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@ The theory of invariants of ordinary differential equations has
been developed by K.S. Sibirski and his coworkers in
1960-70th:

K. S. Sibirsky. Introduction to the Algebraic Theory of
Invariants of Differential Equations. Nonlinear Science:
Theory and Applications. Manchester: Manchester University
Press, 1988.

@ Generalization to complex systems:
Chapter 5 of V. G. Romanovski and D. S. Shafer, The Center

and Cyclicity Problems: A Computational Algebra Approach,
Birkhiiser, Boston, 2009.
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Definition

Let k be a field, G be a group of n x n matrices with elements in
k, A€ G and x € k". A polynomial f € k[x1,...,xp] is invariant
under G if f(x) = f(A-x) for every A € G. An invariant is
irreducible if it does not factor as a product of polynomials that are
themselves invariants.

Example. Let B = (? 7(1)) and let /» denote the 2 x 2 identity
matrix. The set C4 = {h, B, B?, B3} is a group under
multiplication, and for the polynomial

f(x) = f(x1, %) = 3(x2 + x3) we have f(x) = f(B - x),

f(x) = f(B?-x), and f(x) = f(B3-x). Thus, f is an invariant of
the group C4. When k =R, B is simply the group of rotations by
multiples of % radians (mod 2m) about the origin in R?, and f is
an invariant because its level sets are circles centered at the origin,
which are unchanged by such rotations.
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Consider the system 2% = Ax:

X1 =a1xi + anxe

o (1)

Xp =az Xy + axnx
Let Q = GLy(R) be the group of all linear invertible transformations of
R?:

y = Cx,
where
a b
C_<c d>’ det C #0.
Then,
dy b1 b2 —1 1 di  di2
dt v < b1 b det C \ da dan )’
where
dll = ad311 + bd321 — acaip — bC322
dip = abayy — b2ay + a*ain + abany,
dr1 = cday; + d2321 — C2312 — cdago,
day = —bcay; — bdaz; + acayz + adagy. Therefore,
1 1 1 1
b1 = ——d. b = ——d by = ——d. = dro.
1= et be=_oradn, ba = ommdn, bo der C 2
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We look for a homogeneous invariant of degree one:
I(a) = kia11 + koai2 + kzap1 + kaaoo.
It should be /(b) = I(a), that is,
kibi1 + kobio + k3bo1 + kabxo = kia11 + koai2 + kzao1 + kaano.

Hence,
kiad — kyab + kscd — kabc = ki(ad — bc).

Thus, ko = ks = 0 and k4 = k1 and up to a constant multiplier
/1(3) = ai1 + axp = trA.

Similarly we can show that each invariant of degree 2 must be of
the form:

I(a) = k1(a%l+a§2+2311322)+k2(311322—312321) = kltr2A2+k2 det A.
It yields that the homogeneous invariant of degree two is
L =det A= (311322 — 312321).

Any invariant of degree 3 and higher is a polynomial of tr A and
det A.
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Invariants of the rotation group

Consider polynomial systems on C? in the form

X= - Z aqup+1yq = P(x,y),

(p.q)€S
- 1 (2)
Y= Y bepxIyPT = Q(x,y),

(p.q)€S

where the index set S C N_; x Ny is a finite set and each of its
elements (p, q) satisfies p + g > 0. If £ is the cardinality of the set
S, we use the abbreviated notation

(3,6) = (apr.a1 3220 - - » Apaes Bagpes - - - baz,pas by py) Tor the
ordered vector of coefficients of system (2), let E(a, b) = C?
denote the parameter space of (2), and let C[a, b] denote the
polynomial ring in the variables a,q and bgp.
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Consider the group of rotations
X' =e%x, y =e?y (3)
of the phase space C? of (2). In (x’,y’) coordinates

. . 1
< = Z 3((;0)pq /p+1 /q Z b X/qy/P+
(p,q)€S (p,q)€S

where the coefficients of the transformed system are

a(SD)ijJ' = anQjei(pj_qj)<P7 b(SD)Qij = bqujei(qj—Pj)(p’ (4)
for j=1,...,¢. For any fixed angle ¢ the equations in (4)
determine an invertible linear mapping U, of the space E(a, b) of
parameters of (2) onto itself, which we will represent as the block
diagonal 2¢ x 2¢ matrix

U — Ul o
7~ \lo u)

where Us(pa) and Ué,b) are diagonal matrices that act on the
coordinates a and b respectively.
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Example. For the family of systems
X = —agoX — a_11y — anx>, ¥ = b1 _1x+ booy + b2y> (5)
S is the ordered set {(0,0),(—1,1),(2,0)}, and equation (4) gives the
collection of 2¢ = 6 equations
a(p)oo = a00e @V a(p) 11 = a_1TTTIE a(p)ag = anpe 0%
b(0)o0 = booe 0¥ b(¢)1,-1 = bl,flei(l_(_l))w b(p)o2 = bppe'©2)¢

so that
u® o
U, -(a,b)=1["7% (a,b)T =
- (a.b) ( : ug») (5.5)

1 0 0 0 0 0 doo doo
0 e 2 0 0 0 0 a_11 8_116. i2¢
0 0 6'290 0 0 0 a0 _ 3206'%39
0 0 0 e~ i2¢ 0 0 boo - b0267’.2<'0
0 0 0 0 e* 0 by 1 by,_1e'2?
0 0 0 0 0 1 bog boo
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Thus here

1 0 0 e”22 0 0
Uéf) =10 e 2 0 and Uc(pb) = 0 el2? 0
0 0 e 0 0 1

We write in the short form
(a((p)v b(@)) U (a b) (U(a - a, U(;b) . b)

The set U = {U, : ¢ € R} is a group, a subgroup of the group of
invertible 2¢ x 2¢ matrices with entries in k. In the context of U
the group operation corresponds to following one rotation with
another.

Definition

The group U = {U,, : ¢ € R} is called the rotation group of family
(2). A polynomial invariant of the group U is termed an invariant
of the rotation group, or more simply an invariant.
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We wish to identify all polynomial invariants of this group action.
The polynomials in question are elements of C[a, b]. They identify
polynomial expressions in the coefficients of elements of the family
(2) that are unchanged under a rotation of coordinates. A
polynomial f € C|a, b] is an invariant of the group U if and only if
each of its terms is an invariant, so it suffices to find the invariant
monomials. Since

a(P)pjq; = apq;€’ pi=a)e, b()q;p; = bqujei(qupj)wa
for v € N2 the image of the corresponding monomial

byt -+~ by, € Cla, ]

[y] = a qip1

p1q1 o peqe
under U, is the monomial

V1

a(so)plql e 3( )p@qg (So)gﬁé e b(@)gﬁyl

elvvilpi—a) | qve  oivve(pe—ar)
aplql 9pyq, €

14 [ —
bqﬁﬁe's@l’ul(% Pe) ... prae elvvac(qi—pr)

q1p1 (6)
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— eiSO[Vl(Pl—q1)+"'+Ve(Pe—qe)+Vz+1(%—Pz)+"‘+V2z(CI1—Pl)]

Vi g¥e  pReEL i
p1q1 piqy bqé Pe b qip1*

The quantity in square brackets is L;(v) — La(v), where
L(v) = ((él((:))) is the linear operator on N2’ defined by

L(v) = (pl>V1 +ot (p‘5>w+ <C”)ue+1+---+ (C”)m.
qi Qe pe p1

Thus, the monomial [v] is an invariant if and only if
Li(v) = La(v). We define the set M by

a

M={veNg: L) = (i) for some k € Np}. (7)
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We have established that the monomial [v] is invariant under the
rotation group U of (2) if and only if L1(v) = Lp(v), that is, if and
only if v € M.

For

_ Vot1
(] = apiq, - apiaibaupe - by € Cla, bl
its conjugate is defined by

~ — QYae L. qvetlpve
[V] = 9pna Fpeqy bqepe lePl € C[a, b]

Since, for any v € N3¢, L1(v) — La(v) = —(L1(?) — La(P)), the
monomial [v] is invariant under U if and only if its conjugate [7] is.
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The monoid M consists of all v such that
Li(v) = La(v) = (p1 — q1)v1 + (P2 — q2)v2 + - - + (pe — qe)ve
+ (q¢ — pe)ves1 + -+ (q1 — p1)vae = 0.

(8)

o’
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Proof. Obviously every solution of (7) is also a solution of (8).
Conversely, let v be a solution of (8) and let
ei =(0,...,0,1,0,...,0) be the ith basis vector of C?*. Then

L'(v) = L2(v) = k, (9)

yielding
L*(v) + L2(v) = 2k. (10)

Note that
LYe) + L%(e) = LY(exp—j) + P(exe_i) = pi +q: >0  (11)

for i =1,...,¢. Taking into account the fact that L(v) is a linear
operator, we conclude from (10) and (11) that the number k on
the right—hand side of (9) is non—negative. [J
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Example. We will find all the monomials of degree at most three
that are invariant under the rotation group U for the family of
systems

X = —agoX — a_11y — a0x>, ¥ = b1 _1x + booy + boay?>.
Since S = {(0,0), (—1,1),(2,0)}, for v € N&

L(v) =11(0,0) + v2(—1,1) + 1v3(2,0) + 4 (0,2) + v5 (1,—1) + 156 (0, 0)
= (—12 +2v3 + Vs, V2 + 2v4 — Us)

so that equation (8) reads
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— 21 + 2V3 —2u4 + 21/5 =0. (12)
deg([v]) = 0. The monomial 1, corresponding to v = 0 € N§, is of
course always an invariant. j
deg([v]) = 1. In this case v = (0,...,0,1,0,...,0) € N§ for some
J. Clearly (12) holds if and only if v = e; or v = eg, yielding
agy @211 390 by b _1 by = a00 and to
aSp 3% 11 a5 S, b?,—1 by = boo respectively.
deg([v]) = 2. If v = 2¢; and satisfies (12) then j =1 or j = 6,
yielding a3, and b3,, respectively. If v = e; + e for j < k, then
(12) holds if and only if either (j, k) = (1,6) or one of j and k
corresponds to a term in (12) with a plus sign and the other to a
term with a minus sign, hence
(U, k) € P:={(2,3),(2,5),(3,4),(4,5)}. The former case gives
aogo boo; the latter case gives

V= (0, 1, 1, 0, 0, 0) yielding 380 31_11 a%o b82 b(1)7_1 bgo = a_114a20

V= (O’ 1’ 07 07 1a 0) yleldlng 380 al—ll 3(2)0 b82 b%,—l b80 =ada-11 bl’,l
; : 0 .0 1 4,1 40 0

a a a oo oo
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The full set of monomial invariants of degree at most three for
family

X = —agoX — a_11y — axx>, ¥ = b1 _1x + booy + boay?
is

degree 0: 1

degree 1: agg, boo

degree 2: 239, b3o, a00 boo, a—11 320, a—11 b1,—1, 320 bo2, bo2 b1,—1

degree 3: a3y, b3y, ago boo, 200 b 300 @11 220, 00 a—11 b1,—1, 200 220 bo
aoo bo2 b1,—1, boo a—11 a20, boo a—11 b1,—1, boo a20 bo2, boo bo2 b
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An algorithm for computing a generating set of invariants

(A. Jarrah, R. Laubenbacher, V.R. JSC, 2003)

X= - Z apgxP Ty = P(x,y),
(p.q)€S

y = Z bgpxTyP*t = Q(x, y),
(p,9)€s

0= (o) = () Qe (e ()
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Input: Two sequences of integers p1,...,pe (pi > —1) and

g1, ---,qe (gi > 0). (These are the coefficient labels for our
system.)

Output: A finite set of generators for subalgebra of the invariant
(equivalently, the Hilbert basis of M).

1. Compute a reduced Grobner basis G for the ideal
i +.i qe—it1 Pe—i .
T = (apq—Yity'ty', bgip;—ye—it1ty " T [i=1,...,0)
C (C[au ba.ylu -y Yo, tlv t2]

with respect to any elimination ordering for which

{tly t2} > {y17 v ’Yd} > {aP1q17 vy bqlpl}-

2. Is = (G NCla,b)).
3. The basis is formed by the monomials of /s and monomials of
the form aj, by
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Time-reversible systems

2 _Fa) (e0) (13)
F:Q+— TQ is a vector field and € is a manifold.

Definition

A time-reversible symmetry of (13) is an invertible map
R : Q+ €, such that

= —F(Rz). (14)
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o= v+ vf(u,v?), v=—u+g(uv?), (15)

The transformation v — u, v — —v, t — —t leaves the system
unchanged = the u—axis is a line of symmetry for the orbits = no

trajectory in a neighborhood of (0,0) can be a spiral = the origin
is a center.
Here

R:u—u, vie —v. (16)
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’Ll: - U[u’\/]
’1‘7'—:7\/.['4,1/)

x = 24i v x:P(z)n'c_)

(P: Cliv e V)

2O\ ——oiiee St ol
S
e —— == = —_— e A)
o ross-e-i— ‘?vve!s:&, L% Revemss,/4, —6,4

g v TN,
\,___/,ZL (D’fu V;, Vil ) \V!?/

Olew,v) = —Ule,—+ ) ’U”(,, v = Ul -2
7 TR o et o~V
NWede Aliadt

-

BCe, > = - V)t Vig-v)= PCE x) =V fy-2),
—— Ui, ) + & Y, = + ¢ Vg )= + Tl
= — Phc=) —E W) = Plag

cA) gi(fq’g oo A Plie o0 > ’/_7\5?’742(

= P ) 55— PYE )
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Complexification

u=U(u,v), v=V(uv) x=u+iv
x=u+iv=U+iV = P(x,X) (17)

We add to (17) its complex conjugate to obtain the system

% = P(x,%), X = P(x,%). (18)

The condition of time-reversibility with respect to Ou = Im x:
P(x,x) = —P(x,X).

Invariants and time-reversibility in polynomial systems of ODEs




Time-reversibility with respect to y = tan ¢ x:
2ipply o) — 2Qips —2ip
e“'"?P(x,x) = —P(e”'¥x, e “'%x). (19)

Consider x as a new variable y and allow the parameters of the
second equation of (18) to be arbitrary. The complex system

x = P(x,y), y= Q(x,y). which is is time—reversible with
respect to a transformation

R:xw— vy, y— v 1x

if and only if for some ~y

YRy, x/v) = —P(x,y), vQ(x,y) = —P(yy,x/v). (20)

In the particular case when v = €2, y = %, and Q = P the
equality (20) is equivalent to the reflection with respect a line and
the reversion of time.
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Systems of our interest are of the form

X= x- Z(p,q)es apqxpﬂyq = P(x,y),
y= ¥+ 2paes bapxIyP*t = Q(x,y),

(21)

where S is the set

S={(pj,q)lpj+q >0,j=1,...,0} ¢ ({-1} UNg) x No, and
Np denotes the set of nonnegative integers. We will assume that
the parameters ap.q., bgp (j =1,...,¢) are from C or R. Denote
by (a,b) = (apiqrs- - > @pyqus Paspy - - - » Pgipr ) the ordered vector of
coefficients of system (21), by E(a, b) the parameter space of (21)
(e.g. E(a,b)is C?¢ or R?"), and by k[a, b] the polynomial ring in
the variables apq, bgp over the field k.
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The condition of time-reversibility

1R(y. x/7) = —P(x,y), 1Q(x,y) = =P(yy.x/7).
yields that system (21) is time—reversible if and only if
bgp =" apq, apg = bgp77". (22)
We rewrite (22) in the form
apeqe =tk  bgp, = VP Ity (23)

for k =1,...,¢. (23) define a surface in the affine space

C3* = (apyqrs - - - » Apears Baupes - - - » Baupys ty - - - » te,y)- Thus, the
set of all time-reversible systems is the projection of this surface
onto C?* = E(a, b).
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Theorem (e.g. Cox D, Little J and O'Shea D 1992 /deals,

Varieties, and Algorithms)
Let k be an infinite field, fi,...,f, be elements of k[t1,..., tm],

X1 = fl(tl,.. .,tm), A — fn(tl,... , tm),
and let F: k™ — k", be the function defined by
F(ti,....tm) = (A(t1,.. -, tm),- .-, fa(t1, ..., tm))-

Let J=(A—x1,...,fn—Xn) CKk[y,t1,...,tm,X1,...,Xn|, and let
Imt+1 = I N k[x1, ..., xn]. Then V(Jp41) is the smallest variety in
k™ containing F(k™).
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Let
H = <3Pka — bk, bCIkPk - 7pk_qktk ’ k=1,... 76)? (24)

Let R be the set of all time-reversible systems in the family (21).
From the previous theorem we obtain

R = V(Z) where T = k[a, b] N H, that is, the Zariski closure of
the set R of all time-reversible systems is the variety of the ideal Z.
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Computation of Z = k[a, b N H

Elimination Theorem

Fix the lexicographic term order on the ring k[xi, ..., x,] with

X1 > Xo > --- > X, and let G be a Groebner basis for an ideal / of
k[x1,...,xn] with respect to this order. Then for every ¢,
0<¢<n-1,theset Gp:= GNk[xpi1,...,xn] is a Groebner
basis for the ideal Iy = I N k[x¢+1, ..., Xxn| (the /=th elimination
ideal of 1).

By the theorem, to find a generating set for the ideal 7 it is
sufficient to compute a Groebner basis for H with respect to a
term order with {w, v, tx} > {ap,q,, bg.p.} and take from the
output list those polynomials, which depend only on

apiais bayps (k =1,... 7£)-
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An algorithm for computing the set of all time-reversible systems

Let

H = <aPka - tkqukpk — 'ka_qktk ’ k = ]., . ,6)

@ Compute a Groebner basis Gy for H with respect to any
elimination order with
{Wv% tk} > {apqu? bquk | k=1,... 76};

o the set B = Gy N k[a, b] is a set of binomials; V((B)) is the
Zariski closure of set of all time-reversible systems.
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Another description of the ideal Z

Let M be the monoid of all solutions v = (v1, v, ..., vy) with
non—negative components of the equation

Cri+CGuo+- -+ Cve+Cor1Ver1+- - -+ (oo = 0, (CV = O) (25)

where (j = p; —qj for j=1,...,¢, (j = qar—j+1 — pae—j+1 for
j=£44+1,...,2¢, that is,

C=(Pr—q1,P2—qo,---, Pt —GesGe — Pes---,q1 — P1)

((pj, qj) are from the set S defining system (2)).

For v = (v1,...,v2) € M we denote by [v] the monomial
V1 12 S 77 Vo1 p Ve+2 Y N 2Y)
11 9p2go 9peqq bq/ZPl bW—lF’é—l bq1P1 (26)
and by © the involution of the vector v, U = (vor, Vo1, ..., V1).

The monomials [v] and [7] are invariants of the rotation group U,,.
We will denote by C[M] the monoid ring of M (the subalgebra
generated by {[v]|v € M}).

Invariants and time-reversibility in polynomial systems of ODEs



For system (2) one can always find a function

V(x,y) = xy + h.o.t. such that

ov ov

ETXP(XJ)‘F@Q(X,Y) = gi1-(xv)*+g2-(xv)* +g33- () +- -,
(27)

where the gj; are polynomials in the coefficients of (2) called focus

quantities. System (2) is integrable if and only if g&c = 0 for all

s=1,2,....

gss(a, b) € C[M] and have the form

8ss = Z g(y)([y] - [ﬁ]) (28)

veM

Consider the ideal
Is=(v]—1[7]|v € M) C k[a,b] (kis C orR).
We call Is the Sibirsky ideal of system (2).
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In the case that (2) is time-reversible, using (22) and (25) we see
that for v € M

(2] ="Vl = [, (29)
where ( - v is the scalar product of ¢ and v, that is the left-hand
side of (25). Thus, using (28), we obtain that every time-reversible
system is integrable.
By (29) every time—-reversible system (a, b) € E(a, b) belongs to
V(Is). The converse is false.

Theorem 1

Let R C E(a, b) be the set of all time—reversible systems in the
family (2), then

(a) R C V(IS),'

(b) V(Is)\ R ={(a,b) | I(p,q) € S such that apgbgp =

0 but apq+ bgp # 0}.

(b) means that if in a time-reversible system (2) apq # 0 then
bgp # 0 as well. (b) == the inclusion in (a) is strict, that is
R S V(Is).
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Is =7 and both ideals are prime. \

From Theorems 1 and 2 it follows

The variety of the Sibirsky ideal Is is the Zariski closure of the set
R of all time-reversible systems in the family (2).
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Suppose we are given the system

Aty tm) ot tm)

X1 = y eeey Xn = , 30
YT oa(t, . tm) gn(te, .- tm) (30)

where fj, gj € k[t1,... tm| for j=1,...,n. Let k(t1,...,tm)
denote the ring of rational functions in m variable with coefficients
in k (k is C or R), and consider the ring homomorphism

1;:k[xl,...,x,,,tl,...,tm,w]—>k(t1,...,tm)

defined by
ti—ti, xj— fi(ty,...,tm)/g(t1,. .., tm),w — 1/g(t1,...,tm),
i=1....mj=1....nand g = g1 - gn- Let

H=(1-wg,xig1(t1, ..., tm)—Ff(t1, -, tm)s- -y Xn&n(t1,- .., tm)—Tn(t1,

H = ker(v)). (31)

Since k[x1,...,Xn, t1,..., tm, w] is @ domain (31) yields that His
a prime ideal.
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Proof of Theorem 2.
H = (ap.q, — tk, bgup, — 7P %t | k=1,...,0), I = HnNk|a,b].

Let f € Is C C[a, b], so that f is a finite linear combination, with
coefficients in C[a, b], of binomials of the form [v] — [7], where
v e M. f €T if any such binomial is in Z. By definition of ¢

Y([W] = [P]) = 81" - £ (PP tg) e (P T )
_ thze . tzﬁl (,ypz—w tg)w - (,}/Pl—ch tl)Vl
— ti’l - tZé ti’% . té’/f+1(,-yV1C1+"'+VzCz V2@C1+~~+Ve+1Cz)_
(32)
Since v € M, Civ1 + -+ Qoo = (- v = 0. But §j = —Cor—j41
for1 <j<2¢so

-

Qi+ -+ Qv = —Cry1Veg1 — - - — Caelop = Qo1 + - - -+ C1ag

and the exponents on v in (32) are the same. Thus
[v] — [7] € ker(¢p) = H, hence [v] — [?] € HNCla,b] =Z, i.e.
Is C T.
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By (31) the ideal H defined by (24) is the kernel of the ring
homomorphism

v kla, b, tr, ..., te,y, w] — k(v,t1,...,t)

defined by ap,q, — tk, bgup, — V< Wty, w— 1/(F1 -+ ) for
k=1,...,¢. We obtain a reduced Groebner basis G of k[a, b] N H
by computing a reduced Groebner basis of H using an elimination
ordering with {ap,q;, bgp} <{w,v,t;} forall j=1,... ¢ and
then intersecting it with k[a, b]. Since H is binomial, any reduced
Groebner basis G of H also consists of binomials. This shows that
T is a binomial ideal.
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Now suppose f € Z = HN CJa, b] C Cla, b]. Since Z has a basis
consisting wholly of binomials, it is enough to restrict to the case
that f is binomial, f = ay[a] 4+ ag[f]. Using the definition of v
and collecting terms

1!J(aa [a] + ag[ﬁ]) = a, tf‘l"'o‘ﬂ - tgo‘4+a‘f+1,yCzaz+1+~--+C1a2z+
ag tlﬂl+62g . tfz-i-ﬁul,yéeﬁzHJr---JrClﬁzz.

Since H = ker(v)) this is the zero polynomial, so

ag = —a, (33a)
oj + ag_jr1 =B+ Pa—jp1 for j=1,...,¢ (33b)
Ceappr + -+ Craog = (g1 + - -+ 1B (33¢)
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For v € N3 let R(v) denote the set of indices j for which v; # 0.
First suppose that R(a) N R(3) = @. It is easy to check that
condition (33b) forces §; = ag—ji1 for j=1,...,2¢, so that

B = &. But then because (; = —(p¢—j4+1 for 1 < j < 2/ condition
(33c) reads

—Cop10041 — - — Copavop = Gpoyp + - - + (1

or (1o + -+ -+ (e = 0,50 @ € M. Thus f = a,([e] — [&]) and
aeM,sofels.

If R(a) N R(B) # &, then [«] and [{] contain common factors,
corresponding to the common indices of some of their nonzero
coefficients. Factoring out the common terms, which form a
monomial [u], we obtain f = [i](aq[a’] + ag[3']), where

R(a/)N R(B") = @. Since the ideal Z is prime and contains no
monomial we conclude that a,[/] 4+ ag[#'] € Z, hence by the first
case that a,[a’] 4+ ag[d'] € Is, hence that f € [s. O
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Algorithm for computing Z(= Is)

@ Compute a Groebner basis Gy for
H = (ap,q, — tks bgp, — YP "ty | k =1,...,) with respect
to any elimination order
{W,’)/, tk} > {aPkav bquk ‘ k= 17 to 7£};

o the set Gy N k[a, b] is a generating set for Z and Is.

Theorem

Let G be a reduced Grobner basis of 7.
1. Every element of G has the form [v] — [?], where v € M and

[v] and [2] have no common factors.
2. The set

H={pwp:[u-[aleGtu{ej+exy_j1:j=1,....¢
and =+ ([ej] — [e2r—j11]) & G},

J
where ¢; = (0,...,0,1,0,...,0), is a Hilbert basis of M.
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As an example consider the system
S 2 _ _ 2

X =X — aipX ao1XxXy — a-12y-, (34)
y = —y + bioxy + bory?® + by, _1x%.

Computing a Groebner basis of the ideal
J = (1-w~* a10—t1, bor—7t1, a01—t2, Ybio—t2, a_12—t3, 7 b _1—t3)

with respect to the lexicographic order with
W>’7>t1>t2>t3>210>a()1>a_12>b10>b01>b2,_1we
obtain a list of polynomials.
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0= GroebnerBasis[{all- t1, bOL- y t1, a01-t2, yb10-t2, a12-t3, y*3bll- 3,
1wy}, {w,y, tL, t2, €3, bL0, b01, al0, aft, al2, b21}]

cufoz {-210" 212 +b01" b2, 10" a12100- 201 b01° b2, -a01 10 BOLBAD,
al0al2bl0’- a0t b01b2L, al2blo’ -a0t bat, -al2+t3, -a01+ 2, -al0 41,
-a12b10% +a01°b21y, D01 +al0y, -al0a12bl0+ a0l b0l baly, -alotald s botthaty,
801+ b10y, -a12b10+a0l b2l -al0al2b0LbaL Y, -al2 bty al2fw-potly,
B0B21 - a0l a12w, -blo' s anttw, -al0b2l. a12b0lw, -al0bio’s a0ttnoty,
al0Pp0e s a0t o0t w, -al0'sl0 a0t b0ty -al0® bottw, b2t al2wy, bi0% a0t vy,
-a10b10° 4201 bOLwy, -210°b0 + a1 b0 sy, -al0 +b0ttwy, -bl0t+ a0tfwyf,

210010+ a0t 01, -a10° b0t b0+ atlwy', 210 by, -1ewy')
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According to step 2 of the algorithm we pick up the polynomials
that do not depend on w,~, t1, to, t3:

fi = ad1ba,—1 — a_12b3), f» = a10a01 — bo1bio,

f3 = adga_12 — bp,_1b3;, fa = a10a_12b3y — a3, b2 —1bo1,

fs = a%oa_lgblo — 301b27_1b§1. Thus, for system (34)

Is=T=1(f,....fs).

e V((fi,...,fs)) is the Zariski closure of the set of all
time-reversible systems inside of (34)

@ The monomials of f; together with ajgbg1, ao1bio, 3712b27,1
generate the subalgebra C[M] for invariants of U, and the
exponents of the monomials form the Hilbert basis of the
monoid M.

e Focus quantities gj; of (34) belong to C[M].
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We now show a further interconnection of time-reversibility and
invariants of a group of transformations of the phase space of

Z apqxp+1yq = P(X,y),
(P.9)ES

)./ = Z bquqyp+1 = Q(Xay)a

(p.a)€S

(35)

Consider the transformations of the phase space of (35)

X'=nx, y=nly (x,y,n€C, n#0). (36)
In (X', y") coordinates (35) has the form
< = Z 3(7])(13 /p+1 /q -/ Z b(n (a.p)% /q 1p+1
(p,q)es (p,q)ES
and the coefficients of the transformed system are

a(n)quk = aPkCIknqk_pk7 b(n)QkPk = kaPknpk_qk7 (37)

where k =1,...,¢. Let U, denote the transformation (37). We
write (37) as (a(n), b(n)) = Uy (3, b).
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The action of U, on the coefficients ajj, bj; of the system of
differential equations (35) yields the following transformation of
the monomial [v] defined by (26):

Unlvl = a(n)prq, - a(m)prq, D()gine -+~ b, = (38)
NSV gy At balhh - b =[],

Thus we see that the monomial [v] is invariant under the action of
Uy, ifand only if (-v =0, i.e., if and only if v € M.
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—

Denote by (a, b) the involution of (a, b),

—

(37 b) = (qul? Tt bq/Pl? piqs - aPlQl)‘ (39)

The orbit O of the group U, is invariant under the involution (39)

—

if for any (a, b) € O the system (b, a) also belongs to O.

Theorem

(a) The set of the orbits of U, is divided into two not intersecting
subsets: one consists of all time-reversible systems and only
time-reversible systems, and there are no time-reversible systems in
the other subset.

(b) The variety V(Is) is the Zariski closure of all orbits of the
group U, invariant under the involution (39).
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Conclusions

@ The theory of invariants of ODEs is almost untouched field for
applications of methods and algorithms of computational
algebra

@ Two interesting problems for studying:
- generalization of the presented methods to higher
dimensional systems of ODEs
- studying invariants of another groups of transformations of
the phase space
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