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Two Warm-up Questions

We know from high school that a quadric ax2 + bx + c is
non-negative if and only if a ≥ 0, c ≥ 0 and 4ac − b2 ≥ 0.

Let’s study this convex cone for polynomials of degree four:

C =
{

(a, b, c , d , e) ∈ R5 | ∀ x ∈ R : ax4 + bx3 + cx2 + dx + e ≥ 0
}

1. The boundary ∂C is a hypersurface.
Find the degree and defining polynomial of this hypersurface.

2. Determine an inequality representation of the dual cone C∨.



Question 1: Algebraic boundary of nonnegative quartics

The boundary ∂C consists of all nonnegative polynomial

f (x) = ax4 + bx3 + cx2 + dx + e

such that ∃α ∈ R : f (α) = 0.

The root α is necessarily a double root: f (α) = f ′(α) = 0.

Hence the discriminant of the quartic f (x) vanishes:

256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e − 27a2d4

+144ab2ce2 − 6ab2d2e − 80abc2de + 18abcd3 + 16ac4e
−4ac3d2 − 27b4e2 + 18b3cde − 4b3d3 − 4b2c3e + b2c2d2

The Zariski closure of ∂C is the irreducible hypersurface of degree
6 defined by this polynomial. We regard it as a hypersurface in P4

C.
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Question 2: Duality in convex geometry

The dual cone C∨ is spanned by the rational normal curve

C∨ = R≥0
{

(1, x , x2, x3, x4) : x ∈ R
}
⊂ R5.

Its natural inequality representation is as the cone of
3× 3-Hankel matrices that are positive semidefinite:

C∨ =
{

(u0, u1, u2, u3, u4) ∈ R5 :

u0 u1 u2

u1 u2 u3

u2 u3 u4

 � 0
}

In pure math, Hankel matrices are known as catalecticants.

In applied math, Hankel matrices are known as moment matrices.

Now, let the lecture begin....
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A Tale of Two Cones

Fix the real vector space of homogeneous polynomials in
R[x1, x2, . . . , xn] of degree 2d . In this space, consider the
convex cone Pn,2d of all non-negative polynomials and the
subcone Σn,2d of all polynomials that are sums of squares.

Are they equal ?

Yes, if d = 1 (quadrics) or n = 2 (binary forms).

Example (n = d = 2): The binary quartic

f = 2x4
1 − 6x3

1x2 + 9x2
1x2

2 − 6x1x3
2 + 2x4

2

is non-negative. To prove this, we writesdp

f = (x2
1 − x2

2 )2 + (x2
1 − 3x1x2 + x2

2 )2.
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Plane Quartics

Yes, if d = 2 and n = 3:
Every non-negative ternary quartic can be writtensdp

as a sum of three squares of ternary quadrics.

This involves some beautiful 19th century geometry:

[D.Plaumann, B.St and C.Vinzant: Quartic curves and their bitangents,

Journal of Symbolic Computation 46 (2011) 712-733.



124 Years Ago

Theorem (Hilbert, 1888): The containment of convex cones

Σn,2d ⊂ Pn,2d

is strict if and only if (n ≥ 3 and d ≥ 3) or (n ≥ 4 and d ≥ 2).

What does this mean for the algebraic boundaries of these cones?

The algebraic boundary of Pn,d is an irreducible hypersurface of
degree n(2d − 1)n−1, namely the discriminant. This discriminant is
one irreducible component also in the algebraic boundary of Σn,d .

Today we examine the two borderline cases:

I Sextic curves in the plane (n = 3, d = 3)

I Quartic surfaces in 3-space (n = 4, d = 2)

The ambient spaces are P27 and P34 respectively.



The Lax-Lax Quartic

Exercise: The polynomial

(a− b)(a− c)(a− d)(a− e)
+ (b − a)(b − c)(b − d)(b − e)
+ (c − a)(c − b)(c − d)(c − e)
+ (d − a)(d − b)(d − c)(d − e)
+ (e − a)(e − b)(e − c)(e − d)

is non-negative but it is not a sum of squares.

[Anneli Lax and Peter Lax: On sums of squares,

Linear Algebra and its Applications 20 (1978) 71–75]

This represents a point in P4,4\Σ4,4.
What’s the matter with this quartic surface in P3?

Pop Quiz: What is a K3 surface?



Boundaries of SOS Cones

Theorem
The algebraic boundary of Σ3,6 has a unique non-discriminant
component. It has degree 83200 and is the Zariski closure of
the sextics that are sums of three squares of cubics.

The algebraic boundary of Σ4,4 has a unique non-discriminant
component. It has degree 38475 and is the Zariski closure of
the quartics that are sums of four squares of quadrics.

Both hypersurfaces define Noether-Lefschetz divisors
in moduli spaces of K3 surfaces.

Q: What’s the point of numbers like 83200 and 38475 ?

A: Think about the historical importance of the number 3264.

Our numbers are coefficients of certain modular forms in
[D. Maulik and R. Pandharipande: Gromov-Witten Theory

and Noether-Lefschetz Theory, arXiv:0705.1653]
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Extreme Non-Negative Polynomials

A Gromov-Witten Number:

Theorem
The Zariski closure of the set of extreme rays of P3,6\Σ3,6 is the
Severi variety of rational sextic curves in the projective plane P2.

This Severi variety has dimension 17 and degree 26312976
in the P27 of all sextic curves.

An Unknown Number:

Theorem
The Zariski closure of the set of extreme rays of P4,4\Σ4,4

is the variety of quartic symmetroids in P3, that is,
surfaces whose defining polynomial is the determinant
of a symmetric 4× 4-matrix of linear forms.

This variety has dimension 24 in the P34 of all quartic surfaces.
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A Dual Characterization

... of the non-discriminant component in ∂Σ3,6:

a006 a015 a024 a033 a105 a114 a123 a204 a213 a303
a015 a024 a033 a042 a114 a123 a132 a213 a222 a312
a024 a033 a042 a051 a123 a132 a141 a222 a231 a321
a033 a042 a051 a060 a132 a141 a150 a231 a240 a330
a105 a114 a123 a132 a204 a213 a222 a303 a312 a402
a114 a123 a132 a141 a213 a222 a231 a312 a321 a411
a123 a132 a141 a150 a222 a231 a240 a321 a330 a420
a204 a213 a222 a231 a303 a312 a321 a402 a411 a501
a213 a222 a231 a240 a312 a321 a330 a411 a420 a510
a303 a312 a321 a330 a402 a411 a420 a501 a510 a600


Theorem
The above Hankel matrices of rank ≤ 7 constitute a rational
projective variety of dimension 21 and degree 2640. Its dual is a
hypersurface, the Zariski closure of sums of three squares of cubics.



Proof

Consider the Grassmannian Gr(3, 10) of 3-dim’l subspaces F
in the 10-dimensional space R[x1, x2, x3]3 of ternary cubics.

This Grassmannian is rational and its dimension equals 21.

The global residue in P2 specifies a rational map F 7→ Res〈F 〉
from Gr(3, 10) into P((R[x1, x2, x3]6)∗) ' P27. Its base locus is
the resultant of three ternary cubics, so Res〈F 〉 is well-defined
whenever the ideal 〈F 〉 is a complete intersection in R[x1, x2, x3].

The value Res〈F 〉(P) of this linear form on a ternary sextic P is
the image of P modulo the ideal 〈F 〉. It can be computed via
Gröbner basis normal form. Our map F 7→ ` is birational because
it has an explicit inverse: F = kernel(H`). The inverse simply
maps the rank 7 Hankel matrix representing ` to its kernel.

The degree is from [Harris-Tu 1994] using Cohen-Macaulayness.



A Dual Characterization

... of the non-discriminant component in ∂Σ4,4:

a0004 a0013 a0022 a0103 a0112 a0202 a1003 a1012 a1102 a2002
a0013 a0022 a0031 a0112 a0121 a0211 a1012 a1021 a1111 a2011
a0022 a0031 a0040 a0121 a0130 a0220 a1021 a1030 a1120 a2020
a0103 a0112 a0121 a0202 a0211 a0301 a1102 a1111 a1201 a2101
a0112 a0121 a0130 a0211 a0220 a0310 a1111 a1120 a1210 a2110
a0202 a0211 a0220 a0301 a0310 a0400 a1201 a1210 a1300 a2200
a1003 a1012 a1021 a1102 a1111 a1201 a2002 a2011 a2101 a3001
a1012 a1021 a1030 a1111 a1120 a1210 a2011 a2020 a2110 a3010
a1102 a1111 a1120 a1201 a1210 a1300 a2101 a2110 a2200 a3100
a2002 a2011 a2020 a2101 a2110 a2200 a3001 a3010 a3100 a4000


Theorem
The above Hankel matrices of rank ≤ 6 constitute a rational
projective variety of dimension 24 and degree 28314. Its dual is a
hypersurface, the Zariski closure of sums of 4 squares of quadrics.



Numerical Algebraic Geometry

Q: Can we trust Maulik and Pandharipande?

A: It never hurts to double-check.

We independently verified the asserted degrees using Bertini.

Bertini is an amazing piece of numerical software for algebraic
geometry (and its many applications), due to Daniel Bates,
Jonathan Hauenstein, Andrew Sommese and Charles Wampler.

Try it tonight !

We computed the degrees of the irreducible variety of interest
by intersecting with a generic linear space of complementary
dimension, thus obtaining finitely many points over C.

Bertini finds numerical approximations of these points.
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Solution to the Pop Quiz

K3 stands for Kummer, Kähler and Kodaira.

Definition: K3 surfaces are complete smooth surfaces that
have trivial canonical bundle and are not abelian surfaces.

Two standard models of algebraic K3 surfaces are

I smooth quartic surfaces in P3,

I double covers of P2 branched along a sextic curve.

Noether-Lefschetz Theorem:
General K3 surfaces in these families have Picard group Z.

Max Noether (1882): Every irreducible curve on a general quartic
surface S is the intersection of S ⊂ P3 with another surface in P3.

Noether-Lefschetz divisors correspond to exceptional K3 surfaces:

I S contains quartic elliptic curves, say f = det

(
q11 q12

q21 q22

)
,

I S is the general surface of degree (3, 2) in P2 × P1.
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Summary

Recent advances in convex optimization have led to
a strong interest in understanding Hilbert’s inclusion

Σn,2d ⊂ Pn,2d .

The varieties we wish to understand are:

I the Zariski closure of the extreme rays in Pn,2d\Σn,2d ,

I the algebraic boundary of ∂Σn,2d\∂Pn,2d ,

I the projective duals to these varieties.

This talk: The smallest cases Σ3,6 and Σ4,4. We discovered

I a Severi variety and a variety of symmetroids,

I the two Noether-Lefschetz divisors on the previous slide,

I varieties defined by rank constraints on Hankel matrices.


