Systems, modules, solutions	From system of equations to modules
Modeling	From modules to solutions of systems
Dimensions	From functions to modules

Part II. Dimension theory.

Systems, modules, solutions Modeling Dimensions From modules to solutions of systems From functions to modules

From system of equations to modules

Consider Legendre's differential equation (order 2 in ∂_x)

$$(x^{2}-1)P''_{n}(x)^{2}+2xP'_{n}(x)-n(1+n)P_{n}(x)=0$$

- x is differentiable with ∂_x as corr. operator
- if $n \in \mathbb{Z}$, *n* is discretely shiftable with s_n as corr. op.
- then there is a recursive formula of Bonnet (order 2 in shift s_n)

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0.$$

Systems, modules, solutions	From system of equations to modules
Modeling	From modules to solutions of systems
Dimensions	From functions to modules

$$\mathfrak{O} := K \langle n, s_n \mid s_n n = n s_n + s_n \rangle \otimes_K K \langle x, \partial_x \mid \partial_x x = x \partial_x + 1 \rangle.$$

From the system of equations

$$(x^{2}-1)P''_{n}(x)^{2}+2xP'_{n}(x)-n(1+n)P_{n}(x) = 0,$$

(n+1)P_{n+1}(x)-(2n+1)xP_{n}(x)+nP_{n-1}(x) = 0.

one obtains the matrix $P\in\mathfrak{O}^{2 imes 1}$; thus $M=\mathfrak{O}/\mathfrak{O}^{1 imes 2}P$ and

$$\begin{bmatrix} (x^2-1)\partial_x^2 + 2x\partial_x - n(1+n)\\ (n+2)s_n^2 - (2n+3)xs_n + n + 1 \end{bmatrix} \bullet P_n(x) = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$

With the help of Gröbner bases over \mathfrak{O} : a minimal generating set of the left ideal *P* contains a *compatibility condition*

$$(n+1)s_n\partial_x - (n+1)x\partial_x - (n+1)^2 \equiv (n+1)(s_n\partial_x - x\partial_x + n+1).$$

 Systems, modules, solutions
 From system of equations to modules

 Modeling
 From modules to solutions of systems

 Dimensions
 From functions to modules

From system of equations to modules

Let $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ be unknown generalized functions, for instance from $C^{\infty}(\mathbb{R}^n)$. Then a homogeneous system of linear functional (operator) equations with coefficients from $K[x_1, \ldots, x_n]$ can be presented via the matrix equation in the corresponding operator algebra \mathfrak{D} :

$$P \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \quad P \in \mathfrak{O}^{\ell \times m}$$

One associates to the system a left \mathfrak{O} -module $M = \mathfrak{O}^{1 \times m} / \mathfrak{O}^{1 \times \ell} P$, saying M is finitely presented by a matrix P.

Systems, modules, solutions Modeling Dimensions Modeling Dimensions Modeling Dimensions Modeling Dimensions

From system of equations to modules

Different matrices P_i can represent the same module M.

For instance, for any unimodular $T \in \mathfrak{O}^{\ell \times \ell}$ one has $Pf = 0 \Leftrightarrow (TP)f = 0$ and also $\mathfrak{O}^{1 \times m}/\mathfrak{O}^{1 \times \ell}TP \cong \mathfrak{O}^{1 \times m}/\mathfrak{O}^{1 \times \ell}P$.

For various purposes we might utilize different presentations of M. The invariants of a module M, like dimensions, do not depend on the presentation.

Algebraic manipulations from the left on P often need algorithms for left Gröbner bases for a submodule of a free module, generated by rows or columns of P (thus not only GBs of ideals). Systems, modules, solutions Modeling Dimensions From modules to solutions of systems From functions to modules

From modules to solutions of systems

Let \mathcal{F} be a left \mathfrak{O} -module (not necessarily finitely presented), and P a system of equations as before, then

$$\mathsf{Sol}_{\mathfrak{O}}(P,\mathcal{F}) := \{ f \in \mathcal{F}^{m \times 1} : P \bullet f = 0 \}.$$

Noether-Malgrange Isomorphism

There exists an isomorphism of K-vector spaces

$$\begin{aligned} \operatorname{Hom}_{\mathfrak{O}}(M,\mathcal{F}) &= \operatorname{Hom}_{\mathfrak{O}}(\mathfrak{O}^{1\times m}/\mathfrak{O}^{1\times \ell}P,\mathcal{F}) \cong \operatorname{Sol}_{\mathfrak{O}}(P,\mathcal{F}), \\ (\phi: M \to \mathcal{F}) &\mapsto (\phi([e_1]), \dots, \phi([e_m])) \in \mathcal{F}^{m \times 1}. \end{aligned}$$

From system of equations to modules From modules to solutions of systems From functions to modules

From functions to modules

Let \mathcal{F} be a left \mathfrak{O} -module (not necessarily finitely presented), and $f \in \mathcal{F}$. Consider $\mathfrak{O}f = \{\mathfrak{o} \bullet f \mid \mathfrak{o} \in \mathfrak{O}\}$, which is an \mathfrak{O} -submodule of \mathcal{F} .

Consider a homomorphism of left \mathfrak{O} -modules $\phi_f : \mathfrak{O} \to \mathcal{F}, \ \mathfrak{o} \mapsto \mathfrak{o} \bullet f$, in other words $\phi_f(1) = f \in \mathcal{F}$. Then

- $Im\phi_f = \mathfrak{O}f$, $Ker \phi_f = \{\mathfrak{o} \in \mathfrak{O} : \mathfrak{o} \bullet f = 0\} =: Ann_{\mathfrak{O}} \mathbf{f}$
- as left \mathfrak{O} -modules, one has $\mathfrak{O}f \cong \mathfrak{O}/\operatorname{Ann}_{\mathfrak{O}}f$
- hence $\mathfrak{O}f$ is finitely presented left \mathfrak{O} -module.

An element $m \in \mathcal{F}$ is called a **torsion element**, if Ann_D $m \neq 0$.

Many classical functions in common functional spaces are torsion.

Hence, algorithms for the computation of the left ideal $Ann_{\mathfrak{D}} m$ (which is finitely generated when \mathfrak{D} is Noetherian) are very important.

Systems, modules, solutions Modeling Dimensions From system of equations to modules From modules to solutions of systems From functions to modules

From functions to modules

Many classical functions in common functional spaces are torsion. **But not all**.

Example: f = tan(x) is not a torsion element in a module over Weyl algebra, since there exists **no** system of linear ODEs with variable coefficients, having tan(x) as solution. However, there is a nonlinear ODE $f' = 1 + f^2$.

Recall: we are able to treat polynomials in the operator tan(x) as coefficients in an algebra with differentiation w.r.t x.

From functions to modules

Let \mathcal{F} be a left \mathfrak{O} -module, and $f_1, \ldots, f_m \in \mathcal{F}$ be torsion elements. Consider $M = \mathfrak{O}f_1 + \ldots + \mathfrak{O}f_m$. As we know, every $\mathfrak{O}f_i$ is finitely presented \mathfrak{O} -submodule of \mathcal{F} .

Consider a homomorphism of left $\operatorname{\mathfrak{O}}\text{-modules}$

$$\phi:\mathfrak{O}^m=\bigoplus_{i=1}^m\mathfrak{O}e_i\to\mathcal{F},\quad \sum\mathfrak{o}_ie_i\mapsto\sum\mathfrak{o}_i\bullet f_i,$$

in other words $\phi(e_i) = f_i \in \mathcal{F}$. Then $Im \ \phi = M = \sum \mathfrak{O}f_i$,

- Ker $\phi = \{[\mathfrak{o}_1, \dots, \mathfrak{o}_m] \in \mathfrak{O}^m : \sum \mathfrak{o}_i \bullet f_i = 0\} =: \mathsf{Mann}_{\mathfrak{O}} \mathsf{M}$
- as left 𝔅-modules, one has M = ∑𝔅f_i ≅ 𝔅^m/Mann𝔅 M
 hence M = ∑_i𝔅f_i is finitely presented left 𝔅-module.

Clearly \oplus Ker $\phi_{f_i} e_i \subseteq$ Mann_{\mathfrak{O}} M.

Idea: Model polynomial-exponential signals by linear systems. **Question:** What is more precise in such a modeling: operator algebras with constant or with polynomial coefficients?

Answer: algebras with polynomial coefficients.

Theorem (Zerz–L.–Schindelar, 2011)

Let $K = \mathbb{R}$, $p_i \in K[x_1, \ldots, x_n]^{\ell}$ and $V = Kp_1 + \cdots + Kp_m$. Let \mathfrak{O} be the n-th Weyl algebra and $\mathfrak{O} \supset \operatorname{Ann}_{\mathfrak{O}}(V) := \cap \operatorname{Ann}_{\mathfrak{O}} p_i$ be the left ideal of operators, simultaneously annihinalting p_1, \ldots, p_m . Then

$$\operatorname{Sol}_{\mathfrak{O}}(\mathfrak{O}/\operatorname{Ann}_{\mathfrak{O}}(V), \ C^{\infty}(\mathbb{R}^{\ell})) = V.$$

Keywords: Variant Most Powerful Unfalsified Model, cf. two recent papers by Zerz, L. and Schindelar.

Systems, modules, solutions Modeling Dimensions GK-dimension and elimination

Dimensions

- Generalized Krull dimension (for an algebra or a module, Kr. dim M) is called Krull-Rentschler-Gabriel dimension; not algorithmic
- projective dimension of a module, p. dim *M*; algorithmic (relatively expensive), implemented
- global homological dimension of an algebra, gl. dim A = sup{p. dim M : M ∈ A − mod}, in general not algorithmic
- homological grade of a module, j(M); algorithmic (a little less expensive than p. dim M), implemented
- Gel'fand-Kirillov Dimension; algorithmic (relatively cheap), implemented; intuition: similar to usual Krull dimension

Filtration on algebras and modules

Let A be a K-algebra, generated by x_1, \ldots, x_m .

Degree filtration Let $V = Kx_1 \oplus \ldots \oplus Kx_m$ be a vector space. Set $V_0 = K$, $V_1 = K \oplus V$ and $V_{k+1} = V_k \oplus V^{k+1}$. If $V_i \subseteq V_{i+k}, \quad V_i \cdot V_j \subseteq V_{i+j}, \quad A = \bigcup_{k=0}^{\infty} V_k,$ then $\{V_k \mid k \in \mathbb{N}\}$ is the standard (ascending) filtration of A.

Gel'fand-Kirillov dimension and its properties

Let $M_0 \subset M$ be a finite K-vector space, spanned by the generators of M. That is dim_K $M_0 < \infty$ and $AM_0 = M$.

 $\{H_d := V_d M_0, d \in \mathbb{N}\}$ is an induced ascending filtration on M.

The **Gel'fand-Kirillov dimension** of *M* is defined as follows

$$\mathsf{GKdim}(M) = \limsup_{d \to \infty} (\log_d(\dim_K H_d))$$

In the standard construction one puts deg $x_i := 1$ and defines $V_d := \{f \mid \deg f = d\}$ and $V^d := \{f \mid \deg f \leq d\}.$

Conventions: $\mathsf{GKdim}(0) = -\infty$. $\mathsf{GKdim}_{\mathbb{Q}}(\mathbb{Q}) = 0$.

Gel'fand-Kirillov dimension GK-dimension and elimination

Lemma

Let A be a K-algebra and a domain. If the standard filtration on A is compatible with the PBW Basis $\{x^{\alpha} \mid \alpha \in \mathbb{N}^m\}$, then $\mathsf{GKdim}_{\mathcal{K}}(A) = m$.

$$\dim V_d = \binom{d+m-1}{m-1}, \dim V^d = \binom{d+m}{m}.$$

Thus $\binom{d+m}{m} = \frac{(d+m)\dots(d+1)}{m!} = \frac{d^m}{m!} + \dots$ and
 $\operatorname{GKdim}(A) = \limsup_{d \to \infty} \log_d \binom{d+m}{m} = m.$

Hence for any G-algebra A in n variables has $GKdim_K(A) = n$.

Gel'fand-Kirillov dimension: examples and properties

Free associative algebra
$$T = K\langle x_1, \ldots, x_n \rangle, n \ge 2$$

dim $V_d = n^d$, dim $V^d = \frac{n^{d+1}-1}{n-1}$. Note, that $\frac{n^{d+1}-1}{n-1} > n^d$.
Since $\log_d n^d = d \log_d n = \frac{d}{\log_n d} \to \infty, d \to \infty$, it follows that $GKdim(T) = \infty$.

Properties

- GKdim $M = \sup{GKdim(N) : N \in A mod, N \subseteq M}$,
- GKdim $A = \sup{GKdim(S) : S \subseteq A, S \text{ fin. gen. subalgebra}}$

Hence, if $|\mathcal{K}| = \infty$, then $\mathsf{GKdim}(\mathcal{K}[[x_1, \ldots, x_n]]) = \infty$ for $n \ge 1$.

Lemma (*R* is commutative)

- (i) Let R be a commutative affine K-algebra. Then (by Noether normalization) ∃S = K[x₁,...,x_t] ⊆ R and R is finitely generated S-module. Then GKdim_K R = Kr. dim S = t.
- (ii) If R is an integral domain, $GKdim_K R = tr. deg_K Quot(R)$.

For any K-algebra R: GKdim $R[x_1, \ldots, x_m] = GKdim R + m$. Curiosity: GKdim $(R) \in \{0, 1\} \cup [2, +\infty)$.

Exactness

Let R be an affine algebra with finite standard fin.-dim. filtration, such that Gr R is left Noetherian. Then GKdim is exact on short exact sequences of fin. gen. left R-modules. That is,

 $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \Rightarrow \mathsf{GKdim} M = \mathsf{sup}\{\mathsf{GKdim} L, \mathsf{GKdim} N\}$

Gel'fand-Kirillov dimension for modules

There is an algorithm by Gomez-Torrecillas et. al., which computes Gel'fand-Kirillov dimension for finitely presented modules over G-algebras over ground field K. It is implemented e. g. in SINGULAR:PLURAL.

$\operatorname{GKDIM}_{K}(F)$

Let A be a G-algebra in variables x_1, \ldots, x_n .

- Input: Left generating set $F = \{f_1, \ldots, f_m\} \subset A^r$
- Output: $k \in \mathbb{N}$, $k = \operatorname{GKdim}(A^r/M)$, where $M = {}_A\langle F \rangle \subseteq A^r$.
- $G = \text{LeftGröbnerBasis}(F) = \{g_1, \dots, g_t\}$;

•
$$L = \{ \operatorname{Im}(g_i) = x^{\alpha_i} e_s \mid 1 \le i \le t \};$$

•
$$N = {}_{K[x_1,\ldots,x_n]} \langle L \rangle;$$

• return Kr. dim $(K[x_1,\ldots,x_n]^r/N)$;

Gel'fand-Kirillov dimension for modules: example

Recall Legendre's example:

$$\mathfrak{O} := K \langle n, s_n \mid s_n n = n s_n + s_n \rangle \otimes_K K \langle x, \partial_x \mid \partial_x x = x \partial_x + 1 \rangle.$$

Then $\mathsf{GKdim}_{\mathcal{K}}\mathfrak{O}=4.$

The Gröbner basis of the ideal P is

$$(x^2 - 1)\partial_x^2 + 2x\partial_x - n(1 + n), (n + 2)s_n^2 - (2n + 3)xs_n + n + 1,$$

 $(n + 1)s_n\partial_x - (n + 1)x\partial_x - (n + 1)^2.$

The leading monomials are $x^2 \partial_x^2$, ns_n^2 , $ns_n \partial_x$. Hence

 $\mathsf{GKdim}_{\mathcal{K}}\mathfrak{O}/P = \mathsf{Kr.\,dim}\,\mathcal{K}[n,s_n,x,\partial_x]/\langle x^2\partial_x^2,ns_n^2,ns_n\partial_x\rangle = 2.$

Systems, modules, solutions Modeling Dimensions

Gel'fand-Kirillov dimension GK-dimension and elimination

Elimination and GK-dimension

Lemma (MR, KL)

Let $I \subset A$ be a left ideal and $S \subset A$ be a subalgebra. Then

- $I \cap S = 0$ implies GKdim $A/I \ge$ GKdim S,
- GKdim A/I < GKdim S implies $I \cap S \neq 0$.

Recall: Bernstein's inequality

Let A be the *n*-th Weyl algebra over K with char K = 0 = GKdim K, then GKdim(A) = 2n.

Let $0 \neq M$ be an A-module, then $\operatorname{GKdim}_{K} M \geq n$.

Systems, modules, solutions Modeling Dimensions

Gel'fand-Kirillov dimension GK-dimension and elimination

Elimination and GK-dimension

Let $f \in \mathcal{F}$, such that $\operatorname{Ann}_{\mathfrak{O}} f \cap K[x_1, \ldots, x_n] = 0$. Then $\operatorname{GKdim}_{K} \mathfrak{O} / \operatorname{Ann}_{\mathfrak{O}} f \geq n$.

Proposition (Existence of elimination via dimension)

Let $\mathfrak{O} = \bigotimes_{i=1}^{n} \mathfrak{O}_{i}$, $\mathfrak{O}_{i} = K \langle x_{i}, \mathfrak{o}_{i} | \ldots \rangle$. Moreover, let $I \subset \mathfrak{O}$ and $\mathsf{GKdim} \mathfrak{O}/I = m$. Then for any subalgebra $S \subset \mathfrak{O}$, such that $\mathsf{GKdim} S \ge m+1$ one has $I \cap S \ne 0$.

Application: For I such that GKdim $\mathfrak{O}/I = m$ we guarantee that 2n - (m+1) = 2n - m - 1 variables can be eliminated from I, for instance, if m = n, we can eliminate

- all but one operators,
- all but one coordinate variables.

More applications will follow ... in the parts, which follow.