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Part II. Dimension theory.
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From system of equations to modules

Consider Legendre’s differential equation (order 2 in ∂x)

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0

x is differentiable with ∂x as corr. operator

if n ∈ Z, n is discretely shiftable with sn as corr. op.

then there is a recursive formula of Bonnet (order 2 in shift sn)

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.
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O := K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

From the system of equations

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0,

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.

one obtains the matrix P ∈ O2×1; thus M = O/O1×2P and[
(x2 − 1)∂2x + 2x∂x − n(1 + n)

(n + 2)s2n − (2n + 3)xsn + n + 1

]
• Pn(x) =

[
0
0

]
.

With the help of Gröbner bases over O: a minimal generating set
of the left ideal P contains a compatibility condition

(n + 1)sn∂x − (n + 1)x∂x − (n + 1)2 ≡ (n + 1)(sn∂x − x∂x + n + 1).

VL Elements of CAAN



Systems, modules, solutions
Modeling

Dimensions

From system of equations to modules
From modules to solutions of systems
From functions to modules

From system of equations to modules

Let f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be unknown generalized
functions, for instance from C∞(Rn).
Then a homogeneous system of linear functional (operator)
equations with coefficients from K [x1, . . . , xn] can be presented via
the matrix equation in the corresponding operator algebra O:

P ·

 f1
...

fm

 =

 0
...
0

 , P ∈ O`×m

One associates to the system a left O-module M = O1×m/O1×`P,
saying M is finitely presented by a matrix P.
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Different matrices Pi can represent the same module M.

For instance, for any unimodular T ∈ O`×` one has
Pf = 0⇔ (TP)f = 0 and also O1×m/O1×`TP ∼= O1×m/O1×`P.

For various purposes we might utilize different presentations of M.
The invariants of a module M, like dimensions, do not depend on
the presentation.

Algebraic manipulations from the left on P often need algorithms
for left Gröbner bases for a submodule of a free module, generated
by rows or columns of P (thus not only GBs of ideals).
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From modules to solutions of systems

Let F be a left O-module (not necessarily finitely presented), and
P a system of equations as before, then

SolO(P,F) := {f ∈ Fm×1 : P • f = 0}.

Noether-Malgrange Isomorphism

There exists an isomorphism of K -vector spaces

HomO(M,F) = HomO(O1×m/O1×`P,F) ∼= SolO(P,F),

(φ : M → F) 7→ (φ([e1]), . . . , φ([em])) ∈ Fm×1 .
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From functions to modules

Let F be a left O-module (not necessarily finitely presented), and
f ∈ F . Consider Of = {o • f | o ∈ O}, which is an O-submodule
of F .

Consider a homomorphism of left O-modules
φf : O→ F , o 7→ o • f , in other words φf (1) = f ∈ F . Then

Imφf = Of , Ker φf = {o ∈ O : o • f = 0} =: AnnO f

as left O-modules, one has Of ∼= O/AnnO f

hence Of is finitely presented left O-module.

An element m ∈ F is called a torsion element, if AnnO m 6= 0.

Many classical functions in common functional spaces are torsion.

Hence, algorithms for the computation of the left ideal AnnO m
(which is finitely generated when O is Noetherian) are very
important.
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Many classical functions in common functional spaces are torsion.
But not all.

Example: f = tan(x) is not a torsion element in a module over
Weyl algebra, since there exists no system of linear ODEs with
variable coefficients, having tan(x) as solution. However, there is a
nonlinear ODE f ′ = 1 + f 2.

Recall: we are able to treat polynomials in the operator tan(x)· as
coefficients in an algebra with differentiation w.r.t x .
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Let F be a left O-module, and f1, . . . , fm ∈ F be torsion elements.
Consider M = Of1 + . . .+ Ofm. As we know, every Ofi is finitely
presented O-submodule of F .

Consider a homomorphism of left O-modules

φ : Om =
m⊕
i=1

Oei → F ,
∑

oiei 7→
∑

oi • fi ,

in other words φ(ei ) = fi ∈ F . Then Im φ = M =
∑

Ofi ,

Ker φ = {[o1, . . . , om] ∈ Om :
∑

oi • fi = 0} =: MannO M

as left O-modules, one has M =
∑

Ofi ∼= Om/MannO M

hence M =
∑

i Ofi is finitely presented left O-module.

Clearly ⊕Ker φfi ei ⊆ MannO M.

In general there is no left ideal I ⊂ O, such that
Om/MannO M ∼= O/I .
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Idea: Model polynomial-exponential signals by linear systems.
Question: What is more precise in such a modeling: operator
algebras with constant or with polynomial coefficients?

Answer: algebras with polynomial coefficients.

Theorem (Zerz–L.–Schindelar, 2011)

Let K = R, pi ∈ K [x1, . . . , xn]` and V = Kp1 + · · ·+ Kpm. Let O
be the n-th Weyl algebra and O ⊃ AnnO(V ) := ∩AnnO pi be the
left ideal of operators, simultaneously annihinalting p1, . . . , pm.
Then

SolO( O/AnnO(V ), C∞(R`)) = V .

Keywords: Variant Most Powerful Unfalsified Model, cf. two
recent papers by Zerz, L. and Schindelar.
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Dimensions

Generalized Krull dimension (for an algebra or a module,
Kr. dim M) is called Krull-Rentschler-Gabriel dimension;
not algorithmic

projective dimension of a module, p. dim M; algorithmic
(relatively expensive), implemented

global homological dimension of an algebra, gl. dim A =
sup{p. dim M : M ∈ A−mod}, in general not algorithmic

homological grade of a module, j(M); algorithmic (a little less
expensive than p. dim M), implemented

Gel’fand-Kirillov Dimension; algorithmic (relatively cheap),
implemented; intuition: similar to usual Krull dimension
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Filtration on algebras and modules

Let A be a K -algebra, generated by x1, . . . , xm.

Degree filtration

Let V = Kx1 ⊕ . . .⊕ Kxm be a vector space.

Set V0 = K , V1 = K ⊕ V and Vk+1 = Vk ⊕ V k+1. If

Vi ⊆ Vi+k , Vi · Vj ⊆ Vi+j , A =
∞⋃
k=0

Vk ,

then {Vk | k ∈ N} is the standard (ascending) filtration of A.
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Gel’fand-Kirillov dimension and its properties

Let M0 ⊂ M be a finite K -vector space, spanned by the generators
of M. That is dimK M0 <∞ and AM0 = M.

{Hd := VdM0, d ∈ N} is an induced ascending filtration on M.

The Gel’fand-Kirillov dimension of M is defined as follows

GKdim(M) = lim sup
d→∞

(logd(dimK Hd))

In the standard construction one puts deg xi := 1 and defines
Vd := {f | deg f = d} and V d := {f | deg f ≤ d}.

Conventions: GKdim(0) = −∞. GKdimQ(Q) = 0.
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Lemma

Let A be a K -algebra and a domain. If the standard filtration on A
is compatible with the PBW Basis {xα | α ∈ Nm}, then
GKdimK (A) = m.

dim Vd =

(
d + m − 1

m − 1

)
, dim V d =

(
d + m

m

)
.

Thus
(d+m

m

)
= (d+m)...(d+1)

m! = dm

m! + . . . and

GKdim(A) = lim supd→∞ logd

(
d + m

m

)
= m.

Hence for any G -algebra A in n variables has GKdimK (A) = n.
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Gel’fand-Kirillov dimension: examples and properties

Free associative algebra T = K 〈x1, . . . , xn〉, n ≥ 2

dim Vd = nd , dim V d = nd+1−1
n−1 . Note, that nd+1−1

n−1 > nd .

Since logd nd = d logd n = d
logn d

→∞, d →∞, it follows that

GKdim(T ) =∞.

Properties

GKdim M = sup{GKdim(N) : N ∈ A−mod , N ⊆ M},
GKdim A = sup{GKdim(S) : S ⊆ A, S fin. gen. subalgebra}

Hence, if |K | =∞, then GKdim(K [[x1, . . . , xn]]) =∞ for n ≥ 1.
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Lemma (R is commutative)

(i) Let R be a commutative affine K -algebra. Then (by Noether
normalization) ∃S = K [x1, . . . , xt ] ⊆ R and R is finitely
generated S-module. Then GKdimK R = Kr. dim S = t.

(ii) If R is an integral domain, GKdimK R = tr. degK Quot(R).

For any K -algebra R: GKdim R[x1, . . . , xm] = GKdim R + m.
Curiosity: GKdim(R) ∈ {0, 1} ∪ [2,+∞).

Exactness

Let R be an affine algebra with finite standard fin.-dim. filtration,
such that Gr R is left Noetherian. Then GKdim is exact on short
exact sequences of fin. gen. left R-modules. That is,

0→ L→ M → N → 0 ⇒ GKdim M = sup{GKdim L,GKdim N}
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Gel’fand-Kirillov dimension for modules

There is an algorithm by Gomez-Torrecillas et. al., which computes
Gel’fand-Kirillov dimension for finitely presented modules over
G -algebras over ground field K . It is implemented e. g. in
Singular:Plural.

GKdimK (F )

Let A be a G -algebra in variables x1, . . . , xn.

◦ Input: Left generating set F = {f1, . . . , fm} ⊂ Ar

◦ Output: k ∈ N, k = GKdim(Ar/M), where M = A〈F 〉 ⊆ Ar .

G =LeftGröbnerBasis(F ) = {g1, . . . , gt} ;

L = {lm(gi ) = xαi es | 1 ≤ i ≤ t};
N = K [x1,...,xn]〈L〉;
return Kr. dim(K [x1, . . . , xn]r/N);
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Gel’fand-Kirillov dimension for modules: example

Recall Legendre’s example:

O := K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

Then GKdimK O = 4.

The Gröbner basis of the ideal P is

(x2 − 1)∂2x + 2x∂x − n(1 + n), (n + 2)s2n − (2n + 3)xsn + n + 1,

(n + 1)sn∂x − (n + 1)x∂x − (n + 1)2.

The leading monomials are x2∂2x , ns2n , nsn∂x . Hence

GKdimK O/P = Kr. dim K [n, sn, x , ∂x ]/〈x2∂2x , ns2n , nsn∂x〉 = 2.
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Elimination and GK-dimension

Lemma (MR, KL)

Let I ⊂ A be a left ideal and S ⊂ A be a subalgebra. Then

I ∩ S = 0 implies GKdim A/I ≥ GKdim S,

GKdim A/I < GKdim S implies I ∩ S 6= 0.

Recall: Bernstein’s inequality

Let A be the n-th Weyl algebra over K with
char K = 0 = GKdim K , then GKdim(A) = 2n.

Let 0 6= M be an A-module, then GKdimK M ≥ n.
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Elimination and GK-dimension

Let f ∈ F , such that AnnO f ∩ K [x1, . . . , xn] = 0. Then
GKdimK O/AnnO f ≥ n.

Proposition (Existence of elimination via dimension)

Let O =
⊗n

i=1Oi , Oi = K 〈xi , oi | . . .〉. Moreover, let I ⊂ O and
GKdimO/I = m. Then for any subalgebra S ⊂ O, such that
GKdim S ≥ m + 1 one has I ∩ S 6= 0.

Application: For I such that GKdimO/I = m we guarantee that
2n − (m + 1) = 2n −m − 1 variables can be eliminated from I ,
for instance, if m = n, we can eliminate

all but one operators,

all but one coordinate variables.

More applications will follow . . . in the parts, which follow.
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