Nonnegative Polynomials versus Sums of Squares

> Bernd Sturmfels UC Berkeley

Based on a joint paper with G. Blekherman, J. Hauenstein, J.C. Ottem and K. Ranestad and on earlier work of G. Blekherman

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two Warm-up Questions

We know from *high school* that a quadric $ax^2 + bx + c$ is non-negative if and only if $a \ge 0$, $c \ge 0$ and $4ac - b^2 \ge 0$.

Let's study this convex cone for polynomials of degree four:

$$C = \left\{ (a, b, c, d, e) \in \mathbb{R}^5 \mid \forall x \in \mathbb{R} : ax^4 + bx^3 + cx^2 + dx + e \ge 0 \right\}$$

- 1. The boundary ∂C is a hypersurface. Find the degree and defining polynomial of this hypersurface.
- 2. Determine an inequality representation of the dual cone C^{\vee} .

Question 1: Algebraic boundary of nonnegative quartics

The boundary ∂C consists of all nonnegative polynomial

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

such that $\exists \alpha \in \mathbb{R} : f(\alpha) = 0$.

The root α is necessarily a double root: $f(\alpha) = f'(\alpha) = 0$.

Question 1: Algebraic boundary of nonnegative quartics

The boundary ∂C consists of all nonnegative polynomial

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

such that $\exists \alpha \in \mathbb{R} : f(\alpha) = 0$.

The root α is necessarily a double root: $f(\alpha) = f'(\alpha) = 0$.

Hence the *discriminant* of the quartic f(x) vanishes:

$$\begin{array}{l} 256a^3e^3-192a^2bde^2-128a^2c^2e^2+144a^2cd^2e-27a^2d^4\\ +144ab^2ce^2-6ab^2d^2e-80abc^2de+18abcd^3+16ac^4e\\ -4ac^3d^2-27b^4e^2+18b^3cde-4b^3d^3-4b^2c^3e+b^2c^2d^2 \end{array}$$

The Zariski closure of ∂C is the irreducible hypersurface of degree **6** defined by this polynomial. We regard it as a hypersurface in $\mathbb{P}^4_{\mathbb{C}}$.

Question 2: Duality in convex geometry

The dual cone C^{\vee} is spanned by the rational normal curve

$$\mathcal{C}^{ee} ~=~ \mathbb{R}_{\geq 0}ig\{\left(1,x,x^2,x^3,x^4
ight)~:~x\in\mathbb{R}ig\} ~\subset~ \mathbb{R}^5.$$

・ロト・日本・モト・モート ヨー うへで

Question 2: Duality in convex geometry

The dual cone C^{\vee} is spanned by the rational normal curve

$$\mathcal{C}^{ee} ~=~ \mathbb{R}_{\geq 0}ig\{\left(1,x,x^2,x^3,x^4
ight)~:~x\in\mathbb{R}ig\} ~\subset~ \mathbb{R}^5.$$

Its natural inequality representation is as the cone of 3×3 -Hankel matrices that are positive semidefinite:

$$\mathcal{C}^{\vee} = \{ (u_0, u_1, u_2, u_3, u_4) \in \mathbb{R}^5 : \begin{bmatrix} u_0 & u_1 & u_2 \\ u_1 & u_2 & u_3 \\ u_2 & u_3 & u_4 \end{bmatrix} \succeq 0 \}$$

In pure math, Hankel matrices are known as *catalecticants*. In applied math, Hankel matrices are known as *moment matrices*.

Now, let the lecture begin....

A Tale of Two Cones

Fix the real vector space of <u>homogeneous</u> polynomials in $\mathbb{R}[x_1, x_2, \ldots, x_n]$ of degree 2*d*. In this space, consider the convex cone $\mathcal{P}_{n,2d}$ of all non-negative polynomials and the subcone $\sum_{n,2d}$ of all polynomials that are sums of squares.

Are they equal ?

A Tale of Two Cones

Fix the real vector space of <u>homogeneous</u> polynomials in $\mathbb{R}[x_1, x_2, \ldots, x_n]$ of degree 2*d*. In this space, consider the convex cone $P_{n,2d}$ of all non-negative polynomials and the subcone $\sum_{n,2d}$ of all polynomials that are sums of squares.

Are they equal ? Yes, if d = 1 (quadrics) or n = 2 (binary forms).

Example (n = d = 2): The binary quartic

$$f = 2x_1^4 - 6x_1^3x_2 + 9x_1^2x_2^2 - 6x_1x_2^3 + 2x_2^4$$

is non-negative. To prove this, we write^{sdp}

$$f = (x_1^2 - x_2^2)^2 + (x_1^2 - 3x_1x_2 + x_2^2)^2$$

Plane Quartics

Yes, if d = 2 and n = 3:

Every non-negative ternary quartic can be written^{sdp} as a sum of three squares of ternary quadrics.

This involves some beautiful 19th century geometry:

[D.Plaumann, B.St and C.Vinzant: Quartic curves and their bitangents, Journal of Symbolic Computation **46** (2011) 712-733.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

124 Years Ago

Theorem (Hilbert, 1888): The containment of convex cones

$$\Sigma_{n,2d} \subset P_{n,2d}$$

is strict if and only if $(n \ge 3 \text{ and } d \ge 3)$ or $(n \ge 4 \text{ and } d \ge 2)$.

What does this mean for the algebraic boundaries of these cones?

The algebraic boundary of $P_{n,d}$ is an irreducible hypersurface of degree $n(2d-1)^{n-1}$, namely the discriminant. This discriminant is one irreducible component also in the algebraic boundary of $\Sigma_{n,d}$.

Today we examine the two borderline cases:

- Sextic curves in the plane (n = 3, d = 3)
- Quartic surfaces in 3-space (n = 4, d = 2)

The ambient spaces are \mathbb{P}^{27} and \mathbb{P}^{34} respectively.

The Lax-Lax Quartic

Exercise: The polynomial

$$\begin{array}{r} (a-b)(a-c)(a-d)(a-e) \\ + (b-a)(b-c)(b-d)(b-e) \\ + (c-a)(c-b)(c-d)(c-e) \\ + (d-a)(d-b)(d-c)(d-e) \\ + (e-a)(e-b)(e-c)(e-d) \end{array}$$

is non-negative but it is not a sum of squares.

[Anneli Lax and Peter Lax: On sums of squares, Linear Algebra and its Applications **20** (1978) 71–75]

This represents a point in $P_{4,4} \setminus \Sigma_{4,4}$. What's the matter with this quartic surface in \mathbb{P}^3 ?

Pop Quiz: What is a K3 surface?

Boundaries of SOS Cones

Theorem

The algebraic boundary of $\Sigma_{3,6}$ has a unique non-discriminant component. It has degree 83200 and is the Zariski closure of the sextics that are sums of three squares of cubics.

The algebraic boundary of $\Sigma_{4,4}$ has a unique non-discriminant component. It has degree 38475 and is the Zariski closure of the quartics that are sums of four squares of quadrics.

Both hypersurfaces define Noether-Lefschetz divisors in moduli spaces of K3 surfaces.

Q: What's the point of numbers like 83200 and 38475 ?

Boundaries of SOS Cones

Theorem

The algebraic boundary of $\Sigma_{3,6}$ has a unique non-discriminant component. It has degree 83200 and is the Zariski closure of the sextics that are sums of three squares of cubics.

The algebraic boundary of $\Sigma_{4,4}$ has a unique non-discriminant component. It has degree 38475 and is the Zariski closure of the quartics that are sums of four squares of quadrics.

Both hypersurfaces define Noether-Lefschetz divisors in moduli spaces of K3 surfaces.

Q: What's the point of numbers like 83200 and 38475 ?

A: Think about the historical importance of the number 3264.

Our numbers are coefficients of certain modular forms in [D. Maulik and R. Pandharipande: Gromov-Witten Theory and Noether-Lefschetz Theory, arXiv:0705.1653] Extreme Non-Negative Polynomials

A Gromov-Witten Number:

Theorem

The Zariski closure of the set of extreme rays of $P_{3,6} \setminus \Sigma_{3,6}$ is the **Severi variety** of rational sextic curves in the projective plane \mathbb{P}^2 . This Severi variety has dimension 17 and degree 26312976 in the \mathbb{P}^{27} of all sextic curves.

Extreme Non-Negative Polynomials

A Gromov-Witten Number:

Theorem

The Zariski closure of the set of extreme rays of $P_{3,6} \setminus \Sigma_{3,6}$ is the **Severi variety** of rational sextic curves in the projective plane \mathbb{P}^2 . This Severi variety has dimension 17 and degree 26312976 in the \mathbb{P}^{27} of all sextic curves.

An Unknown Number:

Theorem

The Zariski closure of the set of extreme rays of $P_{4,4} \setminus \Sigma_{4,4}$ is the variety of **quartic symmetroids** in \mathbb{P}^3 , that is, surfaces whose defining polynomial is the determinant of a symmetric 4×4 -matrix of linear forms.

This variety has dimension 24 in the \mathbb{P}^{34} of all quartic surfaces.

A Dual Characterization

... of the non-discriminant component in $\partial \Sigma_{3,6}$:

a ₀₀₆	a ₀₁₅	<i>a</i> ₀₂₄	a ₀₃₃	a_{105}	a_{114}	a ₁₂₃	<i>a</i> ₂₀₄	a ₂₁₃	a ₃₀₃
a ₀₁₅	a ₀₂₄	a ₀₃₃	<i>a</i> 042	a ₁₁₄	a ₁₂₃	a ₁₃₂	a ₂₁₃	a ₂₂₂	a ₃₁₂
a ₀₂₄	<i>a</i> 033	<i>a</i> ₀₄₂	<i>a</i> 051	a ₁₂₃	a ₁₃₂	a_{141}	a ₂₂₂	a ₂₃₁	a ₃₂₁
a ₀₃₃	<i>a</i> 042	a ₀₅₁	<i>a</i> 060	a ₁₃₂	a_{141}	a_{150}	a ₂₃₁	<i>a</i> ₂₄₀	a ₃₃₀
a ₁₀₅	a ₁₁₄	a ₁₂₃	a ₁₃₂	<i>a</i> ₂₀₄	a ₂₁₃	a ₂₂₂	<i>a</i> ₃₀₃	<i>a</i> ₃₁₂	<i>a</i> ₄₀₂
_	2	~	~	~	~	~	~	2	~
a114	<i>a</i> 123	a ₁₃₂	a ₁₄₁	a213	a222	a231	<i>a</i> ₃₁₂	a 321	a411
a ₁₁₄ a ₁₂₃	а ₁₂₃ а ₁₃₂	a ₁₃₂ a ₁₄₁	a ₁₄₁ a ₁₅₀	a ₂₁₃ a ₂₂₂	а ₂₂₂ а ₂₃₁	а ₂₃₁ а ₂₄₀	а ₃₁₂ а ₃₂₁	а ₃₂₁ а ₃₃₀	а ₄₁₁ а ₄₂₀
a ₁₁₄ a ₁₂₃ a ₂₀₄	a ₁₂₃ a ₁₃₂ a ₂₁₃	a ₁₃₂ a ₁₄₁ a ₂₂₂	a ₁₄₁ a ₁₅₀ a ₂₃₁	a ₂₁₃ a ₂₂₂ a ₃₀₃	a ₂₂₂ a ₂₃₁ a ₃₁₂	a ₂₃₁ a ₂₄₀ a ₃₂₁	а ₃₁₂ а ₃₂₁ а ₄₀₂	а ₃₂₁ а ₃₃₀ а ₄₁₁	a ₄₁₁ a ₄₂₀ a ₅₀₁
a ₁₁₄ a ₁₂₃ a ₂₀₄ a ₂₁₃	a ₁₂₃ a ₁₃₂ a ₂₁₃ a ₂₂₂	a ₁₃₂ a ₁₄₁ a ₂₂₂ a ₂₃₁	a ₁₄₁ a ₁₅₀ a ₂₃₁ a ₂₄₀	a ₂₁₃ a ₂₂₂ a ₃₀₃ a ₃₁₂	a ₂₂₂ a ₂₃₁ a ₃₁₂ a ₃₂₁	a ₂₃₁ a ₂₄₀ a ₃₂₁ a ₃₃₀	a ₃₁₂ a ₃₂₁ a ₄₀₂ a ₄₁₁	a ₃₂₁ a ₃₃₀ a ₄₁₁ a ₄₂₀	a ₄₁₁ a ₄₂₀ a ₅₀₁ a ₅₁₀

Theorem

The above Hankel matrices of rank \leq 7 constitute a rational projective variety of dimension 21 and degree 2640. Its dual is a hypersurface, the Zariski closure of sums of three squares of cubics.

Proof

Consider the Grassmannian Gr(3,10) of 3-dim'l subspaces F in the 10-dimensional space $\mathbb{R}[x_1, x_2, x_3]_3$ of ternary cubics.

This Grassmannian is rational and its dimension equals 21.

The *global residue* in \mathbb{P}^2 specifies a rational map $F \mapsto \operatorname{Res}_{\langle F \rangle}$ from $\operatorname{Gr}(3, 10)$ into $\mathbb{P}((\mathbb{R}[x_1, x_2, x_3]_6)^*) \simeq \mathbb{P}^{27}$. Its base locus is the resultant of three ternary cubics, so $\operatorname{Res}_{\langle F \rangle}$ is well-defined whenever the ideal $\langle F \rangle$ is a complete intersection in $\mathbb{R}[x_1, x_2, x_3]$.

The value $\operatorname{Res}_{\langle F \rangle}(P)$ of this linear form on a ternary sextic P is the image of P modulo the ideal $\langle F \rangle$. It can be computed via Gröbner basis normal form. Our map $F \mapsto \ell$ is birational because it has an explicit inverse: $F = \operatorname{kernel}(H_{\ell})$. The inverse simply maps the rank 7 Hankel matrix representing ℓ to its kernel.

The degree is from [Harris-Tu 1994] using Cohen-Macaulayness.

A Dual Characterization

... of the non-discriminant component in $\partial \Sigma_{4,4}$:

a ₀₀₀₄	a ₀₀₁₃	<i>a</i> ₀₀₂₂	<i>a</i> ₀₁₀₃	<i>a</i> ₀₁₁₂	<i>a</i> ₀₂₀₂	a ₁₀₀₃	a ₁₀₁₂	a_{1102}	a ₂₀₀₂
a ₀₀₁₃	<i>a</i> ₀₀₂₂	a ₀₀₃₁	a ₀₁₁₂	a ₀₁₂₁	a ₀₂₁₁	a ₁₀₁₂	a ₁₀₂₁	a ₁₁₁₁	a ₂₀₁₁
<i>a</i> 0022	<i>a</i> 0031	<i>a</i> 0040	<i>a</i> ₀₁₂₁	<i>a</i> 0130	<i>a</i> ₀₂₂₀	<i>a</i> ₁₀₂₁	<i>a</i> 1030	<i>a</i> ₁₁₂₀	a ₂₀₂₀
<i>a</i> 0103	<i>a</i> 0112	<i>a</i> ₀₁₂₁	<i>a</i> 0202	<i>a</i> ₀₂₁₁	<i>a</i> 0301	<i>a</i> ₁₁₀₂	a ₁₁₁₁	a ₁₂₀₁	a ₂₁₀₁
<i>a</i> 0112	<i>a</i> ₀₁₂₁	<i>a</i> 0130	<i>a</i> ₀₂₁₁	<i>a</i> 0220	<i>a</i> 0310	a ₁₁₁₁	<i>a</i> ₁₁₂₀	<i>a</i> ₁₂₁₀	a ₂₁₁₀
<i>a</i> 0202	<i>a</i> ₀₂₁₁	<i>a</i> 0220	<i>a</i> 0301	<i>a</i> 0310	<i>a</i> 0400	<i>a</i> ₁₂₀₁	<i>a</i> ₁₂₁₀	a_{1300}	<i>a</i> 2200
а ₀₂₀₂ а ₁₀₀₃	a ₀₂₁₁ a ₁₀₁₂	а ₀₂₂₀ а ₁₀₂₁	а ₀₃₀₁ а ₁₁₀₂	а ₀₃₁₀ а ₁₁₁₁	a ₀₄₀₀ a ₁₂₀₁	a ₁₂₀₁ a ₂₀₀₂	a ₁₂₁₀ a ₂₀₁₁	a ₁₃₀₀ a ₂₁₀₁	a ₂₂₀₀ a ₃₀₀₁
a ₀₂₀₂ a ₁₀₀₃ a ₁₀₁₂	a ₀₂₁₁ a ₁₀₁₂ a ₁₀₂₁	a ₀₂₂₀ a ₁₀₂₁ a ₁₀₃₀	a ₀₃₀₁ a ₁₁₀₂ a ₁₁₁₁	a ₀₃₁₀ a ₁₁₁₁ a ₁₁₂₀	a ₀₄₀₀ a ₁₂₀₁ a ₁₂₁₀	a ₁₂₀₁ a ₂₀₀₂ a ₂₀₁₁	a ₁₂₁₀ a ₂₀₁₁ a ₂₀₂₀	a ₁₃₀₀ a ₂₁₀₁ a ₂₁₁₀	a ₂₂₀₀ a ₃₀₀₁ a ₃₀₁₀
a_{0202} a_{1003} a_{1012} a_{1102}	a ₀₂₁₁ a ₁₀₁₂ a ₁₀₂₁ a ₁₁₁₁	a_{0220} a_{1021} a_{1030} a_{1120}	a_{0301} a_{1102} a_{1111} a_{1201}	a_{0310} a_{1111} a_{1120} a_{1210}	a_{0400} a_{1201} a_{1210} a_{1300}	a ₁₂₀₁ a ₂₀₀₂ a ₂₀₁₁ a ₂₁₀₁	a ₁₂₁₀ a ₂₀₁₁ a ₂₀₂₀ a ₂₁₁₀	a_{1300} a_{2101} a_{2110} a_{2200}	a ₂₂₀₀ a ₃₀₀₁ a ₃₀₁₀ a ₃₁₀₀

Theorem

The above Hankel matrices of rank ≤ 6 constitute a rational projective variety of dimension 24 and degree 28314. Its dual is a hypersurface, the Zariski closure of sums of 4 squares of quadrics.

Numerical Algebraic Geometry

 ${\boldsymbol{\mathsf{Q}}}$: Can we trust Maulik and Pandharipande?

・ロト・日本・モト・モート ヨー うへで

Numerical Algebraic Geometry

- **Q**: Can we trust Maulik and Pandharipande?
- A: It never hurts to double-check.

We independently verified the asserted degrees using Bertini.

Bertini is an amazing piece of *numerical* software for algebraic geometry (and its many applications), due to Daniel Bates, Jonathan Hauenstein, Andrew Sommese and Charles Wampler.

Try it tonight !

We computed the degrees of the irreducible variety of interest by intersecting with a generic linear space of complementary dimension, thus obtaining finitely many points over \mathbb{C} .

Bertini finds numerical approximations of these points.

Solution to the Pop Quiz

K3 stands for Kummer, Kähler and Kodaira.

Definition: K3 surfaces are complete smooth surfaces that have trivial canonical bundle and are not abelian surfaces.

Two standard models of algebraic K3 surfaces are

- smooth quartic surfaces in \mathbb{P}^3 ,
- double covers of \mathbb{P}^2 branched along a sextic curve.

Solution to the Pop Quiz

K3 stands for Kummer, Kähler and Kodaira.

Definition: K3 surfaces are complete smooth surfaces that have trivial canonical bundle and are not abelian surfaces.

Two standard models of algebraic K3 surfaces are

- smooth quartic surfaces in \mathbb{P}^3 ,
- double covers of \mathbb{P}^2 branched along a sextic curve.

Noether-Lefschetz Theorem:

General K3 surfaces in these families have Picard group \mathbb{Z} .

Max Noether (1882): Every irreducible curve on a general quartic surface S is the intersection of $S \subset \mathbb{P}^3$ with another surface in \mathbb{P}^3 .

Noether-Lefschetz divisors correspond to exceptional K3 surfaces:

- ► S contains quartic elliptic curves, say $f = \det \begin{pmatrix} q_{11} & q_{12} \\ a_{21} & a_{22} \end{pmatrix}$,
- S is the general surface of degree (3,2) in $\mathbb{P}^2 \times \mathbb{P}^1$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ りへぐ

Summary

Recent advances in convex optimization have led to a strong interest in understanding Hilbert's inclusion

 $\Sigma_{n,2d} \subset P_{n,2d}.$

The varieties we wish to understand are:

- the Zariski closure of the extreme rays in $P_{n,2d} \setminus \sum_{n,2d}$,
- the algebraic boundary of $\partial \Sigma_{n,2d} \setminus \partial P_{n,2d}$,
- the projective duals to these varieties.

This talk: The smallest cases $\Sigma_{3,6}$ and $\Sigma_{4,4}$. We discovered

- a Severi variety and a variety of symmetroids,
- the two Noether-Lefschetz divisors on the previous slide,
- varieties defined by rank constraints on Hankel matrices.