(A very personal view on) non-commutative Gröbner bases for Weyl, shift and their homogenized algebras

Viktor Levandovskyy

RWTH Aachen, Germany

08.11.2007, RWTH
Plan of Attack

Roadmap

- Monomial orderings on $\mathbb{K}[\mathbf{x}]$ and \mathbb{N}^n
- Gröbner bases in $\mathbb{K}[\mathbf{x}]$
- Weyl, shift and homogenized algebras
- Generalized framework: G-algebras
- Left Gröbner bases in G-algebras
- Different notations concerning GB
- Application: GK dimension
Preliminaries: Monomials and Monoideals

Let \mathbb{K} be a field and R be a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$. R is infinite dimensional over \mathbb{K}, the \mathbb{K}–basis of R consists of $\{x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_n^{\alpha_n} | \alpha_i \in \mathbb{N}\}$. We call such elements monomials of R. There is 1–1 correspondence

$$\text{Mon}(R) \ni x^\alpha = x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_n^{\alpha_n} \mapsto (\alpha_1, \alpha_2, \ldots, \alpha_n) = \alpha \in \mathbb{N}^n.$$

\mathbb{N}^n is a monoid with the neutral element $\overline{0} = (0, \ldots, 0)$ and the only operation \oplus. A subset $S \subseteq \mathbb{N}^n$ is called a (additive) monoid ideal (monoideal), if $\forall \alpha \in S, \forall \beta \in \mathbb{N}^n$ we have $\alpha + \beta \in S$.

Lemma (Dixon, 1913)

*Every monoideal in \mathbb{N}^n is finitely generated. That is, for any $S \subseteq \mathbb{N}^n$ there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{N}^n$, such that $S = \mathbb{N}^n\langle \alpha_1, \ldots, \alpha_m \rangle$.***
Orderings

Definition

1. A total ordering \prec on \mathbb{N}^n is called a **well–ordering**, if
 - $\forall F \subseteq \mathbb{N}^n$ there exists a minimal element of F,
 - in particular $\forall a \in \mathbb{N}^n$, $0 \prec a$

2. An ordering \prec is called a **monomial ordering on** R, if
 - $\forall \alpha, \beta \in \mathbb{N}^n \alpha \prec \beta \Rightarrow x^\alpha \prec x^\beta$
 - $\forall \alpha, \beta, \gamma \in \mathbb{N}^n$ such that $x^\alpha \prec x^\beta$ we have $x^{\alpha+\gamma} \prec x^{\beta+\gamma}$.

3. Any $f \in R \setminus \{0\}$ can be written uniquely as $f = cx^\alpha + f'$, with
 - $c \in K^*$ and $x^{\alpha'} \prec x^\alpha$ for any non–zero term $c'x^{\alpha'}$ of f'.
 - We define $\text{lm}(f) = x^\alpha$, the **leading monomial** of f
 - $\text{lc}(f) = c$, the **leading coefficient** of f
 - $\text{lex}(f) = \alpha$, the **leading exponent** of f.
Gröbner Basis: Preparations

From now on, we assume that a given ordering is a well-ordering.

Definition

We say that monomial x^α **divides** monomial x^β, if $\alpha_i \leq \beta_i \ \forall i = 1 \ldots n$. We use the notation $x^\alpha | x^\beta$.

It means that x^β is **reducible** by x^α, that is $\beta \subset \mathbb{N}^n\langle \alpha \rangle$. Equivalently, there exists $\gamma \in \mathbb{N}^n$, such that $\beta = \alpha + \gamma$. It also means that $x^\beta = x^\alpha x^\gamma$.

Definition

Let \prec be a monomial ordering on R, $I \subset R$ be an ideal and $G \subset I$ be a finite subset. G is called a **Gröbner basis** of I, if $\forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $\text{lm}(g) | \text{lm}(f)$.
Characterizations of Gröbner Bases

Definition

Let S be any subset of R.

- We define a **monoideal of leading exponents** $\mathcal{L}(S) \subseteq \mathbb{N}^n$ to be a \mathbb{N}^n–monoideal $\mathcal{L}(S) = \mathbb{N}^n \langle \alpha \mid \exists s \in S, \text{lex}(s) = \alpha \rangle$, generated by the leading exponents of elements of S.

- $L(S)$, the **span of leading monomials of** S, is defined to be the \mathbb{K}–vector space, spanned by the set $\{x^\alpha \mid \alpha \in \mathcal{L}(S)\} \subseteq R$.

Equivalences

- G is a Gröbner basis of $I \iff \forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $\text{lm}(g) \mid \text{lm}(f)$,

- G is a Gröbner basis of $I \iff L(G) = L(I)$ as \mathbb{K}–vector spaces,

- G is a Gröbner basis of $I \iff \mathcal{L}(G) = \mathcal{L}(I)$ as \mathbb{N}^n–monoideals.
Weyl and shift algebras

Let \mathbb{K} be a field and R be a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$.

Weyl $D = D(R) = \mathbb{K}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \mid \{ \partial_j x_i = x_i \partial_j + \delta_{ij} \}\rangle$.

The \mathbb{K}–basis of D is
\[
\{ x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n} \partial_1^{\beta_1} \partial_2^{\beta_2} \ldots \partial_n^{\beta_n} \mid \alpha_i \geq 0, \beta_j \geq 0 \}
\]

Shift $S = S(R) = \mathbb{K}\langle y_1, \ldots, y_n, s_1, \ldots, s_n \mid \{ s_j y_i = y_i s_j + \delta_{ij} \cdot s_j \}\rangle$.

The \mathbb{K}–basis of S is
\[
\{ y_1^{\alpha_1} y_2^{\alpha_2} \ldots y_n^{\alpha_n} s_1^{\beta_1} s_2^{\beta_2} \ldots s_n^{\beta_n} \mid \alpha_i \geq 0, \beta_j \geq 0 \}
\]
Weyl and shift algebras under homogenization

Let w be the weight vector $(u_1, \ldots, u_n, v_1, \ldots, v_n)$, $u_i + v_i \geq 0$. Assigning weights u_i to x_i and v_i to ∂_i, we introduce a new commutative variable h and homogenize the relation into $\partial_j x_j = x_j \partial_j + h^{u_i + v_i}$.

$$D_{w}^{(h)} (R) = \mathbb{K} \langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n, h \mid \{ \partial_j x_i = x_i \partial_j + \delta_{ij} h^{u_i + v_i} \} \rangle.$$

The \mathbb{K}–basis of D is

$$\{ x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n} \partial_1^{\beta_1} \partial_2^{\beta_2} \ldots \partial_n^{\beta_n} h^\gamma \mid \alpha_i \geq 0, \beta_j \geq 0, \gamma \geq 0 \}$$

Assigning weights u_i to y_i and v_i to s_i, we introduce a new commutative variable h and homogenize the relation into $s_j y_i = y_i s_j + \delta_{ij} \cdot s_j h^{u_i}$.

$$S_{w}^{(h)} (R) = \mathbb{K} \langle y_1, \ldots, y_n, s_1, \ldots, s_n, h \mid \{ s_j y_i = y_i s_j + \delta_{ij} \cdot s_j h^{u_i} \} \rangle.$$

The \mathbb{K}–basis of S is

$$\{ y_1^{\alpha_1} y_2^{\alpha_2} \ldots y_n^{\alpha_n} s_1^{\beta_1} s_2^{\beta_2} \ldots s_n^{\beta_n} h^\gamma \mid \alpha_i \geq 0, \beta_j \geq 0, \gamma \geq 0 \}$$
Yet another homogenization

Let w be the weight vector $(u_1, \ldots, u_n, v_1, \ldots, v_n)$, such that $u_i + v_i = 0$, in other words $u_i = -w_i$, $v_i = w_i$.

Since we need nonnegative weights for Gröbner basis, we do the following. We introduce a new commutative variable h and homogenize the relation into $\partial_j(x_j h^{w_j}) = (x_j h^{w_j}) \partial_j + h^{w_j}$. In what follows, we denote $x_j h^{w_j}$ by x_j, it has weight 0.

The examples before suggest a more general framework.
Computational Objects

Suppose we are given the following data

1. a field \mathbb{K} and a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$,
2. a set $C = \{c_{ij}\} \subset \mathbb{K}^*$, $1 \leq i < j \leq n$
3. a set $D = \{d_{ij}\} \subset R$, $1 \leq i < j \leq n$

Assume, that there exists a monomial well–ordering \prec on R such that

$$\forall 1 \leq i < j \leq n, \text{ lm}(d_{ij}) \prec x_i x_j.$$

The Construction

To the data (R, C, D, \prec) we associate an algebra

$$A = \mathbb{K}\langle x_1, \ldots, x_n \mid \{x_j x_i = c_{ij} x_i x_j + d_{ij} \} \forall 1 \leq i < j \leq n \rangle$$
PBW Bases and G–algebras

Define the (i, j, k)–nondegeneracy condition to be the polynomial

$$NDC_{ijk} := c_{ik}c_{jk} \cdot d_{ij}x_k - x_kd_{ij} + c_{jk} \cdot x_jd_{ik} - c_{ij} \cdot d_{ik}x_j + d_{jk}x_i - c_{ij}c_{ik} \cdot x_id_{jk}.$$

Theorem (Levandovskyy)

$A = A(R, C, D, \prec)$ has a PBW basis $\{x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_n^{\alpha_n}\}$ if and only if

$$\forall \ 1 \leq i < j < k \leq n, \ NDC_{ijk} \text{ reduces to 0 w.r.t. relations}$$

Easy Check \ $NDC_{ijk} = x_k(x_jx_i) - (x_kx_j)x_i$.

Definition

An algebra $A = A(R, C, D, \prec)$, where nondegeneracy conditions vanish, is called a G–algebra (in n variables).
We call A a G–algebra of Lie type, if the relations of A are of the form
\[x_j x_i = x_i x_j + d_{ij} \] \(\forall 1 \leq i < j \leq n \) and the conditions above hold.

Theorem (Properties of G–algebras)

Let A be a G–algebra in n variables. Then
- A is left and right Noetherian,
- A is an integral domain,
- the Gel’fand–Kirillov dimension over \mathbb{K} is $\text{GK. dim}(A) = n$,
- the global homological dimension $\text{gl. dim}(A) \leq n$,
- the Krull dimension $\text{Kr. dim}(A) \leq n$.
Gröbner Bases for Modules I

Let $S \subseteq R^r$ be a left submodule of the free module R^r. Then, it is given via its generators (vectors of R^r), or via a matrix with r rows.

Definition

- $x^\alpha e_i$ divides $x^\beta e_j$, iff $i = j$ and $x^\alpha | x^\beta$.
- Let \prec be a monomial module ordering on R^r, $I \subseteq R$ be a submodule and $G \subseteq I$ be a finite subset. G is called a Gröbner basis of I, if $\forall f \in I \setminus \{0\}$, $\exists g \in G$ satisfying $\text{lm}(g) | \text{lm}(f)$.

Denote $\mathbb{N}_r := \{1, 2, \ldots, r\} \subseteq \mathbb{N}$. The action of \mathbb{N}^n on $\mathbb{N}_r \times \mathbb{N}^n$, given by $\gamma : (i, \alpha) \mapsto (i, \alpha + \gamma)$ makes $\mathbb{N}_r \times \mathbb{N}^n$ an \mathbb{N}^n–monoideal (wrt addition).

Definition. Let S be any subset of R.

- We define a **monoid of leading exponents** $L(S) \subseteq \mathbb{N}_r \times \mathbb{N}^n$ to be a \mathbb{N}^n–monoideal $L(S) = \mathbb{N}^n \langle (i, \alpha) \mid \exists s \in S, \leq (s) = x^\alpha e_i \rangle$.
- $L(S)$, the **span of leading monomials** of S, is defined to be the \mathbb{K}–vector space, spanned by the set $\{x^\alpha e_i \mid (i, \alpha) \in L(S)\} \subseteq R^r$.
Gröbner Bases for Modules II

G is a Gröbner basis of I if:

- $\forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $\text{lm}(g) \mid \text{lm}(f)$,
- $\mathcal{L}(G) = \mathcal{L}(I)$ as K–vector spaces,
- $\mathcal{L}(G) = \mathcal{L}(I)$ as \mathbb{N}^n–monoideals.

A subset $S \subset R^r$ is called **minimal**, if $0 \notin S$ and $\text{lm}(s) \notin \mathcal{L}(S \setminus \{s\})$ for all $s \in S$.

A subset $S \subset R^r$ is called **reduced**, if $0 \notin S$, and if for each $s \in S$, s is reduced with respect to $S \setminus \{s\}$, and, moreover, $s - \text{lc}(s) \text{lm}(s)$ is reduced with respect to S.

It means that for each $s \in S \subset R^r$, $\text{lm}(s)$ does not divide any monomial of every element of S except itself.
Gröbner Bases for Modules III

Definition

Denote by \(\mathcal{G} \) the set of all finite ordered subsets of \(R^r \).

1. A map \(\text{NF} : R^r \times \mathcal{G} \rightarrow R^r, \quad (f, G) \mapsto \text{NF}(f \mid G) \), is called a **left normal form** on \(R^r \) if, for all \(f \in R^r \), \(G \in \mathcal{G} \),

 (i) \(\text{NF}(0 \mid G) = 0 \),

 (ii) \(\text{NF}(f \mid G) \neq 0 \) \(\Rightarrow \) \(\text{lm}(\text{NF}(f \mid G)) \notin L(G) \),

 (iii) \(f - \text{NF}(f \mid G) \in R \langle G \rangle \).

\(\text{NF} \) is called a **reduced n. f.** if \(\text{NF}(f \mid G) \) is reduced wrt \(G \).

2. Let \(G = \{g_1, \ldots, g_s\} \in \mathcal{G} \). A representation of \(f \in R \),

\[
f - \text{NF}(f \mid G) = \sum_{i=1}^{s} a_i g_i, \quad a_i \in R,
\]

satisfying \(\text{lm}(\sum_{i=1}^{s} a_i g_i) \geq \text{lm}(a_i g_i) \) for all \(i = 1 \ldots s \) such that \(a_i g_i \neq 0 \) is called a **left standard representation** of \(f \) (wrt \(G \)).
Normal Form: Properties

Let A be a G-algebra.

Lemma

Let $I \subset A^r$ be a left submodule, $G \subset I$ be a Gröbner basis of I and $\text{NF}(\cdot | G)$ be a left normal form on A^r with respect to G.

1. For any $f \in A^r$ we have $f \in I \iff \text{NF}(f | G) = 0$.
2. If $J \subset A^r$ is a left submodule with $I \subset J$, then $L(I) = L(J)$ implies $I = J$. In particular, G generates I as a left A–module.
3. If $\text{NF}(\cdot | G)$ is a reduced left normal form, then it is unique.
Buchberger’s Criterion Theorem

Let A be a G-algebra of Lie type.

Definition

Let $f, g \in A^r$ with $\text{lm}(f) = x^\alpha e_i$ and $\text{lm}(g) = x^\beta e_j$. Set $\gamma = \mu(\alpha, \beta)$, $\gamma_i := \max(\alpha_i, \beta_i)$ and define the left s–polynomial of (f, g) to be

$$\text{LeftSpoly}(f, g) := x^{\gamma - \alpha} f - \frac{\text{lc}(f)}{\text{lc}(g)} x^{\gamma - \beta} g \text{ if } i = j \text{ and 0 otherwise.}$$

For a general G-algebra the formula for spoly is more involved.

Theorem

Let $I \subset A^r$ be a left submodule and $G = \{g_1, \ldots, g_s\}$, $g_i \in I$. Let $\text{LeftNF}(\cdot | G)$ be a left normal form on A^r w.r.t G. Then the following are equivalent:

1. G is a left Gröbner basis of I,
2. $\text{LeftNF}(f|G) = 0$ for all $f \in I$,
3. each $f \in I$ has a left standard representation with respect to G,
4. $\text{LeftNF}(\text{LeftSpoly}(g_i, g_j)|G) = 0$ for $1 \leq i, j \leq s$.
Left Normal Form: Algorithm

\[\text{LEFTNF}(f, G) \]

- **Input:** \(f \in A^r, \ G \in \mathcal{G} \);
- **Output:** \(h \in A^r \), a left normal form of \(f \) with respect to \(G \).

1. \(h := f \);
2. **while** (\((h \neq 0) \) and (\(G_h = \{ g \in G : \text{lm}(g) \mid \text{lm}(h) \} \neq \emptyset \))
 - choose any \(g \in G_h \);
 - \(h := \text{LeftSpoly}(h, g) \);
3. **return** \(h \);
Buchberger’s Gröbner Basis Algorithm

Let \(\prec \) be a fixed well-ordering on the \(G \)-algebra \(A \).

\texttt{GröbnerBasis}\,(G,\texttt{LeftNF})

- **Input:** Left generating set \(G \in \mathcal{G} \)
- **Output:** \(S \in \mathcal{G} \), a left Gröbner basis of \(I = A\langle G \rangle \subset A^r \).

\[S = G; \]
\[P = \{(f, g) | f, g \in S\} \subset S \times S; \]

while \((P \neq \emptyset) \)

choose \((f, g) \in P;\)
\[P = P \setminus \{(f, g)\}; \]
\[h = \text{LEFTNF}(\text{LeftSpoly}(f, g)|S); \]
if \((h \neq 0)\)
\[P = P \cup \{(h, f) | f \in S\}; \]
\[S = S \cup h; \]

return \(S; \)
Criteria for detecting useless critical pairs

Let A be an associative K–algebra. We use the following notations: $[a, b] := ab − ba$, a commutator or a Lie bracket of $a, b ∈ A$. For all $a, b, c ∈ A$ we have $[a, b] = −[b, a]$ and $[ab, c] = a[b, c] + [a, c]b$. The following result is due to Levandovskyy and Schönemann (2003).

Generalized Product Criterion

Let A be a G–algebra of Lie type (that is, all $c_{ij} = 1$). Let $f, g ∈ A$. Suppose that $\text{lm}(f)$ and $\text{lm}(g)$ have no common factors, then $\text{spoly}(f, g) \rightarrow \{f,g\}[f, g]$.

The following classical criterion generalizes to G-algebras.

Chain Criterion

If (f_i, f_j), (f_i, f_k) and (f_j, f_k) are in the set of pairs P, denote $\text{lm}(f_\nu) = x^{\alpha_\nu}$. If $x^{\alpha_j} | \text{lcm}(x^{\alpha_i}, x^{\alpha_k})$ holds, then we can delete (f_i, f_k) from P.

Viktor Levandovskyy (RWTH)
Gel’fand–Kirillov dimension

Let R be an associative K–algebra with generators x_1, \ldots, x_m.

A degree filtration

Consider the vector space $V = Kx_1 \oplus \ldots \oplus Kx_m$.
Set $V_0 = K$, $V_1 = K \oplus V$ and $V_{n+1} = V_n \oplus V^{n+1}$.
For any fin. gen. left R–module M, there exists a fin.–dim. subspace $M_0 \subset M$ such that $RM_0 = M$.
An ascending filtration on M is defined by $\{H_n := V_n M_0, \ n \geq 0\}$.

Definition

The Gel’fand–Kirillov dimension of M is defined to be

$$\text{GK. dim}(M) = \limsup_{n \to \infty} \log_n(\dim_K H_n)$$
Gel’fand–Kirillov Dimension: Examples

Let \(\deg x_i = 1 \), consider filtrations up to degree \(d \). We have \(V_d = \{ f \mid \deg f = d \} \) and \(V^d = \{ f \mid \deg f \leq d \} \).

Lemma

Let \(A \) be a \(\mathbb{K} \)-algebra with PBW basis \(\{ x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n} \mid \alpha_i \geq 0 \} \). Then \(\text{GK. dim}(A) = n \).

Proof.

\[
\dim V_d = \binom{d+n-1}{n-1}, \quad \dim V^d = \binom{d+n}{n}.
\]

Thus \(\binom{d+n}{n} = \frac{(d+n)\ldots(d+1)}{n!} = \frac{d^n}{n!} + \text{l.o.t} \), so we have \(\text{GK. dim}(A) = \lim \sup_{d \to \infty} \log_d \binom{d+n}{n} = n. \)

\(T = \mathbb{K}\langle x_1, \ldots, x_n \rangle \)

\[
\dim V_d = n^d, \quad \dim V^d = \frac{n^{d+1} - 1}{n-1}.
\]

Since \(\frac{n^{d+1} - 1}{n-1} > n^d \), we are dealing with so–caled exponential growth. In particular, \(\log_d n^d = d \log_d n = \frac{d}{\log_n d} \to \infty \), \(d \to \infty \).

Hence, \(\text{GK. dim}(T) = \infty \).
Gel’fand–Kirillov Dimension for Modules

There is an algorithm by Gomez-Torrecillaz et.al., which computes Gel’fand–Kirillov dimension for finitely presented modules over G-algebras.

\[\text{GK\text{DIM}}(F) \]

Let A be a G–algebra in variables x_1, \ldots, x_n.

- Input: Left generating set $F = \{f_1, \ldots, f_m\} \subset A^{r}$
- Output: $k \in \mathbb{N}$, $k = \text{GK. dim}(A^{r}/M)$, where $M = A\langle F \rangle \subseteq A^{r}$.

- $G = \text{LEFTGRÖBNERBASIS}(F) = \{g_1, \ldots, g_t\}$;
- $L = \{\text{lm}(g_i) = x^{\alpha_i} e_s \mid 1 \leq i \leq t\}$;
- $N = \mathbb{K}[x_1, \ldots, x_n] \langle L \rangle$;
- return $\text{Kr. dim}(K[x_1, \ldots, x_n]^{r}/N)$;
Ring-theoretic Properties of Weyl and shift algebras

gl. dim(A), the global homological dimension of A

- \(\text{gl. dim}(S) = 2n \),
- if \(\text{char } \mathbb{K} = 0 \), \(\text{gl. dim}(D) = n \),
- if \(\text{char } \mathbb{K} = p > 0 \), \(\text{gl. dim}(D) = 2n \).

Z(A) = \{z \in A \mid za = az \ \forall a \in A\}, the center of A

- if \(\text{char } \mathbb{K} = 0 \), \(Z(D) = Z(S) = \mathbb{K} \),
- if \(\text{char } \mathbb{K} = p > 0 \), \(Z(D) = \{x_i^p, \partial_i^p\} \).
- if \(\text{char } \mathbb{K} = p > 0 \), \(Z(S) = \{y_i^p - y_i, s_i^p\} \).

If \(\text{char } \mathbb{K} = 0 \), \(D(R) \) has no proper two–sided ideals.

In \(S(R) \), \(I_\gamma = S\langle \{s_i, y_i - \gamma_i\}\rangle_S \) is a family of such ideals for \(\gamma = (\gamma_1, \ldots, \gamma_n) \in \mathbb{K}^n \).
Thank you for your attention!

Please visit the SINGULAR homepage

http://www.singular.uni-kl.de/