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April 1, 2019

Abstract

We investigate the Loewy structure of the fixpoint algebra of the group algebra of the
additive group of a finite field F under the action of a subgroup of the multiplicative
group of F .

1 Introduction

In [13], B. Külshammer and B. Sambale investigated the Loewy lengths of centers of group
algebras of finite groups. In Corollary 5 of [13], they proved:

Proposition 1.1. Let F be an algebraically closed field of characteristic p > 0, let G be
a finite group, and let B be a block of the group algebra FG with abelian defect group
D. Moreover, suppose that the inertial quotient I of B (a p′-subgroup of Aut(D)) acts
semiregularly on [D, I] \ {1}. Then

LL(Z(B)) = LL(Z(F [D o I])) = LL((FD)I).

Here LL(A) denotes the Loewy length of a finite-dimensional F -algebra A, i.e. the
minimal nonnegative integer t such that J(A)t = 0 where J(A) is the (Jacobson) radical of
A, the largest nilpotent ideal of A. Also, Z(A) denotes the center of A, D o I denotes the
semidirect product of D and I, and (FD)I denotes the fixpoint algebra

(FD)I = {x ∈ FD : α(x) = x for all α ∈ I}.

Moreover, the proof of Corollary 5 in [13] shows that

(FD)I = FCD(I)⊗F (F [D, I])I

where CD(I) = {x ∈ D : α(x) = x for all α ∈ I} is the fixpoint subgroup, so that

LL((FD)I) = LL(FCD(I)) + LL((F [D, I])I)− 1.
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The Loewy structure of the group algebra of a finite p-group is well-known by the work
of Jennings ([10], see also [9] or [15]). The results above motivate the investigation of the
fixpoint algebra (FP )H where P is a finite abelian p-group and H is a finite p′-group acting
on P . Some special cases have been dealt with in [13] and [5]. In this note we generalize
several results in these two papers. A related paper is [14].

In Section 2, we will show that the fixpoint algebra (FP )H is always symmetric, and
we are going to construct useful bases of FP and of (FP )H . In Section 3 we will generalize
our setup by replacing the prime number p by an arbitrary positive integer q > 1. Then
the fixpoint algebra (FP )H is replaced by an algebra A = A(q, n, e) where n, e are positive
integers satisfying e | qn − 1. The F -algebra A has an F -basis b0, . . . , bz where z =
(qn − 1)/e; the corresponding structure constants are either 0 or 1. Similar algebras have
been investigated in [6], for example. In Proposition 3.2, we present an inductive method
to compute the Loewy structure and, in particular, the Loewy length of A(q, n, e).

In Section 4, we construct an automorphism of A(q, n, e) which is useful in the computa-
tion of the Loewy structure of A(q, n, e). In Section 5, we investigate certain isomorphisms
between our algebras, for different triples (q, n, e). We also characterize for which param-
eters the algebra A(q, n, e) is uniserial. In Section 7, we prove upper and lower bounds
for the Loewy length of A(q, n, e), as functions of the parameters q, n and e. Here a
number-theoretic function (q, e) 7−→ m(q, e) will become important which we investigate
in Section 6. In part II of this paper, we are going to study this function in more detail.
We will then see that very often the Loewy length of A(q, n, e) is equal to the upper bound
of Theorem 7.1, but we will also construct examples whose Loewy length differs from this
upper bound. Throughout, we illustrate our concepts and results by examples.

Algebras with actions of a finite group G, the so-called G-algebras, and the corre-
sponding fixpoint algebras are important in representation theory (see [16], for example).
Of course, they also appear in the work of M. Broué (such as [3] and [4]).

2 Fixpoint algebras

In the following, let F be an algebraically closed field of characteristic p > 0. We can and
will view every finite field of characteristic p as a subfield of F .

Let P be an elementary abelian p-group of order pn, and let H be a finite p′-group
acting on P . We are interested in the Loewy structure of the fixpoint algebra (FP )H .
Since J(FP ) and J(FP )2 are invariant under the action of H, Maschke’s Theorem implies
that

J(FP ) = V ⊕ J(FP )2

where V is an FH-submodule of J(FP ). Moreover, we have isomorphisms

V 'FH J(FP )/J(FP )2 'FH F ⊗Fp P
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where P is considered as an FpH-module in the usual way. Let x1, . . . , xn be an F -basis
of V . Then xpi = 0 for i = 1, . . . , n, and the monomials

xi11 . . . x
in
n (0 ≤ it < p for t = 1, . . . , n)

constitute an F -basis of FP , as is well-known and easy to see (cf. Proposition 5.2 in [12],
for example).

Proposition 2.1. With notation as above, the fixpoint algebra (FP )H is symmetric (and
commutative).

Proof. Obviously, the group algebra FP and its subalgebra A := (FP )H are commutative.
Moreover, it is well-known that the group algebra FP is symmetric with respect to the
linear form σ : FP −→ F such that σ(1) = 1 and σ(y) = 0 for 1 6= y ∈ P . Note that
σ(hx) = σ(x) for h ∈ H, x ∈ FP . The restriction σ′ of σ turns A into a symmetric
F -algebra; in fact, let a ∈ A such that σ′(aA) = 0. Then, for x ∈ FP , we have x′ :=∑

h∈H
hx ∈ A and

0 = σ′(ax′) =
∑
h∈H

σ(a · hx) =
∑
h∈H

σ(h(ax)) =
∑
h∈H

σ(ax) = |H|σ(ax).

Thus σ(aFP ) = 0 which implies that a = 0. The result follows. �

Examples show that Proposition 2.1 does not hold, in general, when we omit the hy-
pothesis p - |H| (see [1], for example).

Now we specialize further and fix a divisor e of pn − 1. Then

G := G(p, n, e) :=

{(
α 0
β 1

)
: α, β ∈ Fpn , αe = 1

}
is a subgroup of GL2(p

n) and a semidirect product G = P o H where P is an elemen-
tary abelian p-group of order pn, and H is a cyclic group of order e acting on P . By
Proposition 2.1, the fixpoint algebra

A := A(p, n, e) := (FP )H

is symmetric (and commutative). It is well-known that we can choose the basis x1, . . . , xn
of V above in such a way that the action of a generator h of H is given by a diagonal
matrix with diagonal entries ζ, ζp, ζp

2
, . . . , ζp

n−1
where ζ is a primitive e-th root of unity

in F (see Satz II.7.3 in [8], for example). Thus the action of h on the F -basis of FP given
by monomials satisfies

h · xi11 x
i2
2 . . . x

in
n = ζi1+pi2+...+p

n−1inxi11 x
i2
2 . . . x

in
n
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(0 ≤ it < p for t = 1, . . . , n). Hence the monomials xi11 . . . x
in
n with 0 ≤ it < p for

t = 1, . . . , n and
i1 + pi2 + . . .+ pn−1in ≡ 0 (mod e) (∗)

constitute an F -basis of (FP )H = A.
It turns out that many properties of A can be proved in somewhat greater generality.

We introduce this slightly more general setup in the following section.

3 A more general setup

Let F be an arbitrary field. We fix positive integers q, n, e such that q > 1 and e | qn − 1.
Then we consider the ideal I := (Xq

1 , . . . , X
q
n) of the polynomial algebra F [X1, . . . , Xn]

and set xi := Xi + I ∈ F [X1, . . . , Xn]/I, so that xqi = 0 for i = 1, . . . , n. Finally, we
define A := A(q, n, e) as the subalgebra of F [X1, . . . , Xn]/I = F [x1, . . . , xn] generated by
all monomials xi11 x

i2
2 . . . x

in
n such that

i1 + qi2 + . . .+ qn−1in ≡ 0 (mod e). (∗)

(When F is algebraically closed of characteristic p > 0 and q = p then we get back the
algebra at the end of Section 2.) Of course, the monomials xi11 x

i2
2 . . . x

in
n satisfying (∗) and

0 ≤ it < q for t = 1, . . . , n are in bijection with the n-tuples (i1, i2, . . . , in) ∈ {0, 1, . . . , q −
1}n satisfying (∗), via their exponent vectors. And these n-tuples are in bijection with the
integers in {0, 1, . . . , qn − 1} which are divisible by e, via the coefficient vectors in their
q-adic expansions. These integers are precisely the 1 + z numbers 0, e, 2e, . . . , ze = qn − 1
where

z := (qn − 1)/e;

in particular, we have dimA = 1 + z ≥ 2. For k = 0, 1, . . . , z, we abbreviate the monomial
xi11 x

i2
2 . . . x

in
n by bk where ke = i1 + qi2 + . . .+ qn−1in is the q-adic expansion of ke. Then

b0, b1, . . . , bz constitute an F -basis of A, and b1, . . . , bz constitute an F -basis of J := J(A).
There is a nice multiplication rule for these basis elements.

Proposition 3.1. Let k, l ∈ {0, 1, . . . , z}, and suppose that ke and le have q-adic expan-
sions ke = i1 + qi2 + . . .+ qn−1in and le = j1 + qj2 + . . .+ qn−1jn. Then

bkbl =

{
bk+l, if it + jt < q for t = 1, . . . , n
0, otherwise.

In particular, we have b0 = 1, and S(A), the socle of A, equals Fbz. Moreover, A is a
symmetric F -algebra.

Proof. Since bk = xi11 . . . x
in
n and bl = xj11 . . . xjnn we have bkbl = xi1+j11 . . . xin+jnn . Thus

bkbl = 0 whenever it + jt ≥ q for some t ∈ {1, . . . , n}. And, if it + jt < q for t = 1, . . . , n
then

(i1 + j1) + q(i2 + j2) + . . .+ qn−1(in + jn) = ke+ le = (k + l)e
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is the q-adic expansion of (k + l)e. Thus bkbl = bk+l in this case.
Our multiplication rule implies that b0bk = bk for k = 0, 1, . . . , z. Thus b0 = 1. Also,

we have bzbk = 0 for k = 1, . . . , z since ze = qn − 1 has q-adic expansion

ze = (q − 1) + q(q − 1) + . . .+ qn−1(q − 1).

Thus bz ∈ S(A).
Let σ : A −→ F be the linear map defined by σ(bz) = 1 and σ(bk) = 0 for k =

0, 1, . . . , z − 1. Our multiplication rule implies that bkbz−k = bz for k = 0, 1, . . . , z. Thus
the elements bz, . . . , b0 form an F -basis of A which is dual to the F -basis b0, . . . , bz (with
respect to σ). Hence σ is a symmetrizing linear form on A.

Since A is symmetric, we have dim S(A) = dimA/J = 1. Thus we conclude that
S(A) = Fbz. �

We note that bkbl = 0 if there is a carry when we add the q-adic expansions of ke and
le, and that bkbl = bk+l if there is no such carry.

Example 3.1. Let (q, n, e) = (11, 2, 15), so that z = (112 − 1)/15 = 8. Since 2e = 30 =
8 + 11 · 2 and 3e = 45 = 1 + 11 · 4 we have b2b2 = 0 (carry!), but b2b3 = b5 (no carry!).

Proposition 3.1 implies that, for any positive integer d > 1, the F -algebras A(q, n, e),
where (q, n, e) ranges over the triples of positive integers with q > 1, e | qn − 1 and
dimA(q, n, e) = d, fall into finitely many isomorphism classes. We will have more to say
about this in part II of this paper.

Proposition 3.1 gives a straightforward method to compute an F -basis of J2; it consists
of the nonzero products bkbl (repetitions removed) with k, l ∈ {1, . . . , z}. The resulting
F -basis of J2 is, of course, a subset of {b1, . . . , bz}. From this subset, one gets an F -basis
of J2 · J = J3 by taking nonzero products of basis elements again. Continuing in this
fashion, we obtain F -bases for the powers of J . This then also provides F -bases of the
various Loewy layers J i−1/J i (i = 1, . . . ,LL(A)).

Example 3.2. Let (q, n, e) = (3, 4, 5), so that z = 16. Then we can work out and depict
the Loewy structure of A as follows:

b0
b1, b2, b3, b6, b9, b11

b4, b5, b7, b8, b12, b13, b15
b10, b14
b16

(0, 0, 0, 0)
(0, 0, 2, 1), (0, 1, 0, 1), (0, 2, 1, 0), (1, 0, 0, 2), (1, 0, 1, 0), (2, 1, 0, 0)

(0, 1, 2, 2), (0, 2, 0, 2), (1, 1, 1, 1), (1, 2, 2, 0), (2, 0, 1, 2), (2, 0, 2, 0), (2, 2, 0, 1)
(1, 2, 1, 2), (2, 1, 2, 1)

(2, 2, 2, 2)

Thus dimA = 17, LL(A) = 5, and the dimensions of the Loewy layers are recorded by the
LL(A)-tuple [1, 6, 7, 2, 1] which we call the Loewy vector of A.

Our next result gives a slightly easier way to determine the Loewy structure of A.
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Proposition 3.2. For k = 0, 1, . . . , z, we define λ(k) ∈ N0 inductively by λ(0) := 0 and

λ(k) := 1 + max {λ(l) : l ∈ Lk} for k > 0

where Lk is the set of integers l ∈ {0, 1, . . . , k − 1} such that the digits in the q-adic
expansions ke = i1 + qi2 + . . .+ qn−1in and le = j1 + qj2 + . . .+ qn−1jn satisfy it ≥ jt for
t = 1, . . . , n. Then

bk ∈ Jλ(k) \ Jλ(k)+1 for k = 0, 1, . . . , z.

More precisely, for s ∈ N, the elements bk + Js with λ(k) = s − 1 form an F -basis of
Js−1/Js; in particular, we have λ(1) = 1 and LL(A) = λ(z) + 1.

Proof. First we show by induction that bk ∈ Jλ(k) for k = 0, 1, . . . , z. Certainly, we
have b0 = 1 ∈ A = J0 = Jλ(0). Thus let k > 0 and suppose that bl ∈ Jλ(l) for all
l < k. Choose l ∈ Lk with λ(l) maximal, i.e. λ(k) = 1 + λ(l). Consider the q-adic
expansions ke = i1 + qi2 + . . .+ qn−1in and le = j1 + qj2 + . . .+ qn−1jn. Then it ≥ jt, i.e.
0 ≤ it − jt ≤ it < q for t = 1, . . . , n. Thus (k − l)e = ke− le has the q-adic expansion

(k − l)e = (i1 − j1) + q(i2 − j2) + . . .+ qn−1(in − jn).

Since l < k our induction hypothesis implies: bk = blbk−l ∈ Jλ(l)J = Jλ(l)+1 = Jλ(k).
Next we show inductively that bk /∈ Jλ(k)+1 for k = 0, 1, . . . , z. Certainly, we have

b0 = 1 /∈ J = Jλ(0)+1. Thus let k > 0 and assume that bk ∈ Jr for some r > λ(k); we choose
r maximal with this property. Then bk = bi1 . . . bir for suitable i1, . . . , ir ∈ {1, . . . , z}. Thus
k = i1 + . . .+ ir and bi1 , . . . , bir /∈ J2. Since bi1 . . . bir−1 6= 0 we have bi1 . . . bir−1 = bl where
l = i1 + . . . + ir−1 < k. By induction, we may assume that bl ∈ Jλ(l) \ Jλ(l)+1. On the
other hand, we have bl ∈ Jr−1 \ Jr. Thus λ(l) = r − 1. Consider the q-adic expansions

le = j1 + qj2 + . . .+ qn−1jn and (k − l)e = j′1 + qj′2 + . . .+ qn−1j′n.

Since blbk−l = blbir = bk we must have jt + j′t < q for t = 1, . . . , n. Then ke has the q-adic
expansion ke = (j1 + j′1) + q(j2 + j′2) + . . .+ qn−1(jn+ j′n). Since jt ≤ jt+ j′t for t = 1, . . . , n
we have l ∈ Lk and therefore r > λ(k) ≥ 1 + λ(l) = r, which is a contradiction. �

Example 3.3. Let (q, n, e) = (13, 2, 8), so that z = 21. The following table gives the
values of λ:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
λ(k) 0 1 1 2 2 1 3 2 4 3 2 4 3 1 4 3 5 4 2 5 4 6

Thus dimA = 22, LL(A) = 7, and the Loewy vector of A is [1, 4, 5, 4, 5, 2, 1]. More precisely,
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the Loewy layers of A are given as follows:

b0
b1, b2, b5, b13

b3, b4, b7, b10, b18
b6, b9, b12, b15

b8, b11, b14, b17, b20
b16, b19
b21

(0, 0)
(0, 8)(1, 3)(3, 1)(8, 0)

(1, 11)(2, 6)(4, 4)(6, 2)(11, 1)
(3, 9)(5, 7)(7, 5)(9, 3)

(4, 12)(6, 10)(8, 8)(10, 6)(12, 4)
(9, 11)(11, 9)

(12, 12)

In the following, we denote by sq(x) the q-adic digit sum of an integer x ∈ N0, i.e.

sq(x) = x1 + x2 + x3 + . . .

where x = x1 + qx2 + q2x3 + . . . is the q-adic expansion of x. Our next result computes
the values of λ for a class of examples.

Corollary 3.1. If e | q − 1 then λ(k) = sq(ke)/e for k = 0, . . . , z. Thus

LL(A) = λ(z) + 1 = n
q − 1

e
+ 1.

Proof. We argue by induction on k. Certainly, we have λ(0) = 0 = sq(0e)/e. Suppose
therefore that k > 0 and that λ(l) = sq(le)/e for every l < k. Consider the q-adic
expansion ke = i1 + qi2 + . . .+ qn−1in. Then

0 ≡ ke ≡ i1 + i2 + . . .+ in = sq(ke) (mod e).

Let l ∈ Lk, and consider the q-adic expansion le = j1 + qj2 + . . .+ qn−1jn. Then l < k and
jt ≤ it for t = 1, . . . , n. Moreover, we have sq(le) ≡ 0 (mod e) and

sq(le) = j1 + . . .+ jn < i1 + . . .+ in = sq(ke).

Thus sq(le) ≤ sq(ke)− e and λ(l) = sq(le)/e ≤ sq(ke)/e− 1.
On the other hand, there is certainly some l < k such that the q-adic expansion le =

j1 + qj2 + . . .+ qn−1jn satisfies 0 ≤ jt ≤ it for t = 1, . . . , n and

sq(le) = j1 + . . .+ jn = i1 + . . .+ in − e = sq(ke)− e.

Then l ∈ Lk and λ(l) = sq(le)/e = sq(ke)/e − 1. Hence, by definition, we have λ(k) =
1 + λ(l) = sq(ke)/e.

The final assertion follows since ez = qn − 1 has q-adic expansion

qn − 1 = (q − 1) + q(q − 1) + . . .+ qn−1(q − 1),

so that sq(q
n − 1) = n(q − 1) and λ(z) = n q−1e . �

7



Let us compute the Loewy length in another class of examples.

Proposition 3.3. If 2 < e | q + 1 then n is even, and LL(A) = n q−12 + 1.

Proof. Suppose that 2 < e | q + 1. Then 0 ≡ qn − 1 ≡ (−1)n − 1 (mod e), so that n is
even. An F -basis of A = A(q, n, e) is given by the monomials xi11 x

i2
2 . . . x

in
n such that

0 ≡ i1 + qi2 + . . .+ qn−1in ≡ i1 + i3 + . . .+ in−1 − i2 − i4 − . . .− in (mod e)

and 0 ≤ it < q for t = 1, . . . , n. Clearly, xixi+1 is such a monomial, for i = 1, . . . , n − 1.
Moreover, (x1x2)

q−1 . . . (xn−1xn)q−1 is a nonzero product of n2 (q−1) such monomials. Thus

LL(A) ≥ n q−12 + 1.
On the other hand, each of our basis monomials of J has degree at least 2. Thus a

product of n q−12 + 1 such monomials has degree at least n(q − 1) + 2. Hence at least one
variable xt occurs in this product with an exponent bigger than q − 1, so the product is
zero. This shows that LL(A) = n q−12 + 1. �

4 An automorphism

We keep the setup of Section 3. In our next result, we construct a certain useful F -algebra
automorphism of A = A(q, n, e).

Proposition 4.1. For k ∈ {1, . . . , z}, let k′ ∈ {1, . . . , z} such that k′ ≡ qk (mod z).
Then the F -linear map π : A −→ A such that π(b0) = b0 and π(bk) = bk′ for k = 1, . . . , z
is an F -algebra automorphism. In particular, we have λ(k) = λ(k′) for k = 1, . . . , z.

Proof. Let k ∈ {1, . . . , z}, and consider the q-adic expansion ke = i1 + qi2 + . . .+ qn−1in.
Then qke = qi1 + q2i2 + . . .+ qnin is the q-adic expansion of qke, and

(qk − zin)e = qke− (qn − 1)in = in + qi1 + q2i2 + . . .+ qn−1in−1

is the q-adic expansion of (qk − zin)e; in particular, (qk − zin)e ∈ {1, . . . , qn − 1}. Since

(qk − zin)e = qke− (qn − 1)in ≡ qke ≡ k′e (mod qn − 1)

and k′e ∈ {1, . . . , qn−1} we obtain k′e = (qk−zin)e = in+qi1+q2i2+ . . .+qn−1in−1. Now
let also l ∈ {1, . . . , z}, and consider the q-adic expansion le = j1 + qj2 + . . .+ qn−1jn. Then
l′e = jn + qj1 + q2j2 + . . .+ qn−1jn−1 is the q-adic expansion of l′e. Thus Proposition 3.1
implies that bkbl 6= 0 if and only if bk′bl′ 6= 0.

Suppose that bkbl 6= 0, i.e. bkbl = bk+l; in particular, k + l ∈ {1, . . . , z}. Then also
bk′bl′ 6= 0, i.e. bk′bl′ = bk′+l′ and k′ + l′ ∈ {1, . . . , z}. Since

k′ + l′ ≡ qk + ql ≡ q(k + l) ≡ (k + l)′ (mod z)
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we conclude that k′+ l′ = (k+ l)′. This shows that π is an F -algebra endomorphism. Since
k 7−→ k′ is clearly a permutation of {1, . . . , z}, π is even an F -algebra automorphism. In
particular, we have π(Js) = Js for s ∈ N0. Thus Proposition 3.2 implies that λ(k) = λ(k′)
for k = 1, . . . , z. �

By Proposition 4.1, the map λ is constant on each orbit of the permutation k 7−→ k′ of
{1, . . . , z}. This often simplifies the computation of the values of λ.

Note that the order of the permutation k 7−→ k′ is the order of q modulo z, i.e. the
smallest positive integer s such that qs ≡ 1 (mod z). We denote this order by ordz(q).
Then ordz(q) divides both n and ϕ(z) where ϕ denotes Euler’s totient function.

Example 4.1. In Example 3.2 above ((q, n, e, z) = (3, 4, 5, 16)) the permutation k 7−→ k′

is
(1, 3, 9, 11)(2, 6)(4, 12)(5, 15, 13, 7)(8)(10, 14)(16).

This explains part of the Loewy structure of A. Here we have ordz(q) = 4. The table
containing the values of λ can now be written in a more compact form:

k 0 1 2 4 5 8 10 16

λ(k) 0 1 1 2 2 2 3 4
.

Remark 4.1. (i) Since λ(1) = 1, Proposition 4.1 implies that always dimJ/J2 ≥ ordz(q).
(ii) If t denotes the number of orbits of the permutation k 7−→ k′ on {1, . . . , z} then

clearly LL(A) ≤ t+ 1.
(iii) Recall that the socle series of A is the chain of ideals

0 = S0(A) ⊆ S1(A) ⊆ S2(A) ⊆ . . .

of A such that Si(A)/Si−1(A) is the socle of A/Si−1(A) for i ∈ N. Since A is symmetric we
have

Si(A) =
{
a ∈ A : aJ i = 0

}
= (J i)⊥

for i ∈ N0 where U⊥ = {x ∈ A : σ(xA) = 0} for every subspace U of A, and σ denotes
a symmetrizing linear form on A. It is easy to compute an F -basis of Si(A) for i ∈ N0.
In fact, since an F -basis of J i is provided by the elements bk with λ(k) ≥ i, a basis of
Si(A) = (J i)⊥ is given by the elements bz−l with λ(l) < i.

Example 4.2. In Example 3.2 above ((q, n, e, z) = (3, 4, 5, 16)) the socle series of A is as
follows:

b0
b2, b6

b1, b3, b4, b8, b9, b11, b12
b5, b7, b10, b13, b14, b15

b16

Note that the socle series of A does not coincide with the Loewy series of A (in contrast
to the situation for group algebras of finite p-groups where p is a prime).

9



5 Isomorphisms

We keep the notation introduced above. Thus F is an arbitrary field, and q, n, e are positive
integers such that q > 1 and e | qn − 1. We consider the F -algebra A = A(q, n, e) and
its radical J . Since all structure constants of A are either 0 or 1 the structure of A is
essentially independent of F .

Theorem 5.1. Let n′ be a divisor of n, and suppose that e = e′ q
n−1
qn′−1 for a positive integer

e′. Then the F -algebras A(q, n, e) and A(q, n′, e′) are isomorphic.

Proof. We observe first that

dimA(q, n, e) =
qn − 1

e
+ 1 =

qn
′ − 1

e′
+ 1 = dimA(q, n′, e′).

Let us denote the standard bases of A := A(q, n, e) and A′ := A(q, n′, e′) by b0, . . . , bz
and b′0, . . . , b

′
z where z = (qn − 1)/e = (qn

′ − 1)/e′. We claim that the F -linear map
f : A −→ A′ with f(bk) = b′k for k = 0, . . . , z is an F -algebra isomorphism. In order to

see this, let k, l ∈ {0, . . . , z}, and consider the q-adic expansions ke′ =
∑n′

t=1 q
t−1it and

le′ =
∑n′

t=1 q
t−1jt. Then

ke = ke′ q
n−1
qn′−1 = (

∑n′

t=1 q
t−1it)(1 + qn

′
+ q2n

′
+ . . .+ qn−n

′
)

=
∑n′

t=1 q
t−1it +

∑n′

t=1 q
n′+t−1it + . . .+

∑n′

t=1 q
n−n′+t−1it

is the q-adic expansion of ke. Similarly, the q-adic expansion of le is

le =
n′∑
t=1

qt−1jt +
n′∑
t=1

qn
′+t−1jt + . . .+

n′∑
t=1

qn−n
′+t−1jt.

Thus Proposition 3.1 implies that bkbl 6= 0 if and only if it + jt < q for t = 1, . . . , n if and
only if b′kb

′
l 6= 0, and in this case we have bkbl = bk+l and b′kb

′
l = b′k+l. The result follows. �

We note that, as shown in the proof above, the condition e = e′ q
n−1
qn′−1 means that the

q-adic expansion of e is periodic with period n′.

Example 5.1. Let q = 5, n = 4, e = 78 and n′ = 2, e′ = 3. (Note that 78 = 3 · (52 + 1).)
Theorem 5.1 implies that A(5, 4, 78) ∼= A(5, 2, 3) =: A. It is easy to verify that dimA = 9
and LL(A) = 5. The Loewy vector is [1, 3, 3, 1, 1], and the Loewy structure is as follows:

b0
b1, b2, b5
b3, b4, b7

b6
b8

(0, 0, 0, 0)
(0, 3, 0, 3), (1, 1, 1, 1), (3, 0, 3, 0)
(1, 4, 1, 4), (2, 2, 2, 2), (4, 1, 4, 1)

(3, 3, 3, 3)
(4, 4, 4, 4)
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Corollary 5.1. (i) Suppose that e = e′ q
n−1
q−1 for some e′ ∈ N. Then

A(q, n, e) ∼= A(q, 1, e′) ∼= F [X]/(X1+z)

where z = (q − 1)/e′; in particular, A(q, n, e) is a uniserial algebra.
(ii) Conversely, if A(q, n, e) is a uniserial F -algebra then qn−1

q−1 divides e.

(iii) If e = qn−1
qn′−1 for a divisor n′ of n then

A(q, n, e) ∼= A(q, n′, 1) ∼= F [X1, . . . , Xn′ ]/(X
q
1 , . . . , X

q
n′).

Proof. (i) The isomorphism A(q, n, e) ∼= A(q, 1, e′) is the special case n′ = 1 of Theorem 5.1.
Both algebras have dimension 1 + z where z = q−1

e′ , and LL(A(q, 1, e′)) = 1 q−1e′ + 1 =
dimA(q, 1, e′) by Corollary 3.1. Thus they are isomorphic to the truncated polynomial
algebra F [X]/(X1+z).

(ii) Suppose that A = A(q, n, e) is uniserial; in particular, dim J/J2 = 1. Thus
ordz(q) = 1 by Remark 4.1, i.e. q ≡ 1 (mod z). Hence qn−1

e = z | q − 1, and qn−1
q−1 | e.

(iii) The isomorphism A(q, n, e) ∼= A(q, n′, 1) is the special case e′ = 1 of Theorem 5.1.
By definition, we have A(q, n′, 1) ∼= F [X1, . . . , Xn′ ]/(X

q
1 , . . . , X

q
n′). �

We continue with another application of Theorem 5.1.

Proposition 5.1. Suppose that e = qn−1
k(q−1) where k is a proper divisor of q + 1, and set

r := q+1
k − 1. Then A = A(q, n, e) has Loewy length q and Loewy vector

[1, 3, 5, . . . , 2k − 3, 2k − 1, . . . , 2k − 1︸ ︷︷ ︸
r

, 2k − 3, . . . , 2k − 3︸ ︷︷ ︸
r

, . . . , 1, . . . , 1︸ ︷︷ ︸
r

].

Proof. It is easy to check that

1 + 3 + 5 + . . .+ 2k − 3 + r(2k − 1 + 2k − 3 + . . .+ 1) = k(q − 1) + 1 = dimA,

and that the candidate for the Loewy vector above has precisely q components.
If k = 1 then e = qn−1

q−1 and z = q − 1, so A(q, n, e) ∼= A(q, 1, 1) ∼= F [X]/(Xq) by
Corollary 5.1. Thus A has Loewy length q and Loewy vector [1, . . . , 1] which has the
desired form, with r = q.

Thus we may assume that k > 1; in particular, q 6= 2. Since q ≡ −1 (mod k) we have

0 ≡ 1 + q + . . .+ qn−1 ≡ 1 + (−1) + . . .+ (−1)n−1 (mod k),

so that n is even. Then e = q+1
k ·

qn−1
q2−1 . By Theorem 5.1, we have A ∼= A(q, 2, q+1

k ). Thus

we may assume that n = 2, e = q+1
k , and r = e− 1. Then LL(A) = q by Proposition 3.3.

Let

V0 := {(i, i) : 0 ≤ i < q} ,
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V1 := {(i, i+ je) : 1 ≤ j < k, 0 ≤ i < q − je} ,
V2 := {(i+ je, i) : 1 ≤ j < k, 0 ≤ i < q − je} .

Each pair in V := V0 ∪ V1 ∪ V2 is a solution (x, y) ∈ {0, . . . , q − 1}2 of the congruence
x+ qy ≡ 0 (mod e). Moreover, it is easily checked that |V | = k(q− 1) + 1 = dimA. Thus
V is precisely the set of solutions (x, y) ∈ {0, . . . , q − 1}2 of the congruence x + qy ≡ 0
(mod e).

It is easy to see that each pair (i, i) ∈ V0 gives rise to a basis vector in the Loewy
layer J i/J i+1, that each pair (i, i+ je) ∈ V1 gives rise to a basis vector in the Loewy layer
J i+j/J i+j+1 and that, similarly, each pair (i+ je, i) ∈ V2 gives rise to a basis vector in the
Loewy layer J i+j/J i+j+1.

Let t ∈ {0, . . . , q − 1}. In order to determine dim J t/J t+1 we need to count the pairs
(i, i+je) ∈ V1 such that i+j = t. These are the pairs (t−j, t−j+je) = (t−j, t+j(e−1))
such that 1 ≤ j < k and 0 ≤ t− j ≤ q − 1− je.

Suppose first that t ≤ k − 1. Then we need to count the pairs (t− j, t+ j(e− 1)) such
that 1 ≤ j ≤ q − 1− j(e− 1). However, the condition 1 ≤ j ≤ t implies that

t+ j(e− 1) ≤ t+ t(e− 1) = te ≤ (k − 1)e < q.

Thus we are simply counting the t pairs (t− j, t+ j(e− 1)) with 1 ≤ j ≤ t.
Suppose now that t ≥ k. Then we need to count the pairs (t− j, t+ j(e− 1)) such that

1 ≤ j < k and t+ j(e− 1) ≤ q − 1. However, it is easily checked that

q − t− 1

e− 1
≤ q − k − 1

e− 1
<
q + 1

e
= k.

Thus we are simply counting the b q−t−1e−1 c = b q−t−1r c pairs (t− j, t+ j(e− 1)) with 1 ≤ j ≤
q−t−1
e−1 .

The count for V2 is similar, and the count for V0 is trivial. We conclude that

dim J t/J t+1 =

{
2t+ 1, for t = 0, . . . , k − 1,
2b q−1−tr c+ 1, for t = k, . . . , q − 1.

The result follows. �

Example 5.2. Let (q, n, e) = (11, 2, 4). Then Proposition 5.1 applies with k = 3 and
r = 3. In this case, A has dimension 31, Loewy length q = 11 and Loewy vector
[1, 3, 5, 5, 5, 3, 3, 3, 1, 1, 1]. More precisely, bases for the various Loewy layers are given
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as follows:
b0

b1, b3, b11
b2, b4, b6, b14, b22
b5, b7, b9, b17, b25
b8, b10, b12, b20, b28

b13, b15, b23
b16, b18, b26
b19, b21, b29

b24
b27
b30

(0, 0)
(0, 4), (1, 1), (4, 0)

(0, 8), (1, 5), (2, 2), (5, 1), (8, 0)
(1, 9), (2, 6), (3, 3), (6, 2), (9, 1)

(2, 10), (3, 7), (4, 4), (7, 3), (10, 2)
(4, 8), (5, 5), (8, 4)
(5, 9), (6, 6), (9, 5)
(6, 10), (7, 7)(10, 6)

(8, 8)
(9, 9)

(10, 10)

Many of our algebras will turn out to have Loewy length 3. In this connection, the
following result may be of interest.

Proposition 5.2. Let F be algebraically closed of characteristic p 6= 2, and let A be a
symmetric local F -algebra with dim J(A)2/J(A)3 = 1. Then A has an F -basis

1, x, x2, . . . , xr, y1, . . . , ys

such that xr+1 = 0 = xyi = yix for i = 1, . . . , s and

yiyj =

{
xr , if i = j,
0 , otherwise

(i, j = 1, . . . , s).

In particular, A is commutative, and the isomorphism type of A is uniquely determined by
the dimension and the Loewy length of A.

Proof. Let J := J(A). Since dim J2/J3 = 1, Lemma G in [11] implies that J ⊆ Z(A). Thus
A = F · 1⊕ J is commutative.

Assume that a2 ∈ J3 for all a ∈ J . Then 2ab = (a+ b)2 − a2 − b2 ∈ J3 for all a, b ∈ J .
Since char(F ) 6= 2 this implies that J2 ⊆ J3. Thus J2 = 0, a contradiction.

Hence there is x ∈ J such that x2 /∈ J3, i.e. J2 = Fx2⊕J3. Now Lemma E in [11] shows
that J i = Fxi + J i+1 for i ≥ 2. Let r ∈ N be minimal such that xr+1 = 0. Then x2, . . . , xr

constitute an F -basis of J2. We set I := Fx + Fx2 + . . . + Fxr. Since IJ ⊆ J2 ⊆ I, I is
an ideal of A. Let σ : A −→ F be a symmetrizing linear form on A. Then

I⊥ := {y ∈ A : σ(yI) = 0} = {y ∈ A : Iy = 0}

is an ideal of A, and dim I + dim I⊥ = dimA. It is easy to see that I ∩ I⊥ = Fxr. Thus
dim(I + I⊥) = dimA − 1, i.e. I + I⊥ = J . Since σ is a symmetrizing linear form on A,
we have σ(Jr) 6= 0, i.e. σ(xr) 6= 0; we may assume that σ(xr) = 1. Then I⊥ = Fxr ⊕ Y
where Y := I⊥ ∩Ker(σ). We claim that the bilinear form

β : Y × Y −→ F, (y, z) 7−→ σ(yz),
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is nondegenerate. Indeed, suppose that y ∈ Y satisfies σ(yz) = 0 for all z ∈ Y . Since
J = I+ I⊥ = I⊕Y this implies that σ(yz) = 0 for all z ∈ J . Since also σ(y ·1) = σ(y) = 0
we conclude that σ(yA) = 0, so that y = 0.

Now let y1, . . . , ys be an orthonormal basis of Y , and let i, j ∈ {1, . . . , s}. Then yiyj ∈
J2 ⊆ I and yiyj ∈ I⊥, i.e. yiyj ∈ I ∩ I⊥ = Fxr. Let αij ∈ F such that yiyj = αijx

r. Then
αij = σ(αijx

r) = σ(yiyj) = δij . Since

A = F · 1⊕ J = F1⊕ I ⊕ Y = F1⊕ Fx⊕ Fx2 ⊕ . . .⊕ Fxr ⊕ Fy1 ⊕ . . .⊕ Fys

the result follows. �

6 The numbers m(q, e)

Let q, e ∈ N such that gcd(q, e) = 1. We define m(q, e) as the smallest positive integer t
with the property that there exists a sum of t powers of q which is divisible by e. These
numbers will be used in Section 7 in order to bound the Loewy length of our algebras. The
following facts are easy to verify; we leave the formal proofs to the readers.

Lemma 6.1. (i) m(q, e) = m(r, e) for every r ∈ N such that q ≡ r (mod e).
(ii) m(q, e) ≤ m(qk, e) for every k ∈ N.
(iii) m(q, e) ≤ m(r, e) whenever r ∈ N is such that the cyclic subgroup 〈r + eZ〉 of

(Z/eZ)× is contained in 〈q + eZ〉.
(iv) m(q, f) ≤ m(q, e) for every (positive) divisor f of e.
(v) m(q, ef) ≤ m(q, e)m(q, f) for every f ∈ N.

Note that always m(q, e) ≤ e, and observe that m(q, e) can be worked out by computing
in the finite ring Z/eZ.

Example 6.1. (i) m(q, e) = e if and only if q ≡ 1 (mod e).
(ii) m(q, e) = 1 if and only if e = 1.

Example 6.2. One can check that the first values of the function N0 −→ N0 sending x to
m(2, 2x+ 1), are given as follows:

1, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 5, 2, 3, . . .

Recall that we denote by orde(q) the order of q modulo e, i.e. the order of q + eZ in
(Z/eZ)×. Thus orde(q) divides ϕ(e) where ϕ denotes Euler’s totient function. Moreover,
for n ∈ N, we have:

qn ≡ 1 (mod e)⇐⇒ orde(q) | n.

The following result gives some further properties of the numbers m(q, e).
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Lemma 6.2. Let e1 := gcd(e, q − 1), and let n := orde(q).
(i) If e divides a sum of t powers of q then e1 divides t. In particular, e1 divides m(q, e).
(ii) m(q, e) ≤ e1m(q, ee1 ).

(iii) m(q, e) ≤ ne1
l ≤ ne1 where l := gcd(n, e1,

qn−1
e ).

(iv) m(q, e) ≤ n if e divides 1 + q + · · ·+ qn−1.

Proof. (i) Let a1, . . . , at ∈ N0 such that qa1 + . . .+ qat ≡ 0 (mod e). Then

0 ≡ qa1 + . . .+ qat ≡ 1a1 + . . .+ 1at ≡ t (mod e1).

(ii) Lemma 6.1 (v) implies that m(q, e) ≤ m(q, e1)m(q, ee1 ), and m(q, e1) = e1 by
Example 6.1.

(iii) Since l | e1 | q − 1 we have q ≡ 1 (mod l). Thus 1 + q + . . . + qn−1 ≡ n ≡ 0

(mod l). Since el | qn − 1 = (q − 1)(1 + q + . . . + qn−1) we have e
e1
| q−1e1 ·

1+q+...+qn−1

l .

Hence e
e1
| 1+q+...+q

n−1

l and e | e1l (1 + q + . . .+ qn−1), so that m(q, e) ≤ ne1
l .

(iv) If e divides 1 + q + . . .+ qn−1 then m(q, e) ≤ n by definition. �

We now present another useful description of the numbers m(q, e).

Proposition 6.1. Let q > 1, let n ∈ N such that e | qn − 1, and let z := qn−1
e . Then

m(q, e) = min{sq(ke) : k ∈ N} = min{sq(ke) : k = 1, . . . , z}.

In particular, we always have m(q, e) ≤ sq(e) ≤ e.

Proof. Let k ∈ N, and consider the q-adic expansion ke = i1 + i2q + . . . + irq
r−1. Since

e | ke, we have m := m(q, e) ≤ i1 + . . .+ ir = sq(ke), by definition. Thus

m ≤ min{sq(ke) : k ∈ N} ≤ min{sq(ke) : k = 1, . . . , z}.

Now let k ∈ N be minimal such that ke is a sum ofm powers of q. Moreover, let a1, . . . , am ∈
N0 such that ke = qa1 + . . .+qam . Then at < n for t = 1, . . . ,m, and ke =

∑n−1
t=0 itq

t where
it = |{j ∈ N : 1 ≤ j ≤ m, aj = t}| for t = 0, . . . , n− 1; in particular, m = i0 + . . . + in−1.
Moreover, we have it < q for t = 0, . . . , n − 1, by the definition of m. Thus ke ≤ qn − 1,
i.e. k ≤ z, and sq(ke) = i0 + . . .+ in−1 = m. �

If ke has q-adic expansion ke = i1 + qi2 + . . . + qn−1in (where k ∈ {0, . . . , z}) then
(z − k)e has q-adic expansion

(z − k)e = (q − 1− i1) + q(q − 1− i2) + . . .+ qn−1(q − 1− in).

Thus sq((z − k)e) = n(q − 1)− sq(ke); this is useful in the computation of m(q, e).
We have observed above that m(q, e) = 1 if and only if e = 1. The following result

characterizes the condition m(q, e) = 2. (It seems to be difficult to characterize the case
m(q, e) = 3 in a similar way.)
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Lemma 6.3. Let q > 1. Then m(q, e) = 2 if and only if e = 2, or n := orde(q) is even
with qn/2 ≡ −1 (mod e). Moreover, if m(q, e) = 2 and e is odd, then m(q, ek) = 2 for
k ∈ N.

Proof. If e = 2 then q is odd, and certainly m(q, e) = 2.
If n := orde(q) is even and qn/2 ≡ −1 (mod e) then qn/2 + 1 ≡ 0 (mod e) and

m(q, e) = 2.
Suppose conversely that m(q, e) = 2 6= e, i.e. e > 2. Then e | qi + qj for suitable

integers i, j with 0 ≤ i < j < n := orde(q). Since gcd(q, e) = 1 this implies e | 1 + qj−i.
Thus we may assume that i = 0 and that j is minimal. Then qj ≡ −1 (mod e) implies
that q2j ≡ 1 (mod e), so that n | 2j. Since n > j this implies that n = 2j; in particular,
n is even, and qn/2 = qj ≡ −1 (mod e).

Now let e be odd and m(q, e) = 2. Then e divides Q+1 for some power Q of q. Suppose
that en divides Qe

n−1
+ 1 for some n ∈ N. Then Qe

n−1
= enf − 1 for some f ∈ N. Thus

Qe
n

= (enf − 1)e =

e∑
i=0

(
e

i

)
(enf)i(−1)e−i

≡ (−1)e + eenf(−1)e−1 ≡ −1 (mod en+1).

i.e. en+1 | Qen +1. By induction, we obtain ek | Qek−1
+1 for k ∈ N, and the result follows.

�

Remark 6.1. (i) Suppose that (Z/eZ)× is a nontrivial cyclic group. (Recall that this is
the case if and only if e is 4, an odd prime power or the double of an odd prime power.)
If n := orde(q) is even then m(q, e) = 2; in fact, qn/2 + eZ has order 2, and −1 + eZ is the
only element of order 2 in (Z/eZ)×. Thus qn/2 + eZ = −1 + eZ.

(ii) Suppose that e is a Fermat prime (e.g. e ∈ {3, 5, 17}). Then |(Z/eZ)×| = e− 1 is a
power of 2. Thus orde(q) is even whenever q 6≡ 1 (mod e). Hence m(q, e) = 2 for all such
q.

As in Example 6.2, we frequently have m(q, e) = 2. The following result can also be
used in certain situations to show that m(q, e) is small.

Lemma 6.4. Let q > 1, and let p be a prime divisor of n := orde(q) such that gcd(e, q
n
p −

1) = 1. Then m(q, e) ≤ p.

Proof. Writing n = pk where k ∈ N we have e | qkp − 1 = (qk − 1)(qk(p−1) + . . .+ qk + 1).
Since gcd(e, qk − 1) = 1 this implies that e | qk(p−1) + . . .+ qk + 1. Thus m(q, e) ≤ p. �

Remark 6.2. When e is itself a prime the condition gcd(e, q
n
p − 1) = 1 is always satisfied

and can therefore be omitted. In this case we have m(q, e) ≤ p where p is the smallest
prime divisor of n = orde(q). In particular, we have m(q, e) ≤ P where P is the largest
prime divisor of e− 1.

We will present many more properties of the numbers m(q, e) in part II of this paper.
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7 Loewy length

Let F be a field, and let q, n, e ∈ N such that q > 1 and e | qn−1; in particular, gcd(q, e) = 1.
As before, we set z := (qn − 1)/e, e1 := gcd(e, q − 1) and m := m(q, e). We have already a
recursive method in order to compute the Loewy length of the F -algebra A = A(q, n, e), in
terms of the map λ (see Proposition 3.2). In this section we are interested in more direct
ways in order to compute or bound LL(A) in terms of the parameters q, n, e. As above, we
set J := J(A). A connection with the Loewy length is given by the following result.

Theorem 7.1. With notation as above, we have:
(i) nb q−1m c+ 1 ≤ LL(A) ≤ bn q−1m c+ 1.

(ii) If m - q − 1 then nb q−1m c+ 2 ≤ LL(A).

(iii) If m | q − 1 or m = ne1
l where l := gcd(n, e1,

qn−1
e ) then LL(A) = n q−1m + 1.

Proof. (i) Consider a product bk1 . . . bkt where k1, . . . , kt ∈ {1, . . . , z} and t := bn q−1m c+1 >

n q−1m . For j = 1, . . . , t, let kje = ij1 + qij2 + . . .+ qn−1ijn be the q-adic expansion of kje.
Then sj := sq(kje) ≥ m for j = 1, . . . , t, by Proposition 6.1. Thus s1 + . . . + st ≥ tm >
n(q − 1). On the other hand, we have

s1 + . . .+ st =

t∑
j=1

n∑
l=1

ijl =

n∑
l=1

t∑
j=1

ijl.

Hence
∑t

j=1 ijl > q−1 for some l ∈ {1, . . . , n}. However, Proposition 3.1 implies that then

bk1 . . . bkt = 0. This shows that J t = 0, i.e. LL(A) ≤ t.
In order to prove the other inequality we may assume that m < q; for otherwise the

result is trivial. By Proposition 6.1, there is k ∈ {1, . . . , z} such that m = sq(ke). Consider
the q-adic expansion ke = i1 + qi2 + . . . + qn−1in. We have observed in Proposition 4.1
that in + qi1 + . . .+ qn−1in−1 = k′e for some k′ ∈ {1, . . . , z}. In this way we can cyclically
permute the digits and obtain integers k, k′, k′′, . . . ∈ {1, . . . , z}. The sum of the n numbers
ke, k′e, k′′e, . . . is

m+ qm+ . . .+ qn−1m =
qn − 1

q − 1
m.

We denote this sum by Ke where K ∈ N. Setting t := b q−1m c ≥ 1 we have tm ≤ q−1. Thus
tKe = tm+qtm+. . .+qn−1tm is the q-adic expansion of tKe. Hence Proposition 3.1 implies
that btK = btK 6= 0. Since bK is a product of n elements in J this implies LL(A) > tn, i.e.
LL(A) ≥ nt+ 1.

(ii) Now suppose that m - q − 1. Since dimA = 1 + z ≥ 2 and dimA/J = 1 we have
LL(A) ≥ 2. Thus we may assume m < q − 1. We write q − 1 = tm + r where t = b q−1m c
and r ∈ {1, . . . ,m− 1}. Then, with K as above,

r(1 + q + . . .+ qn−1) = (q − 1)(1 + q + . . .+ qn−1)− tm(1 + q + . . .+ qn−1)

= ze− tKe = Le
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where L = z − tK ∈ N. Hence Proposition 3.1 implies that 0 6= bz = btK+L = btKbL where
bL ∈ J . Thus bz is a product of tn+ 1 elements in J , i.e. J tn+1 6= 0 and LL(A) ≥ tn+ 2.

(iii) If m | q − 1 then the lower bound in (i) coincides with the upper bound. Thus

LL(A) = n

⌊
q − 1

m

⌋
+ 1 = n

q − 1

m
+ 1.

Suppose therefore that m = ne1
l . As in the proof of Lemma 6.2, we have

e1
l

(1 + q + . . .+ qn−1) = ke

for some k ∈ {1, . . . , z}. Thus Proposition 3.1 implies that b
(q−1)/(e1/l)
k = bz 6= 0, so that

LL(A) > q−1
e1/l

. On the other hand, by (i) we have

LL(A) ≤
⌊
n
q − 1

m

⌋
+ 1 =

⌊
n
q − 1

ne1/l

⌋
+ 1 =

q − 1

e1/l
+ 1.

Hence LL(A) = q−1
e1/l

+ 1 = n q−1m + 1. �

We obtain the following consequence.

Corollary 7.1. If n ≤ 3 then LL(A) =
⌊
n q−1m

⌋
+ 1.

Proof. If n = 1 then m = e1 by Lemma 6.2; in particular, m | q− 1, so LL(A) = q−1
m + 1 =

b q−1m c+ 1 by Theorem 7.1 (iii).
If n = 2 then m ∈ {e1, 2e1} by Lemma 6.2; in particular, m | q− 1 or m = ne1, so that

LL(A) = 2 q−1m + 1 = b2 q−1m c+ 1 by Theorem 7.1 (iii).
If n = 3 then m ∈ {e1, 2e1, 3e1} by Lemma 6.2. If m ∈ {e1, 3e1} then we can argue as

before. Thus let m = 2e1. By Theorem 7.1 (iii), we may also assume that m - q− 1. Then
Theorem 7.1 (ii) implies that

LL(A) ≥ 3

⌊
q − 1

2e1

⌋
+ 2 = 3

(
(q − 1)/e1

2
− 1

2

)
+ 2 = 3

q − 1

2e1
+

1

2

=

(
3(q − 1)/e1

2
− 1

2

)
+ 1 =

⌊
3
q − 1

2e1

⌋
+ 1 ≥ LL(A).

Thus LL(A) = b3 q−1m c+ 1. �

Remark 7.1. (i) In part II of the paper, we will see that often the upper bound in
Theorem 7.1 is attained, but we will eventually also construct examples where LL(A) <
bn q−1m c+ 1.
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(ii) In order to prove LL(A) = bn q−1m c + 1 in a specific case it suffices, of course, to

show that LL(A) > bn q−1m c =: t, and this is usually done by finding k1, . . . , kt ∈ {1, . . . , z}
such that bk1 . . . bkt = bz (6= 0).

(iii) Calculations with a combination of GAP [7] and Julia [2] show that LL(A) =
bn q−1m c+ 1 in the following cases:

n 4 5 6 7 8 9

q ≤ 100 ≤ 13 ≤ 9 ≤ 9 ≤ 9 ≤ 8

(iv) Arguments similar to those of Corollary 7.1 show that LL(A) ≥ bn q−1m c in case
n = 4. We have not found an example where equality holds.

(v) In the situation of Theorem 5.1, we have m(q, e) = n
n′m(q, e′), as is easy to see from

the proof of Theorem 5.1. Thus

LL(A(q, n, e)) =

⌊
n(q − 1)

m(q, e)

⌋
+ 1⇐⇒ LL(A(q, n′, e′)) =

⌊
n′(q − 1)

m(q, e′)

⌋
+ 1.

(vi) If qn−1
q−1 | e then LL(A(q, n, e)) = bn q−1m c+ 1; in fact, Theorem 5.1 gives an isomor-

phism A(q, n, e) ∼= A(q, 1, e′) for a suitable e′ ∈ N. Thus (v) and Corollary 7.1 imply the
equality.

(vii) If e = qn−1
qn′−1 for a divisor n′ of n then LL(A(q, n, e)) = bn q−1m c+1 since Theorem 5.1

gives an isomorphism A(q, n, e) ∼= A(q, n′, 1), and m(q, 1) = 1 | q−1, by Example 6.1. Thus
Theorem 7.1 (iii) proves the assertion.

(viii) If e | q−1 then e = e1 | m ≤ sq(e) = e, so that m = e | q−1 (see Example 6.1 (i)).
Thus LL(A) = n q−1m + 1 by Theorem 7.1 (iii) again. (This observation is [5, Theorem 1.2];
cf. also Corollary 3.1.)

(ix) If e = qn−1
k(q−1) for a proper divisor k of q + 1 then LL(A) = bn q−1m c+ 1; this follows

from Proposition 5.1 and its proof.

The following observation is elementary.

Lemma 7.1. The F -algebra A = A(q, n, e) has the following properties:
(i) LL(A) ≥ 2;
(ii) LL(A) = 2 if and only if e = qn − 1;
(iii) If m = m(q, e) > n q−13 then LL(A) = bn q−1m c+ 1 ≤ 3.

(iv) If m = m(q, e) ≤ 2 then LL(A) = bn q−1m c+ 1; in particular, this applies whenever
e divides q + 1 (cf. Proposition 3.3).

Proof. (i) Since dimA = 1 + z ≥ 2 and dimA/J = 1 we have LL(A) ≥ 2.
(ii) If LL(A) = 2 then J2 = 0, so dim J = 1 since A is a symmetric F -algebra. Thus

2 = dimA = 1 + z = 1 + qn−1
e , i. e., e = qn − 1. The converse is obvious.

(iii) Suppose that m > n q−13 . Then LL(A) ≤ bn q−1m c+ 1 ≤ 2 + 1 = 3.

19



If e = qn − 1 then m = sq(q
n − 1) = n(q − 1), so that LL(A) = 2 = bn q−1m c+ 1.

If e < qn − 1 then LL(A) ≥ 3 by (ii), so that LL(A) = 3 = bn q−1m c+ 1.
(iv) By the remarks above, we may assume that m = 2. If q is odd then m = 2 | q − 1,

and the result follows from Theorem 7.1 (iii). Thus we may assume that q is even. Then
e is odd. By Lemma 6.3, ν := orde(q) is even, and qν/2 ≡ −1 (mod e). Moreover, we
have n = νr for some r ∈ N. In this case, J(A(q, n, e)) contains the monomials xixν/2+i
(i = 1, . . . , n − ν

2 ). Thus x1 · · ·xn can be written as a product of n
2 of these monomials,

and the nonzero element bz = xq−11 · · ·xq−1n ∈ A can be written as a product of n
2 (q− 1) of

these monomials. Hence

LL(A(q, n, e)) ≥ n

2
(q − 1) + 1 =

⌊
n
q − 1

m

⌋
+ 1 ≥ LL(A(q, n, e)).

�

It seems to be difficult to characterize precisely when LL(A) = 3.

Example 7.1. If e ∈ {2, 3, 4, 6} then q ≡ ±1 (mod e) for any q that is coprime to e.
Thus Remark 7.1 and Lemma 7.1 yield that we have LL(A(q, n, e)) = bn q−1m c+ 1 for these
values of e, and all q and n.

We also have LL(A(q, n, e)) = bn q−1m c+ 1 for e = 5 and all q and n; in fact, if q ≡ ±1
(mod 5) then we can argue as before, and if q 6≡ ±1 (mod 5) then m = 2 by Remark 6.1,
and we can apply Lemma 7.1.

We will extend this example considerably in the second part of this paper.
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Budapest, Műegyetem rkp. 3-9, Hungary, e-mail: fobaba@t-online.hu

21
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