvectors, ReflectionMat));
<matrix group with 120 generators>

5.2.2 Embedding the Weyl group of Type Eg into GO™ (8,5)

The elements in the group constructed above respect the symmetric bilinear form that is given by the
identity matrix.

Example

gap> I:= IdentityMat(8);;
gap> ForAll(Generators0fGroup(we8), x -> x * TransposedMat(x) = I);
true

So the reduction of the matrices modulo 5 yields a group W* of orthogonal matrices w. r. t. the
identity matrix. The group GO (8,5) returned by the GAP function GO (Reference: GO) leaves a
different bilinear form invariant.

Computations with the GAP Character Table Library 188

Example

gap> largegroup:= G0(1,8,5);;
gap> Display(InvariantBilinearForm(largegroup) .matrix);

In order to conjugate W* into this group, we need a 2 x 2 matrix T over the field with five elements
with the property that TT"" is half of the upper left 2 x 2 matrix in the above matrix.

Example
gap> T:= [[1, 21, [4, 21 1 * One(GF(5));;
gap> Display(2 * T * TransposedMat(T));
.1
1.
gap> I:= IdentityMat(8, GF(5));;
gap> I{ [1, 21 H [1, 21 }:=T;;
gap> conj:= List(GeneratorsOfGroup(we8), x -> I * x *x I~-1);;
gap> IsSubset(largegroup, conj);
true

5.2.3 Compatible Generators of M, M.2, S, and S.2

For the next computations, we switch from the natural matrix representation of GO™(8,5) to a permu-
tation representation of PGO™(8,5), of degree N = 19656, which is given by the action of GO™ (8, 5)
on the smallest orbit of 1-spaces in its natural module.

Example
gap> orbs:= OrbitsDomain(largegroup, NormedRowVectors(GF(5)"8),
> OnLines);;

gap> List(orbs, Length);

[39000, 39000, 19656]

gap> N:= Length(orbs[3]);

19656

gap> orbN:= SortedList(orbs[3]);;

gap> largepermgroup:= Action(largegroup, orbN, OnLines);;

In the same way, permutation representations of the subgroup M.2 SO (8,2) and of its derived
subgroup M are obtained. But first we compute a smaller generating set of the simple group M, using
a permutation representation on 120 points.

Example
gap> orbwe8:= SortedList(Orbit(we8, rootvectors[1], OnLines));;
gap> Length(orbwe8);

120

gap> we8_to_m2:= ActionHomomorphism(we8, orbwe8, OnLines);;

gap> m2_120:= Image(we8_to_m2);;

gap> m_120:= DerivedSubgroup(m2_120);;

Computations with the GAP Character Table Library 189

gap> sml:= SmallGeneratingSet(m_120);; Length(sml);
2
gap> gens_m:= List(sml, x -> PreImagesRepresentative(we8_to_m2, x));;

Now we compute the actions of M and M.2 on the above orbit of length N. For generating M.2,
we choose an element by € M.2\ M, which is obtained from the action of a matrix b € 2.M.2\ 2.M.

Example
gap> gens_m_N:= List(gens_m,

> x -> Permutation(I * x * I~-1, orbN, OnLines));;
gap> m_N:= Group(gens_m_N);;

gap> b:= 1 * we8.1 x I"-1;;

gap> DeterminantMat(b);

2(5)"2

gap> b_N:= Permutation(b, orbN, OnLines);;

gap> m2_N:= ClosureGroup(m_N, b_N);;

(Note that M.2 is not contained in PSO™(8,5), since the determinant of b is —1 in the field with
five elements.)
The group S is the derived subgroup of PSO™(8,5), and S.2 is generated by S together with by.

Example
gap> s_N:= DerivedSubgroup(largepermgroup);;
gap> s2_N:= ClosureGroup(s_N, b_N);;

5.3 Constructing Representations of .3 and S.3

5.3.1 The Action of M.3 on M

Let o be an automorphism of M, of order three. Then a representation of the semidirect product M.3
of M by (@) can be constructed as follows.
If M is given by a matrix representation then we map g € M to the block diagonal matrix

where [is the identity element in M.

So what we need is the action of @ on M. More precisely, we need images of the chosen generators
of M under « and o

The group M is small enough for asking GAP to compute its automorphism group, which is
isomorphic with 0;(2).S3; for that, we use the permutation representation of degree 120 that was
constructed in Section 5.2.3.

Computations with the GAP Character Table Library 190

Example

gap>

aut_m:= AutomorphismGroup(m_120);;

We pick an outer automorphism o of order three.

Example

gap>
gap>
gap>
gap>
>

>

gap>
gap>

nice_aut_m:= NiceMonomorphism(aut_m);;
der:= DerivedSubgroup(Image(nice_aut_m));;
der2:= DerivedSubgroup(der);;
repeat x:= Random(der);
ord:= Order(x);
until ord mod 3 = 0 and ord mod 9 <> 0 and not x in der2;
x:=x"(Cord / 3);;
alpha_120:= PreIlmagesRepresentative(nice_aut_m, x)3

Next we compute the images of the generators sml under o and 2, and the corresponding ele-
ments in the action of M on N points.

gap>
gap>
gap>
>
gap>
>
gap>
>
gap>
>

Example
sml_alpha:= List(sml, x -> Image(alpha_120, x));;
sml_alpha_2:= List(sml_alpha, x -> Image(alpha_120, x));;
gens_m_alpha:= List(sml_alpha,
x -> PreImagesRepresentative(we8_to_m2, x));;
List(sml_alpha_2,

x -> PreImagesRepresentative(we8_to_m2, x));;
gens_m_N_alpha:= List(gens_m_alpha,

x -> Permutation(I * x * I~-1, orbN, OnLines));;
gens_m_N_alpha_2:= List(gens_m_alpha_ 2,

x -> Permutation(I * x * I~-1, orbN, OnLines));;

gens_m_alpha_2:

Finally, we use the construction descibed in the beginning of this section, and obtain a permutation
representation of M.3 on 3N = 58968 points.

Example
gap> alpha_3N:= PermList(Concatenation([[1 .. N] + 2xN,
> [1..N1,
> [1..N]+NT));;
gap> gens_m_3N:= List([1 .. Length(gens_m_N)],
> i -> gens_m_N[i] *
> (gens_m_N_alpha[i]~alpha_3N) =*
> (gens_m_N_alpha_2[i]~(alpha_3N"2)));;

gap> m_3N:= Group(gens_m_3N);;
gap> m3_3N:= ClosureGroup(m_3N, alpha_3N);;

5.3.2 The Action of S.30on S

Our approach is to extend the automorphism ¢ of M to S; we can do this because in the full automor-
phism group of S, any Of (2) type subgroup extends to a group of the type Og (2).3, and this extension
lies in a subgroup of the type Og (5).3 (see [Kle87]).

The group M is maximal in S, so S is generated by M together with any element s € S\ M. Having
fixed such an element s, what we have to is to find the images of s under the automorphisms that
extend o and o,

Computations with the GAP Character Table Library 191

For that, we first choose x € M such that Cs(x) is a small group that is not contained in M. Then
we choose s € Cg(x) \ M, and using that s* must lie in Cs(Cy(5)%), we then check which elements of
this small subgroup can be the desired image.

Each element x of order nine in M has a root s of order 63 in S, and Cs(x) has order 189. For
suitable such x, exactly one element y € Cs(Cy(s)*) has order 63 and satisfies the necessary conditions
that the orders of the products of s and the generators of M are equal to the orders of the product of y
and the images of these generators under ¢. In other words, we have s% = y.

Example
gap> alpha:= GroupHomomorphismByImagesNC(m_N, m_N,
> gens_m_N, gens_m_N_alpha)5
gap> CheapTestForHomomorphism:= function(gens, genimages, x, cand)
> return Order(x) = Order(cand) and
> ForAll([1 .. Length(gens) 1],
> i -> Order(gens[i] * x) = Order(genimages[i] * cand));
> end;;
gap> repeat
> repeat
> x:= Random(m_N);
> until Order(x) = 9;
> c_s:= Centralizer(s_N, x);
> repeat
> s:= Random(c_s);
> until Order(s) = 63;
> c_m_alpha:= Images(alpha, Centralizer(m_N, s));
> good:= Filtered(Elements(Centralizer(s_N, c_m_alpha)),
> x -> CheapTestForHomomorphism(gens_m_N,
> gens_m_N_alpha, s, x));
> until Length(good) = 1;

gap> s_alpha:= good[1];;

gap> c_m_alpha_2:= Images(alpha, c_m_alpha);;

gap> good:= Filtered(Elements(Centralizer(s_N, c_m_alpha_2)),

> x -> CheapTestForHomomorphism(gens_m_N_alpha, gens_m_N_alpha_2,

> s_alpha, x));;
gap> s_alpha_2:= good[1];;

Using the notation of the previous section, this means that the permutation representation of M.3
on 3N points can be extended to S.3 by choosing the permutation corresponding to the block diagonal
matrix

§(0?)

as an additional generator.

Example
gap> outer:= s * (s_alpha~alpha_3N) * (s_alpha_2~(alpha_3N"2));;
gap> s3_3N:= ClosureGroup(m3_3N, outer);;

(And of course we have S = (M, s), which yields generators for S that are compatible with those

of M.)

Example
gap> s_3N:= ClosureGroup(m_3N, outer);;

Computations with the GAP Character Table Library 192

5.4 Constructing Compatible Generators of H and G

After having constructed compatible representations of M.2 and G.2 on N points (see Section 5.2.3)
and of M.3 and §.3 on 3N points (see Section 5.3.2), the last construction step is to find a permutation
on 3N points with the following properties:

* The induced automorphism 3 of M extends to M.3 such that the automorphism o of M is
inverted, modulo inner automorphisms of M.

* The action on the first N points coincides with that of the element by € M.2\ M that was
constructed in Section 5.2.3.

Using the notation of the previous sections, we represent 3 by a block matrix

b
bd |,
bg

where b describes the action of B on M (on N points), g describes the inner automorphism y of M that
is defined by the condition Ba = o>y, and d describes y7“.

So we compute an element in M that induces the conjugation automorphism 7, and its image
under oc. We do this in the representation of M on 120 points, and carry over the result to the repre-
sentation on N points, via the rational matrix representation; this approach had been used already in
Section 5.2.3.

Example
gap> b_120:= Permutation(we8.1, orbwe8, OnLines);;
gap> g_120:= RepresentativeAction(m_120,
> List(sml_alpha_ 2, x -> x"b_120),
> List(sml, x -> (x~b_120)~alpha_120), OnTuples);;

gap> g_120_alpha:= g_120"alpha_120;;
gap> g_N:= Permutation(I * PreImagesRepresentative(we8_to_m2, g_120)

> * I~-1, orbN, OnLines);;

gap> g_N_alpha:= Permutation(I * PreImagesRepresentative(we8_to_m2,
> g_120_alpha) * I~-1, orbN, OnLines);;

gap> inv:= PermList(Concatenation(

> ListPerm(b_N),

> ListPerm(b_N * g_N) + 2x*N,

> ListPerm(b_N * g N * g _N_alpha) + N));;

So we have constructed compatible generators for H and G.
Example
gap> h:= ClosureGroup(m3_3N, inv);;
gap> g:= ClosureGroup(s3_3N, inv);;

5.5 Application: Regular Orbits of H on G/H

We want to show that H has regular orbits on the right cosets G/H. The stabilizer in H of the coset
Hgis HNHS, so we compute that there are elements s € S with the property |H NH*| = 1.

(Of course this implies that also in the permutation representations of the subgroups S, S.2, and
S.3 of G on the cosets of the intersection with H, the point stabilizers have regular orbits.)

Computations with the GAP Character Table Library 193

Example
gap> repeat
> conj:= Random(s_3N);
> inter:= Intersection(h, h~conj);
> until Size(inter) = 1;

Eventually GAP will return from this loop, so there are elements ¢ with the required property.
(Computing one such intersection takes about six minutes on a 2.5 GHz Pentium 4, so one may
have to be a bit patient.)

5.6 Appendix: The Permutation Character (15)y

As an alternative to the computation of |[H N H*| for suitable s € S, we can try to derive information
from the permutation character (1%)y. Unfortunately, there seems to be no easy way to prove the
existence of regular H-orbits on G/H (cf. Section 5.5) only by means of this character.

However, it is not difficult to show that regular orbits of M, M.2, and M.3 exist. For that, we
compute (lg) H, by computing class representatives of H, their centralizer orders in G, and the class
fusion of H-classes in G.

We want to compute the class representatives in a small permutation representation of H; this
could be done using the degree 360 representation that was implicitly constructed above, but it is
technically easier to use a degree 405 representation that is obtained from the degree 58 968 represen-
tation by the action of H on blocks in an orbit of length 22680. (One could get this also using the
GAP function SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermu-
tationRepresentation).)

Example
gap> orbs:= Orbits(h, MovedPoints(h));;
gap> List(orbs, Length);

[22680, 36288 1]

gap> orb:= orbs[1];;

gap> bl:= Blocks(h, orb);; Length(bl[1]);

2

gap> actbl:= Action(h, bl, OnSets);;

gap> bll:= Blocks(actbl, MovedPoints(actbl));; Length(bll);
405

gap> oneblock:= Union(bl{ bll[1] });;

gap> orb:= SortedList(Orbit(h, oneblock, OnSets));;

gap> acthom:= ActionHomomorphism(h, orb, OnSets);;

gap> ccl:= ConjugacyClasses(Image(acthom));;

gap> reps:= List(ccl, x -> PreImagesRepresentative(acthom,

> Representative(x)));;

Then we carry back class representatives to the degree 58968 representation, and compute the
class fusion and the centralizer orders in G.

Example
gap> reps:= List(ccl, x -> PreImagesRepresentative(acthom,
> Representative(x)));;
gap> fusion:= [];;
gap> centralizers:= [];;

gap> fusreps:= [];;

Computations with the GAP Character Table Library 194

gap> for i in [1 .. Length(reps)] do

> found:= false;

> cen:= Size(Centralizer(g, reps[i]));
> for j in [1 .. Length(fusreps)] do
> if cen = centralizers[j] and

> IsConjugate(g, fusreps[j]l, reps[i]) then
> fusion[i]:= j;

> found:= true;

> break;

> fi;

> od;

> if not found then

> Add(fusreps, repsl[i]);

> Add(fusion, Length(fusreps));

> Add(centralizers, cen);

> fi;

> od;

Next we compute the permutation character values, using the formula

(11)°(8) = (ICa(g IZW’I /|H],

where the summation runs over class representatives 7 € H that are G-conjugate to g.

Example
gap> pi:= 0 * [1 .. Length(fusreps) 1;;
gap> for i in [1 .. Length(ccl)] do

> pil fusion[i]]:= pil fusion[i]] + centralizers[fusion[i]] =*
> Size(ccll[i]);
> od;

gap> pi:= pi{ fusion } / Size(h);;

In order to write the permutation character w.r.t. the ordering of classes in the GAP character
table, we use the GAP function CompatibleConjugacyClasses (Reference: CompatibleConju-
gacyClasses).

Example
gap> tblh:= CharacterTable("08+(2).S3");;
gap> map:= CompatibleConjugacyClasses(Image(acthom), ccl, tblh);;
gap> pi:= pi{ map };

[51162109375, 69375, 1259375, 69375, 568750, 1750, 4000, 375, 135,
975, 135, 625, 150, 650, 30, 72, 80, 72, 27, 27, 3, 7, 25, 30, 6,
12, 25, 484375, 1750, 375, 375, 30, 40, 15, 15, 15, 6, 6, 3, 3, 3,
157421875, 121875, 4875, 475, 75, 3875, 475, 13000, 1750, 300, 400,
30, 60, 15, 15, 15, 125, 10, 30, 4, 8, 6, 9, 7, 5, 6, 51

Now we consider the restrictions of this permutation character to M, M.2, and M.3. Note that
(1) = (Lms (1w = (135)m2, and (15)as = (175 3.

Example
gap> tblm2:= CharacterTable("08+(2).2");;
gap> tblm3:= CharacterTable("08+(2).3");;

Computations with the GAP Character Table Library 195

gap> tblm:= CharacterTable("08+(2)");;

gap> pi_m2:= pi{ GetFusionMap(tblm2, tblh) };;
gap> pi_m3:= pi{ GetFusionMap(tblm3, tblh) };;
gap> pi_m:= pi_m3{ GetFusionMap(tblm, tblm3) };;

The permutation character (13,)y decomposes into 483 transitive permutation characters, and reg-

ular M-orbits on S/M correspond to regular constituents in this decomposition. If there is no regular
transitive constituent in (13,), then the largest degree of a transitive constituent is [M|/2; but then the
degree of 13, is less than 483|M|/2, which is smaller than [S : M].

Example

gap> n:= ScalarProduct(tblm, pi_m, TrivialCharacter(tblm));
483

gap> n * Size(tblm) / 2;

42065049600

gap> pil1l;

51162109375

For the case of M.2 < §.2, this argument turns out to be not sufficient. So we first compute a lower

bound on the number of regular M-orbits on S/M. For involutions g € M, the number of transitive

constituents llé in (15,)a is at most the integral part of I;E,I(g)/lg> (8) =2-13,(2)/|Cu(g)|; from this

we compute that there are at most 208 such constituents.

Example
gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm)],
> i -> OrdersClassRepresentatives(tblm)[i] = 2);

[2,3,4,5,6]

gap> n2:= List(inv,

> i -> Int(2 * pi_m[i] / SizesCentralizers(tblm)[i]));
[1, 54, 54, 54, 45]

gap> Sum(n2);

208

As a consequence, M has at least 148 regular orbits on S/M.

Example
gap> First([1 .. 483 1],
> i -> i * Size(tblm) + 208 * Size(tblm) / 2
> + (483 - i - 208 - 1) * Size(tblm) / 3 + 1 >= pil[1]);
148

Now we consider the action of M.2 on §.2/M.2. If M.2 has no regular orbit then the 148 regular

orbits of M must arise from the restriction of transitive constituents 1% to M with |U| = 2 and such
that U is not contained in M. (This follows from the fact that the restriction of a transitive constituent
of (1374)m.2 to M is either itself a transitive constituent of (15,) or the sum of two such constituents;
the latter case occurs if and only if the point stabilizer is contained in M.) However, the number of
these constituents is at most 134.

Example
gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm2)],
> i -> OrdersClassRepresentatives(tblm2)[i] = 2 and

> not i in ClassPositions0fDerivedSubgroup(tblm2));

Computations with the GAP Character Table Library 196

[41, 42]

gap> n2:= List(inv,

> i -> Int(2 * pi_m2[i] / SizesCentralizers(tblm2) [i]));
[108, 26]

gap> Sum(n2);

134

Finally, we consider the action of M.3 on $.3/M.3. We compute that (1575)u 3 has 205 transitive
constituents, and at most 69 of them can be induced from subgroups of order two. This is already
sufficient to show that there must be regular constituents.

Example
gap> n:= ScalarProduct(tblm3, pi_m3, TrivialCharacter(tblm3));
205

gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm3)],

> i -> OrdersClassRepresentatives(tblm3)[i] = 2);

[2, 3, 4]

gap> n2:= List(inv,

> i -> Int(2 * pi_m3[i] / SizesCentralizers(tblm3)[i]));
[0, 54, 15]

gap> Sum(n2);

69

gap> 69 * Size(tblm3) / 2 + (n - 69 - 1) * Size(tblm3) / 3 + 1;
41542502401
gap> pil1l;
51162109375

5.7 Appendix: The Data File

The file 08p2s3_08p5s3. g that can be found at

http://www.math.rwth-aachen.de/ Thomas.Breuer/ctbllib/data/o8p2s3_o08p5s3.g

contains the relevant data used in the above computations. This covers the representations for the
groups and the permutation character of Oy (2).S3 computed in Section 5.6.

Reading the file into GAP will define a global variable 08p2s3_o8p5s3_data, a record with the
following components.

pi the list of values of the permutation character of G = 0;(5).S3 on the cosets of its subgroup
H= 0;(2).S3, restricted to H, corresponding to the ordering of classes in the character table of
H in the GAP Character Table Library (this table has the Identifier (Reference: Identifier
for tables of marks) value "08+(2) .3.2"),

dim8Q
a record with generators for 2.M and 2.M .2, matrices of dimension eight over the Rationals,

deg120
a record with generators for M and M.2, permutations of degree 120,

deg360
a record with generators for M, M.2, M .3, and H, permutations of degree 360,

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/data/o8p2s3_o8p5s3.g

Computations with the GAP Character Table Library 197

dim8f5
a record with generators for 2.M, 2.M.2, 2.5, and 2.5.2, matrices of dimension eight over the
field with five elements,

degl19656
a record with generators for M, M.2, S, and S.2, permutations of degree 19656,

degb8968
arecord with generators for M, M.2, M.3, H, S, S.2, §.3, and G, permutations of degree 58968,

seed405
a block whose H-orbit in the representation on 58968 points, w.r.t. the action OnSets
(Reference: OnSets), yields a representation of H on 405 points.

For each of the permutation representations, we have (where applicable)

M = (a,a),

M2 = <a1 ay,)
M3 = (aj,at),

H = <a1,a2,t,b>
S = (a1,a,c),
S2 = (ay,a,c,b),
§S3 = (ai,a,ci),
G >~ (ay,ay,c,t,b),

where ay,as,b,t,c are the values of the record components al, a2, b, t, and c.
Analogously, for the matrix representations, we have (where applicable)

2M = (aj,a),
2M2 = (ay,az,b),
2.8 = (ay,a,c),
2.82 = (aj,ay,c,b),

Additional components are used for deriving the representations from initial data, as in the con-
structions in the previous sections.

For example, most of the permutations needed arise as the induced actions of matrices on orbits of
vectors; these orbits are computed when the file is read, and are then stored in the components orb120
and orb19656.

The file 08p2s3_08p5s3. g does not contain the generators explicitly, but it is self-contained in
the sense that only a few GAP functions are actually needed to produce the data; for example, it should
not be difficult to translate the contents of the file into the language of other computer algebra systems.

Advantages of this way to store the data are that the relations between the representations become
explicit, and also that only very little space is needed to describe the representations —the size of the
file is less than 10 kB, whereas storing (explicitly) one of the permutations on 58 968 points requires
already about 350 kB.

Chapter 6

Solvable Subgroups of Maximal Order in
Sporadic Simple Groups

Date: May 14th, 2012

We determine the orders of solvable subgroups of maximal orders in sporadic simple groups and
their automorphism groups, using the information in the Atlas of Finite Groups [CCN"85] and the
GAP system [GAP19], in particular its Character Table Library [Bre20] and its library of Tables of
Marks [NMP18].

We also determine the conjugacy classes of these solvable subgroups in the big group, and the
maximal overgroups.

A first version of this document, which was based on GAP 4.4.10, had been accessible in the web
since August 2006. The differences to the current version are as follows.

* The format of the GAP output was adjusted to the changed behaviour of GAP 4.5.

* The (too wide) table of results was split into two tables, the first one lists the orders and indices
of the subgroups, the second one lists the structure of subgroups and the maximal overgroups.

* The distribution of the solvable subgroups of maximal orders in the Baby Monster group and
the Monster group to conjugacy classes is now proved.

* The sporadic simple Monster group has exactly one class of maximal subgroups of the type
PSL(2,41) (see [NW13]), and has no maximal subgroups which have the socle PSL(2,27)
(see [Will0]). This does not affect the arguments in Section 6.4.14, but some statements in this
section had to be corrected.

6.1 The Result

The tables I and II list information about solvable subgroups of maximal order in sporadic simple
groups and their automorphism groups. The first column in each table gives the names of the almost
simple groups G, in alphabetical order. The remaining columns of Table I contain the order and the
index of a solvable subgroup S of maximal order in G, the value log; (|S|), and the page number in the
Atlas [CCN™85] where the information about maximal subgroups of G is listed. The second and third
columns of Table II show a structure description of S and the structures of the maximal subgroups that
contain S; the value “S” in the third column means that S is itself maximal in G. The fourth and fifth

198

Computations with the GAP Character Table Library 199

columns list the pages in the Atlas with the information about the maximal subgroups of G and the
section in this note with the proof of the table row, respectively. In the fourth column, page numbers
in brackets refer to the Atlas pages with information about the maximal subgroups of nonsolvable
quotients of the maximal subgroups of G listed in the third column.

Note that in the case of nonmaximal subgroups S, we do not claim to describe the module structure
of S in the third column of the table; we have kept the Atlas description of the normal subgroups of
the maximal overgroups of S. For example, the subgroup S listed for Co, is contained in maximal
subgroups of the types 21+Jrg : 86(2) and 2*+10(S, x S3), so S has normal subgroups of the orders 2, 24,
29,24 and 2'°; more Atlas conformal notations would be 2[4/ (S; x S3) or 2[19/($3 x $3).

As a corollary (see Section 6.5), we read off the following.

Corollary:

Exactly the following almost simple groups G with sporadic simple socle contain a solvable sub-
group S with the property [S|? > |G|.

Fix3,J2,J0.2,M11,M12,M>,.2.

The existence of the subgroups S of G with the structure and the order stated in Table I and II
follows from the Atlas: It is obvious in the cases where S is maximal in G, and in the other cases, the
Atlas information about a nonsolvable factor group of a maximal subgroup of G suffices.

In order to show that the table rows for the group G are correct, we have to show the following.

* G does not contain solvable subgroups of order larger than |S].

* G contain exactly the conjugacy classes of solvable subgroups of order |S| that are listed in the
second column of Table II.

* §is contained exactly in the maximal subgroups listed in the third column of Table II.
Remark:

* Each of the groups M1, and He contains two classes of isomorphic solvable subgroups of max-
imal order.

* Each of the groups Ru, Th, and M contains two classes of nonisomorphic solvable subgroups of
maximal order.

* The solvable subgroups of maximal order in McL.2 have the structure 3 f“ : 4S54, the subgroups
are maximal in the maximal subgroups of the structures 3 f“ : 4S5 and U4(3).23 in McL.2. Note
that the Atlas claims another structure for these maximal subgroups of Uy (3).23, see [CCN 85,
p. 52].

* The solvable subgroups of maximal order in Co3 are the normalizers of Sylow 3-subgroups of
C03.

Computations with the GAP Character Table Library

|G ST | G/S] | logig(IS) | -]
M 144 55 0.5536 | 18
M, 432 220 0.5294 | 33
M2 432 440 0.4992 | 33
Ji 168 1045 0.4243 | 36
My 576 770 0.4888 | 39
My,.2 1152 770 0.5147 | 39
Jr 1152 525 0.5295 | 42
Jr.2 2304 525 0.5527 | 42
M 1152 8855 0.4368 | 71
HS 2000 22176 0.4316 | 80
HS.2 4000 22176 0.4532 | 80
J3 1944 25840 0.4270 | 82
J3.2 3888 25840 0.4486 | 82
Moy 13824 17710 0.4935 | 96
McL 11664 77000 0.4542 | 100
McL.2 23328 77000 0.4719 | 100
He 13824 291550 0.4310 | 104
He.2 18432 437325 0.4305 | 104
Ru 49152 2968875 0.4202 | 126
Suz 139968 3203200 0.4416 | 131
Suz.2 279936 3203200 0.4557 | 131
O'N 25920 17778376 0.3784 | 132
O'N.2 51840 17778376 0.3940 | 132
Cos 69984 7084000 0.4142 | 134
Co, 2359296 17931375 0.4676 | 154
Fiy 5038848 12812800 0.4853 | 163
Fiy.2 10077696 12812800 0.4963 | 163
HN 2000000 136515456 0.4364 | 166
HN.2 4000000 136515456 0.4479 | 166
Ly 900000 57516865560 0.3562 | 174
Th 944784 96049408000 0.3523 | 177
Fix3 3265173504 1252451200 0.5111 | 177
Co; 84934656 48952653750 0.4258 | 183
Js 28311552 3065023459190 0.3737 | 190
Fi, 29386561536 42713595724 800 0.4343 | 207
Fi,,.2 58773123072 42713595724 800 0.4413 | 207
B 29686813949952 | 139953768303 693093750 0.4007 | 217
M 2849934139195392 | 283521437805098363752
344287234566406250 0.2866 | 234

Table: Table I: Solvable subgroups of maximal order — orders and indices

200

Computations with the GAP Character Table Library

] G \ S Max. overgroups \ [CCNT85] \ see
M, 32:04.2 S 18 6.3
My, 32:28, S 33 6.3

32:28, S 33 6.3
M12.2 32 : 254 M12 33 6.3
Ji 23:7:3 S 36 6.3
M 24:32:4 24 Ag 39 4) |63
M2 | 24:3%:Dg 24: 86 39 4 |63
D 224 (3% 83) S 42 6.3
5.2 22+4 1 (83 % 83) S 42 6.3
Ma3 24:(3xAy):2 24: (3 xAs) : 2, 71 () |63
PARY.Y (10)
HS 5172:8:2 Us(5).2 80 (34) | 6.3
Us(5).2 6.3
HS2 | 51229 S 80 (34) | 6.3
J3 3231728 S 82 6.3
5.2 323172 0Dy S 82 6.3
My, | 20:3172: Dy 26:3.86 9% (4) |63
McL | 31428, 3L 08s, 100 (2) |63
Us(3) (52) | 6.3
MecL.2 | 317448, 314 485, 100 (2) |63
Us(3).23 (52) | 6.3
He 26:3172: Dy 20:3.56 104 (4) |63
26:31%2: pg 20:3.86 4) |63
He?2 | 244.(83x53).2 N 104 6.3
Ru 224465, 238 13(2), 126 (3) |64.1
2.24%6 . g5 (2)
23+8.5, 238 13(2), (3) |64.1
Suz 3244 :2(A4 x 2%).2 S 131 6.4.2
Suz.2 | 3%t4:2(Sy x Dg) S 131 6.4.2
ON | 3*:2!"D, S 132 6.4.3
O'N2 | 3*:217 (5:4) S 132 6.4.3
Coy | 31%7%:4.32: Dy 31741486 134 4) |63
33:(2x My) (18)
Cop | 24710(84 x §3) 21782 86(2), 154 (46) | 6.4.4
2410(55 % 83))
Fipp | 3110:23+4:32:2 S 163 6.4.5
Fip.2 | 3170:23+4 . (§3x S3) | S 163 6.4.5
HN | 521754 S 166 6.4.6
HN2 | 5 (4v2™s54) | s 166 6.4.6
Ly 5174:4.3%: Dy 5141486 174 (4) | 6.4.7
Th [3%].284 S 177 6.4.8
32.[37].28, S
Fipy | 3182170317205, |'§ 177 6.4.9
Co; 2412 (83 x 312 1 Dg) | 24F12.(85 x 356) 183 6.4.10

201

Computations with the GAP Character Table Library 202

Table: Table II: Solvable subgroups of maximal order — structures and overgroups

’ G \ S Max. overgroups ‘ [CCN*85] ‘ see ‘
Jy 211263172 pg 21 My, 190 (96) | 6.4.11
211230y, 12 (39)
Fib, | 31102146 314225, 310 Us(2) 12 207 (73) | 6.4.12
Fiby.2 | 34710 (2 x 2146 3172 : 05,y | 3110 (2 x U5(2) : 2) 207 (73) | 6.4.12
B 2241042024 : 32 D¢ x §3) 22H10+20(ppp5 1 2 % S3), 217 (39) | 6.4.13
2941654 (2) (123)
M QIF2HOHIZHIS (g, 5 31721 pg) | 2139 (L5(2) x 3S6), 234 (3,4) | 6.4.14
21724 Co, (183)
Q2HIFOHI2HIS (g, 5 31721 Do) | 209 (L3(2) x 3Sp), (3.4) | 6.4.14
22+11+22.(M24 x S3) (96)

Table: Table II: Solvable subgroups of maximal order — structures and overgroups (continued)

6.2 The Approach

We combine the information in the Atlas [CCN*85] with explicit computations using the GAP
system [GAPI19], in particular its Character Table Library [Bre20] and its library of Tables of
Marks [NMP18]. First we load these two packages.

Example
gap> LoadPackage("CTblLib", "1.2", false);
true
gap> LoadPackage("TomLib", false);
true

The orders of solvable subgroups of maximal order will be collected in a global record MaxSolv.

Example

gap> MaxSolv:= rec();;

6.2.1 Use the Table of Marks

If the GAP library of Tables of Marks [NMP18] contains the table of marks of a group G then we
can easily inspect all conjugacy classes of subgroups of G. The following small GAP function can be
used for that. It returns false if the table of marks of the group with the name name is not available,
and the list [name, n, super] otherwise, where n is the maximal order of solvable subgroups of
G, and super is a list of lists; for each conjugacy class of solvable subgroups § of order n, super
contains the list of orders of representatives M of the classes of maximal subgroups of G such that M
contains a conjugate of S.

Note that a subgroup in the i-th class of a table of marks contains a subgroup in the j-th class if
and only if the entry in the position (i, j) of the table of marks is nonzero. For tables of marks objects
in GAP, this is the case if and only if j is contained in the i-th row of the list that is stored as the value
of the attribute SubsTom of the table of marks object; for this test, one need not unpack the matrix of
marks.

Computations with the GAP Character Table Library 203

Example
gap> MaximalSolvableSubgroupInfoFromTom:= function(name)
local tom, # table of marks for ‘name’
n, # maximal order of a solvable subgroup
maxsubs, # numbers of the classes of subgroups of order ‘n’
orders, # list of orders of the classes of subgroups
i, # loop over the classes of subgroups
maxes, # list of positions of the classes of max. subgroups
subs, # ‘SubsTom’ value
cont; # list of list of positions of max. subgroups

tom:= TableOfMarks(name);
if tom = fail then
return false;

fi;
n:=1;
maxsubs:= [];

orders:= OrdersTom(tom);
for i in [1 .. Length(orders)] do
if IsSolvableTom(tom, i) then
if orders[i] = n then
Add(maxsubs, i);
elif orders[i] > n then
n:= orders[i];
maxsubs:= [i];
fi;
fi;
od;
maxes:= MaximalSubgroupsTom(tom) [1];
subs:= SubsTom(tom);
cont:= List(maxsubs, j -> Filtered(maxes, i -> j in subs[i]));

return [name, n, List(cont, 1 -> orders{ 1 }) 1;
end;;

VVVVVVVVVVVVVVVVVVVVVVVVVYVVYVVYVYVYV

6.2.2 Use Information from the Character Table Library

The GAP Character Table Library contains the character tables of all maximal subgroups of sporadic
simple groups, except for the Monster group. This information can be used as follows.

We start, for a sporadic simple group G, with a known solvable subgroup of order n, say, in G. In
order to show that G contains no solvable subgroup of larger order, it suffices to show that no maximal
subgroup of G contains a larger solvable subgroup.

The point is that usually the orders of the maximal subgroups of G are not much larger than n, and
that a maximal subgroup M contains a solvable subgroup of order n only if the factor group of M by
its largest solvable normal subgroup N contains a solvable subgroup of order n/|N|. This reduces the
question to relatively small groups.

What we can check automatically from the character table of M /N is whether M /N can contain
subgroups (solvable or not) of indices between five and |M|/n, by computing possible permutation
characters of these degrees. (Note that a solvable subgroup of a nonsolvable group has index at least
five. This lower bound could be improved for example by considering the smallest degree of a non-

Computations with the GAP Character Table Library 204

trivial character, but this is not an issue here.)

Then we are left with a —hopefully short— list of maximal subgroups of G, together with upper
bounds on the indices of possible solvable subgroups; excluding these possibilities then yields that the
initially chosen solvable subgroup of G is indeed the largest one.

The following GAP function can be used to compute this information for the character table tb1M
of M and a given order minorder. It returns false if M cannot contain a solvable subgroup of order
at least minorder, otherwise a list [tblM, m, k] where m is the maximal index of a subgroup
that has order at least minorder, and k is the minimal index of a possible subgroup of M (a proper
subgroup if M is nonsolvable), according to the GAP function PermChars (Reference: PermChars).

Example
gap> SolvableSubgroupInfoFromCharacterTable:= function(tblM, minorder)
local maxindex, # index of subgroups of order ‘minorder’

N, # class positions describing a solvable normal subgroup
fact, # character table of the factor by ‘N’

classes, # class sizes in ‘fact’

nsg, # list of class positions of normal subgroups

i # loop over the possible indices

maxindex:= Int(Size(tblM) / minorder);
if maxindex = O then
return false;
elif IsSolvableCharacterTable(tblM) then
return [tblM, maxindex, 1 1;
elif maxindex < 5 then
return false;

fi;
N:=[11;
fact:= tblM;
repeat

fact:= fact / N;
classes:= SizesConjugacyClasses(fact);
nsg:= Difference(ClassPositionsOfNormalSubgroups(fact), [[11]);
N:= First(nsg, x -> IsPrimePowerInt(Sum(classes{ x })));
until N = fail;

for i in Filtered(DivisorsInt(Size(fact)),
d -> 5 <= d and d <= maxindex) do
if Length(PermChars(fact, rec(torso:= [1]))) > O then
return [tblM, maxindex, i 1;
fi;
od;

return false;
end;;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

6.3 Cases where the Table of Marks is available in GAP

For twelve sporadic simple groups, the GAP library of Tables of Marks knows the tables of marks, so
we can use MaximalSolvableSubgroupInfoFromTom.

Computations with the GAP Character Table Library 205

Example
gap> solvinfo:= Filtered(List(
> AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false),
> MaximalSolvableSubgroupInfoFromTom), x -> x <> false);;
gap> for entry in solvinfo do
> MaxSolv. (entry[1]):= entry[2];
> od;
gap> for entry in solvinfo do
> Print(String(entry([1], 5), String(entry[2], 7),
> String(entry[3], 28), "\n");
> od;
Co3 69984 [[3849120, 699840]]
HS 2000 [[252000, 252000] 1]
He 13824 [[138240], [138240 1] 1]
J1 168 [[1681]
J2 1152 [[1152]]
J3 1944 [[1944 11
M11 144 [[144 11
M12 432 [[432], [4321]1]
M22 576 [[5760] 1]
M23 1152 [[40320, 5760] 1]
M24 13824 [[138240] 1]
McL 11664 [[3265920, 58320] 1]

We see that for Jy, J», J3, M1, and M5, the subgroup S is maximal. For M, and He, there are
two classes of subgroups S. For the other groups, the class of subgroups S is unique, and there are one
or two classes of maximal subgroups of G that contain S. From the shown orders of these maximal
subgroups, their structures can be read off from the Atlas, on the pages listed in Table II.

Similarly, the Atlas tells us about the extensions of the subgroups S in Aut(G). In particular,

* the order 2000 subgroups of HS are contained in maximal subgroups of the type Us(5).2 (two
classes) which do not extend to HS.2, but there are novelties of the type 5172 : [2°] and of the
order 4000, so the solvable subgroups of maximal order in HS do in fact extend to HS.2.

» the order 13824 subgroups of He are contained in maximal subgroups of the type 2° : 3Ss (two
classes) which do not extend to He.2, but there are novelties of the type 24+4, (83 x §3).2 and of
the order 18432. (So the solvable subgroups S of maximal order in He do not extend to He.2
but there are larger solvable subgroups in He.2.)

We inspect the maximal subgroups of He.2 in order to show that these are in fact the solvable
subgroups of maximal order (see [CCN™85, p. 104]): Any other solvable subgroup of order at
least n in He.2 must be contained in a subgroup of one of the types S4(4).4 (of index at most
212), 22.13(4).D1; (of index at most 52), or 2L+6.L3(2).2 (of index at most 2). By [CCN*85,
pp- 44, 23, 3], this is not the case.

* the maximal subgroups of order 1152 in J;, extend to subgroups of order 2304 in J,.2.

* the maximal subgroups of order 1944 in J3 extend to subgroups of the type 32.33:’2 : 8.2 and of
order 3888 in J3.2. (The structure stated in [CCN'85, p. 82] is not correct, see [BN95].)

Computations with the GAP Character Table Library 206

* the maximal subgroups of order 432 in Mj, (two classes) do not extend in Mi,.2, and we see
from the table of marks of M,.2 that there are no larger solvable subgroups in this group, i. e.,
the solvable subgroups of maximal order in M,.2 lie in M|>.

« the order 576 subgroups of M, are contained in maximal subgroups of the type 2* : Ag which
extend to subgroups of the type 2* : S¢ in M»,.2, so the solvable subgroups of maximal order in
M>,.2 have the type 24:32: Dg and the order 1152. In fact the structure is S4055.

* the order 11664 subgroups of McL are contained in maximal subgroups of the type 3 1++4 1 285
which extend to subgroups of the type 3'*4 : 4S5 in McL.2, so the solvable subgroups of maximal
order in McL.2 have the type 3'** : 45, and the order 23328.

Example

gap> MaxSolv.("HS.2"):= 2 * MaxSolv.("HS");;
gap> n:= 2~(4+4) * (6 * 6) * 2; MaxSolv.("He.2"):= n;;

18432

gap> List([Size(CharacterTable("S4(4).4")),

> Factorial(5)~2 * 2,

> Size(CharacterTable("2~2.L3(4).D12")),

> 27 * Size(CharacterTable("L3(2)")) * 2,

> 72 * 2 x Size(CharacterTable("L2(7)")) * 2,
> 3 % Factorial(7) * 21, i > Int(i/ n));

[212, 1, 52, 2, 1, 1]

gap> MaxSolv.("J2.2"):= 2 * MaxSolv.("J2");;

gap> MaxSolv.("J3.2"):= 2 * MaxSolv.("J3");;

gap> info:= MaximalSolvableSubgroupInfoFromTom("M12.2");
["M12.2", 432, [[95040] 1]

gap> MaxSolv.("M12.2"):= info[2];;

gap> MaxSolv.("M22.2"):= 2 * MaxSolv.("M22");;

gap> MaxSolv.("McL.2"):= 2 * MaxSolv.("McL");;

6.4 Cases where the Table of Marks is not available in GAP

} We use the GAP function SolvableSubgroupInfoFromCharacterTable, and individual argu-
ments. In several cases, information about smaller sporadic simple groups is needed, so we deal with

the groups in increasing order.

641 G=Ru

The group Ru contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order

n =49152, and no larger solvable subgroups.

Example

gap> t:= CharacterTable("Ru");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 49152;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2~3+8:L3(2)"), 7, 7 1,
[CharacterTable("2.2°4+6:S5"), 5, 51 1]

Computations with the GAP Character Table Library 207

The maximal subgroups of the structure 2.24% : S5 in Ru contain one class of solvable subgroups
of order n and with the structure 2.2 : S4, see [CCN*85, p- 126, p. 2].

The maximal subgroups of the structure 23+ : 3(2) in Ru contain two classes of solvable sub-
groups of order n and with the structure 23+8 : 54, see [CCN*85, p. 126, p. 3]. These groups are
the stabilizers of vectors and two-dimensional subspaces, respectively, in the three-dimensional sub-
module; note that each 23+8 : L3(2) type subgroup H of Ru is the normalizer of an elementary abelian
group of order eight all of whose involutions are in the Ru-class 2A and are conjugate in H. Since the
2.24+6 : 55 type subgroups of Ru are the normalizers of 2A-elements in Ru, the groups in one of the
two classes in question coincide with the largest solvable subgroups in the 2.24%° : S5 type subgroups.
The groups in the other class do not centralize a 2A-element in Ru and are therefore not isomorphic
with the 2.24%6 : 4 type groups.

Example

gap> MaxSolv.("Ru"):= n;;

gap> s:= info[1][1];;

gap> cls:= SizesConjugacyClasses(s);;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),

> x -> Sum(cls{ x }) = 273);
[L1, 211
gap> cls{ nsgl1] };
(1, 7]
gap> GetFusionMap(s, t){ nsgl1] I};
(1, 2]
642 G=Suz

The group Suz contains a unique conjugacy class of solvable subgroups of order n = 139968, and no
larger solvable subgroups.
Example

gap> t:= CharacterTable("Suz");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 139968; ;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("G2(4)"), 1797, 416 1,
[CharacterTable("3_2.U4(3).2_3°"), 140, 72 1,
[CharacterTable("3~5:M11"), 13, 11],
[CharacterTable("2~4+6:3a6"), 7, 6 1,
[CharacterTable("3°2+4:2(2~2xa4)2"), 1, 11 1]

The maximal subgroups S of the structure 324 : 2(A4 x 22).2 in Suz are solvable and have order
n, see [CCN*85, p. 131].

In order to show that Suz contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in G»(4) of index at most 1797 (see [CCN*85, p. 97]),
in U4(3).2} of index at most 140 (see [CCNT85, p. 52]), in M, of index at most 13 (see [CCN "85, p.
18]), and in Ag of index at most 7 (see [CCNT85, p. 4]).

The group S extends to a group of the structure 3274 : 2(S, x Dg) in the automorphism group Suz.2.
Example

gap> MaxSolv.("Suz"):=
gap> MaxSolv.("Suz.2"):

>

B

3
2 *x nj;;

Computations with the GAP Character Table Library 208

643 G=ON

The group ON contains a unique conjugacy class of solvable subgroups of order 25920, and no larger
solvable subgroups.

Example

gap> t:= CharacterTable("ON");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 25920;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("L3(7).2"), 144, 114],
[CharacterTable("ONM2"), 144, 114],
[CharacterTable("3~4:2~(1+4)D10"), 1, 1 1 1]

The maximal subgroups S of the structure 3* : 274Dy in ON are solvable and have order ,
see [CCN"85, pp. 132].

In order to show that ON contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in L3(7).2 of index at most 144 (see [CCN "85, p. 50]);
note that the groups in the second class of maximal subgroups of ON are isomorphic with L3(7).2.

The group S extends to a group of order |S.2| in the automorphism group ON.2.

Example
gap> MaxSolv.("ON"):

= n;;
gap> MaxSolv.("ON.2"):=

2 *x nj;;

644 G=Co

The group Co; contains a unique conjugacy class of solvable subgroups of order 2359296, and no
larger solvable subgroups.

Example

gap> t:= CharacterTable("Co2");;

gap> mx:= List(Maxes(t), CharacterTable);;

gap> n:= 2359296;;

gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);

[[CharacterTable("U6(2).2"), 7796, 672 1],

[CharacterTable("2~10:m22:2"), 385, 22 1],
CharacterTable("McL"), 380, 275],
CharacterTable("2"1+8:s6f2"), 315, 28],
CharacterTable("2~1+4+6.a8"), 17, 8 1,
CharacterTable("U4(3).D8"), 11, 8 1,
CharacterTable("2~ (4+10) (S5xS3)"), 5, 51 1]

[I s B s B e W |

The maximal subgroups of the structure 2*+19(S5 x §3) in Co, contain solvable subgroups S of
order n and with the structure 24+19(S, x S3), see [CCN*85, p. 154].

The subgroups § are contained also in the maximal subgroups of the type 2&*8 : S6(2); note that
the 2];r8 : S6(2) type subgroups are described as normalizers of elements in the Co,-class 2A, and
S normalizes an elementary abelian group of order 16 containing an S-class of length five that is
contained in the Co,-class 2A.

Computations with the GAP Character Table Library 209

Example

gap> s:= info[7][1];

CharacterTable("2~ (4+10) (S5xS3)")

gap> cls:= SizesConjugacyClasses(s);;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),

> x > Sum(cls{ x }) =274);
(01,2,3]1]

gap> cls{ nsgli] };

[1, 5, 10]

gap> GetFusionMap(s, t){ nsgl1] };

(1,2, 3]

The stabilizers of these involutions in 24719(S5 x §3) have index five, they are solvable, and they
are contained in 25r8 : S6(2) type subgroups, so they are Co,-conjugates of S. (The corresponding
subgroups of Sg(2) are maximal and have the type 2.[2°] : (S3 x S3).)

In order to show that G contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in Us(2) of index at most 7796 (see [CCN*85, p. 115]),
in Mp,.2 of index at most 385 (see [CCN'85, p. 39] or Section 6.3), in McL of index at most 380
(see [CCN*85, p. 100] or Section 6.3), in Ag of index at most 17 (see [CCNT85, p. 20]), and in
U4(3).Dg of index at most 11 (see [CCN™85, p. 52]).

Example

gap> MaxSolv.("Co2"):= n;;

645 G=Fin

The group Fiy; contains a unique conjugacy class of solvable subgroups of order 5038848, and no
larger solvable subgroups.

Example

gap> t:= CharacterTable("Fi22");;

gap> mx:= List(Maxes(t), CharacterTable);;

gap> n:= 5038848; ;

gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);

[[CharacterTable("2.U6(2)"), 3650, 672 1,

[CharacterTable("07(3)"), 910, 351 1,
CharacterTable("Fi22M3"), 910, 351 1,
CharacterTable("08+(2).3.2"), 207, 6 1,
CharacterTable("2°10:m22"), 90, 22],
CharacterTable("3~ (1+6):2°(3+4):3"2:2"), 1, 1] 1]

[I e B e M |

The maximal subgroups § of the structure 3146 . 2344 . 32 - 2 in Fiy, are solvable and have order
n, see [CCN*85, p. 163].

In order to show that Fiy, contains no other solvable subgroups of order larger than or equal to
|S|, we check that there are no solvable subgroups in Us(2) of index at most 3650 (see [CCNT85,
p. 115]), in O7(3) of index at most 910 (see [CCN "85, p. 109]), in Og (2).S3 of index at most 207
(see [CCNT85, p. 85]), and in M3,.2 of index at most 90 (see [CCN'85, p. 39] or Section 6.3); note
that the groups in the third class of maximal subgroups of Fiy; are isomorphic with O7(3).

The group S extends to a group of order |S.2| in the automorphism group Fiy;.2.

Computations with the GAP Character Table Library 210

Example

gap> MaxSolv.("Fi22"):

= n;;
gap> MaxSolv.("Fi22.2"):=

2 *x nj;;

64.6 G=HN

The group HN contains a unique conjugacy class of solvable subgroups of order 2000000, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("HN");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 2000000;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("A12"), 119, 12 1,
[CharacterTable("5~ (1+4):2~(1+4).5.4"), 1, 1 1 1

The maximal subgroups S of the structure 5'74 : 2174.5.4 in HN are solvable and have order #,
see [CCNT85, p. 166].

In order to show that HN contains no other solvable subgroups of order larger than or equal to |S
we check that there are no solvable subgroups in A, of index at most 119 (see [CCN*85, p. 91]).

The group S extends to a group of order |S.2| in the automorphism group HN.2.
Example

[l

gap> MaxSolv.("HN"):= n;;
gap> MaxSolv.("HN.2"):= 2 * n;;

647 G=Ly

The group Ly contains a unique conjugacy class of solvable subgroups of order 900000, and no larger
solvable subgroups.

Example

gap> t:= CharacterTable("Ly");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 900000;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("G2(5)"), 6510, 3906],
[CharacterTable("3.McL.2"), 5987, 275 1,
[CharacterTable("5°3.psl(3,5)"), 51, 31],
[CharacterTable("2.A11"), 44, 11],
[CharacterTable("5~ (1+4):4S6"), 10, 6 1 1]

The maximal subgroups of the structure 5(1 +4) : 456 in Ly contain solvable subgroups S of order
n and with the structure 5'7% : 4.32.Dg, see [CCNT85, p. 174].

In order to show that Ly contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in G,(5) of index at most 6510 (see [CCN*85, p. 114]),
in McL.2 of index at most 5987 (see [CCNT85, p. 100] or Section 6.3), in L3(5) of index at most 51

(see [CCNT85, p. 38]), and in A1 of index at most 44 (see [CCN 85, p. 75]).
Example

gap> MaxSolv.("Ly"):= nj;;

Computations with the GAP Character Table Library 211

648 G=Th

The group Th contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order
n = 944784, and no larger solvable subgroups.

Example

gap> t:= CharacterTable("Th");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 944784;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2°5.psl(5,2)"), 338, 31 1],
[CharacterTable("2~1+8.a9"), 98, 9 1,
[CharacterTable("U3(8).6"), 35, 6 1,
[CharacterTable("ThN3B"), 1, 1 1],
[CharacterTable("ThM7"), 1, 1]]

The maximal subgroups S of the structures [3°].2S4 and 32.[37].2S4 in Th are solvable and have
order n, see [CCN*85, p. 177].

In order to show that 74 contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in Ls(2) of index at most 338 (see [CCN'85, p. 70]),
in Ag of index at most 98 (see [CCN'85, p. 37]), and in U3(8).6 of index at most 35 (see [CCNT85,
p. 66]).

Example

gap> MaxSolv.("Th"):= nj;;

649 G=Fixp

The group Fi>3 contains a unique conjugacy class of solvable subgroups of order n = 3265173504,
and no larger solvable subgroups.

Example
gap> t:= CharacterTable("Fi23");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 3265173504; ;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2.Fi22"), 39545, 3510],
[CharacterTable("08+(3).3.2"), 9100, 6 1],
[CharacterTable("3~ (1+8).2"(1+6) .3~ (1+2).284"), 1, 1]]

The maximal subgroups S of the structure 3178 2176317225, in Fiy; are solvable and have order
n, see [CCN*85, p. 177].

In order to show that Fiy3 contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in Fiy; of index at most 39545 (see Section 6.4.5) and
in 08+(3).Sg of index at most 9100 (see [CCNT85, p. 140]).

Example

gap> MaxSolv.("Fi23"):= n;;

Computations with the GAP Character Table Library 212

6.4.10 G=Co

The group Co; contains a unique conjugacy class of solvable subgroups of order n = 84934656, and
no larger solvable subgroups.
Example

gap> t:= CharacterTable("Col");;

gap> mx:= List(Maxes(t), CharacterTable);;

gap> n:= 84934656; ;

gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);

[[CharacterTable("Co2"), 498093, 2300],

[CharacterTable("3.Suz.2"), 31672, 1782 1,
CharacterTable("2~11:M24"), 5903, 24 1],
CharacterTable("Co3"), 5837, 276],
CharacterTable("2~ (1+8)+.08+(2)"), 1050, 120],
CharacterTable("U6(2).3.2"), 649, 6 1],
CharacterTable("2~ (2+12):(A8xS3)"), 23, 8 1,
CharacterTable("2~ (4+12).(S3x386)"), 10, 6 1]

L T e T s Y e B s B |

The maximal subgroups of the structure 2412.(S3 x 3S¢) in Co; contain solvable subgroups S of
order n and with the structure 24+12.(S3 x 3L+2 : Dg), see [CCNT85, p. 183].

In order to show that Co; contains no other solvable subgroups of order larger than or equal to |5/,
we check that there are no solvable subgroups in Co; of index at most 498093 (see Section 6.4.4), in
Suz.2 of index at most 31672 (see Section 6.4.2), in M4 of index at most 5903 (see Section 6.3), in
Cos of index at most 5837 (see [CCNT85, p. 134] or Section 6.3), in Of (2) of index at most 1050
(see [CCNT85, p. 185]), in Ug(2).S3 of index at most 649 (see [CCNT85, p. 115]), and in Ag of index
at most 23 (see [CCN'85, p. 22)).

Example

gap> MaxSolv.("Col"):= n;;

6411 G=J,

The group J4 contains a unique conjugacy class of solvable subgroups of order 28311552, and no
larger solvable subgroups.
Example

gap> t:= CharacterTable("J4");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 28311552;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("mx1j4"), 17710, 24],
[CharacterTable("c2aj4"), 770, 22 1,
[CharacterTable("2~10:L5(2)"), 361, 31 1],
[CharacterTable("J4M4"), 23, 51]

The maximal subgroups of the structure 2! : M»4 in J4 contain solvable subgroups S of order n
and with the structure 21! ; 26 : 3?2 : Dg, see Section 6.3 and [CCN ™85, p. 190].

(The subgroups in the first four classes of maximal subgroups of J; have the structures 2!! : My,
2112.3My; : 2,219 L5(2), and 23712.(S5 x L3(2)), in this order.)

Computations with the GAP Character Table Library 213

The subgroups § are contained also in the maximal subgroups of the type 21++12.3M22 : 2; note
that these subgroups are described as normalizers of elements in the J4-class 24, and S normalizes an
elementary abelian group of order 2!! containing an S-class of length 1771 that is contained in the
Jy-class 2A.

Example

gap> s:= info[1][1];

CharacterTable("mx1j4")

gap> cls:= SizesConjugacyClasses(s);;

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),
> x -> Sum(cls{ x }) = 2°11);
[[1,2,31]1]

gap> cls{ nsgl1] };

[1, 276, 1771]

gap> GetFusionMap(s, t){ nsgl1] };

[1, 3, 2]

The stabilizers of these involutions in 2! : M»4 have index 1771, they have the structure 2'! :
2% : 3.8, and they are contained in 21++12.3M22 : 2 type subgroups; so also S, which has index 10 in
21126 .3 8. is contained in 2L+12.3M22 : 2. (The corresponding subgroups of My; : 2 are of course
the solvable groups of maximal order described in Section 6.3.)

In order to show that G contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in Ls(2) of index at most 361 (see [CCNT85, p. 70])
and in S5 x L3(2) of index at most 23 (see [CCN*85, pp. 2, 3]).

Example

gap> MaxSolv.("J4"):= n;;

6.4.12 G =Fi),

The group Fi), contains a unique conjugacy class of solvable subgroups of order 29386561536, and
no larger solvable subgroups.

Example

gap> t:= CharacterTable("Fi24’");;

gap> mx:= List(Maxes(t), CharacterTable);;

gap> n:= 29386561536} ;

gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);

[[CharacterTable("Fi23"), 139161244, 31671],

[CharacterTable("2.Fi22.2"), 8787, 3510 1,
CharacterTable("(3x08+(3):3):2"), 3033, 6 1,
CharacterTable("010-(2)"), 851, 495],
CharacterTable("3~ (1+10):U5(2):2"), 165, 165 1],
CharacterTable("2~2.U6(2).3.2"), 7, 6 1]

[B e B e B |

The maximal subgroups of the structure 3}:’10 : U5(2) : 2 in Fi), contain solvable subgroups S of
order n and with the structure 31++10 o146 31+Jr2 : 284, see [CCNT85, p- 73, p. 207].

In order to show that G contains no other solvable subgroups of order larger than or equal to
|S|, we check that there are no solvable subgroups in Fip3 of order at least n (see Section 6.4.9), in
Fiy .2 of order at least n (see Section 6.4.5), in 0;(3).S3 of index at most 3033 (see [CCN*85, p.

Computations with the GAP Character Table Library 214

140]), in O;,(2) of index at most 851 (see [CCN'85, p. 147]), and in Ug(2).S3 of index at most 7
(see [CCNT85, p. 115]).

The group S extends to a group of order |S.2| in the automorphism group Fiya.
Example

gap> MaxSolv.("Fi24’"):= n;;
gap> MaxSolv.("Fi24’.2"):= 2 * nj;;

6413 G=8B

The group B contains a unique conjugacy class of solvable subgroups of order n = 29686 813949952,
and no larger solvable subgroups.

The maximal subgroups of the structure 22+19+20(M5, : 2 x §3) in B contain solvable subgroups S
of order n and with the structure 22+10+20(24 : 32 D¢ x §3), see [CCNT85, p. 217] and Section 6.3.

Example
gap> n:= 29686813949952; ;
gap> n = 27(2+10+20) * 274 * 372 * 8 * 6;
true
gap> n = 27(2+10+20) * MaxSolv.("M22.2") % 6;
true

By [Wil99, Table 1], the only maximal subgroups of B of order bigger than |S| have the following
structures.

22E¢(2).2 2'*22Co, Fix; 2941654 (2)
Th (22 x Fy (2))) 22+10+20(M22 S0 % S3) 25+5+10+10L5 (2)
S3x Fiy:2 2P(Ssx13(2)) HN:2 0§ (3): 84

(The character tables of the maximal subgroups of B are meanwhile available in GAP.)
Example

gap> b:= CharacterTable("B");;

gap> mx:= List(Maxes(b), CharacterTable);;

gap> Filtered(mx, x -> Size(x) >=n);

[CharacterTable("2.2E6(2).2"), CharacterTable("2~ (1+22).Co2"),
CharacterTable("Fi23"), CharacterTable("2~ (9+16).3S8(2)"),
CharacterTable("Th"), CharacterTable("(2"2xF4(2)):2"),
CharacterTable("2~ (2+10+20).(M22.2xS3)"),

CharacterTable("[2°30].L5(2)"), CharacterTable("S3xFi22.2"),
CharacterTable("[2~35].(S5xL3(2))"), CharacterTable("HN.2"),
CharacterTable("08+(3).S4") 1]

For the subgroups 21422 Co,, Fiy3, Th, S3 X Fiy : 2, and HN : 2, the solvable subgroups of maxi-
mal order are known from the previous sections or can be derived from known values, and are smaller
than n.

Example
gap> List([2~(1+22) * MaxSolv.("Co2"),
MaxSolv. ("Fi23"),

MaxSolv.("Th"),

6 * MaxSolv.("Fi22.2"),

MaxSolv.("HN.2")], i -> Int(i / n));
0, 0, 0, 0, 01

—, VvV V V V

Computations with the GAP Character Table Library 215

If one of the remaining maximal groups U from the above list has a solvable subgroup of order at
least n then the index of this subgroup in U is bounded as follows.

Example
gap> List([Size(CharacterTable("2.2E6(2).2")),

> 2~(9+16) * Size(CharacterTable("S8(2)")),

> 23 * Size(CharacterTable("F4(2)")),

> 2~ (2+10+20) * Size(CharacterTable("M22.2")) * 6,

> 2~30 * Size(CharacterTable("L5(2)")),

> 2~35 * Factorial(5) * Size(CharacterTable("L3(2)")),
>

>

[

Size(CharacterTable("08+(3)")) * 24],
i->Int(i/n));
10311982931, 53550, 892, 770, 361, 23, 4]

The group Og (3) : S4 is nonsolvable, and its order is less than 5n, thus its solvable subgroups have
orders less than n.

The largest solvable subgroup of Ss x L3(2) has index 35, thus the solvable subgroups of 2[33] (S5 x
L3(2)) have orders less than n.

The groups of type 23+3+19+107.5(2) cannot contain solvable subgroups of order at least n because
Ls(2) has no solvable subgroup of index up to 361 —such a subgroup would be contained in 2* : L4(2),
of index at most |361/31] =11 (see [CCN 185, p. 70]), and L4(2) = Ag does not have such subgroups
(see [CCNT85, p. 22]).

The largest proper subgroup of F4(2) has index 69615 (see [CCN*85, p. 170]), which excludes
solvable subgroups of order at least n in (22 x F4(2)) : 2.

Ruling out the group 2.2E¢(2).2 is more involved. We consider the list of maximal subgroups of
2E6(2) in [CCN"85, p. 191] (which is complete, see [BN95]), and compute the maximal index of a
group of order 1/4; the possible subgroups of 2E4(2) to consider are the following

21720 Up(2) 28F16:05(2) Fa(2) 2229218 : (L3(4) x S3)
Fix 010(2) 232122151 (55 x L3(2))

(The order of S3 x Us(2) is already smaller than n/4.)

Example
gap> List([27(1+20) * Size(CharacterTable("U6(2)")),

> 2~(8+16) * Size(CharacterTable("08-(2)")),

> Size(CharacterTable("F4(2)")),

> 2~ (2+9+18) * Size(CharacterTable("L3(4)")) * 6,
> Size(CharacterTable("Fi22")),

> Size(CharacterTable("010-(2)")),
>
>
>
L

2~ (3+12+15) * 120 * Size(CharacterTable("L3(2)")),
6 * Size(CharacterTable("U6(2)")) 1,
i>IntCi/ (n/4)));
2598, 446, 446, 8, 8, 3, 2, 0]

The indices of the solvable groups of maximal orders in the groups Ug(2), Og (2), F4(2), L3(4),
and F'ip, are larger than the bounds we get for n, see [CCN'85, pp. 115, 89, 170, 23, 163].

It remains to consider the subgroups of the type 2°710Sg(2). The group Sg(2) contains maximal
subgroups of the type 23+3 : (83 x Sg) and of index 5355 (see [CCNT85, p. 123]), which contain
solvable subgroups S’ of index 10. This yields solvable subgroups of order 2°+16+3+8.6.72 = p,

Computations with the GAP Character Table Library 216

Example

gap> 27 (9+16+3+8) * 6 * 72 = n;
true

There are no other solvable subgroups of larger or equal order in Sg(2): We would need solvable
subgroups of index at most 446 in Og (2) : 2, 393 in Og (2) : 2, 210 in Se(2), or 23 in Ag, which is not
the case by [CCN*85, pp. 89, 85, 46, 22].

Example
gap> index:= Int(2~(9+16) * Size(CharacterTable("S8(2)")) / n);
53550

gap> List([120, 136, 255, 2295], i -> Int(index / i));

[446, 393, 210, 23]

gap> MaxSolv.("B"):= n;;

So the 2°716854(2) type subgroups of B yield solvable subgroups S’ of the type 2°+16.23%8 : (55 x
32 : Dg), and of order n.

We want to show that S’ is a B-conjugate of S. For that, we first show the following:

Lemma:

The group B contains exactly two conjugacy classes of Klein four groups whose involutions lie in
the class 2B. (We will call these Klein four groups 2B-pure.) Their normalizers in B have the orders
22858846741463040 and 292229574819 840, respectively.

Proof. Let V be a 2B-pure Klein four group in B, and set N = Ng(V). Let x € V be an involution
and set H = Cp(x), then H is maximal in B and has the structure 2'*22.Co,. The index of C = Cp(V) =
Cy (V) in N divides 6, and C stabilizes the central involution in A and another 2B involution. The group
H contains exactly four conjugacy classes of 2B elements.

Example

gap> h:= mx[2];

CharacterTable("2~ (1+22).Co2")

gap> pos:= Positions(GetFusionMap(h, b), 3);
[2, 4, 11, 20 1]

The B-classes of 2B-pure Klein four groups arise from those of these classes y¥ C H such that
x # y holds and xy is a 2B element. We compute this subset.

Example
gap> pos:= Filtered(Difference(pos, [2 1), i -> ForAny(pos,
> j -> NrPolyhedralSubgroups(h, 2, i, j).number <> 0));
[4, 11]

The two classes have lengths 93 150 and 7286400, thus the index of C in H is one of these num-

bers.

Example
gap> SizesConjugacyClasses(h){ pos };

[93150, 7286400]

Next we compute the number ng of 2B-pure Klein four groups in B.

Computations with the GAP Character Table Library 217

Example
gap> nr:= NrPolyhedralSubgroups(b, 3, 3, 3);
rec(number := 14399283809600746875, type := "V4")
gap> n0:= nr.number;;

The B-conjugacy class of V has length [B: N] = [B: H]|-[H : C]/[N : C], where [N : C| divides 6.
We see that [N : C] = 6 in both cases.

Example
gap> cand:= List(pos, i -> Size(b) / SizesCentralizers(h)[i] / 6);
[181758140654146875, 14217525668946600000]

gap> Sum(cand) = n0;

true

The orders of the normalizers of the two classes of 2B-pure Klein four groups are as claimed.

Example
gap> List(cand, x -> Size(b) / x);

[22858846741463040, 292229574819840]

The subgroup S of order 7 is contained in a maximal subgroup M of the type 22719720 (M, : 2 x S3)
in B. The group M is the normalizer of a 2B-pure Klein four group in B, and the other class of
normalizers of 2B-pure Klein four groups does not contain subgroups of order n. Thus the conjugates

of S are uniquely determined by |S| and the property that they normalize 2B-pure Klein four groups.
Example

gap> m:= mx[7];

CharacterTable("2~ (2+10+20).(M22.2xS3)")
gap> Size(m);

22858846741463040

gap> nsg:= ClassPositionsOfMinimalNormalSubgroups(m);
[[1,27]

gap> SizesConjugacyClasses(m){ nsgl1] };

[1, 3]

gap> GetFusionMap(m, b){ nsgl1] };

[1,3]

gap> List(cand, x -> Size(b) / (n *x x));

[770, 315/32]

Now consider the subgroup S’ of order n, which is contained in a maximal subgroup of the type
29+168¢(2) in B. In order to prove that S’ is B-conjugate to S, it is enough to show that ' normalizes a
2B-pure Klein four group.

The unique minimal normal subgroup V of 2°7165g(2) has order 28. Its involutions lie in the class
2B of B.

Example

gap> m:= mx[4];
CharacterTable("2~ (9+16).88(2)")
gap> nsg:= ClassPositionsOfMinimalNormalSubgroups(m);

[[1,21]1
gap> SizesConjugacyClasses(m){ nsgl1] };
[1, 255]

gap> GetFusionMap(m, b){ nsgl[1] };
[1, 3]

Computations with the GAP Character Table Library 218

The group V is central in the normal subgroup W = 2°%1¢, since all nonidentity elements of V
lie in one conjugacy class of odd length. As a module for Sg(2), V is the unique irreducible eight-
dimensional module in characteristic two.

Example
gap> CharacterDegrees(CharacterTable("S8(2)") mod 2);

rft+, 131,08, 11,016,211, [26,171, [48, 11, [128, 1],
[160, 11, [246, 11, [416, 11, [768, 11, [784, 11,
[2660, 1], [3936, 11, [4096, 11, [12544, 11, [65536, 11 1

Hence we are done if the restriction of the Sg(2)-action on V to §'/W leaves a two-dimensional
subspace of V invariant. In fact we show that already the restriction of the Sg(2)-action on V to the
maximal subgroups of the structure 23*8 : (S5 x Sg) has a two-dimensional submodule.

These maximal subgroups have index 5355 in Sg(2). The primitive permutation representation of
degree 5355 of Sg(2) and the irreducible eight-dimensional matrix representation of Sg(2) over the
field with two elements are available via the GAP package AtlasRep, see [WPN'19]. We compute
generators for an index 5355 subgroup in the matrix group via an isomorphism to the permutation
group.

Example
gap> permg:= AtlasGroup("S8(2)", NrMovedPoints, 5355);

<permutation group of size 47377612800 with 2 generators>

gap> matg:= AtlasGroup("S8(2)", Dimension, 8);

<matrix group of size 47377612800 with 2 generators>

gap> hom:= GroupHomomorphismByImagesNC(matg, permg,

> Generators0fGroup(matg), GeneratorsOfGroup(permg));;
gap> max:= PreImages(hom, Stabilizer(permg, 1));;

These generators define the action of the index 5355 subgroup of Sg(2) on the eight-dimensional
module. We compute the dimensions of the factors of an ascending composition series of this module.

Example
gap> m:= GModuleByMats(Generators0fGroup(max), GF(2));;

gap> comp:= MTX.CompositionFactors(m);;
gap> List(comp, r -> r.dimension);
[2,4, 2]

6414 G=M

The group M contains exactly two conjugacy classes of solvable subgroups of order n =
2849934139195392, and no larger solvable subgroups.

The maximal subgroups of the structure 21++24.C 01 in the group M contain solvable subgroups S of
order n and with the structure 217242412 ($3 x 31%2: Dg), see [CCNT85, p. 234] and Section 6.4.10.

Example

gap> n:= 2725 * MaxSolv.("Col");
2849934139195392

The solvable subgroups of maximal order in groups of the types 227!!*22 (M, x S3) and
213 (L3(2) x 3S6) have order n.

Computations with the GAP Character Table Library 219

Example
gap> 27 (2+11+22) * MaxSolv.("M24") * 6 = n;
true
gap> 2739 * 24 x 3 * 72 = n;
true

For inspecting the other maximal subgroups of M, we use the description from [NW13]. Currently
44 classes of maximal subgroups are listed there, and any possible other maximal subgroup of G has
socle isomorphic to one of L,(13), Sz(8), Uz(4), Us(8); so these maximal subgroups are isomorphic
to subgroups of the automorphism groups of these groups — the maximum of these group orders is
smaller than n, hence we may ignore these possible subgroups.
Example
gap> cand:= ["L2(13)", "Sz(8)", "U3(4)", "U3(B)" 1;;
gap> List(cand, nam -> ExtensionInfoCharacterTable (
> CharacterTable(nam)));
[[v2v, "2v], ["2r2, 3"], [", 4"], ["3", "(S3x3)"]]
gap> 11:= List(cand, x -> Size(CharacterTable(x)));
[1092, 29120, 62400, 5515776]
gap> 18 11[4];
99283968
gap> 2739 * 24 * 3 * 72;
2849934139195392

Thus only the following maximal subgroups of M have order bigger than |S|.

2.B 21724 Co, 3.Fiy 222E6(2): S3
210+l6_0{r0(2) 22+11+22_(M24 X S3) 3_1~_+12.2SMZ.2 25+10+20.(S3 % LS(Z))
S3x Th 2B (L5(2) x3S6) 3%.05(3).25 (Diox HN).2

For the subgroups 2.B, 3.Fiy4, 31++12.2Suz.2, S3 x Th, and (Do x HN).2, the solvable subgroups
of maximal order are smaller than .

Example
gap> List([2 * MaxSolv.("B"),

6 * MaxSolv.("Fi24°’"),

3713 * 2 * MaxSolv.("Suz") * 2,

6 * MaxSolv.("Th"),

10 * MaxSolv.("HN") * 2], i -> Int(i/ n));
0, 0, 0, 0, 01

—, VvV V V V

The subgroup 22.2E4(2) : S3 can be excluded by the fact that this group is only six times larger
than the subgroup 2.2E4(2) : 2 of B, but n is 96 times larger than the maximal solvable subgroup in B.

Example

gap> n / MaxSolv.("B");
96

The group 38.0§ (3).23 can be excluded by the fact that a solvable subgroup of order at least n
would imply the existence of a solvable subgroup of index at most 46 in Og (3).23, which is not the
case (see [CCNT85, p. 141)).

Computations with the GAP Character Table Library 220

Example
gap> Int(378 * Size(CharacterTable("08-(3)")) * 2 / n);
46

Similarly, the existence of a solvable subgroup of order at least n in 2271929 (§3 x L5(2)) would
imply the existence of a solvable subgroup of index at most 723 in Ls(2) and in turn of a solvable
subgroup of index at most 23 in L4(2), which is not the case (see [CCN*85, p. 70]).

Example
gap> Int(2°(10+16) * Size(CharacterTable("010+(2)")) / n);
553350

gap> Int(2~(5+10+20) * 6 * Size(CharacterTable("L5(2)")) / n);
723

gap> Int(723 / 31);

23

It remains to exclude the subgroup 2!9710.07(2), which means to show that O},(2) does not
contain a solvable subgroup of index at most 553350. If such a subgroup would exist then it would
be contained in one of the following maximal subgroups of OTO(Z) (see [CCNT85, p. 146]): in
S3(2) (of index at most 1115), in 28 : OF (2) (of index at most 1050), in 219 : Ls(2) (of index at
most 241), in (3 x Og (2)) : 2 (of index at most 27), in (2112 : (S5 x Ag) (of index at most 23), or in
23+12: (83 x 3 x L3(2)) (of index at most 4). By [CCNT8S5, pp. 123, 85, 70, 89, 22], this is not the
case.

Example
gap> index:= Int(2~(10+16) * Size(CharacterTable("010+(2)")) / n);
553350

gap> List([496, 527, 2295, 19840, 23715, 118575 1, i -> Int(index / i));
[1115, 1050, 241, 27, 23, 4]

As a consequence, we have shown that the largest solvable subgroups of M have order n.
Example

gap> MaxSolv.("M"):= n;;

In order to prove the statement about the conjugacy of subgroups of order n in M, we first show
the following.

Lemma:

The group M contains exactly three conjugacy classes of 2B-pure Klein four groups. Their nor-
malizers in M have the orders 50472333605 150392320, 259759622 062080, and 9567039651 840,
respectively.

Proof. The idea is the same as for the Baby Monster group, see Section 6.4.13. Let V be a 2B-pure
Klein four group in M, and set N = Ny (V). Let x € V be an involution and set H = Cy(x), then H is
maximal in M and has the structure 217%*.Co;. The index of C = Cy(V) = Cyx(V) in N divides 6, and
C stabilizes the central involution in H and another 2B involution.

The group H contains exactly five conjugacy classes of 2B elements, three of them consist of
elements that generate a 2B-pure Klein four group together with x.

Example

gap> m:= CharacterTable("M");;
gap> h:= CharacterTable("2~1+24.Col");

Computations with the GAP Character Table Library 221

CharacterTable("2"1+24.Col")

gap> pos:= Positions(GetFusionMap(h, m), 3);

[2,4,7,9, 16]

gap> pos:= Filtered(Difference(pos, [2]), i -> ForAny(pos,

> j -> NrPolyhedralSubgroups(h, 2, i, j).number <> 0));
[4, 9, 16]

The two classes have lengths 93 150 and 7286400, thus the index of C in H is one of these num-
bers.

Example
gap> SizesConjugacyClasses(h){ pos };
[16584750, 3222483264000, 87495303168000]

Next we compute the number ng of 2B-pure Klein four groups in M.

Example

gap> nr:= NrPolyhedralSubgroups(m, 3, 3, 3);

rec(number := 87569110066985387357550925521828244921875,
type := "V4")

gap> n0:= nr.number;;

The M-conjugacy class of V has length [M : N] = [M : H|-[H : C]/[N : C], where [N : C] divides 6.
We see that [N : C] = 6 in both cases.

Example

gap> cand:= List(pos, i -> Size(m) / SizesCentralizers(h)[i] / 6);

[16009115629875684006343550944921875,
3110635203347364905168577322802100000000,
84458458854522392576698341855475200000000]

gap> Sum(cand) = n0;

true

The orders of the normalizers of the three classes of 2B-pure Klein four groups are as claimed.

Example
gap> List(cand, x -> Size(m) / x);
[50472333605150392320, 259759622062080, 9567039651840]

As we have seen above, the group M contains exactly the following (solvable) subgroups of order

1. One class in 21++24.C0 1 type subgroups,
2. one class in 22711722 (M,4 x S3) type subgroups, and

3. two classes in 2139, (L3(2) x 3S¢) type subgroups.

Note that 219 (L3(2) x 3S¢) contains an elementary abelian normal subgroup of order eight whose
involutions lie in the class 2B, see [CCN"85, p. 234]. As a module for the group L3(2), this normal
subgroup is irreducible, and the restriction of the action to the two classes of S, type subgroups fixes a
one- and a two-dimensional subspace, respectively. Hence we have one class of subgroups of order n

Computations with the GAP Character Table Library 222

that centralize a 2B element and one class of subgroups of order n that normalize a 2B-pure Klein four
group. Clearly the subgroups in the first class coincide with the subgroups of order n in 21++24.C01
type subgroups. By the above classification of 2B-pure Klein four groups in M, the subgroups in the
second class coincide with the subgroups of order n in 2271122 (M,4 x S3) type subgroups.

It remains to show that the subgroups of order n do not stabilize both a 2B element and a 2B-pure
Klein four group. We do this by direct computations with a 2211422 (M, x S3) type group, which is
available via the AtlasRep package, see [WPNT19].

First we fetch the group, and factor out the largest solvable normal subgroup, by suitable actions
on blocks.

Example
gap> g:= AtlasGroup("2~ (2+11+22).(M24xS3)");
<permutation group of size 50472333605150392320 with 2 generators>
gap> NrMovedPoints(g);

294912

gap> bl:= Blocks(g, MovedPoints(g));;

gap> Length(bl);

147456

gap> homl:= ActionHomomorphism(g, bl, OnSets);;
gap> actl:= Image(homl);;

gap> Size(g) / Size(actl);

8192

gap> bl2:= Blocks(actl, MovedPoints(actl));;

gap> Length(bl2);

72

gap> hom2:= ActionHomomorphism(actl, bl2, OnSets);;
gap> act2:= Image(hom2);;

gap> Size(act2);

1468938240

gap> Size(MathieuGroup(24)) * 6;

1468938240

gap> bl3:= AllBlocks(act2);;

gap> List(bl3, Length);

[24, 3]

gap> bl3:= Orbit(act2, bl3[2], OnSets);;

gap> hom3:= ActionHomomorphism(act2, bl3, OnSets);;
gap> act3:= Image(hom3);;

Now we compute an isomorphism from the factor group of type M»4 to the group that belongs to
GAP’s table of marks. Then we use the information from the table of marks to compute a solvable
subgroup of maximal order in M4 (which is 13824), and take the preimage under the isomorphism.
Finally, we take the preimage of this group in te original group.

Example

gap> tom:= TableOfMarks("M24");;

gap> tomgroup:= UnderlyingGroup(tom);;

gap> iso:= IsomorphismGroups(act3, tomgroup);;
gap> pos:= Positions(OrdersTom(tom), 13824);
[1508]

gap> sub:= RepresentativeTom(tom, pos[1]);;
gap> pre:= PreImages(iso, sub);;

gap> pre:= PreImages(hom3, pre);;

gap> pre:= Prelmages(hom2, pre);;

Computations with the GAP Character Table Library 223

gap> pre:= PreImages(homl, pre);;
gap> Size(pre) = n;
true

The subgroups stabilizes a Klein four group. It does not stabilize a 2B element because its centre
is trivial.

Example
gap> pciso:= IsomorphismPcGroup(pre);;
gap> Size(Centre(Image(pciso)));

1

6.5 Proof of the Corollary

With the computations in the previous sections, we have collected the information that is needed to
show the corollary stated in Section 6.1.

Example
gap> Filtered(Set(RecNames(MaxSolv)),
> x -> MaxSolv.(x)2 >= Size(CharacterTable(x)));

[IIFi23|I, IIJQII, IIJ2.2II, I|M11ll’ IIM12II’ I|M22.2ll]

Chapter 7

Large Nilpotent Subgroups of Sporadic
Simple Groups

Date: June 6th, 2009

We show that any nontrivial nilpotent subgroup U in a sporadic simple group G satisfies |U]| -
ING(U)| < |G|. The proof uses the information in the Atlas of Finite Groups [CCN*85] and the
GAP system [GAP19], in particular its Character Table Library [Bre20] and its library of Tables of
Marks [NMP18]. (In [Vdo00], it is shown that in any finite nonabelian simple group G, any nilpotent
subgroup U satisfies |U|*> < |G|.)

7.1 The Result

The aim of this writeup is to show the following statement.

Proposition: Let G be a sporadic simple group, let U be a nontrivial nilpotent subgroup in G, and
let NG (U) denote the normalizer of U in G. Then |U| - |[Ng(U)| < |G| holds.

The following criteria are sufficient to prove this proposition. Note that we are interested in an
argument that uses only information about the character tables of the sporadic simple groups and of
their maximal subgroups.

Lemma I: Let G be a nonabelian finite simple group, and suppose that U is a nontrivial nilpotent
subgroup of G such that |U|-|[Ng(U)| > |G| holds. LetIT={py, p2,..., px} be the set of prime divisors
of U], and set n = []er1 p-

(a) G contains an element g of order n and a maximal subgroup M with the properties g € Z(U)
and Ng(U) < M. Set ¢ := ged(|Ci(g)|m, |M|), where |Cs(g)|m denotes the largest divisor of
the order of the centralizer of g in G whose prime divisors are elements of the set IT. Then we
have |U| < ¢ and hence c¢-|M| > |G|, in particular [M|*> > |G].

(b) If (g,M) is as in part (a) then one of the following holds.

(b1)
U is normal in M, and the Fitting subgroup Fit(M) of M satisfies |Fit(M)|-|M| > |G].
(b2)
U is not normal in M, so N (U) is a proper subgroup of M, in particular |G| < |U|-|M|/2 <
c-|M|/2 holds.

224

Computations with the GAP Character Table Library 225

(¢c) Let (g,M) be as in part (b2) and assume that M contains a normal subgroup K such that
(M) := M /K is an almost simple group with socle S, i. e., £(M) has a nonabelian simple nor-
mal subgroup S such that Cy) (S) is trivial. Then either U < K holds, and hence |K|-|M| > |G,
or we are in the following situation.

The group m(U) := UK /K is a nontrivial nilpotent normal subgroup of 7(N) := Ng(U)K/K,
and H := SN w(N) is a proper subgroup of S. The latter statement holds because otherwise
SN a(U) would be normal in § and thus would be trivial, which would imply that S would
centralize w(U).

As a consequence, |7(N)| divides |t(M)/S|- |H| = |x(M)|/[S : H], in particular, [S : H] <
[Z(M)|/|x(N)| = [M|/INc(U)K| < [M|/[NG(U)| < [M]-|U[/|G| < ¢/[G : M] holds.

We will apply Lemma 1 as follows.

From the character tables of G and M, the value |Fit(M)| and the maximal possible ¢ can be
computed. If part (a) of the lemma applies then we verify that part (b1) does not apply, and that either
(b2) or (c) yields a contradiction. Note that we can determine from the character table of M whether M
has a normal subgroup K such that M /K is almost simple, and in this case we can compute the order
of the socle S of M /K.

For proving the nonexistence of the subgroup H in the situation of part (c), we will show that all
subgroups of (M) of index up tod :=c-[w(M) : S]/[G : M| contain S. For that, we will compute the
complete list of those possible permutation characters of (M) whose degree is at most d, and then
check that the kernels of these characters contain S.

(Note that these computations are cheap because the bound d is small in the cases that occur. There
are easier criteria for proving the nonexistence of a subgroup of index at most d in a simple group S,
for example in the case |S| > d!/2 or if the smallest nontrivial irreducible degree of S is at least d; but
these criteria do not suffice in our situation.)

We illustrate the application of Lemma 1 with some examples.

Ji: The first Janko group J; (see [CCNT85, p. 36]) has order 175560, and the largest maximal
subgroup has order 660. The largest centralizer of a nonidentity element in J; has order 120,
and 660 - 120 = 79200 < |J;|. Thus J; satisfies the proposition.

M: For the Monster group M (see [CCN*85, p. 234]), we read off from the list [Wil] of maximal
subgroups that the only maximal subgroups M of M with the property |M|> > M have the
structure 2.B. Already for the second largest maximal subgroups, with the structure 2't2*.Coy,
the order is smaller than the index in the Monster.

Only elements g from the classes 24, 2B, and 3A have the property that the product of |2.B]
and the order of the centralizer of g in M is not smaller than |[M|. So U can be only a 2- or
a 3-subgroup of 2.B. However, the 2-part and the 3-part of |2.B| are 2*? and 3'3, respectively,
which are smaller than the index of 2.8 in M. Thus M satisfies the proposition.

Fiys:
We show that no counterexample to the proposition can arise from maximal subgroups M of
the type 0;(3) : 83 in the Fischer group Fiy3 (see [CCNT85, p. 177]). Several element cen-
tralizers in G satisfy Lemma 1 (a), the largest value ¢ arises from elements in the class 6B,
whose centralizers have order 28 - 3%, which divides [M|. So |U| < 28-3%, and a possible coun-
terexample to the proposition must satisfy [Ng(U)| > |G| /(28 -3%) = 811588377600. We have
|M| =29713078886400, which is less than 37 times this minimal order required for Ng(U).

Computations with the GAP Character Table Library 226

However, the intersection H of this group with the simple subgroup S = 0; (3) in M cannot
be at most 36, because the largest maximal subgroups in S have index 1080 (see [CCN'85, p.
140]). Arguing not with S but with M, we can show —using only the character table of M- that
all proper subgroups of index less than 37 -6 in M contain S.

7.2 The Proof

The following GAP function utilizes Lemma 1. Its input are the GAP character table tbl of a group
G, say, and a list maxesinfo of character tables of maximal subgroups of G, covering at least all those
maximal subgroups M for which [M|? > |G| holds.

The idea is to collect pairs (M, g) that satisfy part (a) of Lemma 1, and then to show that they do
not satisfy part (b) or part (c). For each maximal subgroup M that admits elements g as in Lemma 1,
information is printed how this candidate is excluded.

The function returns a list of length three. The first entry is true if the criteria of Lemma 1 are
sufficient to prove that the proposition is true for G, and false otherwise. The second entry is the
name of G, and the third entry in the number of maximal subgroups M for which an element g as in
Lemma 1 (a) exists.

Example
gap> ApplyTheLemma:= function(tbl, maxesinfo)
local Gname, Gsize, cents, orders, result, Mtbl, Msize, maxc, i,
pi, pipart, c, Mclasslengths, Fit, excluded, Kclasses, Mbar,
Ksize, Sclasses, Ssize, d;
Gname:= Identifier(tbl);
Gsize:= Size(tbl);
cents:= SizesCentralizers(tbl);
orders:= OrdersClassRepresentatives(tbl);
result:= [true, Gname, O];
Run over the relevant maximal subgroups.
for Mtbl in maxesinfo do
Msize:= Size(Mtbl);
Run over nonidentity class representatives g of squarefree
order, compute the largest c that occurs.
maxc:= 1;
for i in [2 .. NrConjugacyClasses(tbl)] do
pi:= Factors(orders[i]);
if IsSet(pi) then
The elements in class ‘i’ have squarefree order.
pipart:= Product(Filtered(Factors(cents[i]),
x -> x in pi));

c:= Gcd(pipart, Msize);
if maxc < c¢ then
maxc:= c;
fi;
fi;
od;
if maxc * Msize >= Gsize then
Criterion (a) is satisfied, try to exclude (b) and (c).
result[3]:= result[3] + 1;
Print(Gname, ": consider M = ", Identifier(Mtbl),

VVVVVVVVVVVVVVVVVVVVVVVVYVVVVYVYVYV

, ¢ =", StringPP(maxc),

Computations with the GAP Character Table Library 227

", ¢ * M| / |G|l >= ", Int(maxc * Msize / Gsize),
"\n");
Mclasslengths:= SizesConjugacyClasses(Mtbl);
Fit:= Mclasslengths{ ClassPositionsOfFittingSubgroup(Mtbl) I};
if Sum(Fit) * Msize >= Gsize then
Criterion (bl) is satisfied.
Print(Gname, ": not excludable by (b1)\n");
result[1] := false;
elif maxc * Msize < 2 * Gsize then
Criterion (b2) is not satisfied.
Print(Gname, ": excluded by (b2)\n");
else
Run over the normal subgroups of M.
excluded:= false;
for Kclasses in ClassPositionsOfNormalSubgroups(Mtbl) do
Mbar:= Mtbl / Kclasses;
Ksize:= Sum(Mclasslengths{ Kclasses });
if IsAlmostSimpleCharacterTable(Mbar) and
Ksize * Msize < Gsize then
We are in the situation of criterion (c).
The socle is the unique minimal normal subgroup.
Sclasses:= ClassPositions0fMinimalNormalSubgroups (
Mbar) [1];
Ssize:= Sum(SizesConjugacyClasses(Mbar){ Sclasses });
d:= Int(maxc * Msize * Size(Mbar)
/ (Gsize * Ssize));
Try to show that all subgroups of index up to d
in Mbar contain the socle.
if ForAll([2 .. 4 1,
n -> ForAll(PermChars(Mbar, rec(torso:= [n])),
chi -> IsSubset(
ClassPositionsOfKernel(chi),
Sclasses))) then
Print(Gname, ": excluded by (c), [K| =",
StringPP(Ksize), ", degree bound ", d, "\n");
excluded:= true;
break;
fi;
fi;
od;
if not excluded then
Print(Gname, ": not excludable by (c)\n");
result[1] := false;
fi;
fi;
fi;
od;
return result;
end;;

VVVYVVYVYVYVYV

So our proof relies on the classifications of maximal subgroups of sporadic simple groups,
see [CCNT85] and [BN95].

Computations with the GAP Character Table Library 228

The GAP Character Table Library [Bre20] contains the character tables of the sporadic simple
groups and of their maximal subgroups, except that not all character tables of maximal subgroups of
the Monster group are available yet. (See Section 7.1 for the treatment of the Monster group.)

Since the GAP Character Table Library is used for the computations in this section, we first load
this package.

Example

gap> LoadPackage("ctbllib", false);
true

Now we apply the function to the sporadic simple groups.

Example
gap> info:= [];;

gap> for name in AllCharacterTableNames(IsSporadicSimple, true,

> IsDuplicateTable, false) do

> tbl:= CharacterTable(name);

> if HasMaxes(tbl) then

> mx:= List(Maxes(tbl), CharacterTable);

> elif name = "M" then

> mx:= [CharacterTable("2.B") 1;

> else

> Error("this should not happen ...");

> fi;

> Add(info, ApplyTheLemma(tbl, mx));

> od;

B: consider M = 2.2E6(2).2, ¢ = 2738, ¢ * |[M| / |G| >= 20
B: excluded by (c), |K| = 2, degree bound 40

Col: consider M = Co2, c = 2°13%3°5, c * |M| / |G| >= 20
Col: excluded by (c), |K| = 1, degree bound 20

Col: consider M = 3.Suz.2, ¢ = 2°13%3°5, ¢ * |M| / |G| >=1
Col: excluded by (b2)

Co2: consider M = U6(2).2, ¢ = 2716, ¢ *x |[M| / |G| >= 28
Co2: excluded by (c), |K| = 1, degree bound 56

Co2: consider M = 2°10:m22:2, ¢ = 2718, c * |[M| / |G| >= 5
Co2: excluded by (c), |K| = 2710, degree bound 11

Co2: consider M = 2~148:86f2, ¢ = 2718, c * M| / |G| >= 4
Co2: excluded by (c), |K| = 279, degree bound 4

Co3: consider M = McL.2, c = 2°4%3°4, c * |[M| / |G| >= 4
Co3: excluded by (c), |K| =1, degree bound 9

F3+: consider M = Fi23, ¢ = 279%3°9, ¢ * |[M| / |G| >= 32
F3+: excluded by (c), |K| = 1, degree bound 32

Fi22: consider M = 2.U6(2), ¢ = 2°7*3°6, c *x |[M| / |G| >= 26
Fi22: excluded by (c), |K| = 2, degree bound 26

Fi22: consider M = 07(3), c = 277376, c * |M| / |G| >= 6
Fi22: excluded by (c), |K| = 1, degree bound 6

Fi22: consider M = Fi22M3, c = 2°7*3"6, c * |[M| / |G| >= 6
Fi22: excluded by (c), |K| = 1, degree bound 6

Fi22: consider M = 08+(2).3.2, ¢ = 2°7%3°6, c * |[M| / |G| >=1
Fi22: excluded by (b2)

Fi23: consider M = 2.Fi22, c¢ = 2°8%3°9, c * |[M| / |G| >= 159
Fi23: excluded by (c), |K| = 2, degree bound 159

Fi23: consider M = 08+(3).3.2, c = 2°8%3"9, c * |[M| / |G| >= 36

Computations with the GAP Character Table Library

Fi23: excluded by (c), |K| = 1, degree bound 219
HS: consider M = M22, c = 277, c * |M| / |G| >=1

HS: excluded by (b2)

M11: consider M = A6.2_3, c = 274, c *x [M| / |G| >=1
M11: excluded by (b2)

M12: consider M = M11, ¢ = 274, c * |[M| / IG|] >=1
M12: excluded by (b2)

M12: comsider M = M12M2, c = 2~4, c *x |[M| / |G| >= 1
M12: excluded by (b2)

M22: consider M = L3(4), ¢ = 276, c * |[M| / |G| >= 2
M22: excluded by (c), |K| = 1, degree bound 2
M22: consider M = 2~4:a6, c = 277, c * |M| / |G| >=1
M22: excluded by (b2)

M23: consider M = M22, ¢ = 277, ¢ * |[M| / |G| >=5
M23: excluded by (c), |K| = 1, degree bound 5
M24: consider M = M23, ¢ = 2°7, c * [M| / |G| >= 5
M24: excluded by (c), |K| = 1, degree bound 5
M24: consider M = 274:a8, ¢ = 2710, ¢ * M| / IG] >=1
M24: excluded by (b2)

McL: consider M = U4(3), ¢ = 376, c *x |M| / |G| >= 2
McL: excluded by (c), |K| = 1, degree bound 2

Ru: consider M = 2F4(2)?.2, c = 2712, ¢ * [M| / |G| >= 1
Ru: excluded by (b2)

Suz: consider M = G2(4), ¢ = 2712, ¢ *x [M| / |G| >= 2
Suz: excluded by (c), |K| = 1, degree bound 2

229

First of all, we see that Lemma 1 is sufficient to prove the proposition, since all candidates were

excluded.

Moreover, we see that for the following ten sporadic simple groups, no candidates had to be

considered. (No information was printed about these groups.)
Example

gap> Filtered(info, x -> x[3] = 0);

[[true, "HN", O], [true, "He", 0], [true, "J1", 0 1],
[true, "J2", 01, [true, "J3", 01, [true, "J4", 0],
[true, "Ly", 01, [true, "M", 0], [true, "ON", O],
[true, "Th", 0]]

7.3 Alternative: Use GAP’s Tables of Marks

We can easily inspect all conjugacy classes of subgroups of a group G whose table of marks is con-

tained in GAP’s Library of Tables of Marks [NMP18]. First we load this GAP package.

Example

gap> LoadPackage("tomlib", false);
true

The following GAP function takes the table of marks of a group G and returns the list of pairs
[U,Ng(U)] where U ranges over representatives of conjugacy classes of those nilpotent subgroups of

G for which |U| - |[Ng(U)| is maximal.

Computations with the GAP Character Table Library 230

Example

gap> maximalpairs:= function(tom)

> local g, max, result, i, u, n, prod;

> g:= UnderlyingGroup(tom);

> max:= 1;

> result:= [];

> for i in [1 .. Length(OrdersTom(tom))] do
> u:= RepresentativeTom(tom, i);

> if not IsTrivial(u) and IsNilpotent(u) then
> n:= Normalizer(g, u);

> prod:= Size(u) * Size(n);

> if max < prod then

> max:= prod;

> result:= [[u, n]];

> elif max = prod then

> Add(result, [u, n]);

> fi;

> fi;

> od;

> return result;

> end;;

So let us collect the data for those sporadic simple groups for which the table of marks is known.

Example
gap> info:= [];;
gap> for name in AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false) do
> tom:= TableOfMarks(name);
> if tom <> fail then
> Add(info, [name, tom, maximalpairs(tom)]);
> fi;
> od;
gap> Length(info);
12

We got results for twelve sporadic simple groups. The following computations show that in ten
cases, the simple group G contains a unique class of nontrivial nilpotent subgroups U for which the
maximal value of |U|- |Ng(U)]| is attained. The ratio of this value and |G| is less than 21 per cent. The
following table shows the name of the group G, the orders of U and Ng(U), and the integral part of
10° times the ratio.

Example
gap> List(info, x -> Length(x[3]));
[1,1,2,1,1,1,1,2,1, 1,1, 1]
gap> mat:= [];;

gap> for entry in info do

> pair:= entry[3][1]; # [U, NG]
bound:= Size(pair[1]) * Size(pair[2]); # |U|*IN_G(U)I|
size:= Size(UnderlyingGroup(entry[2])); # |G|

Add(mat, [entry[i],
StringPP(Size(pair[1])),
StringPP(Size(pair[2])),

vV V. V V V

Computations with the GAP Character Table Library 231

> Int(1076 * bound / size)]);

> if Size(pair[1]) * Size(pair[2]) >= 21/100 * size then

> Error("!");

> fi;

> od;

gap> PrintArray(mat);

[[Co3, 375, 2°5%3°7x5x*11, 1886],
[HS, 276, 279%3*7, 15515],
[He, 276, 2710%3~3%5, 2195],
[J1, 19, 2%3%19, 12337 1,
[J2, 276, 2°7*372, 121904],
[J3, 375, 2"3%375, 9404 1],
[M11, 372, 2°4%3°2, 163636 1,
[M12, 2°5, 2°6%3, 64646 1,
[M22, 274, 2°T7*372%5, 207792 1,
[M23, 274, 27 T*372%5%7 63241 1,
[M24, 276, 2710%373%5, 36137 1,
[McL, 375, 274%376%5, 15779 1 1]

Moreover, we see that in most cases, the group U for which the maximum is attained is not the
largest p-subgroup in the simple group in question.

Chapter 8

Permutation Characters in GAP

Date: April 17th, 1999

This is a loose collection of examples of computations with permutation characters and possible
permutation characters in the GAP system [GAP19]. We mainly use the GAP implementation of the
algorithms to compute possible permutation characters that are described in [BP98], and information
from the Atlas of Finite Groups [CCN*85]. A possible permutation character of a finite group G is
a character satisfying the conditions listed in Section “Possible Permutation Characters” of the GAP
Reference Manual.

e Sections 8.14 and 8.15 were added in October 2001.
e Section 8.16.1 was added in June 2009.
* Section 8.16.2 was added in September 2009.

Section 8.16.3 was added in October 2009.

Section 8.16.4 was added in November 20009.
e Section 8.17 was added in June 2012.
e Section 8.18 was added in October 2017.

In the following, the GAP Character Table Library [Bre20] will be used frequently.
Example
gap> LoadPackage("ctbllib", "1.2", false);
true

8.1 Some Computations with M4

We start with the sporadic simple Mathieu group G = M»4 in its natural action on 24 points.

Example
gap> g:= MathieuGroup(24);;

gap> SetName(g, "m24");

gap> Size(g); IsSimple(g); NrMovedPoints(g);
244823040

true

24

232

Computations with the GAP Character Table Library 233

The conjugacy classes that are computed for a group can be ordered differently in different GAP
sessions. In order to make the output shown in the following examples stable, we first sort the conju-
gacy classes of G for our purposes.

Example

gap> ccl:= AttributeValueNotSet(ConjugacyClasses, g);;
gap> HasConjugacyClasses(g);

false
gap> invariants:= List(ccl, ¢ -> [Order(Representative(c)),
> Size(¢), Size(ConjugacyClass(g, Representative(c)~2)) 1);;

gap> SortParallel(invariants, ccl);
gap> SetConjugacyClasses(g, ccl);

The permutation character pi of G corresponding to the action on the moved points is constructed.
This action is 5-transitive.
Example

gap> NrConjugacyClasses(g);

26

gap> pi:= NaturalCharacter(g);

Character(CharacterTable(m24),
[24, 8, 0, 6, O, O, 4, O, 4, 2, 0, 3, 3, 2,0, 2,0, 0,1, 1,1, 1,
0, 0, 1, 11)

gap> IsTransitive(pi); Tramsitivity(pi);

true
5
gap> Display(pi);
CT1
21010 9 3 3 7 7 5 2 3 3 1 1 4 2 1
3 31 1 3 2 1 1 1 1 1 1 1 . 1 1
5 1 1 1 1 1
7 1 1 1 1 1 . 1
11 1 1
23 1
la 2a 2b 3a 3b 4a 4b 4c 5a 6a 6b 7a 7b 8a 10a 1la 12a 12b 14a
Y.1 24 8 . 6 . . 4 . 4 2 . 3 3 2 . 2 . . 1
2 1 .
3 1 1 1 1
5 1 1 .
7 1 1 1
11
23 1 1
14b 15a 15b 21a 21b 23a 23b
Y.1 1 1 1 1 1

pi determines the permutation characters of the G-actions on related sets, for example piop on
the set of ordered and piup on the set of unordered pairs of points.

Computations with the GAP Character Table Library 234

Example

gap> piop:= pi * pi;

Character(CharacterTable(m24),
[576, 64, 0, 36, 0, O, 16, O, 16, 4, 0, 9, 9, 4, 0, 4, 0, 0, 1, 1,
1, 1, 0,0, 1, 1 1)

gap> IsTransitive(piop);

false

gap> piup:= SymmetricParts(UnderlyingCharacterTable(pi), [pi], 2)[1];

Character(CharacterTable(m24),
[300, 44, 12, 21, O, 4, 12, 0, 10, 5, 0, 6, 6, 4, 2, 3, 1, 0, 2, 2,
1, 1, 0, 0, 1, 1 1)

gap> IsTransitive(piup);

false

Clearly the action on unordered pairs is not transitive, since the pairs [i,i] form an orbit of their
own. There are exactly two G-orbits on the unordered pairs, hence the G-action on 2-sets of points is
transitive.

Example

gap> ScalarProduct(piup, TrivialCharacter(g));

2

gap> comb:= Combinations([1 .. 241, 2);;

gap> hom:= ActionHomomorphism(g, comb, OnSets);;

gap> pihom:= NaturalCharacter(hom);

Character(CharacterTable(m24),
[276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 1, 0, 1, 1,
0, 0, 0, 0,0,01)

gap> Transitivity(pihom);

1

In terms of characters, the permutation character pihom is the difference of piup and pi . Note
that GAP does not know that this difference is in fact a character; in general this question is not easy
to decide without knowing the irreducible characters of G, and up to now GAP has not computed the
irreducibles.

Example

gap> pi2s:= piup - pi;

VirtualCharacter(CharacterTable(m24),
[276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1,1, 0, 1, 1,
0, 0, 0, 0,0, 01)

gap> pi2s = pihom;

true

gap> HasIrr(g); HasIrr(CharacterTable(g));

false

false

The point stabilizer in the action on 2-sets is in fact a maximal subgroup of G, which is isomorphic
to the automorphism group M»; : 2 of the Mathieu group M;,. Thus this permutation action is primi-
tive. But we cannot apply IsPrimitive (Reference: IsPrimitive) to the character pihom for getting
this answer because primitivity of characters is defined in a different way, cf. IsPrimitiveCharacter
(Reference: IsPrimitiveCharacter).

Computations with the GAP Character Table Library 235

Example

gap> IsPrimitive(g, comb, OnSets);
true

We could also have computed the transitive permutation character of degree 276 using the GAP
Character Table Library instead of the group G, since the character tables of G and all its maximal
subgroups are available, together with the class fusions of the maximal subgroups into G.

Example

gap> tbl:= CharacterTable("M24");

CharacterTable("M24")

gap> maxes:= Maxes(tbl);

["M23", "M22.2", "2"4:a8", "M12.2", "276:3.s6", "L3(4).3.2_2",
"2°6:(psl(3,2)xs3)", "L2(23)", "L3(2)" 1]

gap> s:= CharacterTable(maxes[2]);

CharacterTable("M22.2")

gap> TrivialCharacter(s)~tbl;

Character(CharacterTable("M24"),
[276, 36, 12, 15, O, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0 1)

Note that the sequence of conjugacy classes in the library table of G does in general not agree with
the succession computed for the group.

8.2 All Possible Permutation Characters of M/

We compute all possible permutation characters of the Mathieu group M|, using the three different
strategies available in GAP. First we try the algorithm that enumerates all candidates via solving a
system of inequalities, which is described in [BP98, Section 3.2].

Example

gap> mll:= CharacterTable("M11");;
gap> SetName(mil, "mll");
gap> perms:= PermChars(mil);

[Character(m11, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), Character(mii,
[11, 3, 2, 3, 1, 0, 1, 1, 0, 0]), Character(mi1l,
12, 4, 3, 0, 2, 1, 0, 0, 1, 1 1), Character(mil,
22, 6, 4, 2, 2, 0, 0, 0, 0, 0]), Character(mi1l,
55, 7, 1, 3, 0, 1, 1, 1, 0, 0]), Character(mii,

66, 10, 3, 2, 1, 1, 0, 0, 0, 0]), Character(mi1,
110, 6, 2, 2, 0, 0, 2, 2, 0, 0]), Character(mil,
110, 6, 2, 6, 0, 0, 0, 0, 0, 0]), Character(mil,
110, 14, 2, 2, 0, 2, 0, 0, O,), Character(mi1l,
132, 12, 6, 0, 2, 0, 0, 0, O), Character(mii,
144, 0, 0, O, 4, 0, 0, 0, 1, 1]), Character(mil,
165, 13, 3, 1, 0, 1, 1, 1, 0, 0]), Character(mil,
220, 4, 4, 0, 0, 4, 0, 0, 0, 0]), Character(mlil,
220, 12, 4, 4, 0, 0, 0, 0, 0, 0]), Character(mi1l,
220, 20, 4, 0, 0, 2, 0, 0, 0, 01), Character(mi1l,
330, 2, 6, 2, 0, 2, 0, 0, 0, O]), Character(mi1,
330, 18, 6, 2, 0, 0, 0, O, O, 0]), Character(mi1,
396, 12, 0, 4, 1, 0, 0, 0, 0, 0]), Character(mi1l,

[T e T e T s N s Y T s N s Y s Y e O s Y s Y s N s B |
~—

440,
440,
495,
660,
660,
660,
660,
720,
792,
880,
990,
990,
990,
1320,
1320,
1584,
1980,
1980,
2640,
3960,
7920,

L T e T s N s Y e IO s O s Y s T e O e Y T e O e Y s O s N s IO s Y s B s B |

/M

39

Computations with the GAP Character Table Library

8,8, 0, 0,2, 0,0, 0, 0]), Character(mi1,
24, 8, 0, 0, 0, 0, O, O, 0]), Character(mi1l,
15, 0, 3, 0, 0, 1, 1, 0, 0]), Character(mi1l,
4, 3, 4, 0, 1, 0, 0, 0, 01), Character(milil,
12, 3, 0, 0, 3, 0, 0, 0, 0]), Character(mi1i,
12, 12, 0, 0, 0, 0, 0, 0, 01), Character(mii,
28, 3, 0, 0, 1, 0, 0, O, 0]), Character(mi1l,
0, 0, 0, 0, 0, 0, 0, 5, 51), Character(mii,
24, 0, 0, 2, 0, 0, 0, 0, O]), Character(miil,
0]), Character(milil,
6, 0, 2, 0, 0, 2, 2, 0, 0]), Character(mil,
6, 0, 6, 0, 0, 0, O, 0, 01), Character(ml1,
), Character(mii,
, 6, 0, 0, 2, 0, 0, O,), Character(miil,
24, 6, 0, 0, 0, 0, 0, 0, O]), Character(mlil,
0o, 0, 0, 4, 0, 0, 0, 0, 01), Character(mlil,
12, 0, 4, 0, 0, 0, 0, 0, O]), Character(mil,
3, 0, 0, 0, 0, O, 0, O, O]), Character(mil,
0o, 12, 0, 0, 0, 0, 0, 0, 0]), Character(mlil,
24, 0, 0, 0, 0, 0, O, O, 01)

, Character(miil,
0, 0, 0, 0, 0, 0, 0, 0,011

gap> Length(perms);

236

Next we try the improved combinatorial approach that is sketched at the end of Section 3.2
in [BP98]. We get the same characters, except that they may be ordered in a different way; thus
we compare the ordered lists.

> od;

true

Example

gap> degrees:= DivisorsInt(Size(mil));;
gap> perms2:= [];;

gap> for d in degrees do

> Append(perms2, PermChars(mll, d));

gap> Set(perms) = Set(perms2);

Finally, we try the algorithm that is based on Gaussian elimination and that is described in [BP9S,

Section 3.3].

Example
gap> perms3:= [];;
gap> for d in degrees do
> Append(perms3, PermChars(mll, rec(torso:= [d 1)));
> od;
gap> Set(perms) = Set(perms3);
true

GAP provides two more functions to test properties of permutation characters. The first one yields
no new information in our case, but the second excludes one possible permutation character; note that
TestPermb needs a p-modular Brauer table, and the GAP character table library contains all Brauer

tables of M.

Computations with the GAP Character Table Library 237

Example
gap> newperms:= TestPerm4(mll, perms);;
gap> newperms = perms;
true
gap> newperms:= TestPerm5(mll, perms, mll mod 11);;
gap> newperms = perms;
false
gap> Difference(perms, newperms);
[Character(mi11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 01) 1]

GAP knows the table of marks of M, from which the permutation characters can be extracted. It
turns out that M1, has 39 conjugacy classes of subgroups but only 36 different permutation characters,

so three candidates computed above are in fact not permutation characters.

Example
gap> tom:= TableOfMarks("M11");
TableOfMarks("M11")

gap> trueperms:= PermCharsTom(mil, tom);;
gap> Length(trueperms); Length(Set(trueperms));

39

36

gap> Difference(perms, trueperms);

[Character(mi11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0 1),
Character(mi11, [660, 4, 3, 4, 0, 1, 0, 0, 0, 0]),
Character(mi1, [660, 12, 3, 0, 0, 3, 0, 0, 0, 01) 1]

8.3 The Action of Ug(2) on the Cosets of M,

We are interested in the permutation character of Ug(2) (see [CCNT85, p. 115]) that corresponds to
the action on the cosets of a M, subgroup (see [CCNT85, p. 39]). The character tables of both the
group and the point stabilizer are available in the GAP character table library, so we can compute class
fusion and permutation character directly; note that if the class fusion is not stored on the table of the

subgroup, in general one will not get a unique fusion but only a list of candidates for the fusion.

Example

gap> u62:= CharacterTable("U6(2)");;

gap> m22:= CharacterTable("M22");;

gap> fus:= PossibleClassFusions(m22, u62);

1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 33, 34 1,
[1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 34, 33 1],
[1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 33, 34 1],
[1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 34, 33 1],
[1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 33, 34],
[1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 34, 33]]

gap> RepresentativesFusions(m22, fus, u62);

(L1, 3,7, 10, 14, 15, 22, 24, 24, 26, 33, 34]]

We see that there are six possible class fusions that are equivalent under table automorphisms of

Us(2) and M22.

Computations with the GAP Character Table Library 238

Example

gap> cand:= Set(List(fus,

> x -> Induced(m22, u62, [TrivialCharacter(m22) 1, x)[1]));

[Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, O, 54, 0, 0, O, O, 48, 0, 16, 6, 0, O, 0, O,
o, o, 6, 0, 2, 0, 0, O, 4, 0, 0, O, O, 1, 1, O, O, O, O, O, O,
0, 0, 0, 0, 0, 01), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, O, 54, 0, O, O, 48, 0, O, 16, 6, 0, O, 0, O,
o, o, 6, 0, 2, 0, O, 4, 0, 0, O, O, O, 1, 1, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, O, 384, 0, O, O, 54, 0, 0, 48, 0, 0, O, 16, 6, 0, 0, O, O,
o, 0, 6, 0, 2, O, 4, 0, 0, O, O, O, O, 1, 1, O, O, O, O, O, O,
0, 0, 0, 0, 0, 01) 1

gap> PermCharInfo(u62, cand).ATLAS;

["1a+22a+252a+616a+1155c+1386a+8064a+9240c",
"1la+22a+252a+616a+1155b+1386a+8064a+9240b",
"1a+22a+252a+616a+1155a+1386a+8064a+9240a"]

gap> aut:= AutomorphismsOfTable(u62);; Size(aut);

24

gap> elms:= Filtered(Elements(aut), x -> Order(x) = 3);

[(10,11,12)(26,27,28) (40,41,42), (10,12,11)(26,28,27) (40,42,41) 1

gap> Position(cand, Permuted(cand[1], elms[1]));

3

gap> Position(cand, Permuted(cand[3], elms[1]));

2

The six fusions induce three different characters, they are conjugate under the action of the unique
subgroup of order 3 in the group of table automorphisms of Ug(2). The table automorphisms of order
3 are induced by group automorphisms of Ug(2) (see [CCN'85, p. 120]). As can be seen from the
list of maximal subgroups of Ug(2) in [CCN*85, p. 115], the three induced characters are in fact
permutation characters which belong to the three classes of maximal subgroups of type M in Ug(2),
which are permuted by an outer automorphism of order 3. Now we want to compute the extension of
the above permutation character to the group Ug(2).2, which corresponds to the action of this group
on the cosets of a M5,.2 subgroup.

Example
gap> u622:= CharacterTable("U6(2).2");;
gap> m222:= CharacterTable("M22.2");;
gap> fus:= PossibleClassFusions(m222, u622);
L f1, 3,7, 10, 13, 14, 20, 22, 22, 24, 29, 38, 39, 42, 41, 46, 50,

53, 58, 59, 59]]
gap> cand:= Induced(m222, u622, [TrivialCharacter(m222)], fus[1]);
[Character(CharacterTable("U6(2).2"),

[20736, 0, 384, 0, 0, O, 54, 0, O, 48, 0, 0, 16, 6, O, O, O, O, O,

6, 0, 2, 0, 4, 0, 0, 0, 0, 1, O, O, O, O, O, O, O, O, 1080, 72,

o, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, O, O, O, O, 2, 2,

0, 0, 0, 0, 0, 01) 1
gap> PermCharInfo(u622, cand).ATLAS;
["lat+22a+252a+616a+1155a+1386a+8064a+9240a"]

We see that for the embedding of Mj;.2 into Ug(2).2, the class fusion is unique, so we get a unique

Computations with the GAP Character Table Library 239

extension of one of the above permutation characters. This implies that exactly one class of maximal
subgroups of type M»;, extends to M>,.2 in a given group Us(2).2.

8.4 Degree 20736 Permutation Characters of Uy (2)

Now we show an alternative way to compute the characters dealt with in the previous example. This
works also if the character table of the point stabilizer is not available. In this situation we can com-
pute all those characters that have certain properties of permutation characters. Of course this may
take much longer than the above computations, which needed only a few seconds. (The following
calculations may need several hours, depending on the computer used.)

Example
gap> cand:= PermChars(u62, rec(torso := [20736]));
[Character(CharacterTable("U6(2)"),

[20736, O, 384, 0, 0, O, 54, 0, 0, O, O, 48, 0, 16, 6, 0, 0, O,
o, o, o, 6, 0, 2, 0, 0, O, 4, 0, O, O, O, 1, 1, O, O, 0O, O, O,
o, 0, 0, 0, 0, O,]), Character(CharacterTable("U6(2)"),

[20736, O, 384, 0, O, O, 54, 0, O, O, 48, 0, 0, 16, 6, 0, 0, O,
o, o, o, 6, 0, 2, 0, O, 4, 0, 0, 0, O, O, 1, 1, O, O, O, O, O,

), Character(CharacterTable("U6(2)"),
0, 0, 0
0, 0, O

N

N

N

N

N
O!\)OP[\)OO
O O O O O oo

—

[20736, 0, 384, 0, 0, O, 54, 0, O, 48, 0, 0, O, 16, 6, 0, O, O,
6, 0, 0,6,0,2,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,
0, 0,0,0,0,0,01)]1]

For the next step, that is, the computation of the extension of the permutation character to Us(2).2,
we may use the above information, since the values on the inner classes are prescribed. The question
which of the three candidates for Ug(2) extends to Us(2).2 depends on the choice of the class fusion
of Us(2) into Us(2).2. With respect to the class fusion that is stored on the GAP library table, the
third candidate extends, as can be seen from the fact that this one is invariant under the permutation of
conjugacy classes of Ug(2) that is induced by the action of the chosen supergroup Ug(2).2.

Example
gap> u622:= CharacterTable("U6(2).2");;
gap> inv:= InverseMap(GetFusionMap(u62, u622));
(1, 2,3, 4,5,6,7,8,9, 10, [11, 12], 13, 14, 15, [16, 17],
18, 19, 20, 21, 22, 23, 24, 25, 26, [27, 281, [29, 30], 31, 32,
[33,341, [3, 3 1, 37, [38, 39 1, 40, [41, 42], 43, 44,
[45, 46 1]
gap> ext:= List(cand, x -> CompositionMaps(x, inv));
[[20736, O, 384, 0, O, O, 54, 0, 0, O, [O, 481, 0, 16, 6, O, O,
o0, 0, 0, 6, 0, 2, 0,0, [0O,41]1,0,0,0,1,0,0,0,0,0,0,
0, 01,
[20736, 0, 384, 0, 0, O, 54, 0, 0, 0, [0, 481,
o0, 0, 0, 6,0,2,0,0, [0,41,0,0,0,1,
0, 01,
[20736, 0, 384, 0, O, O, 54, 0, O, 48, 0, 0, 16, 6, 0, O, 0, O, O,
6, 0, 2, 0, 4, 0, 0, 0, O, 1, O, 0, O, O, 0, O, O, 01 1]
gap> cand:= PermChars(u622, rec(torso:= ext[3]));
[Character(CharacterTable("U6(2).2"),
[20736, 0, 384, 0, 0, O, 54, 0, O, 48, 0, 0, 16, 6, 0, O, O, O,
o, 6, 0, 2, 0, 4, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, 1080,

(@]

16, 6, 0, O,
0, 0, 0, 0, O,

o

Computations with the GAP Character Table Library 240

72, 0, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, O, 2,
2,0,0,0,0,0,01)1

8.5 Degree 57572775 Permutation Characters of Oy (3)

The group Og (3) (see [CCN*85, p. 140]) contains a subgroup of type 23+6 13(2), which extends
to a maximal subgroup U in 0;(3).3. For the computation of the permutation character, we cannot
use explicit induction since the table of U is not available in the GAP table library. Since U N Og (3)
is contained in a Og (2) subgroup of Of (3), we can try to find the permutation character of Og (2)
corresponding to the action on the cosets of U N Oy (3), and then induce this character to Og (3). This
kind of computations becomes more difficult with increasing degree, so we try to reduce the problem
further. In fact, the 23+6.L3(2) group is contained in a 2% : A subgroup of OF (2), in which the index
is only 15; the unique possible permutation character of this degree can be read off immediately. In-
duction to 0;(3) through the chain of subgroups is possible provided the class fusions are available.
There are 24 possible fusions from Oy (2) into Og (3), which are all equivalent w.r.t. table automor-
phisms of 0; (3). If we later want to consider the extension of the permutation character in question
to Og (3).3 then we have to choose a fusion of an OF (2) subgroup that does not extend to Og (2).3.
But if for example our question is just whether the resulting permutation character is multiplicity-free
then this can be decided already from the permutation character of Og (3).

Example

gap> o08p3:= CharacterTable("08+(3)");;

gap> Size(08p3) / (279%168);

57572775

gap> 08p2:= CharacterTable("08+(2)");;

gap> fus:= PossibleClassFusions(08p2, 08p3);;

gap> Length(fus);

24

gap> rep:= RepresentativesFusions(08p2, fus, o8p3);

(lf1, 5,2, 3, 4,5, 7,8, 12, 16, 17, 19, 23, 20, 21, 22, 23, 24,

25, 26, 37, 38, 42, 31, 32, 36, 49, 52, 51, 50, 43, 44, 45, 53,
b5, 56, 57, 71, 71, 71, 72, 73, 74, 78, 79, 83, 88, 89, 90, 94,
100, 101, 105 1 1]

gap> fus:= repl[1];;

gap> Size(08p2) / (279%168);

2025

gap> sub:= CharacterTable("276:A8");;

gap> subfus:= GetFusionMap(sub, 08p2);

(1, 3,2, 2, 4,5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,
31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51]

gap> fus:= CompositionMaps(fus, subfus);

(1, 2,5,5, 3, 4,5, 23, 2, 5, 19, 23, 20, 7, 37, 31, 17, 50, 51,
43, 23, 23, 21, 22, 20, 23, 56, 57, 24, 72, 31, 78, 89, 52, 45, 44,
53, 55, 55, 100, 100]

gap> Size(sub) / (279%168);

15

gap> List(Irr(sub), Degree);

(1, 7, 14, 20, 21, 21, 21, 28, 35, 45, 45, 56, 64, 70, 28, 28, 35,
35, 35, 35, 70, 70, 70, 70, 140, 140, 140, 140, 140, 210, 210, 252,

Computations with the GAP Character Table Library 241

252, 280, 280, 315, 315, 315, 315, 420, 448]
gap> cand:= PermChars(sub, 15);
[Character(CharacterTable("2°6:A8"),
[15, 15, 15, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3,
3, 3,3,1,1, 1,1, 0, O, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 01) 1]
gap> ind:= Induced(sub, 08p3, cand, fus);
[Character(CharacterTable("08+(3)"),
[57572775, 59535, 59535, 59535, 3591, 0, 0, 0, 0, O, O, O, O, O,
o, 0, 2187, 0, 27, 135, 135, 135, 243, 0, 0, 0, O, O, O, O, O,
o, 0, 0, O, , 0, 0, 0, 27, 27, 27, O, O, O, O, 27,
27, 27, 27,

B B >

B B B B > B O’ > B B B >
’ O,
0

0, O
3 O, O!
0, O

B

> B B B >

0, O
s O’ 03
0, O

B

0,

0,)

0,)

gap> o8p3 CharacterTable("08+(3).3");;

gap> inv:= InverseMap(GetFusionMap(08p3, 08p33));

r+ r2,3,41,5,6, [7,8,91]1, [10, 11, 12], 13,

[14, 15, 16 1, 17, 18, 19, [20, 21, 22], 23, [24, 25, 26],

27, 28, 291, 30, [31, 32,331, [34, 3, 31, [37, 38, 39 1,

40, 41, 42 1, [43, 44, 451, 46, [47, 48, 49], 50,

]
]
]

-

> B > > B > > B > >

O O O O
O O 0 O
O O = O
O O+~ O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O

, 0
> O > B B > B > > B > > > B B > > >

[
— O O

I w o o o

[
L
[61, 52, 53], 54, 55, 56, 57, [58, 69, 60 1, [61, 62, 63 1, 64,
[65, 66, 67 1, 68, [69, 70, 711, [72, 73, 741, [75, 76, 77 1,
[78, 79, 801, [81, 82, 831, 84, 85, [86, 87, 83 1,

[89, 90, 911, [92, 93, 94 1, 95, 96, [97, 98, 99 1,

[100, 101, 102 1, [103, 104, 105], [106, 107, 108],

[109, 110, 111], [112, 113, 114]]

p> ext:= CompositionMaps(ind[1], inv);

57572775, 59535, 3691, O, O, O, O, O, 2187, O, 27, 135, 243, 0, O,
o, o, o, o, o0, 27, 0, 0, 27, 27, 0, 8, 1, 1, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, 0, O, O, 0]

gap> perms:= PermChars(08p33, rec(torso:= ext));

[Character(CharacterTable("08+(3).3"),

ga
L

[57572775, 59535, 3591, 0, O, O, O, O, 2187, 0, 27, 135, 243, O,
o, o, o, 0, o0, 0, 27, 0, O, 27, 27, 0, 8, 1, 1, O, O, O, O, O,
o, o, o, 0, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 3159,
3159, 243, 243, 39, 39, 3, 3, 0, 0, O, O, O, O, O, O, 3, 3, 3,
3,3, 3, 0,0, 0,0,0,0,2,2,1,1,1,1, 0, 0, 0, O, 0, O,

> > B >

-

0, 01)1
gap> PermCharInfo(o8p33, perms).ATLAS;
["1a+780aabb+2457a+2808abc+9450aaabbcc+18200abcdddef+24192a+54600a~{5\
}b+70200aabb+87360ab+139776a~{5}+147420a~{4}b~{4}+163800ab+184275aabc+\
199017aa+218700a+245700a+291200aef+332800a~{4}b~{5}c~{5}+491400aaabcd+\
531441a~{5}Yb~{4}c~{4}+552825a~{4}+568620aabb+698880a~{4}b~{4}+716800aa\
abbccdddeeff+786240aabb+873600aa+998400aa+1257984a~{6}+1397760aa"]

8.6 The Action of O;(3).2 on the Cosets of 27.S;

We want to know whether the permutation character of 07(3).2 (see [CCNT85, p. 108]) on the
cosets of its maximal subgroup U of type 27.57 is multiplicity-free. As in the previous examples, first
we try to compute the permutation character of the simple group O7(3). It turns out that the direct
computation of all candidates from the degree is very time consuming. But we can use for example the

Computations with the GAP Character Table Library 242

additional information provided by the fact that U contains an A7 subgroup. We compute the possible
class fusions.
Example
gap> o73:= CharacterTable("07(3)");;
gap> a7:= CharacterTable("A7");;
gap> fus:= PossibleClassFusions(a7, 073);
[r1, 38, 6, 10, 15, 16, 24, 33, 33],

[1, 3, 7, 10, 15, 16, 22, 33, 33 1 1]

We cannot decide easily which fusion is the right one, but already the fact that no other fusions
are possible gives us some information about impossible constituents of the permutation character we
want to compute.

Example

gap> ind:= List(fus,

> x -> Induced(a7, o073, [TrivialCharacter(a7) 1, x)I[1]);;

gap> mat:= MatScalarProducts(o73, Irr(o73), ind);;

gap> sum:= Sum(mat);

[2,6,2,0,8,6,2,4,4,8, 3,0, 4,4,9, 3,5, 0,0,09, 0, 10,
5, 6, 15, 1, 12, 1, 15, 7, 2, 4, 14, 16, 0, 12, 12, 7, 8, 8, 14,
12, 12, 14, 6, 6, 20, 16, 12, 12, 12, 10, 10, 12, 12, 8, 12, 6]

gap> const:= Filtered([1 .. Length(sum)], x -> sum[x] <> 0);

(1, 2,3, 5,6, 7,8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]

gap> Length(const);

52

gap> const:= Irr(o73){ const };;

gap> rat:= RationalizedMat(const);;

But much more can be deduced from the fact that certain zeros of the permutation character can
be predicted.

Example

gap> names:= ClassNames(073);

["1a", "2a", "2b", "2c", "3a", "3b", "3c", "3d", "3e", "3f", "3g",
"4a", "4b", "4c", "4d4", "ba", "6a", "6b", "6c", "64", "6e", "6f",
"6g", "6h", "6i", "6j", "6k", "61", "6m", "6n", "60", "6p", "7a",
"8a", "8b", "9a", "9b", "9c", "O4", "10a", "10b", "12a", "12b",
"12ct, "12d", "12e", "12f", "12g", "12h", "13a", "13b", "14a",
"15a", "18a", "18b", "18c", "184", "20a"]

gap> List(fus, x -> names{ x });

[["ia", "2b", "3b", "3f", "4d", "Ba", "€n", "7a", "7a" 1,

["ta", "2b", "3c", "3f", "4d", "5a", "6f", "7a", "7a" 1]

gap> torso:= [28431];;

gap> zeros:= [5, 8, 9, 11, 17, 20, 23, 28, 29, 32, 36, 37, 38,

> 43, 46, 47, 48, 53, 54, b5, 56, 57, 58 1;;

gap> names{ zeros };

["3a", "3d", "3e", "3g", "6a", "6d", "6g", "61", "6m", "6p", "9a",
"gb", "9c", "12b", "12e", "12f", "12g", "1Ba", "18a", "18b", "18c",
"18d", "20a"]

Computations with the GAP Character Table Library 243

Every order 3 element of U lies in an A7 subgroup of U, so among the classes of element order
3, at most the classes 3B, 3C, and 3F can have nonzero permutation character values. The excluded
classes of element order 6 are the square roots of the excluded order 3 elements, likewise the given
classes of element orders 9, 12, and 18 are excluded. The character value on 20A must be zero because
U does not contain elements of this order. So we enter the additional information about these zeros.

Example
gap> for i in zeros do
> torso[i] := 0;
> od;
gap> torso;
[28431,,,, 0,,, 0, O0,, O0,,,,,, O,,, O,,, O,,,,, O, O,,, O,,,, O, O,
0,,,,, 0,,, 0, 0, 0,,,,, 0, 0, 0, O, O, 01

gap> perms:= PermChars(o073, rec(torso:= torso, chars:= rat));
[Character(CharacterTable("07(3)"),
[28431, 567, 567, 111, 0, 0, 243, 0, 0, 81, 0, 15, 3, 27, 15, 6,

o0, o, 27, 0, 3, 27, 0, 0, 0, 3,9, 0, 0, 3, 3,0, 4, 1, 1, 0,
0, 0,0, 2,2,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,
01)1

gap> PermCharInfo(073, perms).ATLAS;

["la+78a+168a+182a+260ab+1092a+2457a+2730a+4095b+5460a+11648a"]

We see that this character is already multiplicity free, so this holds also for its extension to 07(3).2,
and we need not compute this extension. (Of course we could compute it in the same way as in the
examples above.)

8.7 The Action of O (3).2; on the Cosets of 27.Ag

We are interested in the permutation character of Og (3).2; that corresponds to the action on the cosets
of a subgroup of type 27.Ag. The intersection of the point stabilizer with the simple group 0; (3) is of
type 2°.Ag. First we compute the class fusion of these groups, modulo problems with ambiguities due
to table automorphisms.

Example

gap> 08p3:= CharacterTable("08+(3)");;

gap> 08p2:= CharacterTable("08+(2)");;
gap> fus:= PossibleClassFusions(08p2, 08p3);;

gap> NamesOfFusionSources(08p2);

["A9", "2~8:08+(2)", "(D10xD10).2"2", "2~ (3+3+3).L3(2)",
"NRS(08+(2),2~(3+3+3) _a)", "NRS(08+(2),2~(3+3+3)_b)", "08+(2)M2",
"08+(2)M3", "08+(2)M5", "08+(2)M6", "08+(2)M8", "08+(2)M9",
"(3xU4(2)):2", "08+(2)M11", "08+(2)M12", "2~ (1+8)_+:(S3xS3xS3)",
"3~4:2~3.84(a)", "(AbxAb):2-2", "08+(2)M16", "08+(2)M1T",

"2~ (1+8)+.08+(2)", "(A5xD10).2", "(D10xA5).2", "08+(2)N5C",
"2°6:A8", "2.08+(2)", "2°2.08+(2)", "S6(2)"]

gap> sub:= CharacterTable("276:A8");;

gap> subfus:= GetFusionMap(sub, o8p2);

L1, 3,2, 2, 4, 5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,
31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51]

gap> fus:= List(fus, x -> CompositionMaps(x, subfus));;

gap> fus:= Set(fus);;

Computations with the GAP Character Table Library 244

gap> Length(fus);
24

The ambiguities due to Galois automorphisms disappear when we are looking for the permutation
characters induced by the fusions.

Example
gap> ind:= List(fus, x -> Induced(sub, o8p3,
> [TrivialCharacter(sub) 1, x)[1]);;
gap> ind:= Set(ind);;
gap> Length(ind);
6

Now we try to extend the candidates to Oy (3).21; the choice of the fusion of OF (3) into Og (3).2,
determines which of the candidates may extend.
Example
gap> 08p32:= CharacterTable("08+(3).2_1");;
gap> fus:= GetFusionMap(08p3, 08p32);;
gap> ext:= List(ind, x -> CompositionMaps(x, InverseMap(fus)));;
Filtered(ext, x -> ForAll(x, IsInt));

gap> ext:

[[3838185, 17577, 8505, 8505, 873, 0, 0, O, O, 6561, O, O, 729, O,
9, 105, 45, 45, 105, 30, 0, O, O, O, O, O, O, O, O, 189, 0, O,
o, 9,9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, O, O, O, O, O, O,
o, 2, 0, 0, 0, 0, 0, 0, O, O, 9, 0, O, O, O, O, O, 3, 0, O, O,
o0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, O, 01,
[3838185, 17577, 8505, 8505, 873, 0, 6561, 0, O, O, O, O, 729, O,
9, 105, 45, 45, 105, 30, 0, O, O, O, O, O, 189, O, O, O, 9, O,
o, o, 9, 27, 27, 0, 0, 9, 27, 0, 8, 1, 1, 0, O, O, O, O, O, O,
o, 2, 0, 0, 0, 0, 0, 9, 0, O, O, O, O, O, 3, O, O, O, O, O, O,
o0, 0, 6, 0, 0, 0, 0, 0, 0, 0, O, 0, 011

We compute the extensions of the first candidate; the other belongs to another class of subgroups,
which is the image under an outer automorphism.
Example
gap> perms:= PermChars(o8p32, rec(torso:= ext[1]));

[Character(CharacterTable("08+(3).2_1"),
[3838185, 17577, 8505, 8505, 873, 0, 0, 0, O, 6561, O, O, 729, O
9, 105, 45, 45, 105, 30, O, O, O, O, O, O, O, O, O, 189, O, O,
0
0

o, 9, 9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, O, O, O, O, O, O,
o, 2, 0, 0, 0, 0, 0, 0, 0, O, 9, 0, O, O, O, O, O, 3, O, O,
o, o, 0, 0, 0, 6, 0, 0, 0, O, O, O, O, 3159

i5, 0, 0, 45, 0, 81, 9, 27, 0, O, 3, 3, 3, 3, 5,
o0, o, 27, 0, 9, 0, 0, 15, 0, 3, 0, O, 2, 0, O, O, O, O, 3, O,
o, 0, 0, 0, 0, O, O, O, O, O, O, O, 0]
gap> PermCharInfo(o8p32, perms).ATLAS;
["1a+260abc+520ab+819a+2808b+9450aab+18200a+23400ac+29120b+36400aab+4\
6592abce+49140d+66339a+98280ab+163800a+189540d+232960d+332800ab+368550\
a+419328a+531441ab"]

Now we repeat the calculations for OF (3).2, instead of Og (3).2;.

Computations with the GAP Character Table Library 245

Example

gap> 08p32:= CharacterTable("08+(3).2_2");;

gap> fus:= GetFusionMap(08p3, 08p32);;

gap> ext:= List(ind, x -> CompositionMaps(x, InverseMap(fus)));;

gap> ext:= Filtered(ext, x -> ForAll(x, IsInt));;

gap> perms:= PermChars(08p32, rec(torso:= ext[1]));

[Character(CharacterTable("08+(3).2_2"),

[3838185, 17577, 8505, 873, 0, O, O, 6561, O, O, O, O, 729, O, 9,

105, 45, 105, 30, O, 0, O, O, O, O, 189, O, O, O, 9, 0, 9, 27,
o, o, o, 27, 27, 9, 0, 8, 1, 1, 0, 0, O, O, O, O, O, O, O, O,
o0, o, 0o, 0, 9, 0, 0, 0, 0, 0, O, O, 3, 0, O, O, O, O, O,

o, 6, 0, 0, 0, 0, O, O, O, 199017, 2025, 297, 441, 73, 9, 0,
o, o, 0, 0, 0, 8, 0, 0, 0, 0, 27, 27, O, 1, 9, 12, O,

45, 0, 0, 1, 0, 0, 3, 1, 0, 0, O, O, O, O, O, O, O, O, 2, 1
0, 0, 0, 0, 01)1

gap> PermCharInfo(08p32, perms).ATLAS;

["1a+260aac+520ab+819a+2808a+9450aaa+18200accee+23400ac+29120a+36400a\

+46592aa+49140c+66339a+93184a+98280ab+163800a+184275ac+189540c+232960c\

+332800aa+419328a+531441aa"]

0,
0

3 >

We might be interested in the extension to