Elements of Computer-Algebraic Analysis

Viktor Levandovskyy Lehrstuhl D für Mathematik, RWTH Aachen, Germany

22.07. Tutorial at ISSAC 2012, Grenoble, France

Recommended literature (textbooks)

- J. C. McConnell, J. C. Robson, "Noncommutative Noetherian Rings", Graduate Studies in Mathematics, 30, AMS (2001)
- G. R. Krause and T. H. Lenagan, "Growth of Algebras and Gelfand-Kirillov Dimension", Graduate Studies in Mathematics, 22, AMS (2000)
- S. Saito, B. Sturmfels and N. Takayama, "Gröbner Deformations of Hypergeometric Differential Equations", Springer, 2000
- J. Bueso, J. Gómez–Torrecillas and A. Verschoren, "Algorithmic methods in non-commutative algebra. Applications to quantum groups", Kluwer, 2003
- Solvable polynomial rings", Shaker Verlag, 1993
- H. Li, "Noncommutative Gröbner bases and filtered-graded transfer", Springer, 2002

Recommended literature (textbooks and PhD theses)

- V. Ufnarovski, "Combinatorial and Asymptotic Methods of Algebra", Springer, Encyclopedia of Mathematical Sciences 57 (1995)
- F. Chyzak, "Fonctions holonomes en calcul formel", PhD. Thesis, INRIA, 1998
- V. Levandovskyy, "Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation" PhD. Thesis, TU Kaiserslautern, 2005
- C. Koutschan, "Advanced Applications of the Holonomic Systems Approach", PhD. Thesis, RISC Linz, 2009
- Schindelar, "Algorithmic aspects of algebraic system theory", PhD. Thesis, RWTH Aachen, 2010

Software

D-modules and algebraic analysis:

- KAN/SM1 by N. Takayama et al.
- \bullet D-modules package in ${\rm MACAULAY2}$ by A. Leykin and H. Tsai
- $\bullet~{\rm RISA}/{\rm ASIR}$ by M. Noro et al.
- OREMODULES package suite for MAPLE by D. Robertz, A. Quadrat et al.
- SINGULAR: PLURAL with a *D*-module suite; by V. L. et al. holonomic and *D*-finite functions:
- \bullet Groebner, Ore Algebra, Mgfun, \ldots by F. Chyzak
- HOLONOMICFUNCTIONS by C. Koutschan
- SINGULAR:LOCAPAL (partly under development) by V. L. et al.

Overview

- Operator algebras and their partial classification
- More general: G-algebras and Gröbner bases in G-algebras
- Module theory; Dimension theory; Gel'fand-Kirillov dimension
- Linear modeling with variable coefficients
- Elimination of variables and Gel'fand-Kirillov dimension
- Ore localization; smallest Ore localizations
- Solutions via homological algebra
- The complete annihilator program
- Some computational *D*-module theory, Weyl closure
- Purity; pure modules, pure functions, preservation of purity
- Purity filtration of a module; connection to solutions
- Jacobson normal form

What is computer algebraic Analysis?

Algebraic Analysis

- As a notion, it arose in 1958 in the group of Mikio Sato (Japan)
- Main objects: systems of linear partial DEs with variable coefficients, generalized functions
- Main idea: study systems and generalized functions in a coordinate-free way (i. e. by using modules, sheaves, categories, localizations, homological algebra, ...)
- Keywords include D-Modules, (sub-)holonomic D-Modules, regular resp. irregular holonomic D-Modules
- **(**Interplay: singularity theory, special functions,

Other ingredients: symbolic algorithmic methods for discrete resp. continuous problems like symbolic summation, symbolic integration etc.

What is computer-algebraic Analysis?

Algebraization as a trend

Algebra: Ideas, Concepts, Methods, Abstractions

Computer algebra works with algebraic concepts in a (semi-)algorithmic way at three levels:

- Theory: Methods of Algebra in a constructive way
- Algorithmics: Algorithms (or procedures) and their Correctness, Termination and Complexity results (if possible)
- Realization: Implementation, Testing, Benchmarking, Challenges; Distribution, Lifecycle, Support and software-technical aspects

Some important names in computer-algebraic analysis

- W. Gröbner and B. Buchberger: Gröbner bases and constructive ideal/module theory
- O. Ore: Ore Extension and Ore Localization
- I. M. Gel'fand and A. Kirillov: GK-Dimension
- B. Malgrange: M. isomorphism, M. ideal, ...
- J. Bernstein, M. Sato, M. Kashiwara, C. Sabbah,
 Z. Mebkhout, B. Malgrange et al.: *D*-module theory
- N. Takayama, T. Oaku, B. Sturmfels, M. Saito, M. Granger, U. Walther, F. Castro, H. Tsai, A. Leykin et al.: (not only) computational *D*-module theory

• . . .

Part I. Operator algebras and their partial classification.

Operator algebras: partial Classification

Let K be an effective field, that is $(+, -, \cdot, :)$ can be performed algorithmically. Moreover, let \mathcal{F} be a K-vector space ("function space").

Let x be a local coordinate in \mathcal{F} . It induces a K-linear map $X : \mathcal{F} \to \mathcal{F}$, i. e. $X(f) = x \cdot f$ for $f \in \mathcal{F}$. Moreover, let

 $\mathfrak{o}_{x}:\mathcal{F}\to\mathcal{F}$ be a *K*-linear map.

Then, in general, $\mathfrak{o}_x \circ X \neq X \circ \mathfrak{o}_x$, that is $\mathfrak{o}_x(x \cdot f) \neq x \cdot \mathfrak{o}_x(f)$ for $f \in \mathcal{F}$.

The **non-commutative relation** between o_x and X can be often read off by analyzing the properties of o_x like, for instance, the product rule.

Classical examples: Weyl algebra

Let $f : \mathbb{C} \to \mathbb{C}$ be a differentiable function and $\partial(f(x)) := \frac{\partial f}{\partial x}$.

Product rule tells us that $\partial(x f(x)) = x \partial(f(x)) + f(x)$, what is translated into the following relation between operators

$$(\partial \circ x - x \circ \partial - 1) (f(x)) = 0.$$

The corresponding operator algebra is the 1st Weyl algebra

$$D_1 = K\langle x, \partial \mid \partial x = x\partial + 1 \rangle.$$

Classical examples: shift algebra

Let g be a sequence in discrete argument k and s is the shift operator s(g(k)) = g(k+1). Note, that s is multiplicative.

Thus s(kg(k)) = (k+1)g(k+1) = (k+1)s(g(k)) holds.

The operator algebra, corr. to s is the 1st shift algebra

$$S_1 = K \langle k, s \mid sk = (k+1)s = ks + s \rangle.$$

Intermezzo

For a function in differentiable argument x and in discrete argument k the natural operator algebra is

$$A = D_1 \otimes_K S_1 = K \langle x, k, \partial_x, s_k \mid \partial_x x = x \partial_x + 1, \ s_k k = k s_k + s_k,$$

$$xk = kx, \ xs_k = s_kx, \ \partial_x k = k\partial_x, \partial_x s_k = s_k\partial_x\rangle.$$

Operator algebras Partial classification of operator algebras

Examples form the *q*-World

Let $k \subset K$ be fields and $q \in K^*$.

In *q*-calculus and in quantum algebra three situations are common for a fixed *k*: (a) $q \in k$, (b) *q* is a root of unity over *k*, and (c) *q* is transcendental over *k* and $k(q) \subseteq K$.

Let $\partial_q(f(x)) = \frac{f(qx) - f(x)}{(q-1)x}$ be a *q*-differential operator. The corr. operator algebra is the 1st *q*-Weyl algebra

$$D_1^{(q)} = K \langle x, \partial_q \mid \partial_q x = q \cdot x \partial_q + 1 \rangle.$$

The 1st *q*-shift algebra corresponds to the *q*-shift operator $\mathbf{s}_q(f(x)) = f(qx)$:

$$K_q[x, s_q] = K\langle x, s_q \mid s_q x = q \cdot x s_q \rangle.$$

Two frameworks for bivariate operator algebras

Algebra with linear (affine) relation

Let $q \in K^*$ and $\alpha, \beta, \gamma \in K$. Define

$$\mathcal{A}^{(1)}(\pmb{q}, lpha, eta, \gamma) := \mathcal{K} \langle x, y \mid yx - \pmb{q} \cdot xy = lpha x + eta y + \gamma
angle$$

Because of **integration operator** $\mathcal{I}(f(x)) := \int_a^x f(t)dt$ for $a \in \mathbb{R}$, obeying the relation $\mathcal{I} x - x \mathcal{I} = -\mathcal{I}^2$ we need yet more general framework.

Algebra with nonlinear relation

Let
$$N \in \mathbb{N}$$
 and $c_0, \ldots, c_N, \alpha \in K$. Then $\mathcal{A}^{(2)}(q, c_0, \ldots, c_N, \alpha)$ is
 $K\langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{n} c_i y^i + \alpha x + c_0 \rangle$ or
 $K\langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{n} c_i x^i + \alpha y + c_0 \rangle$.

Theorem (L.–Koutschan–Motsak, 2011)

$$\mathcal{A}^{(1)}(q,\alpha,\beta,\gamma) = K\langle x,y \mid yx - q \cdot xy = \alpha x + \beta y + \gamma \rangle,$$

where $q \in K^*$ and $\alpha, \beta, \gamma \in K$

is isomorphic to the 5 following model algebras:

$$\bullet K[x,y],$$

② the 1st Weyl algebra
$$D_1 = K\langle x, \partial \mid \partial x = x\partial + 1
angle$$
,

3 the 1st shift algebra
$$S_1 = K \langle x, s \mid sx = xs + s \rangle$$
,

• the 1st q-commutative algebra $K_q[x, s] = K\langle x, s | sx = q \cdot xs \rangle$,

9 the 1st q-Weyl algebra
$$D_1^{(q)} = K\langle x, \partial \mid \partial x = q \cdot x \partial + 1
angle$$
.

Theorem (L.-Makedonsky-Petravchuk, new) For $N \ge 2$ and $c_0, \ldots, c_N, \alpha \in K$, $\mathcal{A}^{(2)}(q, c_0, \ldots, c_N, \alpha)$ $= K\langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{N} c_i y^i + \alpha x + c_0 \rangle$ is isomorphic to ... $K_q[x, s]$ or $D_1^{(q)}$, if $q \ne 1$, $S_1 = K\langle x, s \mid sx = xs + s \rangle$, if q = 1 and $\alpha \ne 0$, $K\langle x, y \mid yx = xy + f(y) \rangle$, where $f \in K[y]$ with deg(f) = N, if q = 1 and $\alpha = 0$. Given a system of equations S in terms of other operators,

one can look up a concrete isomorphism of K-algebras (e. g. from the mentioned papers)

and rewrite S as S' in terms of the operators above.

Further results on S' after performing computations can be transferred back to original operators.

Example: difference and divided difference operators $\Delta_n = S_n - 1$, $\Delta_n^{(q)} = S_n^{(q)} - 1$ etc.

Quadratic algebras

Lemma (L.–Makedonsky–Petravchuk, new) $K\langle x, y | yx = xy + f(y) \rangle \cong K\langle z, w | wz = zw + g(w) \rangle$ if and only if $\exists \lambda, \nu \in K^* \text{ and } \exists \mu \in K, \text{ such that } g(t) = \nu f(\lambda t + \mu) \text{ (in particular deg}(f) = deg(g)).$

Lemma (L.–Makedonsky–Petravchuk, new)

For any algebra of the type $B = K \langle a, b | ba = ab + f(a) \rangle$ for $f \neq 0$ there exists an injective homomorphism into the 1st Weyl algebra.

Quadratic algebras

Let $N = \deg f(y) = 2$ and K be algebraically closed field of char K > 2. Then there are precisely two classes of non-isomorphic algebras of the type $K\langle x, y | yx = xy + f(y) \rangle$:

$K\langle x, y \mid yx = xy + y^2 \rangle$ type

- integration algebra $K\langle x, \mathcal{I} \mid \mathcal{I} \mid x = x \mathcal{I} \mathcal{I}^2 \rangle$,
- the algebra $K\langle x^{-1},\partial=rac{d}{dx}\mid\partial x^{-1}=x^{-1}\partial-(x^{-1})^2
 angle,$
- the algebra $K\langle x,\partial^{-1} \mid \partial^{-1}x = x\partial^{-1} (\partial^{-1})^2
 angle$ etc.

$K\langle x, y \mid yx = xy + y^2 + 1 \rangle$ type

- tangent algebra $K\langle \tan, \partial \mid \partial \cdot \tan = \tan \cdot \partial + \tan^2 + 1 \rangle$ (take $y = \tan, x = -\partial$)
- the subalgebra of the 1st Weyl algebra, generated by Y = -xand $X = (x^2 + 1)\partial$; then $YX = XY + Y^2 + 1$ etc.

Operator algebras Partial classification of operator algebras

Open problems for the Part 1

Let A be a bivariate algebra as before.

- If S is a multiplicatively closed Ore set (see next parts), then there exists localization $S^{-1}A$, such that $A \subset S^{-1}A$ holds.
- Problem: establish isomorphy classes for the localized algebras $S^{-1}A$, depending on the type of S.
- Example: in the part on localization.

Construction of G-algebras Properties and Gröbner bases in G-algebras

More general framework: *G*-algebras

Let $R = K[x_1, \ldots, x_n]$. The standard **monomials** $x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}$, $\alpha_i \in \mathbb{N}$, form a K-basis of R.

$$\mathsf{Mon}(R) \ni x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n) = \alpha \in \mathbb{N}^n.$$

- a total ordering ≺ on Nⁿ is called a well-ordering, if
 ∀F ⊆ Nⁿ there exists a minimal element of F, in particular
 ∀ a ∈ Nⁿ, 0 ≺ a
- **2** an ordering \prec is called a **monomial ordering on** *R*, if

•
$$\forall \alpha, \beta \in \mathbb{N}^n \, \alpha \prec \beta \Rightarrow x^\alpha \prec x^\beta$$

- $\forall \alpha, \beta, \gamma \in \mathbb{N}^n$ such that $x^{\alpha} \prec x^{\beta}$ we have $x^{\alpha+\gamma} \prec x^{\beta+\gamma}$.
- Any f ∈ R \ {0} can be written uniquely as f = cx^α + f', with c ∈ K* and x^{α'} ≺ x^α for any non-zero term c'x^{α'} of f'. Im(f) = x^α, the leading monomial of f lc(f) = c, the leading coefficient of f.

Towards *G*-algebras

Suppose we are given the following data

• a field K and a commutative ring $R = K[x_1, \ldots, x_n]$,

② a set
$$\mathcal{C} = \{ c_{ij} \} \subset \mathcal{K}^*$$
, $1 \leq i < j \leq n$

 $\ \, {\bf 0} \ \, {\rm a \ set} \ \, D = \{d_{ij}\} \subset R, \quad 1 \leq i < j \leq n$

Assume, that there is a monomial well–ordering \prec on R such that

$$\forall 1 \leq i < j \leq n, \ \operatorname{Im}(d_{ij}) \prec x_i x_j.$$

To the data (R, C, D, \prec) we associate an algebra

$$A = K \langle x_1, \ldots, x_n \mid \{ x_j x_i = c_{ij} \cdot x_i x_j + d_{ij} \} \forall 1 \le i < j \le n \rangle.$$

A is called a G-algebra in n variables, if

 $c_{ik}c_{jk}\cdot d_{ij}x_k - x_kd_{ij} + c_{jk}\cdot x_jd_{ik} - c_{ij}\cdot d_{ik}x_j + d_{jk}x_i - c_{ij}c_{ik}\cdot x_id_{jk} = 0.$

G-algebras

Theorem (Properties of G-algebras)

Let A be a G-algebra in n variables. Then

- A is left and right Noetherian,
- A is an integral domain,
- the Gel'fand-Kirillov dimension over K is GKdim(A) = n,
- the global homological dimension gl. dim $(A) \leq n$,
- the generalized Krull dimension $Kr. dim(A) \le n$.
- A is Auslander-regular and a Cohen-Macaulay algebra.

Classical examples: full shift algebra

Adjoining the backwards shift $s^{-1} : f(x) \mapsto f(x-1)$ to the shift algebra, we incorporate several more relations, which define a so-called **full shift algebra**:

$$K\langle x, s, s^{-1} \mid sx = (x+1)s, \ s^{-1}x = (x-1)s^{-1}, s^{-1}s = s \cdot s^{-1} = 1 \rangle$$

Note: full shift algebra is **not** a *G*-algebra, due to the relation $s \cdot s^{-1} = 1$. But it can be realized as a factor algebra of a *G*-algebra $A = K\langle x, s, s^{-1} | sx = (x+1)s, s^{-1}x = (x-1)s^{-1}, s^{-1}s = ss^{-1} \rangle$ modulo the two-sided ideal $\langle s^{-1}s - 1 \rangle$.

We can also realize this algebra as an Ore localization of the shift algebra, see next parts.

Construction of G-algebras Properties and Gröbner bases in G-algebras

Gröbner Bases in G-algebras

Let A be a G-algebra in x_1, \ldots, x_n . From now on, we assume that a given ordering is a **well-ordering**.

Definition

We say that $x^{\alpha} | x^{\beta}$, i. e. monomial x^{α} divides monomial x^{β} , if $\alpha_i \leq \beta_i \ \forall i = 1 \dots n$.

It means that x^{β} is **reducible** by x^{α} , that is there exists $\gamma \in \mathbb{N}^{n}$, such that $\beta = \alpha + \gamma$. Then $\operatorname{Im}(x^{\alpha}x^{\gamma}) = x^{\beta}$, hence $x^{\alpha}x^{\gamma} = c_{\alpha\gamma}x^{\beta} + \text{ lower order terms.}$

Definition

Let \prec be a monomial ordering on A, $I \subset A$ be a left ideal and $G \subset I$ be a finite subset. G is called a **(left) Gröbner basis** of I, if $\forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $\operatorname{Im}(g) \mid \operatorname{Im}(f)$.

Construction of G-algebras Properties and Gröbner bases in G-algebras

Gröbner Bases in G-algebras

- There exists a generalized Buchberger's algorithm (as well as other generalized algorithms for Gröbner bases), which works along the lines of the classical commutative algorithm.
- There exist algorithms for computing a two-sided Gröbner basis, which has no analogon in the commutative case.
- *G*-algebras are fully implemented in the actual system SINGULAR:PLURAL, as well as in older systems MAS, FELIX.
- In SINGULAR: PLURAL there are many thorougly implemented functions, including Gröbner bases, Gröbner basics (module arithmetics) and numerous useful tools.

Gröbner Technology = Gröbner trinity + Gröbner basics Gröbner trinity:

- left Gröbner basis of a submodule of a free module
- left syzygy module of a given set of generators
- left transformation matrix, expressing elements of Gröbner basis in terms of original generators

Gröbner basics (Buchberger, Sturmfels, ...)

- Ideal (resp. module) membership problem (NF, REDUCE)
- Intersection with subrings (ELIMINATE)
- Intersection and quotient of ideals (INTERSECT, QUOT)
- Kernel of a module homomorphism (MODULO)
- Kernel of a ring homomorphism (PREIMAGE)
- Algebraic dependencies of commuting polynomials
- Hilbert polynomial of graded ideals and modules ...