The LOT Algorithm

Viktor Levandovskyy

RWTH Aachen

11.12.2007, RWTH

Problem formulation

Given a ring $R = \mathbb{C}[x_1, \dots, x_n]$, a polynomial $f \in R$ and a number $\alpha \in \mathbb{C}$. Compute the left ideal $Ann(f^{\alpha}) \in D(R)$.

Preliminaries

We utilize a D-module structure of a left module in

$$R[f^s] := \mathbb{C}[x_1,\ldots,x_n,\frac{1}{f}] \cdot f^s.$$

The algorithm ANNFs computes a D-module structure on $R[f^s]$, that is a left ideal $I \subset D$, such that $R[f^s] \cong D/I$.

LOT = Levandovskyy's modification on Oaku-Takayama algorithm.

Ann F^s Algorithm in D-module Theory

Let $f = f_1 \cdot \ldots \cdot f_p$.

The Ann F^s Algorithm, step I

Compute the preimage of the left ideal

$$L = \langle \{ t_j - f_j, \sum_{j=1}^p \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i \} \rangle, 1 \le j \le p, 1 \le i \le n$$

in the subalgebra $\mathbb{K}\left[\{t_j\cdot\partial t_j\}\right]\langle\{x_i,\partial_i\mid [\partial_i,x_i]=1\}\rangle$ of

$$\mathbb{K}\langle\{t_j,\partial t_j\}\mid [\partial t_j,t_j]=1\rangle\otimes_{\mathbb{K}}\mathbb{K}\langle\{x_i,\partial_i\}\mid [\partial_i,x_i]=1\;\rangle$$

Moreover, in the preimage, $t_j \cdot \partial t_j$ will be replaced by $-s_j - 1$ (algebraic Mellin transform), where s_j are new variables, commuting with $\{x_k, \partial_k\}$.

Recall

Let
$$f = f_1 \cdot \ldots \cdot f_p$$
 and let $g_i = \partial_i + \sum_j \frac{\partial f_j}{\partial x_i} \partial t_j$.

Lemma

 $L = \langle \{t_j - f_j, \{g_i\}\}\}, 1 \leq j \leq p, 1 \leq i \leq n \rangle \subset A_{p+n}$ is a maximal ideal, hence A_{p+n}/L is a simple module.

Oaku-Takayama method, 1999

 $\{u_j, v_j, s_j\}$ commute with everything, $\{[\partial_i, x_i] = 1, [\partial t_j, t_j] = 1\}$.

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, \underline{u_j}, \underline{v_j} \mid \ldots \rangle \supset \langle \{t_j - \underline{u_j} f_j, \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \underline{u_k} \partial t_j + \partial_i, \underline{u_j} \underline{v_j} - \mathbf{1}\} \rangle$$

- 1. Intersect the ideal with the subalgebra $\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i \mid \ldots \rangle$ i.e. eliminate $\{u_i, v_i\}$.
- 2. Intersect the result of p.1. with $\mathbb{K}[-t_j\partial t_j-1]\otimes_{\mathbb{K}}\mathbb{K}\langle x_i,\partial_i\mid\ldots\rangle$, replace $-t_i\partial t_i-1$ by s_i .

Anomalies With Elimination

Contrast to Commutative Case

In terminology, we rather use "intersection with subalgebras" instead of "elimination of variables", since the latter may have no sense.

Let $A = \mathbb{K}\langle x_1, \dots, x_n \mid \{x_j x_i = c_{ij} x_i x_j + d_{ij}\}_{1 \leq i < j \leq n}\rangle$ be a G-algebra. Consider a subalgebra A_r , generated by $\{x_{r+1}, \dots, x_n\}$. We say that such A_r is an *admissible subalgebra*, if d_{ij} are polynomials in x_{r+1}, \dots, x_n for $r+1 \leq i < j \leq n$ and $A_r \subsetneq A$ is a G-algebra.

Definition (Elimination ordering)

Let A and A_r be as before and $B := \mathbb{K}\langle x_1, \dots, x_r \mid \dots \rangle \subset A$ An ordering \prec on A is an **elimination ordering for** x_1, \dots, x_r if for any $f \in A$, $\text{Im}(f) \in B$ implies $f \in B$.

Constructive Elimination Lemma

"Elimination of variables x_1, \ldots, x_r from an ideal l"

means the intersection $I \cap A_r$ with an admissible subalgebra A_r . In contrast to the commutative case:

- not every subset of variables determines an admissible subalgebra
- there can be no admissible elimination ordering \prec_{A_r} on A

Lemma

Let A be a G-algebra, generated by $\{x_1, \ldots, x_n\}$ and $I \subset A$ be an ideal. Suppose, that the following conditions are satisfied:

- $\{x_{r+1},...,x_n\}$ generate an essential subalgebra B,
- \exists an admissible elimination ordering \prec_B for x_1, \ldots, x_r on A.

Then, if S is a left Gröbner basis of I with respect to \prec_B , we have $S \cap B$ is a left Gröbner basis of $I \cap B$.

Anomalies With Elimination: Example

Example

Consider the algebra $A = \mathbb{K}\langle a, b \mid ba = ab + b^2 \rangle$.

It is a G-algebra with respect to any well-ordering, such that $b^2 \prec ab$, that is $b \prec a$. Any elimination ordering for b must satisfy $b \succ a$, hence A is not a G-algebra w.r.t. any elimination ordering for b.

The Gröbner basis of a two–sided ideal, generated by $b^2-ba+ab$ in $\mathbb{K}\langle a,b\rangle$ w.r.t. an ordering $b\succ a$ is infinite and equals to

$$\{ba^{n-1}b-\frac{1}{n}(ba^n-a^nb)\mid n\geq 1\}.$$

Finding an admissible elimination ordering can be done by solving a linear programming problem.

Elimination Orderings in G-algebras

lacktriangledown lexicographical orderings: mainly for (q-) Weyl algebras

$$\begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

② block orderings $M_A \otimes M_B$: a universal tool

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

3 extra weight orderings $(a(w_1, ..., w_k), ord)$: the champion!

$$\begin{pmatrix} w_1 & \dots & w_k & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \end{pmatrix}$$

Symmetric Deformation: Motivation

Let $\phi: A \to B$ be a map of K-algebras. There are the natural actions of A on B, induced by ϕ :

$$a \circ_L b := \phi(a)b$$
 and $b \cdot a := b \circ_R a := b\phi(a)$.

Observation

These actions provide a well–defined left and right A–module structures on B if and only if ϕ is a morphism.

Hence, B is an (A, A)-bimodule. We extend both actions to A by $a_1 \circ_L a_2 := a_1 \cdot a_2$ and thus turn $A \otimes_{\mathbb{K}} B$ into an (A, A)-bimodule.

Lemma

Consider the set $G = \{g - \phi(g) \mid g \in A\} \subset A \otimes_{\mathbb{K}} B$. Then

$$G = {}_{A}\langle \{x_i - \phi(x_i) \mid 1 \leq i \leq n\} \rangle_{A} \subset A \otimes_{\mathbb{K}} B.$$

Symmetric Deformation: Theorem

Theorem (Preimage of a Left Ideal)

Let A, B be G-algebras of Lie type and $\phi \in Mor(A, B)$. Let I_{ϕ} be the (A, A)-bimodule ${}_{A}\langle\{x_{i} - \phi(x_{i}) \mid 1 \leq i \leq n\}\rangle_{A} \subset A \otimes_{\mathbb{K}} B$ and $f_{i} := \phi(x_{i})$. Suppose there exists an elimination ordering for B on $A \otimes_{\mathbb{K}} B$, such that

$$1 \leq i \leq n, 1 \leq j \leq m, \qquad \operatorname{Im}(y_j f_i - f_i y_j) \prec x_i y_j.$$

Then

- **1)** $A \otimes_{\mathbb{K}}^{\phi} B$, obtained from $A \otimes_{\mathbb{K}} B$ by introducing additional relations $\{y_j x_i = x_i y_j + y_j f_i f_i y_j\}$, is a G-algebra.
- **2)** Let $J \subset B$ be a left ideal, then

$$\phi^{-1}(J)=(I_{\phi}+J)\cap A.$$

Application of Preimage Algorithm to *D***–modules**

Setup with the Symmetric Deformation

$$A := \mathbb{K}\langle s_j, X_i, D_i \mid D_i X_i = X_i D_i + 1 \rangle$$

$$B := \mathbb{K}\langle t_j, \partial t_j, x_i, d_i \mid d_i x_i = x_i d_i + 1, \partial t_j t_j = t_j \partial t_j + 1 \rangle$$

Consider the map $\phi: A \to B$, where $s_j \mapsto -t_j \partial t_j - 1$, $X_i \mapsto x_i, D_i \mapsto d_i$.

Hence,
$$I_{\phi} = \langle \{X_i - x_i, D_i - d_i, t_j \partial t_j + s_j + 1 \} \rangle \subset A \otimes_{\mathbb{K}}^{\phi} B =: E.$$

Due to the structure, we replace E with $E' = \mathbb{K}\langle t_j, \partial t_j, x_i, d_i, s_j \rangle$ subject to the relations

$$\{[d_i,x_i]=1,[\partial t_j,t_j]=1,s_jt_j=t_js_j-t_j,s_j\partial t_j=\partial t_js_j+\partial t_j\}.$$

Respectively, $I_{\phi} \subset E$ becomes $I'_{\phi} = \langle \{t_j \partial t_j + s_j + 1\} \rangle \subset E'$. Any ordering $\langle satisfying \{t_j, \partial t_j\} \gg \{x_i, d_i, s_j\}$ (which is very easy to find) satisfies the conditions of the Theorem.

The Computation

By the Theorem, for any $L \subset B$, $\phi^{-1}(L) = (I_{\phi} + L) \cap A$. Hence,

$$I_{\phi} + L = \langle \{t_j - f_j, \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i, t_j \partial t_j + s_j + 1\} \rangle =$$

$$= \langle \{t_j - f_j, \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i, t_j \partial t_j + s_j\} \rangle$$

The last step is just a reduction of $t_j + s_j + 1$ with $t_j - t_j$. In most situations, the ordering prefers t_j over x_i and s_k .

Citing Gago-Vargas, Hartillo and Ucha JSC paper from 2005...

"...As far as we know, the example $f = f_1 \cdot f_2 = (x^2 + y^3) \cdot (x^3 + y^2)$ is intractable for available computer algebra systems."

 \rightarrow Demonstration.

Comparison: OT vs. LOT

The relations on the variables: $\{u_j, v_j\}$ commute with everything,

$$\{[\partial_i, x_i] = 1, [\partial t_j, t_j] = 1, s_j t_j = t_j s_j - t_j, s_j \partial t_j = \partial t_j s_j + \partial t_j\}.$$

Oaku-Takayama method (1999)

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, \mathbf{u}_j, \mathbf{v}_j \mid \ldots \rangle \supset \langle \{t_j - \mathbf{u}_j f_j, \sum_{j=1}^{\rho} \frac{\partial f_j}{\partial x_i} \mathbf{u}_j \partial t_j + \partial_i, \mathbf{u}_j \mathbf{v}_j - \mathbf{1}\} \rangle$$

to intersect with: $\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i \mid \ldots \rangle$, then with

$$\mathbb{K}[-t_j\partial t_j-1]\otimes_{\mathbb{K}}\mathbb{K}\langle x_i,\partial_i\mid\ldots\rangle$$
, replace $-t_j\partial t_j-1$ by s_j .

LOT method

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, \mathbf{s}_j \mid \ldots \rangle \supset \langle \{t_j - f_j, \sum_{i=1}^{p} \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i, \mathbf{f}_j \partial \mathbf{t}_j + \mathbf{s}_j \} \rangle$$

to intersect with: $\mathbb{K}\langle x_i, \partial_i \mid \ldots \rangle \otimes_{\mathbb{K}} \mathbb{K}[\{s_i\}]$

Comparison: LOT vs. BM (Briançon-Maisonobe)

BM method (2002)

Non-comm relations: $\{[\partial_i, x_i] = 1, [\partial t_j, s_j] = -\partial t_j\}.$

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, s_j \mid \ldots \rangle \supset \langle \{s_j + f_j \partial t_j, \sum_{k=1}^{p} \frac{\partial f_k}{\partial x_i} \partial t_k + \partial_i \} \rangle$$

Eliminate $\{\partial t_j\}$, i.e. intersect with $\mathbb{K}\langle\{x_i,\partial_i\}\mid\ldots\rangle[\{s_j\}]$.

LOT method (2006)

NC relations: $\{[\partial_i, x_i] = 1, [\partial t_j, t_j] = 1, s_j t_j = t_j s_j - t_j, s_j \partial t_j = \partial t_j s_j + \partial t_j \}.$

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, s_j \mid \ldots \rangle \supset \{ \underline{t_j} - \underline{f_j}, s_j + f_j \partial t_j, \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \partial t_k + \partial_i \}$$

Eliminate $\{t_i, \partial t_i\}$, i.e. intersect with $\mathbb{K}\langle x_i, \partial_i | \dots \rangle \otimes_{\mathbb{K}} \mathbb{K}[\{s_i\}]$.

Comparison: LOT vs. BM contd

In LOT, we have to eliminate $\{t_j, \partial t_j\}$. We can eliminate $\{t_j\}$ first, that is intersect I_f above with the subalgebra

$$\mathbb{K}\langle\{\partial t_j,x_i,\partial_i,s_j\}\mid\{[\partial_i,x_i]=1,s_j\partial t_j=\partial t_js_j+\partial t_j\}\rangle.$$

This can be done by using any ordering giving precedence to t_j . Let us fix an ordering \prec_T with the property $\{t_j\} \gg \{\partial_i\} \succ \{\partial t_j, x_i, s_j\}$. Clearly it is admissible. In the talk on Ann F^s we proved, that

$$S = \{t_j - t_j, \partial_i + \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \partial t_k\} \text{ is a left Gröbner basis w.r.t. } \prec_T$$

Lemma. $S' = S \cup \{s_j + f_j \partial t_j\}$ is a left Gröbner basis w.r.t. \prec_T .

Proof

Again, we apply generalized Product Criterion.

$$\mathsf{spoly}(t_k - f_k, s_j + f_j \partial t_j) \to [t_k - f_k, s_j + f_j \partial t_j] =$$

$$[t_k, s_j] + f_j[t_k, \partial t_j] - [f_k, s_j] - [f_k, f_j \partial t_j] = \delta_{jk}(t_k - f_k) \rightarrow 0$$

$$\mathsf{spoly}(s_j + f_j \partial t_j, \partial_i + \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \partial t_k) \to [s_j + f_j \partial t_j, \partial_i + \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \partial t_k] =$$

$$=[s_j,\partial_i]+\sum_{k=1}^p\frac{\partial f_k}{\partial x_i}[s_j,\partial t_k]+\partial t_j[f_j,\partial_i]+[*,*]=\frac{\partial f_j}{\partial x_i}\partial t_j-[\partial_i,f_j]\partial t_j=0$$

BM = LOT + elimination

Since S' is a left Gröbner basis with respect to $\prec_{\mathcal{T}}$ (an ordering eliminating $\{t_j\}$), then from the Elimination Lemma it follows, that

$$\{ \{s_j + f_j \partial t_j \mid 1 \le j \le p\}, \{\partial_i + \sum_{k=1}^p \frac{\partial f_k}{\partial x_i} \partial t_k \mid 1 \le i \le n\} \}$$

is a left Gröbner basis of

$$\textbf{\textit{S}}' \cap \mathbb{K} \langle \{\partial \textit{t}_j, \textit{x}_i, \partial_i, \textit{s}_j\} \mid \{[\partial_i, \textit{x}_i] = 1, \textit{s}_j \partial \textit{t}_j = \partial \textit{t}_j \textit{s}_j + \partial \textit{t}_j \} \rangle \; .$$

And the latter is exactly the statement of BM! Hence the claim in the title.