3. FUTURE WORK 43

Nevertheless, as the third example shows, it is sometimes a good idea
to reduce a polynomial f in the set of generators by F'\ {f}.

sagbi.lib || sagbi2.1lib
T-polynomials 1 144.1 38.4
T-polynomials 2 121.2 22.1
T-polynomials 3 659.4 200.7
Reduction 1 2095.1 1289.3
Reduction 2 1014.5 43.9
Reduction 3 11609.9 179.4
SAGBI construction 1 22.9 <1
SAGBI construction 2 636.3 <1
SAGBI construction 3 4.6 23.9
SAGBI partial 1
3 iterations <1 <1
4 iterations <1 <1
5 iterations 8.7 <1
6 iterations 774.3 12.3
SAGBI partial 2
10 iterations <1 <1
20 iterations 16.3 2.4
30 iterations 206.2 27.7
40 iterations 1387.1 207.7
50 iterations 6556.3 1036.5

TABLE 1. Timings in seconds, computations performed
on a 1600 MHz single core computer

3. Future work

The combined approach used in the implementation in sagbi2.1ib
seems to perform well in comparison to the other implementations. But
there is still potential for improvement. First of all, it would be a good
idea to develop a specialized Buchberger algorithm for binomial ideals.
Secondly, one could think about choosing a suitable weighted monomial
ordering as the binomial ideal involved is quasi-homogeneous. Thirdly,
as already mentioned above, it is sometimes helpful to reduce a genera-
tor by the set of all other generators (with or without tail-reduction) to
possibly lower the amount of terms of each generator or even the num-
ber of generators considered. Thus one could develop some heuristics
to decide when this is useful.

Moreover, new features such as the computation of the reduced
SAGBI basis could be added.

