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SingerAlg — what is it about?

® Fix coprime integers g,z > 1 and a field F,
® take n such that z divides ¢" — 1, and set e = (¢" — 1) /z.
® Consider the F-algebra

z+1
Alg,z,Fl= D FB
i=1

with multiplication defined by

Bi - Bj = Bjtj-1

if the g-adic expansions of (i —1)-e and (j — 1) - e can be added

without carry, and
Bi-B; =0

otherwise.
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Example: z=7,9g =8

n=1,

8t —-1)/7=1
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Example: z=7,9g =2
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Example: z=7,9g =3

n =0,

e=(3°-1)/7=104
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Example: z=7,g=06

n=2,

(62 —1)/7=5
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What are we interested in?

® (lassify isomorphism types?
® [oewy structure?

® Substructures of A = Alq, z, F]:

® radical series A > J(A) > J(A)? > .-,

® socle series 0 < S(A) < S2(A) < -+,

® in char. p: p-th powers {xP; x € U} for U < A,

® in char. p: p-th roots {x € A;xP € U} for U < A

® and their intersections, sums, annihilators, . ..
® Compute derivations of subquotients of A (dimension)

® Count solutions of (nonlinear) equation systems.
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Implementation

® GAP’s generic AlgebraByStructureConstants?

® \We can do better (“combinatorial approach”):

The interesting substructures are generated by subsets of the basis
(817 827 SRR BZ—|—1)-

Provide an independent, much simpler implementation.
(We think of z < 10000.)

e \Why Julia: Expect speedup.
And expect that this can be achieved easier than via C code.
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Package overview

® SingerAlgebra( g, z ): domains, methods for them, elements;
store attributes; besides that, use only for testing

® LoewyStructureInfo( g, z ): store combinatorial data

® database of all Alg, z] for z < 10000

® compute the abovementioned substructures/invariants

® compute permutation isomorphisms, using the GraPe package
® compute m(q, e) (a number theoretic function, see exercises)
® decide when the upper bound

[n(g —1)/m(q,e)] +1 = LL(Alq, ])

is attained (for example for fixed e)
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Package overview, continued

e compute dim(Der(U(A)/S(A))) for a certain Fa-subalgebra U(A);

if U(A)/S(A) has dimension d then this means to compute
the rank of a (d? x d3)-matrix over IF;

® count the number of solutions of a polynomial equation system of
degree two over [y,

by iterating over the elements in a [F>-vector space
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Package structure

® surface/administration: GAP

® data structures: GAP record and Julia dictionary,

SingerAlg.MultTable( gapdata )
Julia.SingerAlg.MultTable( juliadata )

store as needed g-adic expansions, multiplication table,
basis subsets representing J', S;, ...

e worker functions: GAP and Julia implementations

LoewyStructureInfoGAP( q, z )
LoewyStructureInfoJulia( q, z )

(in particular: separate caching on both sides)
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Example 1: g-adic expansion of k - e, in GAP

gap> MyCoefficientsQadic:= function( ke, q, n )

> local v, 1;

> v:= ListWithIdenticalEntries( n, 0 );

> for i in [ 1 .. n ] do

> v[i] := RemInt( ke, q ); ke:= Quolnt( ke, q );
> od;

> return v;

> end; ;

gap> q:= 6;; z:= 41;; mn:= OrderMod( q, z );

40

gap> e:= (qn - 1) / z;

326036452166920343118020633575

gap> MyCoefficientsQadic( e, g, n )

[1, 1, 2, 3, 5, 2, 2, 5, 1, 1, 3,
4, 4, 3, 2, 0, 3, 3, 0, 4, 4, 2

4, 1, 0, 2, 2, 4, 0, 5, 5,
b 1, 4’ 5’ 33 33 1, 5’ O’ O]
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Example 1: g-adic expansion of k - e, in Julia

julia> function my_coefficients_qadic(ke::Int, q::Int, n::Int)
v = zeros(Int, n)
for 1 in 1:n
ke, r = divrem(ke, q); vii] = r
end
return v
end;

julia> q = 6; =z = 41; n = 40;

julia> e = div( g™n - 1, z )
56076192528203775
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Example 1: g-adic expansion of k - e, in Julia, 2nd attempt

julia> function my_coefficients_qadic(ke::T, q::Int,
n::Int) where T<:Integer
v = zeros(Int, n)
for 1 in 1:n
ke, r = divrem(ke, q); vii] = r
end
return v
end;

julia> q = 6; =z = 41; n = 40;

julia> e = div( big(q)™n - 1, z )
326036452166920343118020633575

julia> println(my_coefficients_qadic(e, q, n))
[1, 1, 2’ 3’ 5, 2’ 2, 5’ 1, 1, 3, 4’ 1’ O, 2’ 2’ 4’ O’ 5’ 5,
4, 4, 3, 2, 0, 3, 3, 0, 4, 4, 2, 1, 4, 5, 3, 3, 1, 5, 0, O]
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Example 1: g-adic expansion of k - e, in Julia, 3rd attempt

® Be careful when translating GAP code to Julia.
® Do not expect speedup when dealing with Julia's “big integers".

® \What is the solution?

Use theory:
q, z,n, k are small, but e is usually not.

Compute the g-adic expansion of k - e,
without ever writing down e:

CoefficientsQadicReversed( k, z, g, n )
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Example 2:
Some functions from elementary number theory

In GAP:

Factors,
IsPrimelnt,
IsPrimePowerlInt,
NextPrimelnt,
OrderMod,

Phi.

Currently, let Julia call the GAP functions:

factors(n::T) where {T<:Integer} =
Vector{Int}(GAP.Globals.Factors(GAP.julia_to_gap(n)))
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Example 3: Compute derivations

Given an algebra of dimension n,
compute (the dimension of) the Lie algebra of its (right) derivations.

In GAP:

RightDerivations( B ),

solve a linear equation system (n?

x n3).
The matrix of this system is in general sparse.
In our situation, it is often very sparse.

We work over [F»:

Represent each equation by the set of positions of nonzero cofficients.
In Julia, use objects of type BitArray.

(Implement only one new method for that type, which “flips one bit".)
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Example 4:
Count solutions of a quadratic polynomial equation system

Translate the problem into a matrix equation v - A - w! = 0.

We work over F»:
Run over the vectors in a [Fo-vector space,

such that subsequent vectors differ in exactly one position (Gray code),
and compute the rank of a (small) matrix in each step.

Implement a suitable iterator, both in GAP and in Julia.
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Conclusions

® \We get speedup by using Julia.
In the above examples, the factor is 5 to 10,
but it depends also on the hardware.
(And | did not run really large examples with the GAP functions.)

® One does not get this speedup for free,
one has to invest work.

® |t is true that this can be done also by people
who cannot write C programs.

® “Translating” existing GAP code to Julia
is often not a good point of view.

® Sooner or later one notices
that the amount of Julia code is growing
for which one has no GAP counterpart.
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Thank you for your attention.
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