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Dimension function

Let A be a Noetherian algebra. A dimension function δ assigns a
value δ(M) to each finitely generated A-module M and satisfies
the following properties:

(i) δ(0) = −∞.

(ii) If 0→ M ′ → M → M ′′ → 0 is exact sequence, then
δ(M) ≥ sup{δ(M ′), δ(M ′′)} with equality if the sequence is
split.

(iii) If P is a (two-sided) prime ideal with P ⊆ AnnA(M) and M is
a torsion module over A/P, then δ(M) ≤ δ(A/P)− 1.

generalized Krull dimension is an exact dimension function

Gel’fand-Kirillov dimension is a dimension function, not
always exact
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Purity w.r.t dimension function

Let A be a K -algebra and δ a dimension function on A-mod.
A module M 6= 0 is δ-pure (or δ-homogeneous), if

∀0 6= N ⊆ M, δ(N) = δ(M).

A simple module is pure. Thus, purity is a useful weakening of
the concept of simplicity of a module.

Unlike simplicity, the purity (w.r.t a dimension function) is
algorithmically decidable over many common algebras.

M. Barakat, A. Quadrat: Algorithms for the computation of the
purity filtration of a module with δ = homological grade; there are
several implementations: in homalg, OreModules(Maple)
and Singular:Plural.
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Purity with respect to a dimension function

Lemma (L.)

Let A be a K -algebra and δ a dimension function on A-mod.
Moreover, let 0 6= M1,M2 ⊂ N be two δ-pure modules with
δ(M1) = δ(M2). Then

the set of δ-pure submodules (of the same dimension) of a module
is a lattice, i. e.

1 M1 ∩M2 is either 0 or it is δ-pure with δ(M1 ∩M2) = δ(M1),

2 M1 + M2 is δ-pure with δ(M1 + M2) = δ(M1).
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Ubiquity of pure modules

Consider purity with respect to Gel’fand-Kirillov dimension.

Lemma (L.)

Let A be a G-algebra, S ⊂ A a m. c. Ore set in A. Let M be a set

of left A-modules M, satisfying S−1M 6= 0 and having dimension
GKdim KS, where KS is the monoid algebra. Then M consists of
pure modules.

Example (Pure modules)

modules of Krull dimension 0 over K [x1, . . . , xn], i. e. modules
M, such that dimK M <∞
any set of modules of smallest possible dimension in A, for
instance holonomic modules over the n-th Weyl algebra over a
field with char K = 0; it is known that they have GK
dimension n over K .
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Ubiquity of pure modules

Recall

Let A be an operator algebra over K [x1, . . . , xn] and
S = K [x1, . . . , xn] \ {0} ⊂ A be a m. c. Ore set in A.
A left A-module M is called D-finite, if dimK(x1,...,xn) S−1M <∞.

Thus D-finite modules are pure.

Note: we can do much more with the concept of purity

We can consider pure modules of any reasonable dimension,
without restricting ourselves to the modules of smallest possible
dimension!
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Pure functions and operations with them

Let O be an operator algebra and F an O-module. A torsion
element f ∈ F (that is a ”function” having nonzero annihilator) is
called pure, is the corresponding left O-module Of ∼= O/AnnO f
is pure.

This definition generalizes both the notion of Zeilberger-holonomic
or D-finite function as well as some other.

Lemma (L.)

Let f ∈ F be a pure function. Then for any o ∈ O \ {0} h = of
is pure as well.

Proof: Og = Oof ⊂ Of is a natural submodule, hence it is pure.
Moreover, AnnO of =

{r ∈ O : r(of ) = (ro)f = 0} = {s ∈ AnnO f : ∃r ∈ O, s = ro} =

AnnO f : o = KerO(O→ O/AnnO f , 1 7→ o) is computable.
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Operations with pure functions

Lemma (L.)

Let f , g ∈ F be pure functions. Then for any p, q ∈ O \ {0}
h = pf + qg is pure as well.

Proof: by the previous lemma Mf = Opf and Mg = Oqg are pure
modules. By another lemma before Mf + Mg is pure. Hence
Oh ⊆ Mf + Mg is pure as well.
Moreover, (AnnO f : p) ∩ (AnnO g : q) ⊆ AnnO h.

More operations, preserving the purity, are under investigation.

Observation : many (but not all) special functions give rise to pure
modules.
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Identities, Elimination, Purity Filtration

Let 0→ M1 → M2 → M2/M1 → 0 be an exact sequence of
fin. pres. O-modules. Moreover, let F be an arbitrary O-module.
Then we have that SolO(M2/M1,F) ⊆ SolO(M2,F).

If F is injective O-module, the natural map
SolO(M2,F)→ SolO(M1,F) is surjective (not true for general F).

Purity filtration with δ = GKdim

Let O be a Noetherian domain, being Auslander-regular and
Cohen-Macaulay algebra with GKdimO = n.
Given a fin. pres. O-module M of dimension n > d ≥ 0, then the
purity filtration of M is the sequence

M = Mn−d ⊃ Mn−d+1 . . . ⊃ Mn−1 ⊃ Mn = 0.

where GKdim Mn−(d−i) = d − i . Moreover, Mn−d+k/Mn−d+k+1 is
either 0 or pure of dimension d − k .
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Identities, Elimination, Purity Filtration

Consider the mixed system, annihilating Legendre polynomials

O = K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

M = O/P,

P = 〈(x2−1)∂2
x + 2x∂x −n(1 + n), (n + 2)s2

n − (2n + 3)xsn + n + 1,

(n + 1)(sn∂x − x∂x + n + 1)〉.

GKdimO = 4, GKdim M = 2, t(M) = M = O/P.
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M,

M3
∼= O/〈n + 1, sn, ∂x〉 with GKdim M3 = 1.

What are the most general solutions g(n, x) of this system?

Since ∂x(g) = 0, one has g(n, x) = g(n).
however, g(n) should not be identically zero:
in case n ∈ {−1, 0, 1, . . .}, one can select g(−1) ∈ K arbitrary
(step of the jump function).

Localization

The ideal 〈n + 1, sn〉 is two-sided and maximal. Hence the
submodule M3 vanishes under any nontrivial Ore localization
w. r. t S ⊂ K 〈n, sn . . .〉, for instance when n ∈ S or sn ∈ S (then
s−1
n is present and therefore n ∈ Z should hold). And S−1M is

then a pure module.
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M.
The pure part of GK dimension 2 is t(M)/M3

∼=

O/〈(x2− 1)∂2
x + 2x∂x − n(1 + n), (n + 2)S2

n − (2n + 3)xSn + n + 1,

(1− x2)∂x + (n + 1)Sn − (n + 1)x〉.

For further investigations of M over localizations w.r.t. n or Sn one
should then take the simplified equations from the ideal P ′ above.

Elimination leads to new identities

The elimination property guarantees, that 1 arbitrary variable of O
can be eliminated from P and from P ′; so one gets for instance

x−free : (n + 1)(n + 2) ·
(
(S2

n − 1)∂x − (2n + 3)Sn

)
• Pn(x) = 0,

n−free : (1− x2) ·
(
(S2

n − 2xSn + 1)∂x − Sn)
)
• Pn(x) = 0.
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The hypergeometric series is defined for |z | < 1 and −c /∈ N0 as
follows:

2F1(a, b, c ; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

We derive two annihilating ideals from the anihilator of

2F1(a, b, c ; z):

Ja which does not contain a,

Jc which does not contain c ,

and analyze corresponding modules for purity.
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Case Ja

The ideal in O = K [b, c , z ]〈Sb, Sc,Dz | . . .〉 is generated by:

bcSb − czDz − bc

bSbSc − bSc + cSc − c

bSb2 − zSbDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

bzSbDz − z2Dz2 − bzDz − bSbDz + zDz2 − bSb + bDz + b + Dz

Let M = Ma = O/Ja. Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M5 = M4 ( M3 = M2 = M, where

M/M5
∼= O/〈bSb− zDz − b, zDzSc + cSc − c〉, GKdim M/M5 = 4
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The purity filtration of M = t(M)

. . . and

M5
∼= O/〈c ,Sb, b + 1, zDz − Dz − 1〉, GKdim M5 = 2.

The solutions can be read off:

δc,0 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K
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Case Jc

The ideal in O = K [b, c , z ]〈Sb, Sc,Dz | . . .〉 is generated by:

aSa− bSb − a + b

bSb2 − SbzDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

abSb − azDz − ab + bSb − zDz − b

bSbzDz − z2Dz2 − bSbDz − bzDz + zDz2 − bSb + bDz + b + Dz

Let M = Mc = O/Jc . Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M6 = M5 = M4 ( M3 = M2 = M, where

M/M6
∼= O/〈bSb − zDz − b, aSa− zDz − a〉, GKdim M/M6 = 4.
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The purity filtration of M = t(M)

. . . and

M6
∼= O/〈Sb, b + 1,Sa, a + 1, zDz − Dz − 1〉, GKdim M6 = 2.

The solutions:

δa,−1 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K

VL Elements of CAAN



Purity of modules
Pure functions

Jacobson normal form

Isomorphism problem
Unimodularity and localization

Part V. Jacobson normal form.
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One of the most important questions in algebra is undecidable in
general:

Let A be a (Noetherian) K -algebra and M,N are two finitely
presented A-modules. Can we decide, whether M ∼= N as
A-modules?

Yet another application of localization as a functor:

Let S ⊂ A be a m. c. Ore set, then S−1A exists.
Given an A-module homomorphism ϕ : M → N (M,N are finitely
presented). Then there is an induced homomorphism of
S−1A-modules S−1ϕ : S−1M → S−1N.

Application to the isomorphism problem

If there exists such m. c. Ore set S̃ ⊂ A, that S̃−1ϕ is not an
isomorphism, then ϕ is not an isomorphism.
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Invariants

Above we have seen several dimensions of modules, some of them
are computable. What can one achieve with the help of
localization?

Let S = A \ {0}. Then the rank of f. g. A-module M is
defined to be dimS−1A S−1M.

Let R = A[∂;σ, δ] for an integral domain A and S = A \ {0}.
Then S−1M is a vector space over Quot(A) = S−1A and
dimS−1R S−1M is an invariant of the module.
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Jacobson, Teichmüller, Cohn

Let R be a non-commutative Euclidean domain and M ∈ Rm×n.
Then there exist

unimodular matrices U ∈ Rm×m, V ∈ Rn×n;

a matrix D ∈ Rm×n with elements d1, . . . , dr on the main
diagonal and 0 outside of the main diagonal . . .

such that di ||di+1 (total divisibility), meaning

O〈di+1〉O ⊆ O〈di 〉 ∩ 〈di 〉O

such that U ·M · V = D.

In particular there is an isomorphism of R-modules

R1×n/R1×mM ∼= R1×n/R1×mD.
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Recognizing the localization

L.–Schindelar (2011, 2012) presented two algorithms, computing
matrices U,V ,D by using Gröbner bases.

A fraction-free algorithm performs only operations over polynomial
(i.e. unlocalized) algebra. A minor modification allows to produce
matrices U,V ,D with polynomial entries.

Theorem (L.–Schindelar)

Let A be a G -algebra in variables x1, . . . , xn, ∂ and assume that
{x1, . . . , xn} generate a G -algebra B ( A. Suppose, there exists an
admissible monomial ordering ≺ on A, satisfying xk ≺ ∂ for all
1 ≤ k ≤ n. Then the following holds

B∗ is multiplicatively closed Ore set in A.

(B∗)−1A can be presented as an Ore extension of Quot(B) by
the variable ∂.
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Example

Let A1 be the polynomial and B1 = (K [x ] \ {0})−1A1 the rational
Weyl algebra. Consider the matrix

M =

[
∂2 − 1 ∂ + 1
∂2 + 1 ∂ − x

]
.

The algorithm returns

D =

[
x2∂2 + 2x∂2 + ∂2 − 2x∂ − 2∂ − x2 − 1 0

0 1

]
,

U =

[
−x∂ − ∂ + x2 + x + 1 x∂ + ∂ + x

∂ − x −∂ − 1

]
,

V =

[
1 0

x∂2 + ∂2 + 2∂ − x + 1 1

]
.
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Unimodularity of Matrices

Let us analyze, under which localizations U,V will be invertible.

Indeed, V is unimodular over A1, since it admits an inverse:

V−1 =

[
1 0

−(x + 1)∂2 + x − 2∂ − 1 1

]

On the contrary, U is NOT unimodular over A1, since U · Z = W
and W is first invertible in the localization:

Z =

[
2∂ + 2 (x + 1)∂ + x − 2

2(∂ − x) (x + 1)∂ − x2 − x − 3

]
,W =

[
0 −4x2 − 8x − 4
2 5x + 5

]
For the invertibility of W we need only to divide by x + 1 =: f .
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Lifting the isomorphism

Let f = x + 1. Then U from above will be unimodular over any
localization, where f is invertible. In particular, the smallest one,
as we know, is C1 := S−1

f A1, where Sf = {f i : i ∈ N}.

Thus the isomorphism of B1-modules, provided by the Jacobson
form, holds not only over B1 = (K [x ] \ {0})−1A1, but also over C1.

General strategy: depending on the concrete questions, analyze U
resp. V for unimodularity over localizations, less greedy than the
rational one.

Note: the steps of such an analysis are algorithmic.
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Recognize and lift localized problems

Strategical remarks for conclusion.

use the information from the localized situation - for instance,
implementations of numerous good algorithms - for the
analysis of the unlocalized, ”global” situation;

in algorithms:

perform fraction-free computations, if possible

or keep track of operations, requiring localized computations

use this tracking information and determine a smaller
localization, where desired properties still hold. Lift the
obtained results to that smaller localization.

study obstructions to the lifting: this provides several cases,
which again hints at the treatment of the problem at a global
level by using local ones.

obtain new powerful and useful results!
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Merci beaucoup

pour votre attention!

http://www.singular.uni-kl.de/
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