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The paper presents an explicit example of a noncrossed product division algebra of index and
exponent 8 over the field Q(s)(t). It is an iterated twisted function field in two variables D(x, σ)(y, τ)

over a quaternion division algebra D which is defined over the number field Q(
√

3,
√
−7). The

automorphisms σ and τ are computed by solving relative norm equations in extensions of number
fields. The example is explicit in the sense that its structure constants are known. Moreover, it is
pointed out that the same arguments also yield another example, this time over the field Q((s))((t)),
given by an iterated twisted Laurent series ring D((x, σ))((y, τ)) over the same quaternion division
algebra D.
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1 Introduction

Context. Let K be a field that is fixed throughout the following. We assume that all algebras
considered have K as their center (unless stated otherwise) and are finite-dimensional over K. By
the classical structure theorem of Wedderburn, the simple algebras are precisely the matrix rings over
division algebras. In fact, Wedderburn’s theorem states that any simple algebra A is isomorphic to
Mn(D) for a division algebra D that is unique up to isomorphism and a unique n ∈ N. We call D the
underlying division algebra of A. A simple algebra A is called a crossed product if it contains a maximal
subfield (i.e. a commutative subfield L with [L : K]2 = dimK A) that is Galois over K. Otherwise, A is
called a noncrossed product.

It is a classical result from number theory that all simple algebras are crossed products if K is a
global or local field. In fact, in these cases they even contain a cyclic maximal subfield. The question
that naturally arises, and that was open for several decades, is whether this is true for any field K. The
negative answer was given in 1972 by Amitsur’s paper [1], which presented the first noncrossed product
division algebra.

What mainly accounts for the importance of crossed products is their correspondence to cocycles.
Any crossed product algebra A has a vector space basis over K such that the structure constants of A
with respect to this basis are described in an easy fashion by a Galois 2-cocycle. The structure constants
are the coefficients of the entries of the multiplication table with respect to a fixed basis. Conversely, we

∗ Supported in part by the DAAD (Kennziffer D/99/13304).
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have the crossed product construction that assigns to each Galois 2-cocycle a simple algebra by defining
the structure constants in the same easy fashion in terms of the cocycle.

The correspondence to cocycles is relevant in different ways. On the one hand, the construction
from cocycles is very useful to obtain simple algebras explicitly. It goes back to the very first examples
of algebras, starting with Hamiltons quaternions. On the other hand, it is the key to the important
cohomological description of the Brauer group. The elements of the Brauer group (of K) are the classes
of simple algebras with the same underlying division algebra, so that each class is represented by a unique
division algebra (up to isomorphism). Simple algebras with the same underlying division algebra are
called similar. The cohomological description of the Brauer group now arises from the classical theorem
that every simple algebra is similar to a crossed product, hence every class is represented by a Galois
2-cocycle. For a reference on crossed products, Brauer groups and related topics see Pierce [13] or
Jacobson [10].

We are mainly interested in the construction of (noncrossed product) division algebras. It is elegant for
many purposes to describe a division algebra up to similarity, i.e. by giving its Brauer class, rather than
up to isomorphism. We call this an indirect approach, in contrast to a direct approach that constructs
division algebras up to isomorphism. An example for the latter are the twisted Laurent series rings1,2.

Others that come to mind are quotient rings of certain noncommutative rings, e.g. twisted function
fields2 and generic division rings.

The approach has consequences on the explicitness of the construction. By an explicit algebra con-
struction we mean a construction that gives us the structure constants with respect to some basis over
the center. An explicit algebra construction will enable us to compute explicitly with elements from the
algebra. An indirect approach is in general not explicit, because, given a simple algebra, it is (at this
time) practically impossible to obtain the structure constants of the underlying division algebra. The
Wedderburn structure theorem only gives us the existence and uniqueness of the underlying division
ring, but the explicitness is generally lost in this passage. From the explicit viewpoint, an indirect
approach is rather an existence proof than a construction. A direct approach on the other hand may be
explicit or not. To my knowledge the generic division rings are not explicit either, because the centers
are generally unknown3 and so are the structure constants. The twisted Laurent series rings and twisted
function fields are explicit provided that all involved parameters are known explicitly.

After Amitsur’s first example many noncrossed product constructions have been suggested. A lot of
them can be viewed as variations of Amitsur [1]. But the constructions in Jacob-Wadsworth [8] and
Brussel [2] differ from Amitsur [1] in the approach, the ideas of proof, and in some of the properties of the
obtained examples. We can classify different noncrossed product examples for instance by the centers
and their “size”, the algebra degrees, and the explicitness of the construction. These properties are
discussed below for [1], [8] and [2]. A detailed survey on the various noncrossed product constructions
can be found in Wadsworth [17, § 5].

It is known that the “smallest” centers that admit noncrossed products are Q(t) and Q((t)). This
was proved by Brussel [2] in 1995. In Jacob-Wadsworth [8] the transcendence degree of the center gets
higher, while in Amitsur [1] the center remains unknown. The smallest degrees for which noncrossed
products are known to exist at this time are 8 and p2 for odd primes p. These degrees are obtained
in all of [1], [8] and [2]. It is unknown if there are noncrossed products of prime degree p ≥ 5, but
there are none of degree 4. The constructions used are basically of two types. Either the noncrossed
products are generic division rings, which is the case for [1] and its variations. Or they appear as the
underlying division algebra of some other simple algebra that is constructed, which is the case for [8]
and [2]. Thus, [1] represents a direct approach, while [8] and [2] represent indirect approaches. None of
these constructions is explicit in the sense formulated above.

Motivation. From the explicit viewpoint, the striking dichotomy between crossed products and
noncrossed products is that crossed products have a presentation with structure constants given by

1 Twisted Laurent series can be traced back historically to a construction of Hilbert of (infinite-dimensional) ordered
division rings in his “Foundation of Geometry” that he called “algebra of segments”.

2 The construction will be recalled in § 2 of this paper.
3 There is a substantial theory on the centers of generic division rings. For a reference see Saltman [15, Chapter 14].
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a Galois 2-cocyle, while noncrossed products lack such a presentation. If division algebras are given
non-explicitly this dichotomy does not show up because we lack the structure constants in any case,
whether they are crossed products or not. To make the dichotomy accessible an explicit noncrossed
product example is required. The following quote nicely illustrates the problem.

”To a division algebra specialist the lack of an alternative presentation [to the cocycle pre-
sentation] is unsatisfactory. Finding a noncrossed product over a field is like discovering an
uncharted island by plane. The territory remains unexplored even after it is put on the map.
Still it is an interesting find, indicating the theory of division algebras over the field is nontrivial.
Moreover, the fact that existence is provable hints that the theory is accessible.”

— Eric Brussel, from the introduction of [3]

Our goal is to land on one of these islands. And finding the structure constants is like finding a natural
airstrip (as bumpy as it may be). It enables us to land and explore by foot. We want to give an explicit
example of a noncrossed product with center and degree as small as possible. It is clear that a direct
approach of construction will be required. Furthermore, it is natural to expect that if the example is
explicit then we can give a rather elementary and direct proof of the fact that it is a noncrossed product.

Accomplishment. In this paper an explicit example of a noncrossed product division algebra is
given. It is the first explicit one. The degree is 8, which is the smallest one for which existence of
noncrossed products is currently known. The only drawback is that the center is not the smallest one
possible : it is Q(s)(t).

The direct construction used here is the one of iterated twisted function fields in two variables over
division algebras over number fields. These algebras are denoted by D(x, σ)(y, τ) where D is the division
algebra and σ and τ are outer automorphisms of D that define conjugation of elements from D with the
indeterminates x and y respectively (see § 2 for a precise definition and algorithmic construction). By
carefully choosing the parameters involved (see the example in § 4), this construction yields a noncrossed
product. The parameters are surprisingly small. For instance, D can be chosen to be the quaternion
division algebra (3 +

√
3, −7+

√
−7

2 )K over the biquadratic number field K = Q(
√

3,
√
−7).

In general, it is very difficult to explicitly compute outer automorphisms of division algebras or central
simple algebras. But in very special cases the problem can be reduced to the solution of norm equations
in field extensions (see § 3). Since we work over number fields, methods from computational algebraic
number theory can then be applied. This paper gives an example of a division algebra D that meets two
requirements at the same time : it admits explicit computation of outer automorphisms and its iterated
twisted function field is a noncrossed product. This is tricky because the two requirements work against
each other. Roughly spoken, the former needs certain “nice subfields” in D while the latter prohibits
the existence of subfields that are “too nice”.

A self-contained and elementary proof is given of the fact that the example presented is a noncrossed
product. Like in most of the previous examples noncommutative valuation theory is present2. The
valuation is the x-adic valuation of twisted function fields D(x, σ), which is in complete analogy to
its commutative counterpart and can be regarded as common knowledge. In the main theorem (see
Theorem 5.2) the x-adic valuation is used to relate the subfields of D(x, σ) to the subfields of D. It is
essentially this theorem that allows the direct approach with twisted function fields. A further number
theoretic part (see Theorem 6.2) shows that the chosen quaternion division algebra does not contain
maximal subfields Galois over Q (a proper subfield of its center). This completes the proof.

It is pointed out that the presented arguments also yield a noncrossed product division algebra that
is an iterated twisted Lauent series ring. The center is Q((s))((t)) this time.

Methods and constructions of this paper are related to other noncrossed product examples. For
instance, twisted Laurent series rings also play an important role in Amitsur [1]. Amitsur constructs
twisted Laurent series over fields such that only certain groups can occur as Galois groups of maximal

2 Wadsworth [17, § 5] nicely demonstrates the use of noncommutative valuations in most of the noncrossed product
constructions so far.



4 Timo Hanke: An explicit example of a noncrossed product division algebra

subfields.3 From this, he derives that generic division rings can be noncrossed products.4 It is now
interesting to see that by considering twisted Laurent series over division algebras instead of fields we
can get noncrossed products directly. Furthermore, the number theoretic part of the proof given here
is similar in technique to a corresponding argument5 in Brussel [2].

Finally, in § 7, using the theory of inertially split division algebras, it is shown that the noncrossed
product has exponent 8 (the order in the Brauer group).

Outlook. There are potentially “smaller” and “simpler” noncrossed product examples than the one
presented here, namely twisted function fields in one variable D(x, σ) with center Q(t). This was shown
in my thesis [7]. But the example given there is not fully explicit. More precisely, D is given explicitly
but the automorphism σ is not. Instead, the existence of σ is proved by local-global principles. The
reason that σ cannot be computed explicitly is basically that D is a cubic algebra and not a quaternion
algebra as in this paper.

There is a result6 that limits the hope of finding an explicit noncrossed product example of the form
D(x, σ) : If D is a quaternion algebra over a local or global field then any D(x, σ) is a crossed product.
With this result in mind, it is clear that even though we do not achieve the smallest possible center
here, we do achieve the smallest possible dimension of D over Q.

Requirements. The reader should be familiar with the valuation theory of algebraic number fields
(e.g. from Neukirch [12, Kapitel II]), and the basic facts on quaternion algebras (e.g. from Pierce [13,
Chapter 1]) and central simple algebras and their subfields (e.g. from Pierce [13, Chapter 12 and 13]).
Another reference on central simple algebras is Jacobson [10]. Up to this foundation the paper is self-
contained. Only § 7 on the exponent requires substantially more background in form of the theory of
inertially split division algebras. This can be found in Jacob-Wadsworth [9] or Wadsworth [17].

2 Construction of iterated twisted function fields and Laurent series

Twisted function fields and twisted Laurent series rings are introduced at various points in the literature,
for instance in Cohn [4, § 5.2]. Twisted Laurent series are also discussed in Lam [11, (1.8)] and in greater
detail in Pierce [13, § 19.7] and Jacobson [10, § 1.10]. We start with summarizing the matter that is
relevant for our purposes.

Let K/F be a finite cyclic field extension with Gal(K/F ) = 〈σ 〉 and [K : F ] = n. Furthermore,
let D be a finite-dimensional central K-division algebra, and suppose that σ extends to an F -algebra
automorphism σ̃ of D. Denote by D[x; σ̃] the set of all polynomials

D[x; σ̃] := {
k∑

i=0

dix
i | k ∈ N0, di ∈ D},

and by D((x, σ̃)) the set of all formal series

D((x; σ̃)) := {
∑
i≥k

dix
i | k ∈ Z, di ∈ D}.

A ring structure is given on D[x; σ̃] and D((x; σ̃)) by componentwise addition and the multiplication rule

xd = σ̃(d)x for all d ∈ D.

We shall identify D with the subring Dx0 of D[x; σ̃] and D((x; σ̃)). It is easily verified that D[x; σ̃] is a
domain and that D((x; σ̃)) is a division ring, since the inverse of an element of D((x; σ̃)) can be recursively
computed as in the case of commutative Laurent series. D[x; σ̃] is called the twisted (or skew) polynomial

3 cf. Pierce [13, Theorem 19.9]
4 cf. Pierce [13, Amitsur’s Theorem 20.8]
5 compare Theorem 6.2 of this paper to Brussel [2, Lemma 5]
6 to be published in a subsequent paper
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ring and D((x; σ̃)) is called the twisted (or skew) Laurent series ring. Denote by D(x; σ̃) the ring of
central quotients of D[x; σ̃], i.e.

D(x; σ̃) := {f/g | f ∈ D[x; σ̃], g ∈ Z(D[x; σ̃])} (2.1)

with Z(·) denoting the center. Since D[x; σ̃] is a domain, so is D(x; σ̃), and D(x; σ̃) can be regarded as
a subring of D((x; σ̃)).

By the Skolem-Noether theorem, σ̃n is an inner automorphism of D since it is the identity on the
center K. Moreover, as a consequence of Hilbert’s Theorem 90, we have

Lemma 2.1 There exists an α ∈ D× with

σ̃n = Inn(α) and σ̃(α) = α. (2.2)

Here, Inn(α) denotes the inner automorphism of D defined by Inn(α)(x) := αxα−1 for all x ∈ D.
Moreover, such an element α can be found by solving systems of linear equations only.

Note that (2.2) determines α ∈ D× up to multiplication by elements from F×.

P r o o f. The existence of an element α ∈ D× satisfying (2.2) is proved e.g. in Pierce [13, Lemma 19.7]
or in Jacobson [10, Theorem 1.1.22]. We recall the easy proof here in order to point out that it is in
fact constructive.

By the Skolem-Noether theorem there is an element α′ ∈ D× with σ̃n = Inn(α′). Computationally,
α′ is just the solution to a system of linear equations. We have x := α′−1σ̃(α′) ∈ K since Inn(x) is
clearly the identity on D. It is easily verified that NK/F (x) = 1. Therefore, by Hilbert’s Theorem 90,
there is an element a ∈ K with x = a

σ(a) . Again, a is the solution to a system of linear equations.
Obviously, the element α := aα′ then satisfies (2.2).

Let α ∈ D× be an element as in Lemma 2.1. Then s := α−1xn is a commuting indeterminate over
D and the centers of D[x; σ̃], D((x; σ̃)) and D(x; σ̃) are

Z(D[x; σ̃]) = F [s] = {
k∑

i=0

ai(α−1xn)i | ai ∈ F, k ∈ N0},

Z(D((x; σ̃))) = F ((s)) = {
∑
i≥k

ai(α−1xn)i | ai ∈ F, k ∈ Z}

and

Z(D(x; σ̃)) = Q(Z(D[x; σ̃])) = F (s) (2.3)

respectively, where Q(R) denotes the quotient field of an integral domain R. Obviously the set
{1, x, . . . , xn−1} forms a basis of D[x; σ̃], D(x; σ̃) and D((x; σ̃)) over D[s], D(s) and D((s)) respectively
(as free modules). Hence

[D(x; σ̃) : F (s)] = [D((x; σ̃)) : F ((s))] = n[D : F ],

where [V : F ] denotes the dimension of a vector space V over a field F . Since D(x; σ̃) is a domain
that is finite-dimensional over the field F (s), D(x; σ̃) is a division ring. D(x; σ̃) is called the twisted (or
skew) function field. Summarizing the above, D(x; σ̃) and D((x; σ̃)) are division algebras with

ind D(x; σ̃) = indD((x; σ̃)) = n ind D. (2.4)

Iterated twisted function fields. Now we iterate the process of building twisted function fields
and twisted Laurent series rings from D. For the sake of simplicity this will be formulated only for one
kind of these twisted algebras, the twisted function fields. The arguments hold analogously in the case
of twisted Laurent series rings.
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Let K/F be a finite abelian Galois extension with Gal(K/F ) = 〈σ 〉⊕ 〈 τ 〉, ordσ = n1, ord τ = n2,
[K : F ] = n1n2 = n. Let D be a finite-dimensional central K-division algebra and suppose that
σ and τ extend to F -algebra automorphisms σ̃ and τ̃ of D respectively. Let Fσ ⊆ K be the fixed
field of σ. Since K/Fσ is cyclic with Gal(K/Fσ) = 〈σ 〉, we can build D(x; σ̃) as in (2.1). By (2.3),
Z(D(x; σ̃)) = Fσ(s) for some indeterminate s over Fσ. If we set τ(s) := s then Fσ(s)/F (s) is cyclic with
Gal(Fσ(s)/F (s)) = 〈 τ 〉. To build an iterated twisted function field, which is a twisted function field
of the form D(x; σ̃)(y; τ̂), we need to extend τ to an F (s)-automorphism τ̂ of D(x; σ̃). The following
theorem gives a criterion when this is possible. Note that s = α−1xn1 is not uniquely determined since
α is only determined up to multiplication by elements from F×

σ .
Theorem 2.2 If there are elements α, β, γ ∈ D× satisfying

(i) σ̃n1 = Inn(α), σ̃(α) = α,

(ii) τ̃n2 = Inn(β), τ̃(β) = β,

(iii) τ̃ σ̃ = Inn(γ)σ̃τ̃ ,

(iv) τ̃(α)α−1 = γσ̃(γ) · · · σ̃n1−1(γ),

(v) βσ̃(β)−1 = τ̃n2−1(γ) · · · τ̃(γ)γ,

then τ extends to the automorphism τ̂ of D(x; σ̃) defined by

τ̂(
∑

dix
i) :=

∑
τ̃(di)(γx)i, (2.5)

such that τ̂(s) = s for s := α−1xn1 . Moreover,

Z(D(x; σ̃)(y; τ̂)) = F (s)(t)

for t := β−1yn2 , and
ind D(x; σ̃)(y; τ̂) = n ind D.

P r o o f. To see that (2.5) defines an automorphism we only have to check the relation τ̂(xd) =
τ̂(x)τ̂(d) for all d ∈ D. But since τ̂(xd) = τ̂(σ̃(d)x) = τ̃ σ̃(d)γx and τ̂(x)τ̂(d) = γxτ̃(d) = γσ̃τ̃(d)x, this
is equivalent to τ̃ σ̃(d) = γσ̃τ̃(d)γ−1, which follows from (iii).

For s = α−1xn1 we have

τ̂(s) = τ̂(α−1xn1) = τ̃(α)−1(γx)n1 = τ̃(α)−1γσ̃(γ) · · · σ̃n1−1(γ)xn1 .

Therefore τ̂(s) = s is equivalent to τ̃(α)−1γσ̃(γ) · · · σ̃n1−1(γ) = α−1, which follows from (iv).
We know from (2.3) and (i) that Z(D(x; σ̃)) = Fσ(s) for s = α−1xn1 , and we have Gal(Fσ(s)/F (s)) =

〈 τ̂ |Fσ(s) 〉. To show Z(D(x; σ̃)(y; τ̂)) = F (s)(t) for t = β−1yn2 using (2.3), we have to verify that τ̂n2 is
the inner automorphism of D(x; σ̃) induced by β and τ̂(β) = β. Since τ̃n2 = Inn(β) and τ̃(β) = β by
(ii), it remains to show τ̂n2(x) = βxβ−1. But this follows from (v), because

τ̂n2(x) = τ̃n2−1(γ) · · · τ̃(γ)γx.

Finally, (2.4) implies

ind D(x; σ̃)(y; τ̂) = n2 ind D(x; σ̃) = n1n2 ind D = n ind D.

Remark 2.3 The algebra D(x; σ̃)(y; τ̂) in Theorem 2.2 is completely described by the rules

xd = σ̃(d)x, yd = τ̃(d)y, yx = γxy

for all d ∈ D. Therefore we also denote it by D(x, y; σ̃, τ̃ , γ) and the analogously built Laurent series
ring by D((x, y; σ̃, τ̃ , γ)).

The conditions (iv) and (v) of Theorem 2.2 look somewhat like two simultaneous “norm” conditions
on γ. However, there is only a single norm equation (in a field extension) involved in
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Algorithm 2.4 If there exist elements α, β, γ ∈ D× satisfying (i)–(v) of Theorem 2.2 then such
elements can be constructed by performing the following steps.

1. Choose any α′, β′, γ′ ∈ D× satisfying (i), (ii) and (iii) respectively.

2. Set x := γ′σ̃(γ′) · · · σ̃n1−1(γ′)α′τ̃(α′)−1 ∈ Fσ and y := τ̃n2−1(γ′) · · · τ̃(γ′)γ′σ̃(β′)β′−1 ∈ Fτ .

3. Solve the norm equation NK/F (c) = NFσ/F (x)−1 for c ∈ K and set γ := cγ′.

4. Choose an element a ∈ Fσ with τ(a)
a = NK/Fσ

(c)x and set α := aα′.

5. Choose an element b ∈ Fτ with b
σ(b) = NK/Fτ

(c)y and set β := bβ′.

P r o o f. We first show that if there exist α, β, γ ∈ D× satisfying (i)–(v) then each step of the algorithm
has a solution. By Lemma 2.1, Step 1 has a solution in any case and the elements α′, β′, γ′ can be
constructed.

Now suppose that α, β, γ ∈ D× are elements satisfying (i)–(v), and let a, b, c ∈ D× be such that
α = aα′, β = bβ′, γ = cγ′. Then a, b, c lie in K by the Skolem-Noether theorem. Furthermore, (i) and
(ii) imply that a ∈ Fσ and b ∈ Fτ . Step 2: By definition of x and y we have

γσ̃(γ) · · · σ̃n1−1(γ)ατ̃(α)−1 = NK/Fσ
(c)

a

τ(a)
x (2.6)

and

τ̃n2−1(γ) · · · τ̃(γ)γσ̃(β)β−1 = NK/Fτ
(c)

σ(b)
b

y. (2.7)

Because of (iv) and (v) the left sides of these equations are both equal to 1. This proves x ∈ Fσ and
y ∈ Fτ . Step 3: The fact that the right sides of (2.6) and (2.7) are equal to 1 implies

NK/F (c) = NFσ/F (
τ(a)
a

x−1) = NFσ/F (x)−1 (2.8)

and

NK/F (c) = NFτ /F (
b

σ(b)
y−1) = NFτ /F (y)−1. (2.9)

This shows that the norm equation of step 3, which is precisely (2.8), has a solution. Moreover, it shows
that NFσ/F (x) = NFτ /F (y), i.e. any solution c to (2.8) is also a solution to (2.9). In the following, let
c be an arbitrary solution of (2.8) and (2.9) instead of the particular c chosen before. Steps 4 and 5:
From (2.8) and (2.9) we get NFσ/F (NK/Fσ

(c)x) = NK/F (c)NFσ/F (x) = 1 and NFτ /F (NK/Fτ
(c)y) =

NK/F (c)NFτ /F (y) = 1. Hence a and b exist by Hilbert’s Theorem 90.
Now we proof that if each step has a solution then α, β, γ ∈ D× satisfy (i)–(v). The conditions

(i)–(iii) are clear because a ∈ Fσ, b ∈ Fτ and c ∈ K. Again, by definition of x and y, (2.6) and (2.7)
hold. The elements a and b are chosen such that the right sides of both (2.6) and (2.7) are equal to 1.
This proves (iv) and (v).

Remark 2.5 1. Steps 1, 4 and 5 in the algorithm are just solutions to systems of linear equations.
Step 3 is a single norm equation in a field extension. Over number fields methods from computa-
tional algebraic number theory can be applied here. The computer algebra software KASH [5] has
implemented an algorithm for solving relative norm equations. Provided that the degrees n1, n2

and the base field F are small enough, this software can be used to carry out the algorithm.

2. It is clear from the proof that any solution α, β, γ ∈ D× to the conditions (i)–(v) can be obtained
by the algorithm. Moreover, the element γ is uniquely determined up to multiplication by elements
c ∈ K× with NK/F (c) = 1. If γ is fixed, then α and β are determined up to multiplication by
elements from F×.
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3. The existence of a solution α, β, γ ∈ D× to the conditions (i)–(v) does not depend on the choice
of extensions σ̃, τ̃ of σ, τ respectively. To see this, it can be verified that if σ̃, τ̃ are replaced by
Inn(η)σ̃, Inn(ξ)τ̃ respectively, η, ξ ∈ D×, then we can replace α, β, γ by

ησ̃(η) · · · σ̃n1−1(η)α, ξτ̃(ξ) · · · τ̃n2−1(ξ)β, ξτ̃(η)γσ̃(ξ)−1η−1,

respectively.

4. For different choices of γ the resulting division rings D(x, y; σ̃, τ̃ , γ) (or D((x, y; σ̃, τ̃ , γ)) respectively)
are in general not isomorphic.

3 Automorphisms of quaternion algebras

In the construction of the twisted function field D(x; σ̃) we started with the automorphism σ of K and
assumed that it extends to an automorphism σ̃ of D. The question arises when it is possible to extend σ
and how an extension can be found. Proposition 3.2 below settles this question for a special case of
quaternion algebras that will be sufficient for our purposes.

Let K be any field and let a, b ∈ K×. The quaternion algebra (a, b)K is the K-space with basis
1, i, j, ij and multiplication i2 = a, j2 = b, ij = −ji. It is a simple algebra with center K (see Pierce [13,
§ 1.6]).

Lemma 3.1 Let σ be an automorphism of K. Then σ extends to an automorphism σ̃ of (a, b)K if
and only if (a, b)K

∼= (σ(a), σ(b))K .

P r o o f. We have (a, b)K
∼= (σ(a), σ(b))K if and only if there is a K-basis 1, u, v, uv of (a, b)K with

u2 = σ(a), v2 = σ(b) and vu = −uv. If σ extends to σ̃ then such a basis is obviously given by u := σ̃(i)
and v := σ̃(j). Conversely, an extension σ̃ is obtained from u, v by setting σ̃(i) := u, σ̃(j) := v.

In the case σ(b) = b we get

Proposition 3.2 Let σ be an automorphism of K with σ(b) = b. Then σ extends to an automor-
phism σ̃ of (a, b)K if and only if there exists λ ∈ K(j) with

NK(j)/K(λ) =
σ(a)

a
.

For any such λ, an extension σ̃ of σ is defined by

σ̃(i) := λi, σ̃(j) := j.

P r o o f. By Lemma 3.1, σ extends to σ̃ if and only if (a, b)K
∼= (σ(a), b)K . It is a standard argument

about cyclic algebras (cf. Pierce [13, Lemma 15.1]) that this is equivalent to the existence of λ ∈ K(j)
with NK(j)/K(λ) = σ(a)

a . Moreover, for any such λ, setting u := λi, v := j yields a K-basis 1, u, v, uv of
(a, b)K with u2 = σ(a), v2 = b = σ(b), uv = −vu. Hence, as in the proof of Lemma 3.1, an extension σ̃
is defined by σ̃(i) := λi, σ̃(j) := j.

Remark 3.3 Proposition 3.2 can be proved analogously for symbol algebras (a, b)K,ζ where ζ ∈ K
is a primitive n-th root of unity and a, b ∈ K×.

4 The Example

In this section we construct an explicit example of an iterated twisted function field following step by
step the general construction from § 2. We will point out certain properties during this process that
we tag (N·). Precisely these properties enable us later in § 6 to show that the example is in fact a
noncrossed product. With the same parameters we also get an iterated twisted Laurent series ring that
is a noncrossed product.
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The field K. Let p and q be the primes p = 3 and q = 7. Note that

p ≡ q ≡ 3 mod 4. (N1)

Let K be the biquadratic extension K = Q(
√

3,
√
−7) of Q with Gal(K/Q) = 〈σ 〉⊕ 〈 τ 〉, where

σ(
√

3) = −
√

3, σ(
√
−7) =

√
−7,

τ(
√

3) =
√

3, τ(
√
−7) = −

√
−7.

Write
K1 = Q(

√
3), K2 = Q(

√
−7).

We now discuss the extensions of the p- and q-adic valuations vp and vq of Q to K. Obviously vp is
totally ramified in K1, and vq is totally ramified in K2. The primes p and q are chosen such that −q is
not a square modulo p and p is not a square modulo q. This shows that vp is inertial in K2 that vq is
inertial in K1. Altogether, it is now clear that

vp and vq uniquely extend to valuations on K, (N2)

the inertia fields of vp and vq in K are different, (N3)

K is not real. (N4)

The unique extensions of vp and vq to K will be denoted by wp and wq, respectively.
The quaternion division algebra D. Let a0 ∈ K1 and b0 ∈ K2 be the elements

a0 = 1 +
√

3, b0 =
1 +

√
−7

2
.

Note that

NK1/Q(a0) = a0σ(a0) = −2, NK2/Q(b0) = b0τ(b0) = 2. (4.1)

Define the quaternion algebra D = (a, b)K by

a := a0

√
3 = 3 +

√
3, b := b0

√
−7 =

−7 +
√
−7

2
.

To see that D is a division algebra, we show the stronger result :

D ⊗K Kw = (a, b)Kw is a division algebra for w = wp and w = wq, (N5)

where Kw denotes the completion of K with respect to w. In the following · denotes the residue field
with respect to the fixed valuation w.

We first consider w = wp. The residue field of K with respect to wp is K = K2. The element b is a
valuation unit with respect to wp and has NK2/Q(b) = 2 · 7 = 14. Since 14 is not a square in Q, the field
of 3 elements, b̄ is not a square in K2 = K. This shows that wp is inertial in K(j)/K. Obviously, a0 is
a valuation unit with respect to wp, so that a = a0

√
3 is a uniformizer for wp. Therefore, a cannot be a

norm in the inertial extension Kwp(j)/Kwp . This implies that (a, b)Kwp
is a division algebra (cf. Pierce

[13, Exercise 4 in § 1.6 or Corollary 15.1d]).
Analogously, the argument goes on for w = wq, but with a and b replaced. Now K = K1, and the

element a is a valuation unit with NK1/Q(a) = (−2) · (−3) = 6. Since 6 is not a square in Q, the field
of 7 elements, ā is not a square in K1 = K. This shows that wq is inertial in K(i)/K. Obviously, b0 is
a valuation unit with respect to wq, so that b = b0

√
−7 is a uniformizer for wq. Therefore, b cannot be

a norm in the inertial extension Kwq (i)/Kwq . This implies that (a, b)Kwq
is a division algebra. Hence

(N5) is proved.
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Extensions of σ and τ . The elements a, b ∈ K were specially chosen such that a ∈ K1 and b ∈ K2.
Therefore, we can use Proposition 3.2 to find extensions of σ and τ to D. Let λ0 ∈ K1(i) and µ0 ∈ K2(j)
be the elements

λ0 = σ(a0)(−1 + i), µ0 = b0 + j.

Note that
NK1(i)/K1(λ0) = −2, NK2(j)/K2(µ0) = 2. (4.2)

Define the elements λ ∈ K(i) and µ ∈ K(j) by

λ :=
λ0

b0
, µ :=

µ0

a0
.

Using (4.2) and (4.1) we get

NK(j)/K(µ) =
2

a0
2

= −a0σ(a0)
a0

2
= −σ(a0)

a0
=

σ(a)
a

and

NK(i)/K(λ) =
−2
b0

2 = −b0τ(b0)
b0

2 = −τ(b0)
b0

=
τ(b)
b

.

Therefore, by Proposition 3.2, extensions σ̃, τ̃ of σ,τ to D are defined by

σ̃(i) = µi, σ̃(j) = j,

τ̃(i) = i, τ̃(j) = λj.

The elements α, β and γ. To define an iterated twisted function field D(x, y; σ̃, τ̃ , γ) and an iterated
twisted Laurent series ring D((x, y; σ̃, τ̃ , γ)) over D, we now give elements α, β, γ ∈ D× satisfying (i)–(v)
of Theorem 2.2. These are

α :=
1
b0

µ0j, β :=
√

3λ0i, γ :=
1

2σ(a0)
(λ0µ0 − 2).

Note that α ∈ K(j) and β ∈ K(i). By Theorem 2.2,

Z(D(x, y; σ̃, τ̃ , γ)) = Q(s)(t),

Z(D((x, y; σ̃, τ̃ , γ))) = Q((s))((t)),

where s = α−1x2, t = β−1y2, and

ind D(x, y; σ̃, τ̃ , γ) = indD((x, y; σ̃, τ̃ , γ)) = 8.

The given elements α, β, γ were found with Algorithm 2.4. The rest of this section gives solutions to
each step of the algorithm together with ideas how to verify their correctness. We use the notation λ0

for the conjugate of λ0 in K1(i)/K1 and µ0 for the conjugate of µ0 in K2(j)/K2, i.e. λ0 = σ(a0)(−1− i)
and µ0 = b0 − j. The following relations, as well as (4.1), will be frequently used without further
mentioning them :

λ0λ0 = −2, σ̃(µ0) = µ0, τ̃(λ0) = λ0, iλ0 = λ0i, jλ0 = λ0j,

µ0µ0 = 2, σ̃(µ0) = µ0, τ̃(λ0) = λ0, iµ0 = µ0i, jµ0 = µ0j.

Also note that n1 = n2 = 2.
Step 1. The chosen elements α′, β′, γ′ that satisfy (i)–(iii) are

α′ := µ0j, β′ := λ0i, γ′ := λ0µ0 − 2.

Note that α′ ∈ K(j) and β′ ∈ K(i). It is immediate from the definition of σ̃ and τ̃ that σ̃(α′) = α′ and
τ̃(β′) = β′. To verify the identities about the inner automorphisms we use
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Lemma 4.1 Let D be a quaternion division algebra over K, and let ϕ be an inner automorphism
of D. If x, y ∈ D\K with x /∈ K(y) such that ϕ(x) = x and ϕ(y) = xyx−1, then ϕ = Inn(x).

P r o o f. If x /∈ K(y) then {1, x} is a K(y)-basis of D. Therefore ϕ is already determined by ϕ(x)
and ϕ(y).

First apply Lemma 4.1 to σ̃2 and τ̃2. Obviously, σ̃2(α′) = α′ and τ̃2(β′) = β′. Furthermore,

σ̃2(i)α′ = σ̃(
µ0

a0
i)α′ =

µ0

σ(a0)
µ0

a0
iµ0j = µ0

µ0µ0

a0σ(a0)
ij = µ0ji = α′i

and

τ̃2(j)β′ = τ̃(
λ0

b0
j)β′ =

λ0

τ(b0)
λ0

b0
jλ0i = λ0

λ0λ0

b0τ(b0)
ji = λ0ij = β′j.

Since α′ /∈ K(i) and β′ /∈ K(j), Lemma 4.1 shows σ̃2 = Inn(α′) and τ̃2 = Inn(β′). This completes
the verification of (i) and (ii). Now, in order to prove (iii), apply Lemma 4.1 with ϕ = τ̃ σ̃τ̃−1σ̃−1,
x = γ′ and y = σ̃τ̃(i). The identity τ̃ σ̃τ̃−1σ̃−1(γ′) = γ′ is shown by giving an element δ such that
σ̃τ̃(δ) = τ̃ σ̃(δ) = γ′. This element is

δ = −a0

b0
δ′, where δ′ = λ0µ0 + 2.

For the calculation it is pointed out that :

σ̃(δ′) = σ̃(λ0)µ0 + 2 = a0(−1− µ0

a0
i)µ0 + 2 = a0(−µ0 + σ(a0)i) + 2

= a0(σ(a0)(−1 + i)− µ0) = a0(λ0 − µ0),

τ̃(δ′) = λ0τ̃(µ0) + 2 = λ0(τ(b0) +
λ0

b0
j) + 2 = τ(b0)(λ0 − j) + 2

= τ(b0)(λ0 + (b0 − j)) = τ(b0)(λ0 + µ0).

Then

τ̃ σ̃(δ) = −σ(a0)
τ(b0)

a0(λ0 − τ̃(µ0)) = b0(λ0 − (τ(b0) +
λ0

b0
j))

= b0λ0 − 2− λ0j = λ0(b0 − j)− 2 = γ′,

σ̃τ̃(δ) = −σ(a0)
τ(b0)

τ(b0)(σ̃(λ0) + µ0) = −σ(a0)(a0(−1− µ0

a0
i) + µ0)

= −2 + σ(a0)iµ0 − σ(a0)µ0 = σ(a0)(−1 + i)µ0 − 2 = γ′.

Next, check the hypothesis γ′ /∈ K(y) of Lemma 4.1. Since δ = τ̃−1σ̃−1(γ′),

γ′ ∈ K(y) ⇔ δ ∈ K(i) ⇔ δ′ ∈ K(i).

But δ′ = λ0µ0 + 2 /∈ K(i) is obvious from λ0 ∈ K(i) and µ0 /∈ K(i). It remains to check that
τ̃ σ̃(i)γ′ = γ′σ̃τ̃(i). First note that

τ̃(µ0)(λ0µ0 − 2) = (τ(b0) +
λ0

b0
j)(λ0µ0 − 2) = τ(b0)(λ0µ0 − 2− µ0j − λ0j)

= τ(b0)(λ0(µ0 − j)− (µ0j + 2)) = τ(b0)(b0λ0 − b0µ0)

= 2(λ0 − µ0) = (λ0µ0 − 2)µ0.

Then

τ̃ σ̃(i)γ′ =
τ̃(µ0)

a0
i(λ0µ0 − 2) =

τ̃(µ0)
a0

(λ0µ0 − 2)i = (λ0µ0 − 2)
µ0

a0
i = γ′σ̃τ̃(i).
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Now, Lemma 4.1 can be applied and states that τ̃ σ̃τ̃−1σ̃−1 = Inn(γ′). This completes the verification
of (iii).

Step 2. The elements x := γ′σ̃(γ′)α′τ(α′)−1 ∈ K2 and y := τ̃(γ′)γ′σ̃(β′)β′−1 ∈ K1 are

x = −4b2
0 = −8

b0

τ(b0)
, y = −4σ(a0)2 = 8

σ(a0)
a0

.

For the computation of x it is helpful to verify first :

γ′α′ = (λ0µ̄0 − 2)µ0j = 2(λ0 − µ0)j,

σ̃−1(γ′) = τ̃(δ) = − a0

τ(b0)
τ̃(δ′) = −a0(λ0 + µ0)

σ̃−1(γ′)γ′α′ = −2a0(µ0λ0 − λ0µ0 − 4)j,

τ̃(α′) = (τ(b0) +
λ0

b0
j)

λ0

b0
j =

2
b2
0

(λ0 − j)j.

Then

γ′σ̃(γ′)α′ = σ̃(σ̃−1(γ′)γ′α′) = −2σ(a0)(µ0σ̃(λ0)− σ̃(λ0)µ0 − 4)j

= −2σ(a0)(µ0a0(−1 +
µ0

a0
i) + a0(1 +

µ0

a0
i)µ0 − 4)j

= −2σ(a0)(−a0µ0 + 2i + a0µ0 + 2i− 4)j

= −2σ(a0)(a0(µ0 − µ0) + 4(−1 + i))j

= 4(µ0 − µ0 − 2λ0)j = 8(j − λ0)j,

and

x = γ′σ̃(γ′)α′τ(α′)−1 = 8(j − λ0)j ·
b2
0

2
j−1(λ0 − j)−1 = −4b2

0.

For the computation of y it is helpful to verify first :

β′−1 = −1
2
i−1λ0,

β′−1γ′ = −1
2
i−1λ0(λ0µ0 − 2) = i−1(µ0 + λ0) = (µ0 + λ0)i−1,

τ̃−1(γ′) = σ̃(δ) = −σ(a0)
b0

σ̃(δ′) = τ(b0)(λ0 − µ0),

β′−1γ′τ̃−1(γ′) = τ(b0)(µ0 + λ0)(λ0 − µ0)i
−1 = τ(b0)(µ0λ0 − λ0µ0 − 4)i−1,

σ(β′) = a0(−1 +
µ0

a0
i)

µ0

a0
i = (−µ0 +

2
a0

i)i = −(σ(a0)i + µ0)i.

Then

β′−1τ̃(γ′)γ′ = τ̃(β′−1γ′τ̃−1(γ′)) = b0(τ̃(µ0)λ0 − λ0τ̃(µ0)− 4)i−1

= b0((τ(b0) +
λ0

b0
j)λ0 − λ0(τ(b0)−

λ0

b0
j)− 4)i−1

= b0(τ(b0)λ0 −
2
b0

j − τ(b0)λ0 −
2
b0

j − 4)i−1

= b0τ(b0)(λ0 − j − λ0 − j − 2b0)i−1

= 2(λ0 − λ0 − 2µ0)i−1 = 4(σ(a0)i− µ0)i−1,

and

y = β′−1τ̃(γ′)γ′σ̃(β′) = 4(σ(a0)i− µ0)i−1(−1)(σ(a0)i + µ0)i = −4(σ(a0)i− µ0)(σ(a0)i + µ0)

= −4(σ(a0)2a− 2) = −4σ(a0)(−2
√

3 + a0) = −4σ(a0)2.
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Step 3. We have NK2/Q(x) = 16 · 22 = 64. It is easy to find an element c ∈ K with NK/Q(c) = 1
64

because we already know the elements a0, b0 ∈ K have norm 4. We choose

c =
1

2σ(a0)
, and set γ := cγ′ =

1
2σ(a0)

(λ0µ0 − 2).

Step 4. We have NK/K2(c) = NK1/Q(c) = − 1
8 , hence NK/K2(c)x = b20

2 = b0
τ(b0)

. Therefore, we choose

α0 =
1
b0

, and set α := α0α
′ =

1
b0

µ0j.

Step 5. We have NK/K1(c) = c2 = 1
4σ(a0)2

, hence NK/K2(c)y = −1. Therefore, we choose

β0 =
√

3, and set β := β0β
′ =

√
3λ0i.

This shows how the elements α, β, γ were found, and also proves that they satisfy (i)–(v) of Theorem 2.2.
Another solution for steps 3–5 would be c = 1

2b0
, α0 =

√
−7 and β0 = 1

a0
.

5 The x-adic valuation and the main theorem

In this section we introduce a natural discrete valuation (the x-adic valuation) on the division rings
D(x, σ̃) and D((x, σ̃)) and use it to relate their subfields to the subfields of D. We first state some basic
facts. References for valuations on division rings are Wadsworth’s survey [17], Endler’s book [6] and
Schilling’s book [16].

Let D be a finite-dimensional division ring. A map

v : D −→ R ∪ {∞}

is called a valuation on D if the following hold for all x, y ∈ D :

v(x) = ∞ ⇐⇒ x = 0. (V1)

v(xy) = v(x) + v(y). (V2)

v(x + y) ≥ min{v(x), v(y)}. (V3)

Here, ∞ is a symbol satisfying ∞+ c = c +∞ = ∞+∞ = ∞ and c < ∞ for all c ∈ R. If D is a field,
this definition is precisely the one of an exponential valuation. Associated to a valuation v on D we have
the valuation ring Bv := {x ∈ D | v(x) ≥ 0}, which is a subring of D with the unique maximal ideal
Mv := {x ∈ D | v(x) > 0} and unit group Uv := {x ∈ D | v(x) = 0}. The factor ring D := Bv := Bv/Mv

is a division ring and is called the residue division ring. For any x ∈ Bv we write x = x + Mv for the
image of x in D under the canonical residue map. The value group v(D×) is a subgroup of the additive
group of R.

If v is a valuation on D and L ⊆ D is a subfield, then v|L clearly is a valuation on L in the usual
commutative sense. Moreover, L is a subfield of D and v(L×) is a subgroup of v(D×). If [D : L] < ∞
then we get the fundamental inequality

|v(D×) : v(L×)| · [D : L] ≤ [D : L] (5.1)

with the same proof as in the commutative case.
By (V2), Bv and Mv are invariant under inner automorphisms of D. Hence any d ∈ D× induces an

automorphism ιd of D with ιd(x) = dxd−1 for all x ∈ Bv. Obviously

ιdd′ = ιdιd′ for all d, d′ ∈ D×. (5.2)

If d ∈ Uv, then ιd is the inner automorphism of D induced by d. Hence

ιd|Z(D) = idZ(D) for all d ∈ Uv. (5.3)
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Now return to the division rings D(x; σ̃) and D((x; σ̃)). We use the same notation as in § 2 : Z(D) = K,
K/F cyclic, [K : F ] = n, Gal(K/F ) = 〈σ 〉, σ̃|K = σ, σ̃n = Inn(α), σ̃(α) = α, s = α−1xn. Recall that
Z(D(x;σ)) = F (s) and Z(D((x;σ))) = F ((s)).

Example 5.1 A valuation v : D((x; σ̃)) −→ R ∪ {∞} on D((x; σ̃)) is defined by

v(
∑
i≥k

aix
i) := min{i ∈ Z | ai 6= 0},

and v is called the x-adic valuation. The valuation ring of v is

Bv = {
∑
i≥0

aix
i | ai ∈ D}

with maximal ideal
Mv = {

∑
i≥1

aix
i | ai ∈ D}

and unit group
Uv = {

∑
i≥0

aix
i | ai ∈ D, a0 6= 0}.

The residue division ring is
D((x; σ̃)) ∼= D

and if we identify D with D((x; σ̃)) then the residue map is

Bv −→ D,
∑
i≥0

aix
i 7−→ a0.

The value group of v is
v(D((x; σ̃))×) = 〈 v(x) 〉 = Z.

The x-adic valuation v restricts to a valuation on D(x; σ̃) with the same residue field and value group.
We shall denote this restriction also by v. Moreover, v|F (s) and v|F ((s)) are precisely the (commutative)
s-adic valuations, thus F (s) = F ((s)) = F and v(F (s)×) = v(F ((s))×) = nZ. Furthermore, ιx = σ̃,
hence ιx|K = σ and ιxi |K = σi for all i ∈ Z.

Investigation of the maximal subfields. The following will again be carried out only for D(x; σ̃)
and is analogous for D((x; σ̃)). We routinely endow D(x; σ̃) with the x-adic valuation v. For a subfield
L of D(x; σ̃) write L for the residue field of L with respect to v|L, hence L ⊆ D. The x-adic valuation v
is used to investigate the maximal subfields of D(x; σ̃). For the application of the following theorem in
§ 6 it will be necessary to consider a subfield F0 ⊆ F such that K/F0 is Galois. We restrict ourselves to
the case charF0 = 0.

Theorem 5.2 Suppose F0 ⊆ F is a subfield such that K/F0 is a finite Galois extension and char F0 =
0. If D(x; σ̃) contains a maximal subfield L such that L is Galois over F0(s), then D contains a maximal
subfield M such that M is Galois over F0.

We first prove

Lemma 5.3 If L is a maximal subfield of D(x; σ̃), then LK is a maximal subfield of D.

P r o o f. Let L be a maximal subfield of D(x, σ̃), i.e. by (2.4),

[D(x; σ̃) : L] = ind D(x; σ̃) = n ind D.

We have to show [D : LK] = ind D. Since LK is a field, [D : LK] ≥ ind D, so it remains to show
[D : LK] ≤ ind D.



15

Let v(L×) = lZ for l ∈ N. The fundamental inequality (5.1) states

|v(D(x; σ̃)×) : v(L×)| · [D : L] ≤ [D(x; σ̃) : L],

thus
[D : L] ≤ n

l
ind D. (5.4)

Note that |v(D(x; σ̃)×) : v(L×)| divides |v(D(x; σ̃)×) : v(F (s))×|, i.e. l divides n. Also note that
K/K ∩ L is Galois since K/F is Galois and F ⊆ L (because F (s) ⊆ L). We will show

[K : K ∩ L] ≥ n

l
. (5.5)

For then [LK : L] ≥ n
l , so (5.4) implies

[D : LK] =
[D : L]

[LK : L]
≤ ind D.

This proves the lemma.
Let π ∈ L be an element with v(π) = l. Then πx−l ∈ Uv, so by (5.3), ιπx−l |K = idK . Thus (5.2)

shows ιπ|K = ιxl |K . Since π ∈ L and L is a field, ιπ|L = id |L. Therefore ιxl |K∩L = ιπ|K∩L = idK∩L.
Since ιxl |K = σl, this implies that K ∩ L is contained in the fixed field of σl in K. This proves (5.5)
and we are done.

Remark 5.4 Using the theory of inertially split division algebras Lemma 5.3 can also be derived
from Jacob-Wadsworth [9, Theorem 5.15 b)].

Proof of Theorem 5.2. Let L be a maximal subfield of D(x, σ̃) such that L is Galois over F0(s). Then
M := LK is a maximal subfield of D by Lemma 5.3. Since L/F0(s) Galois, L/F0 is normal (cf. Neukirch
[12, Kapitel II, Satz 9.9]), hence also Galois because we have charF0 = 0. K/F0 is Galois by hypothesis,
therefore M = LK is Galois over F0.

Remark 5.5 1. Theorem 5.2 also holds in the case charF0 > 0, but requires some rather lengthy
calculations with p-algebras. It can be found in my thesis [7, Corollary 11.5]. The proof there is
based on a lemma which is essentially Saltman [14, Lemma 3].

2. It is clear that the converse of Theorem 5.2 also holds. For if M is a maximal subfield of D that
is Galois over F0, then M(s) is a maximal subfield of D(x, σ) that is Galois over F0(s). Moreover,
the Galois groups are isomorphic.

6 The Proof

This section shows that the division algebras D(x, y; σ̃, τ̃ , γ) and D((x, y; σ̃, τ̃ , γ)) constructed in § 4 are
noncrossed products. We will only treat the twisted function field here, the argument for the twisted
Laurent series ring is analogous.

Valuation theoretic part. Assume that D(x, y; σ̃, τ̃ , γ) is a crossed product, i.e. D(x, y; σ̃, τ̃ , γ)
contains a maximal subfield L that is Galois over Q(s)(t). Recall that we write D(x, y; σ̃, τ̃ , γ) for
D(x; σ̃)(y; τ̂). By construction in § 4, τ̂ is an automorphism of D(x; σ̃),

Z(D(x; σ̃)) = Q(
√
−7)(s),

Z(D(x, y; σ̃, τ̃ , γ)) = Q(s)(t),

where s = α−1x2, t = β−1y2 for some α, β ∈ D×, and τ̂ restricts to the generating automorphism
of Q(

√
−7)(s) over Q(s). We can therefore apply Theorem 5.2 with D(x; σ̃) for D, y for x, τ̂ for σ̃,

Q(
√
−7)(s) for K and Q(s) for F = F0. Since D(x, y; σ̃, τ̃ , γ) contains a maximal subfield L that is

Galois over Q(s)(t), Theorem 5.2 states that D(x; σ̃) contains a maximal subfield L′ that is Galois
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over Q(s). In turn, σ̃ of D restricts to the generating automorphism of K over Q(
√
−7), hence we can

apply Theorem 5.2 to D(x; σ̃) with F = Q(
√
−7) and F0 = Q. This shows that D contains a maximal

subfield M that is Galois over Q. It remains to prove that such M cannot exist.
Some facts. Before finishing the proof we recall some facts on Galois extensions of number fields.

These can be found e.g. in Neukirch [12, Kapitel II]. Let K/F be a finite Galois extension of a number
field, [K : F ] = n and Gal(K/F ) = G. Let v be a valuation on F that uniquely extends to a valuation
w on K. We denote by Fv,Kw the completions and by F v,Kw the residue fields. Let charF v = p and
|F v| = q. Then F

×
v consists of the (q − 1)-th roots of unity, hence F v contains a primitive e-th root

of unity iff q ≡ 1 mod e. The extension Kw/Fv is Galois and Gal(Kw/Fv) ∼= G since w is the unique
extension of v.

If p - n and v is totally ramified in K/F , i.e. |w(K×) : v(F×)| = n, then Kw = Fv( n
√

ξ) for some
ξ ∈ Fv (cf. Neukirch [12, Kapitel II, Satz 7.7]). It follows that G is cyclic and that Fv and F v contain
a primitive n-th root of unity, hence q ≡ 1 mod n.

The inertia group of v in K/F is the subgroup

I := Iv(K/F ) = {σ ∈ G|σ(x) ≡ x mod Pw for all x ∈ Ow}

of G and the inertia field of v in K/F is the fixed field of I in K

T := Tv(K/F ) = Fix(Iv(K/F )).

Then I is a normal subgroup of G and G/I ∼= Gal(Kw/F v) (cf. Neukirch [12, Satz 9.9]), which is a
cyclic group since Kw is a finite field. Thus T/F is a cyclic extension. Moreover T/F is the maximal
unramified subextension of K/F and K/T is totally ramified with respect to v (cf. Neukirch [12, Satz
9.11]). Hence if p - n, then I and G/I are both cyclic.

Number theoretic part. For the proof of the main theorem of this section we need the following
lemma. By a real field we mean a subfield of R.

Lemma 6.1 Let F be a real field and let L/F be a finite Galois extension. Then L is real or there
exists a real intermediate field F ⊆ K ⊂ L such that [L : K] = 2.

P r o o f. Since L/F is Galois and F is real, L is closed under complex conjugation. Let K be the
fixed field of the complex conjugation in L. Then K is real and, clearly, K = L or [L : K] = 2.

Theorem 6.2 Let F be a real number field, and let K/F be a biquadratic extension such that K is
not real. Suppose there are valuations v1 and v2 of F such that

(i) |F vi | ≡ 3 mod 4 for i = 1, 2,

(ii) v1 and v2 extend uniquely to valuations of K,

(iii) Tv1(K/F ) 6= Tv2(K/F ).

If L/K is a field extension, [L : K] = 2, such that v1 and v2 extend uniquely to valuations of L, then
L/F is not Galois.

P r o o f. Assume there exists such an L with L/F Galois and Gal(L/K) = G. Then |G| = 8. We now
check all possible cases of G, i.e. all groups of order 8 up to isomorphism. Note that by (i), charF vi 6= 2
for i = 1, 2, hence we can use the facts on Galois extension of number fields that were recalled above.
Case 1 : G is the dihedral group. Then G has only one normal subgroup I such that I and G/I are cyclic.
Therefore Tv1(L/F ) = Tv2(L/F ), hence Tv1(K/F ) = Tv1(L/F )∩K = Tv2(L/F )∩K = Tv2(K/F ), which
contradicts (iii).
Case 2 : G is the quaternion group. Since K is not real, L is not real. Hence by Lemma 6.1 there is
a real subfield L0 ⊂ L with [L : L0] = 2. Then L0 6= K and [L0 : F ] = 4. But G contains only one
subgroup of order 2, a contradiction.
Case 3 : G is abelian. Let L0 be as in case 2. Since G is abelian, L0/F is Galois. We show that w.l.o.g. v1
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is totally ramified in L0/F . Then F v1 must contain a primitive 4-th root of unity, i.e. |F v1 | ≡ 1 mod 4,
which contradicts (i).

Since Gal(K/F ) is not cyclic, [Tvi(K/F ) : F ] = 2 for i = 1, 2, and from L0 6= K we get [L0 ∩K :
F ] ≤ 2. Therefore, because of (iii), we can assume w.l.o.g. that L0 ∩ Tv1(K/F ) = F . Since Tv1(L/F ) is
cyclic over F and of prime power degree, its subfields are linearly ordered, so Tv1(K/F ) is the unique
subfield of Tv1(L/F ) of degree 2 over F . Therefore, L0 ∩ Tv1(K/F ) = F implies L0 ∩ Tv1(L/F ) = F ,
i.e. v1 is totally ramified in L0/F .

Remark 6.3 It should be mentioned here that the question whether a biquadratic extension K/F
embeds into a Galois extension with group isomorphic to the quaternion group is completely treated in
Witt [18, § VI].

To complete the proof we have to show that D as defined in § 4 does not contain a maximal subfield
M such that M is Galois over Q. Because of (N1)–(N4) we can apply Theorem 6.2 with K/F as in § 4
and v1 = vp, v2 = vq. By (N5), D⊗K Kw is a division algebra for w = wp, wq, thus M ⊗K Kw is a field
for w = wp, wq. This shows that wp and wq uniquely extend to valuations on M . Therefore, M/Q is
not Galois by Theorem 6.2. We have now completed the proof that D(x, y; σ̃, τ̃ , γ) and D((x, y; σ̃, τ̃ , γ))
are noncrossed product division algebras.

7 The Exponent

The following outlines the calculation of the exponents of the noncrossed product division algebras
D(x, y; σ̃, τ̃ , γ) and D((x, y; σ̃, τ̃ , γ)). For the rest of this paper it is assumed that the reader is familiar
with some noncommutative valuation theory, including inertially split division algebras, as contained
e.g. in Wadsworth’s survey [17, § 1–3].

We endow the division algebra D(x, y; σ̃, τ̃ , γ) with the composite valuation of the y-adic and the
x-adic valuation (see e.g. Wadsworth’s survey [17, p. 397] for a definition). This is a rank 2 valuation
and not a valuation in the sense of § 5. The completion of the valued division algebra D(x, y; σ̃, τ̃ , γ) is
D((x, y; σ̃, τ̃ , γ)). If we show that the latter has exponent equal to its index, the same also holds for the
former. Note that the residue field in both cases is D.

The algebra D((x, y; σ̃, τ̃ , γ)) is obviously inertially split, since for any maximal subfield L of D the
field L((s))((t)) is an inertial maximal subfield of D((x, y; σ̃, τ̃ , γ)). We will apply

Lemma 7.1 Let D be a valued division algebra with F = Z(D) a global field. Suppose that D is
inertially split and suppose that each prime divisor of [Z(D) : F ] divides ind D. If there is a valuation v
on F that uniquely extends to a valuation w on Z(D) and the completion Dw is a division algebra, then
expD = indD.

P r o o f. Let K = Z(D) and let n = [K : F ]. From the theory of inertially split division algebras (see
Jacob-Wadsworth [9, Theorem 5.15]) we know that indD = n ind D and expD = lcm(expGal(K/F ), expA)
for a certain central simple F -algebra A with A ⊗F K ∼ D. In particular, Av ⊗Fv Kw ∼ Dw. The
theory of division algebras over local fields (e.g. Pierce [13, Proposition 17.10]) states that inv Dw =
[Kw : Fv] inv Av = n inv Av. It follows that

ind D = expDw =
expAv

(expAv, n)
. (7.1)

The hypothesis that each prime divisor of n divides indD then implies n| expAv. In turn, (7.1) yields
ind D = n ind D = expAv. Finally, since expGal(K/F )|n| expAv| expA,

ind D = expAv| expA = lcm(expGal(K/F ), expA) = exp D| ind D.

This proves the lemma.
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In the application of Lemma 7.1 with D((x, y; σ̃, τ̃ , γ)) for D and Q for F we choose v to be any one
of the valuations vp, vq on Q. Obviously 2, the only prime divisor of [K : Q], divides indD because
D is a quaternion division algebra. By (N2), v uniquely extends to a valuation w on K, and by (N5),
Dw = D ⊗K Kw is a division algebra. Therefore, Lemma 7.1 yields

expD((x, y; σ̃, τ̃ , γ)) = indD((x, y; σ̃, τ̃ , γ)) = 8.

The result is
expD(x, y; σ̃, τ̃ , γ) = exp D((x, y; σ̃, τ̃ , γ)) = 8.
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