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Abstract. We establish an explicit criteria (the vanishing of non–degeneracy
conditions) for certain noncommutative algebras to have Poincaré–Birkhoff–
Witt basis. We study theoretical properties of such G–algebras, con-
cluding they are in some sense ”close to commutative”. We use the
non–degeneracy conditions for practical study of certain deformations
of Weyl algebras, quadratic and diffusion algebras.

The famous Poincaré–Birkhoff–Witt (or, shortly, PBW) theorem, which ap-
peared at first for universal enveloping algebras of finite dimensional Lie algebras
([7]), plays an important role in the representation theory as well as in the the-
ory of rings and algebras. Analogous theorem for quantum groups was proved by
G. Lusztig and constructively by C. M. Ringel ([6]).

Many authors have proved the PBW theorem for special classes of noncom-
mutative algebras they are dealing with ([17], [18]). Usually one uses Bergman’s
Diamond Lemma ([4]), although it needs some preparations to be done before ap-
plying it. We have defined a class of algebras where the question ”Does this algebra
have a PBW basis?” reduces to a direct computation involving only basic polyno-
mial arithmetic.

In this article, our approach is constructive and consists of three tasks. Firstly,
we want to find the necessary and sufficient conditions for a wide class of algebras
to have a PBW basis, secondly, to investigate this class for useful properties, and
thirdly, to apply the results to the study of certain special types of algebras.

The first part resulted in the non–degeneracy conditions (Theorem 2.3), the
second one led us to the G– and GR–algebras (3.4) and their properties (Theorem
4.7, 4.8), and the third one — to the notion of G–quantization and to the descrip-
tion and classification of G–algebras among the quadratic and diffusion algebras.
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In this article we have simplified many proofs of known results and unified differ-
ent notations. As far as we know, no article before this one featured a complete
treatment of the problems, arising in connection with PBW bases.

We are deeply grateful to Prof. Yu. Drozd and Prof. E. Green for their hints,
critics and suggestions that contributed greatly to this article. We also would like to
thank Dr. H. Schönemann, Dr. W. Seiler and O. Khomenko for fruitful discussions
concerning this article.

1 Gröbner bases on tensor algebras

Let K be a field and T = K〈x1, . . . , xn〉 a tensor algebra. We will omit the
tensor product sign while writing multiplication and we will mean by an ideal a
two–sided ideal, whenever no confusion is possible.

We say that monomials in T are elements from the set of all words

Mon(T ) = {xα1
i1

xα2
i2

. . . xαm
im

| 1 ≤ i1, i2, . . . , im ≤ n, αk ≥ 0}.

A set of standard monomials which we will need later is defined as

MonS(T ) = {xα1
i1

xα2
i2

. . . xαm
im

| 1 ≤ i1 < i2 < . . . < im ≤ n, αk ≥ 0}.

Note, that a natural K–basis of a commutative polynomial ring K[x1, . . . , xn]
is exactly the PBW basis. Therefore, algebras which are noetherian domains with
PBW basis are in this sense ”close to commutative”.

Now we will present the short account of the Gröbner bases theory on tensor
algebras. It was first Teo Mora, who considered a unified Gröbner bases framework
for commutative and noncommutative algebras ([23]), which has been recently ex-
ploited also by Li ([16]). We follow this approach partially, using in addition the
articles [13] and [14] and writing in the spirit of [12] thus keeping almost the same
notations with the [21].

Definition 1.1 We call a total ordering < a monomial ordering on Mon(T )
if the following conditions hold:
1. < is a well–ordering on Mon(T ), that is

∀a ∈ Mon(T ) there exist finitely many b ∈ Mon(T ) such that b < a,

2. ∀p, q, s, t ∈ Mon(T ), if s < t, then p · s · q < p · t · q,
3. ∀p, q, s, t ∈ Mon(T ), if s = p · t · q, then t < s.

In this work we are dealing with well–orderings only.

Definition 1.2 Any f ∈ T \ {0} can be written uniquely as

f = c ·m + f ′, where c ∈ K∗ and m > m′ for any non–zero term c′ ·m′ of f ′.

We define
lm(f) = m, the leading monomial of f ,
lc(f) = c, the leading coefficient of f .

For a subset G ⊂ T , define a leading ideal of G to be the two–sided ideal

L(G) = 〈{lm(g) | g ∈ G \ {0}}〉 ⊆ T.

Definition 1.3 Let < be a fixed monomial ordering on T . We say that a
subset G ⊂ I is a Gröbner basis for I with respect to < if L(G) = L(I).

Although we can work formally with infinite Gröbner bases, in this article we
are interested only in finite bases.
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Definition 1.4 Let m,m′ ∈ Mon(T ) be two monomials.
We say that m divides m′ if there exist p, q ∈ Mon(T ) such that m′ = p ·m · q.
The set G ⊆ T is called minimal, if ∀g1, g2 ∈ G, lm(g1) does not divide

lm(g2) and vice versa.

Definition 1.5 Let G be the set of all finite and ordered subsets of T .
A map NF : T × G → T, (f,G) 7→ NF(f |G) is called a normal form on T if
(i) NF(f |G) 6= 0 ⇒ lm

(
NF(f |G)

)
6∈ L(G), and

(ii) f −NF(f |G) ∈ 〈G〉, for all f ∈ T and G ∈ G.

Algorithm 1.6 Let < be a well–ordering on T .
NF(f |G)
Input : f ∈ T, G ∈ G.
Output : h ∈ T , a normal form of f with respect to G.
• h = f ;
• While (h 6= 0 and Gh = {g ∈ G | lm(g) divides lm(h)} 6= ∅)

choose any g ∈ Gh;
compute l = l(g), r = r(g) ∈ Mon(T ) such that lm(h) = l · lm(g) · r;

h = h− lc(h)
lc(g)

· l · g · r;

• Return h;

Proof We shall prove termination and correctness of the algorithm.
We see that each specific choice of ”any” in the algorithm may give us a different

normal form function. Let h0 := f , and in the i–th step of the While loop we
compute hi. Since lm(hi) < lm(hi−1) by the construction, we obtain a set {lm(hi)}
of leading monomials of hi, where ∀i hi+1 has strictly smaller leading monomial
than hi. Since < is a well–ordering, this set has a minimum, hence the algorithm
terminates.

Suppose this minimum is reached at the step m. Let h = hm and li, ri are
monomials, corresponding to gi ∈ G in the algorithm. Making back substitutions,
we obtain the following expression

h = f −
m−1∑
i=1

ligiri,

satisfying lm(f) = lm(l1g1r1) > lm(ligiri) > lm(hm).
Moreover, by the construction lm(h) 6∈ L(G). This proves correctness, inde-

pendently of the specific choice of “any” in the While loop.

Definition 1.7 Let f, g ∈ T . Suppose that there are p, q ∈ Mon(T ) such that
1. lm(f)q = p lm(g)
2. lm(f) does not divide p and lm(g) does not divide q.
Then the overlap relation of f, g by p, q is defined as

o(f, g, p, q) =
1

lc(f)
fq − 1

lc(g)
pg.

We see that lm(o(f, g, p, q)) < lm(f)q = p lm(g), hence, overlap relation is a
generalization of the notion of s–polynomial from the commutative theory (cf. [12]).

The next theorem is a slightly reformulated Termination theorem from [14].
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Theorem 1.8 Let < be an well–ordering on T and G be a finite set of poly-
nomials from T . If for every overlap relation with g1, g2 ∈ G

NF( o(g1, g2, p, q) | G) = 0,

then G is a Gröbner basis for 〈G〉.

2 Non-degeneracy conditions on tensor algebra and PBW theorem

Again, let T = K〈x1, . . . , xn〉 be a tensor algebra.
For fixed n, define the set of indices Um := {(i1, . . . , im) | 1 ≤ i1 < . . . < im ≤ n}.

Suppose there are two sets C = {cij} ⊂ K∗ and D = {dij} ⊂ T , where
(i, j) ∈ U2. We construct a set F = {fji | (i, j) ∈ U2}, where

fji = xjxi − cij · xixj − dij .

We require the existence of a well–ordering < on T , such that lm(fji) = xjxi

and lm(dij) < xixj . Moreover, we assume that polynomials dij are already given
in terms of standard monomials (if in some dij there is a nonstandard monomial
with coefficient c ·m, then m is divisible by some lm(fkl), hence we replace every
such m with NF(m | F ), and iterate this procedure until we get a polynomial in
standard monomials. It terminates since < is a well–ordering). Then we construct
the two–sided ideal I = 〈F 〉 ⊂ T .

For (i, j, k) ∈ U3 define the non–degeneracy condition for (i, j, k) to be

NDCijk = cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk.

Lemma 2.1 F is a Gröbner basis for I with respect to < if and only if
∀ 1 ≤ i < j < k ≤ n NF(NDCijk | F ) = 0.

Proof We will compute Gröbner basis of I symbolically, but as explicitly as
we can. Following the theorem 1.8, we have to consider all the possible overlaps
of elements from F . It’s straightforward, that the only nonzero overlaps can occur
for the set of pairs {(fji , fkj) | (i, j, k) ∈ U3}. Computing the overlap relation of
(fji , fkj) for fixed (i, j, k) ∈ U3, we get

o1 = xkxjxi − cijxkxixj − xkdij − xkxjxi + cjkxjxi + djkxi =

= −cijxkxixj + cjkxjxkxi − xkdij + djkxi.

The o1 can be reduced with fkj to

o2 = cjkxjxkxi − cijcikxixkxj − cijdikxj − xkdij + djkxi,

where o2 could be further reduced with fki to

o3 = cjkcikxjxixk − cijcikxixkxj − cijdikxj − xkdij + djkxi + cjkxjdik.

On its own, we reduce o3 with fji to

o4 = −cijcikxixkxj+cjkcikcijxixjxk+cjkcikdijxk−cijdikxj−xkdij+djkxi+cjkxjdik,

and, respectively, fkj finishes the reduction of o4:

o5 = cjkcikdijxk − xkdij + cjkxjdik − cijdikxj + djkxi − cijcjkxidjk.

As we see, o5 = NDCijk, and o5 cannot be further reduced with the elements
of F without the more specific information on {dij}. So, if NF(NDCijk | F ) 6= 0,
F is not a Gröbner basis of I. Hence the claim.

Lemma 2.2 With the same notation as before, a K–algebra A = T/I has a
PBW basis if and only if F is a Gröbner basis for I with respect to <.
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Proof If F is a Gröbner basis for I with respect to <, the underlying K–
vector space of A is generated by {m ∈ Mon(T ) | lm(fji) does not divide m}
by the property of Gröbner bases ([13]). We see immediately that this vector
space is the set of standard monomials, since no standard monomial is divisible by
lm(fji) ∀j > i.

Conversely, let A = T/I has a PBW basis. Then we can interpret it as a
K–algebra, generated by x1, . . . , xn with the multiplication

(?) ∀1 ≤ i, j ≤ n xj ? xi =

{
xjxi, if i ≥ j,

cij · xixj + dij(x), if i < j.

Since A is an associative algebra, (xk ?xj)?xi−xk ? (xj ?xi) = 0 ∀(i, j, k). It is
easy to see that this holds trivially for all the cases except that when (i, j, k) ∈ U3,
which we analyze. A bit lengthy technical computation in this case delivers

(xk ? xj) ? xi − xk ? (xj ? xi) =
= cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk =

= NDCijk.

So, NDCijk = 0 in A. Hence NF (NDCijk|I) = 0 in T , and by the previous
Lemma F is a Gröbner basis of I.

We formalize all the lemmata in the following:

Theorem 2.3 Suppose there is a set F = {fji | 1 ≤ i < j ≤ n}, where

∀j > i fji = xjxi − cij · xixj − dij , cij ∈ K∗, dij ∈ T.

Let the ideal I = 〈F 〉 ⊂ T . If there exists a well–ordering < on T , such that
lm(fji) = xjxi and lm(dij) < xixj , then the following conditions are equivalent:

1) F is a Gröbner basis for I with respect to <,
2) ∀ 1 ≤ i < j < k ≤ n NF(NDCijk | F ) = 0,
3) A K–algebra A = T/I has a Poincaré–Birkhoff–Witt basis.

Remark 2.4 Some historical remarks you can find under Remark 3.5.
1. If we assume that ∀ i < j cij = 1 and dij are linear polynomials, NDCijk

becomes a famous Jacobi identity ([7]), written in the universal enveloping
algebra of a finite dimensional Lie algebra. So, non–degeneracy conditions
are generalized Jacobi identities.

2. The equivalence 1) ⇔ 3) with several restrictions appeared in [20], [23];
with an assumption that dij are homogeneous quadratic polynomials it was
proved by E. Green in [14] (Th. 2.14).

3. From the proof of the Lemma 2.2 we extract another characterization of
PBW property, particularly simple and especially useful for computer alge-
bra systems. Assume that the multiplication ? (from the Lemma) is imple-
mented on A and lm(dij) < xixj . Then we can say whether A has a PBW
basis by directly checking, that

∀ 1 ≤ i < j < k ≤ n (xk ? xj) ? xi − xk ? (xj ? xi) = 0.

What happens if we are dealing with an algebra, where non–degeneracy condi-
tions do not vanish? If we consider an algebra, resembling the universal enveloping
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algebra of a finite dimensional Lie algebra but with nonzero non–degeneracy con-
ditions, this will indicate that the underlying algebra, from which the enveloping
algebra was built, is not a Lie algebra, since it violates the Jacobi identities.

In general, if the non–degeneracy conditions in the algebra A = T/I (T and
I as before) do not vanish, we observe the following phenomenon — there are
more relations than only those of the type (?), and these hidden relations consist of
standard monomials which total degree do not exceed 3. Hence, there exist algebras
with no PBW basis but still without zero divisors. We say that the algebra in n
variables is degenerate, if it is isomorphic to another algebra, generated by k < n
variables.

Example 2.5 Consider the algebra with parameters q1, q2,

yx = q2xy + x, zx = q1xz + z, zy = yz.

Here we see that non–degeneracy condition equals (q2 − 1)yz + z, so it vanishes if
and only if there are zero divisors with ((q2 − 1)y + 1)z = 0. So, we have found
the hidden defining relation in the algebra, since the Gröbner basis of the ideal
〈yx − q2xy − x, zx − q1xz − z, zy − yz〉 ⊂ K(q1, q2)〈x, y, z〉 with respect to, say,
degree reverse lexicographical ordering, is

G = {yx− q2xy − x, zx− q1xz − z, (q2 − 1)zy − z, (q2 − 1)yz − z}
or G′ = {yx−xy−x, z}, if we assume q2 = 1. In particular, K(q1, q2)〈x, y, z〉/〈G〉 has
a canonical subalgebra, isomorphic to K[a, b]/〈ab〉, hence it has no PBW basis and
there are zero divisors. Meanwhile K(q1)〈x, y, z〉/〈G′〉 degenerates to the algebra
K(q1)〈x, y〉/〈yx − xy − x〉, which is integral but it has a basis {xayb}, though a
PBW basis for K(q1)〈x, y〉/〈yx−xy−x〉 itself, but only a subset of the PBW basis
{xaybzc} for the algebra we were starting with, which is expected from the defining
relations.

The first known example of an algebra of that kind with no PBW basis was given
in [20] (Example 1.8). It is B = K〈x, y, z | yx = xy + x, zx = xz, zy = yz + z〉.
Surprisingly, this algebra has a PBW basis (we can check that the non–degeneracy
conditions indeed vanish). We believe that there should have been a printing error:
the algebra K〈x, y, z | yx = xy + x, zx = xz + z, zy = yz〉 from the previous
example is pretty close to B and it is degenerate.

3 Introduction to G–algebras

Now we concentrate on studying the properties of algebras, satisfying the con-
ditions of the Theorem 2.3.

Take an algebra A = T/I as before. Since it has a PBW basis, we call the
elements of this basis monomials of A. The set of monomials Mon(A) could be
identified with the Nn by

xα = xα1
1 xα2

2 . . . xαn
n 7→ (α1, α2, . . . , αn) = α.

Definition 3.1 Let < be a total well–ordering on Nn, A be a K–algebra with
a PBW basis.

1. An ordering <=<A is called a monomial ordering on A if the following
conditions hold:

• ∀α, β ∈ Nn α < β ⇒ xα <A xβ

• ∀α, β, γ ∈ Nn such that xα <A xβ we have xα+γ <A xβ+γ .
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2. Any f ∈ A \ {0} can be written uniquely as f = cxα + f ′, with c ∈ K∗ and
xα′

<A xα for any non–zero term c′xα′
of f ′. We define

lm(f) = xα, the leading monomial of f ,
lc(f) = c, the leading coefficient of f ,
le(f) = α, the leading exponent of f .

Definition 3.2 Let A = K〈x1, . . . , xn | fji = 0, 1 ≤ i < j ≤ n〉, where

∀ i < j fji = xjxi − cij · xixj − dij(x), cij ∈ K∗, dij ∈ A.

A is called a G–algebra, if the following conditions hold:
• there is a monomial well–ordering <A such that ∀i < j lm(dij(x)) <A xixj ,
• ∀ 1 ≤ i < j < k ≤ n NDCijk = 0 for sets C = {cij} ⊂ K∗ and D = {dij}.
By the Theorem 2.2 and the construction, any G–algebra has a canonical PBW

basis {xα1
1 xα2

2 . . . xαn
n | αk ≥ 0}. Hence we regard a G–algebra (in n variables) as a

generalization of a commutative polynomial ring in n variables.

Remark 3.3 Let A be a G–algebra. Then, ∀ α, β ∈ Nn the leading term of
xαxβ is c(α, β)xα+β with c(α, β) ∈ K∗, hence

∀ f, g ∈ A lm(f · g) = lm(lm(f) · lm(g)) = lm(g · f).

We can rewrite this property also in terms of leading exponents:

∀ f, g ∈ A le(f · g) = le(f) + le(g).

Consider now a K–algebra B, built on the vector space {xα1
1 xα2

2 . . . xαn
n } with

such multiplication, that the function le(·) is well–defined on B.
Then, if ∀ f, g ∈ A le(f · g) = le(f) + le(g), then B is a G–algebra.

Definition 3.4 An algebra A is called a Gröbner–ready, or simply a GR–
algebra, if there exist an appropriate non–degenerated change of variables φ : A →
A and a well–ordering <A, such that φ(A) is either a G–algebra or there exist a
G–algebra B and a proper two-sided ideal I ⊂ B such that φ(A) ∼= B/I.

Remark 3.5 G–algebras were first introduced by J. Apel ([1]), however,
without requiring the vanishing of non–degeneracy conditions; they were omitted
also in the work on PBW algebras ([9]), which are defined similarly to G–algebras
but the presence of PBW basis is required in the definition. In the work [20] on
algebras of solvable type authors obtained a criterion for non–degeneracy but did
not mention the polynomial conditions NDCijk explicitly. In [2] and [3] R. Berger
introduced q–algebras (in our notation, these are the G–algebras with the restriction
that the polynomials dij are quadratic), and imposed the vanishing conditions for
what he calls ”q–Jacobi sums” (which coincide with the non–degeneracy conditions)
on them. He treated these conditions as quantized Jacobi identities. We have
obtained the non–degeneracy conditions independently ([21]) and, moreover, we
have shown that the restriction to the quadratic polynomials is not really essential.

It is very natural to study G–algebras and their factor–algebras within the same
framework. We avoid the name PBW–algebras, since in general a factor–algebra of
an algebra with a PBW basis does not have PBW basis itself.

Example 3.6 (Examples of G–algebras) Quasi–commutative polynomial rings
(for example, the quantum plane yx = q ·xy), universal enveloping algebras of finite
dimensional Lie algebras, some iterated Ore extensions, some nonstandard quantum
deformations ([15], [18]), Weyl algebras and most of various flavors of quantizations
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of Weyl algebras, Witten’s deformation of U(sl2), Smith algebras, conformal sl2–
algebras ([5]), some of diffusion algebras ([17]) and many more.

Remark 3.7 Consider the Sklyanin algebra

Skl3(a, b, c) = k{x0, x1, x2}/〈{axixi+1 + bxi+1xi + cx2
i+2 | i = 1, 2, 3 mod 3}〉,

where (a, b, c) ∈ P2 \ F , for a known finite set F . Suppose that a 6= 0, b 6= 0. Then
we can rewrite the relations in the following way:

x1x0 = −a

b
x0x1 −

c

b
x2

2, x2x1 = −a

b
x1x2 −

c

b
x2

0, x2x0 = − b

a
x0x2 −

c

a
x2

1.

Suppose there is a well–ordering < with x2 < x1 < x0, satisfying the inequalities
x2

2 < x0x1, x2
0 < x1x2, x2

1 < x0x2. But since then x0x
2
2 < x2

0x1 < x2
1x2, we have

x0x2 < x2
1, a contradiction to the assumption on < to be a monomial ordering.

Hence, unless c = 0, there is no monomial well–ordering, such that this algebra is a
G–algebra (If c = 0, Skl3(a, b, 0) is a quasi–commutative algebra). Note, that non–
degeneracy conditions formally vanish on this non–G–algebra, hence the ordering
condition in the definition 3.2 is essential.

Example 3.8 (Examples of GR–algebras) Exterior algebras, Clifford algebras,
finite dimensional associative algebras ([8]) and more.

4 Filtrations and properties of G–algebras.

4.1 Preliminaries.

Definition 4.1 We recall some definitions explicitly:
1. An algebra A is called filtered, if for every non–negative integer i there is

a subspace Ai such that

1) Ai ⊆ Aj if i ≤ j, 2) Ai ·Aj ⊆ Ai+j and 3) A =
∞⋃

i=0

Ai.

The set {Ai | i ∈ N} is called a filtration of A.
2. An associated graded algebra Gr(A) of a filtered algebra A is defined to

be

Gr(A) =
∞⊕

i=1

Gi where Gi = Ai/Ai−1 and A−1 = 0,

with the induced multiplication (ai + Ai−1)(aj + Aj−1) = aiaj + Ai+j−1.

Theorem 4.2 (Jacobson) Let A be a filtered algebra and G = Gr(A) be its
associated graded algebra . Then

• If Gr(A) is left (right) noetherian, then A is left (right) noetherian,
• if Gr(A) has no zero divisors, then A has no zero divisors, too.

Theorem 4.3 (Goldie-Ore) Let R be an integral associative unital ring. If it
is left (resp. right) noetherian, then it has a left (resp. right) quotient ring.

Lemma 4.4 Let Q = {qij | 1 ≤ i < j ≤ n}. Consider the transcendental
extension K(Q) of K. A quasi–commutative ring in n variables, associated to the
set Q is defined as follows:

KQ[x1, . . . , xn] := K(Q)〈x1, . . . , xn | ∀i < j xjxi = qijxixj〉.
Then KQ[x1, . . . , xn] is a noetherian domain.
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Let A be a G–algebra. Then we have two different kinds of filtrations on A.

4.2 Weighted degree filtration. Let <w= (<,w) be a weighted degree or-
dering on A, i.e. there is an n-tuple of strictly positive weights w = (w1, w2, . . . , wn)
and some ordering < (for example, a (reverse) lexicographical ordering). Then,

α <w β ⇔
n∑

i=1

wiai <
n∑

i=1

wibi or, if
n∑

i=1

wiai =
n∑

i=1

wibi, then α < β.

Assume that w1 ≥ . . . ≥ wn and all the weights are positive integers.
Let us define degω(xα) := w1α1 + · · ·+ wnαn and call it a weighted degree

function on A. For any polynomial f ∈ A, we define degω(f) := degω(lm(f)),
and we note that degω(xα) = 0 ⇔ α = 0.

Lemma 4.5 degω(fg) = degω(f) + degω(g).

Proof Since on monomials we have

degω(xαxβ) = degω(xα+β) =
n∑

i=1

wi(αi + βi) = degω(xα) + degω(xβ),

hence, using Remark 3.3,

degω(fg) = degω(lm(lm(f) lm(g))) = degω(lm(f) · lm(g)) = degω(f) + degω(g).

In particular, degω(f · g) = degω(g · f).

Let An be the K–vector space generated by {m ∈ Mon(A) | degω(m) ≤ n}. So,
we see that A0 = K, Awn

= K ⊕ Kxn if wn−1 > wn, or Awn
= K ⊕

⊕n
m=1 Kxm if

w1 = . . . = wn, hence

∀ 0 ≤ i < j Ai ⊆ Aj ⊆ A and A =
∞⋃

i=1

Ai.

From the Lemma 4.5 follows that ∀ 0 ≤ i < j Ai · Aj ⊆ Ai+j . In this
case, Gi = Ai/Ai−1 is the set of homogeneous elements of degree i in A with
G0 = A0 = K. We have the following:

Lemma 4.6 Suppose we have an algebra A, where ∀ i < j degω(dij) <
degω(xixj) = wi + wj . Denote xi = xi + Ai−1. Then

Grdegω (A) =
∞⊕

i=1

Gi = K〈x1, . . . , xn | xjxi = cijxixj ∀ j > i〉.

We see that in this case Grdegω
(A) is isomorphic to the quasi–commutative ring in

n variables. Hence, by the Jacobson’s Theorem (4.2) A is a noetherian domain.

This Lemma guarantees noetherian and integral properties for Weyl algebras,
universal enveloping algebras and some other algebras. Unfortunately, many im-
portant algebras (like positively graded quasi–homogeneous algebras) do not satisfy
the conditions of the Lemma. But there is another filtration that will do the job.
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4.3 Ordering filtration. Let < be any monomial well–ordering on A. For
α ∈ Nn, let Aα be the K–vector space, spanned by the set x<α ∪ {xα}, where
x<α := {xβ ∈ A | xβ < xα}. We see immediately that A0 = K and

∀ β < α Aβ ⊂ Aα ⊂ A and A =
⋃

α∈Nn

Aα.

The property Aα ·Aβ ⊆ Aα+β holds because lm(xαxβ) = xα+β (cf. 3.3), hence
A is a filtered algebra. Further on, let σ(α) := max<{γ | γ < α}, σ(0) = ∅. Then

∀ α Gα = Aα/AΣ(α) = {xα}.

It follows that

Gr<(A) =
⊕

α∈Nn

Gα = K〈x1, . . . , xn | xjxi = cijxixj ∀ j > i〉,

where xi = xi + Aσ(ei), ei = (0, . . . , 1
i
, . . . , 0). So, Gr<(A) is isomorphic to the

quasi–commutative ring in n variables.
Applying the theorems of Jacobson and Goldie–Ore to the result, we get a

much more general statement than using just the weighted–degree filtration.

Theorem 4.7 Let A be a G–algebra. Then

1) A is left and right noetherian,
2) A is an integral domain,
3) A has a left and right quotient rings.

One can prove 1) also using the PBW Theorem and Dixon’s Lemma, like it was
done in [10]. Using the structural results from [24] on quasi–commutative rings, we
have the following

Proposition 4.8 Let A be a G–algebra in n variables. Then

1) the global homological dimension gl.dim(A) ≤ n,
2) the Krull dimension Kr.dim(A) ≤ n,
3) A is Auslander-regular and Cohen-Macaulay algebra.

Remark 4.9 1) and 2) were proved in [9] with the multifiltering technique,
which was also applied for the proof of 3) in [11]. We proved 1) independently
and constructively in [21], using Gröbner bases and our generalization of Schreyer’s
theorem on syzygies.

Lemma 4.10 There is a category GR, with GR–algebras as objects and K-
algebra homomorphisms as morphisms. The category GR is closed under the factor
operation by two–sided ideals and under the tensor product operation over the
ground field K.

Proof Let A (resp. B) be a G–algebra in n (resp. m) variables with an
ordering <A (resp. <B): A = K〈x1, . . . , xn | fji = 0, 1 ≤ i < j ≤ n〉, B =
K〈y1, . . . , ym | f ′ji = 0, 1 ≤ i < j ≤ m〉. Then C = A ⊗K B is a G–algebra in
m + n variables with a natural block ordering (<A, <B), since ∀ i, j yjxi = xiyj

and consequently all non–degeneracy conditions in C vanish.
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5 Applications of non–degeneracy conditions

Definition 5.1 Let A be a GR–algebra. We call an algebra A(q1, . . . , qm),
depending on parameters (q1, . . . , qm), a G–quantization of A, if

• A(q1, . . . , qm) is a GR–algebra for any values of qk,
• A(1, . . . , 1) = A.

Let A be a G–algebra, generated by x1, . . . , xn.
How to determine the set of all G–quantizations of A?
1. Compute the non–degeneracy conditions and obtain a set S of polynomials

in x1, . . . , xn with coefficients depending on q1, . . . , qm.
2. Form the ideal IS ∈ K[q1, . . . , qm] generated by all the coefficients of mono-

mials of every polynomial from S.
3. Compute the associated primes from the primary decomposition of the rad-

ical of IS .
4. Throw away every component (that is, an associated prime) which violates

A(1, . . . , 1) = A.

Remark 5.2 We use the computer algebra system Singular:Plural [22],
with its commutative backbone Singular and noncommutative extension Plural.
We proceed with the described procedure as follows:

We compute non–degeneracy conditions either with the help of Plural or
manually. Then, using Singular and its library primdec [25], we compute the
Gröbner basis of I and then the associated primes of the primary decomposition of
the radical of I. Although an implementation of essential algorithm including the
primary decomposition is available in polynomial rings over various ground fields
K (like char K = 0 or char K � 0 as well as their transcendent and simple algebraic
extensions), we assume our coefficients q1, . . . , qm will be specialized in the field C.

Of course, one can insert proprietary criteria and constraints in order to further
analyze the set one obtains. Parametric ideals, modules and subalgebras could be
studied in a similar way to the investigation of parametric algebras that we present
here.

5.1 G–quantizations of Weyl algebras. Let An = K〈x1, . . . , xn, y1, . . . , yn |
yixi = xiyi + 1〉 be the classical n-th Weyl algebra, where we can interpret yi as
the differential operator ∂xi

:= ∂
∂xi

.
From now on, we use the following compact way for encoding the G–algebra in

4 variables (cij , dij are from the Definition 3.2):
x1 c12 c13 c14

d12 x2 c23 c24

d13 d23 x3 c34

d14 d24 d34 x4


Let’s take A2 = K〈x, ∂x, y, ∂y | ∂xx = x∂x + 1, ∂yy = y∂y + 1〉. In our new

notation it corresponds to the matrix
x 1 1 1
1 ∂x 1 1
0 0 y 1
0 0 1 ∂y


Note that with such an ordering of variables the PBW basis is {xn1∂n2

x yn3∂n4
y }.
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We specify the following constraints to be fulfilled:
- let the general G–quantization be ∆(A2) = ∆(A2, {cij}, {dij}, <) =

K〈x1, x2, x3, x4 | xjxi = cijxixj + dij , ∀j > i 〉
- ∀ i < j cij ∈ K∗, dij ∈ K (as for dij , we consider two cases only: dij = 0

and dij 6= 0). It means we investigate only ”linear” G–quantizations.
- d12 = d34 = 1

Since ∀ i < j dij ∈ K, for any well–ordering < on ∆(A2) we have dij < xixj and
∆(A2) is a G–algebra in 4 variables, if non–degeneracy conditions vanish. However,
if we choose < to be a well–ordering, ∆(A2) does not depend on the concrete one.
In our encoding it looks the following way:

x c12 c13 c14

1 ∂x c23 c24

d13 d23 y c34

d14 d24 1 ∂y


Since the set U3 = {(i, j, k) | 1 ≤ i < j < k ≤ 4} in this case is equal to

{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}, we have four equations derived from the four
non–degeneracy conditions which ∀ (i, j, k) ∈ U3 look as follows:

dij(cikcjk − 1) · xk + dik(cjk − cij) · xj + djk(1− cijcik) · xi.

Now we define two sets of commutative variables C = {cij | 1 ≤ i < j ≤ 4}
and D = {dij | 1 ≤ i < j ≤ 4} \{d12, d34} (since d12 = d34 = 1). Then we have the
following ideal in the commutative polynomial ring K[C,D] in 10 variables,

I = 〈dij(cikcjk − 1), dik(cjk − cij), djk(cijcik − 1) | (i, j, k) ∈ U3〉.

Using a computer algebra system Singular ([12]), we compute the Gröbner
basis of I and then the primary decomposition of the radical of I ([25]). Performing
the computations, we find out, that the 4–dimensional variety, defined by

√
I,

consists of 8 components (corresponding to associated prime ideals). Let us denote
the corresponding types of algebras by ∆1, . . . ,∆8. Now we list them all, using the
following considerations:

• dij : if there are no restrictions on some dij , we depict it by ∗ in the matrix,
interpreting it as a free (”random”) parameter,

• cij : if no conditions on some cij are given, we will introduce the parame-
ters q′, q′′ for ”single” (appearing only once) coefficients and q for ”block”
(appearing more than once) coefficients in the corresponding matrix. These
parameters are viewed then as the generators of the transcendental field
extension K(q).

∆1 =


x 1 1 1
1 ∂x 1 1
∗ ∗ y 1
∗ ∗ 1 ∂y

 , ∆2 =


x −1 −1 −1
1 ∂x −1 −1
∗ ∗ y −1
∗ ∗ 1 ∂y

 ,

∆3 = ∆3(q′) =


x q′ 1 1
1 ∂x 1 1
0 0 y 1
∗ 0 1 ∂y

 , ∆4 = ∆4(q′) =


x q′ −1 −1
1 ∂x −1 −1
0 0 y −1
∗ 0 1 ∂y

 ,
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∆5(q′, q′′, q) =


x q′ q q−1

1 ∂x q−1 q
0 0 y q′′

0 0 1 ∂y

 , ∆6 = ∆6(q) =


x q q−1 q
1 ∂x q q−1

0 ∗ y q
0 0 1 ∂y

 ,

∆7 = ∆7(q) =


x q q−1 q
1 ∂x q q−1

∗ 0 y q−1

0 0 1 ∂y

 , ∆8 = ∆8(q) =


x q q q−1

1 ∂x q−1 q
0 ∗ y q−1

0 0 1 ∂y

 .

Now we check, whether ∆i(1, . . . , 1) = A. Using the encoding it turns to
be especially simple — all the G–quantization of A could be represented by the
∆5(q′, q′′, q), since, substituting everywhere the free parameter ∗ with 0, we have

∆1 = ∆5(1, 1, 1), ∆3 = ∆5(q′, 1, 1), ∆6 = ∆5(q, q, q−1),
∆7 = ∆5(q, q−1, q−1), ∆8 = ∆5(q, q−1, q).

If we substitute ∗ with a unit, the only G–quantization of A is ∆5(q′, q′′, q). Note,
that in any case ∆2 and ∆4 are not G–quantizations.

It’s interesting to see how this classification reflects some of classical algebras
related to A2. Recall the encodings of algebras:

A1 ∼
(
x 1
1 ∂x

)
, A1(q) ∼

(
x q
1 ∂x

)
Then it’s easy to see that

• A2 = A1 ⊗K A1 is of the type ∆1,
• A1(q′)⊗K(q′) A1 is of the type ∆3,
• A1(q′)⊗K(q′,q′′) A1(q′′) is of the type ∆5(q′, q′′, 1).

What happens to ∆3,∆6,∆7,∆8, if we substitute the free parameter with some
unit? They are not G–quantizations anymore, but still interesting G–algebras, like
∆7 where ∗ is replaced with 1: we get an algebra with ∂x, ∂y acting as classical
differentials on x, y (which generate A1(q−1) = K〈x, y | yx = q−1xy + 1〉).

In order to go back to the classical PBW basis {xn1yn2∂n3
x ∂n4

y } it is enough
just to change our encoding, permuting the corresponding entries:

x q′ q q−1

1 ∂x q−1 q
0 0 y q′′

0 0 1 ∂y

 −→


x q q′ q−1

0 y q q′′

1 0 ∂x q
0 1 0 ∂y


The G–quantization of the type ∆ := ∆5 could be generalized for higher Weyl

algebras.

Theorem 5.3 Consider An = K〈x1, . . . , xn, ∂x1 , . . . , ∂xn
| ∂xi

xi = xi∂xi
+ 1〉.

Given n ”single” parameters p1, . . . , pn and m = 1
2n(n − 1) ”block” parameters

q1, . . . , qm, then there exists a m+n–parameter G–quantization ∆n(p, q) which has
the following form in the compact encoding:
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x1 p1 q1 q−1
1 . . . . . . qi q−1

i

1 ∂x1 q−1
1 q1 . . . . . . q−1

i qi

0 0 x2 p2 . . . . . .
...

...

0 0 1 ∂x2 . . . . . .
...

...
· · · · · · · · ·
0 0 0 0 . . . . . . qm q−1

m

0 0 0 0 . . . . . . q−1
m qm

0 0 0 0 . . . . . . xn pn

0 0 0 0 . . . . . . 1 ∂xn


We count in such a way that in the matrix above i = 1

2 (n−1)(n−2)+1, n ≥ 2.
This deformation has the following properties:
1. ∀n ≥ 1 ∆n(p, q) is a simple noetherian domain with the PBW basis

{xα1
1 ∂αn+1

x1
. . . xαn

n ∂α2n
xn

| α ∈ N2n},
which can be easily rewritten to the classical PBW basis.

2. Let 1 ≤ s < m and ν(k) := 1
2k(k − 1).

Define the index set

I =
m−s−1⊕

t=0

It, where It = {ν(s + t) + 1, . . . , ν(s + t + 1)− t} ∀ 0 ≤ t ≤ m− s− 1.

Set q′ := {qi | i ∈ I} and q′′ := {qi | ν(s + 1) + 1 ≤ i ≤ m} \ q′. Then

q′ = 1 ⇒ ∆n(p, q) = ∆s(p1, . . . , ps; q1, . . . , qν(s))⊗K(p,q\q′) ∆m−s(ps+1, . . . , pn; q′′).

In particular,

q′ := (qi, . . . , qm) = 1 ⇒ ∆n(p, q) = ∆n−1(p \ pn, q \ q′)⊗K(p) A1(pn),

q = 1 ⇒ ∆n(p, q) = A1(p1)⊗K(p) · · · ⊗K(p) A1(pn),

q = 1, p = 1 ⇒ ∆n(p, q) = An =
n⊗

i=1

A1.

Proof We have to show that ∆ is a G–algebra. It becomes clear from the
definition we have to show only that the non–degeneracy conditions vanish. We
do it by induction on n. ∆1(p1) is a q–Weyl algebra A1(p1), and the theorem is
obviously true for it. Now assume that ∆n−1 is a G–algebra. We construct ∆n

from ∆n−1 with a single parameter pn and n− 1 block parameters qi, . . . , qm. We
have to show that the following equalities hold:

∂xn ∗ (yk ∗ yl)− (∂xn ∗ yk) ∗ yl = 0, xn ∗ (yk ∗ yl)− (xn ∗ yk) ∗ yl = 0,

∂xn ∗ (xn ∗ yk)− (∂xn ∗ xn) ∗ yk = 0.
where (yk, yl) are pairs of generators of ∆n−1 with yk > yl and ∗ is the multiplication
on ∆. In fact it suffices to show that ∀1 ≤ k < n

∂xn ∗ (∂xk
∗ xk)− (∂xn ∗ ∂xk

) ∗ xk = 0,
xn ∗ (∂xk

∗ xk)− (xn ∗ ∂xk
) ∗ xk = 0,

∂xn
∗ (xn ∗ xk)− (∂xn

∗ xn) ∗ xk = 0,
∂xn

∗ (xn ∗ ∂xk
)− (∂xn

∗ xn) ∗ ∂xk
= 0.
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Let us prove the first equality (the other will follow analogously):

∂xn
∗(∂xk

∗xk) = ∂xn
∗(pkxk∂xk

+1) = pkq−1
i+k−1xk∂xn

∂xk
+∂xn

= pkxk∂xk
∂xn

+∂xn
,

(∂xn
∗∂xk

)∗xk = q−1
i+k−1∂xk

(∂xn
∗xk) = qi+k−1∂xk

q−1
i+k−1xk∂xn

= pkxk∂xk
∂xn

+∂xn
,

where i = 1
2 (n− 1)(n− 2) + 1. The claim follows.

The properties of ∆ one can read directly from the encoding we use.

5.2 Quadratic algebras in 3 variables. Consider a class of G–algebras in
n variables which relations are homogeneous of degree 2. We call these algebras
quadratic G–algebras. Let us have a look at the case when n = 3.

Assume that the relations are given in terms of non–deformed commutators (i.e.
cij = 1 ∀j > i). Let us fix an ordering, say, Dp (degree lexicographical ordering)
with x > y > z. Then the relations of quadratic algebra A, satisfying the ordering
condition from the definition of G–algebras, should be of the following form:

yx = xy + a1xz + a2y
2 + a3yz + ξ1z

2,

zx = xz + ξ2y
2 + a5yz + a6z

2,

zy = yz + a4z
2.

Computing the non–degeneracy conditions, we construct the ideal
I = 〈2a2a4 + a1a5 − a4a5, 2a2a

2
4 − a2

4a5 + a1a6 + a3a4〉.
We see that the non–degeneracy conditions do not depend on ξ1, ξ2, so we are

working further on within the ring K[a1, . . . , a6]. Moreover, the ideal I is a radical
ideal. Computing the primary decomposition, we get two associated prime ideals
I1 = 〈2a2a4 + a1a5 − a4a5, a1a

2
5 − a3a5 + 2a2a6 − a5a6, a1a4a5 − a3a4 − a1a6〉 and

I2 = 〈a1, a4〉, corresponding to components V1 and V2 of the 4-dimensional variety
V(I) = V1 ∪ V2.

Let us start with the component V2. Since a1 = a4 = 0 on it , consider the
subalgebra H = K〈y, z | zy = yz〉. In fact we can call the algebra ”solvable”,
since then [H,x] ∈ H, [A,A] = H and [[A,A], A] = 0. So, the component V2

gives us the family of ”solvable” algebras, depending on six random parameters
a2, a3, a5, a6, ξ1, ξ2 having the following relations:

yx = xy + a2y
2 + a3yz + ξ1z

2, zx = xz + ξ2y
2 + a5yz + a6z

2, zy = yz.

We use the decomposition V(I) = V2 ∪ V1 = V2 ⊕ (V1 \ V2). On the latter set
the parameters are algebraically dependent, so we can express, for example, a2, a6:

a2 =
1
2
(1− a1

a4
)a5, a6 = a4(a5 −

a3

a1
).

We see, that the family of algebras, arising from V1 \V2 depend on two nonzero
parameters (here a1, a4) and four random parameters (here a3, a5, ξ1, ξ2).

5.3 Diffusion algebras. A diffusion algebra ([17]) is generated by
{Di, 1 ≤ i ≤ n} over K subject to the relations:

cijDiDj − cjiDjDi = xjDi − xiDj , ∀i < j

where cij ≥ 0 and xi are coefficients from the field.
We will assume that ∀i, j cij > 0 and therefore concentrate on analyzing the

G–algebras among the diffusion algebras (the authors of the article [17] studied all
the possible diffusion algebras).
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For the diffusion algebras we compute the non–degeneracy conditions for a
fixed triple (i, j, k) in a similar way as we did for G–algebras. After computing the
primary decomposition, we get eight components and we do the classification of
algebras, following the approach from [17]. Each component of the primary decom-
position corresponds to a different form of algebra. One component corresponds to
the type A, three to the type B, three to the type C and one component to that
of D.

A type : every xm is nonzero. Then there are relations
cjk = cki = cik = cji = cij = ckj , that is, we obtain universal enveloping
algebras of Lie algebras with relations

[Di, Dj ] =
xj

cij
Di −

xi

cij
Dj .

B type : one of xm is equal to zero. In the case xi = 0, we have
cki = cij , cik − cki = cjk − ckj = cji − cij =: c

And the relations are the following:

cijDiDj − (cij + c)DjDi = xjDi,

cjkDjDk − (cjk − c)DkDj = xkDj − xjDk,

(cij + c)DiDk − cijDkDi = xkDi.

The cases xj = 0 and xk = 0 could be handled in an analogous way.

C type : one of xm is nonzero. Let xj = 0, xk = 0. Then cij − cji = cik − cki =: c,
and there are relations

cijDiDj − (cij − c)DjDi = −xiDj ,

cjkDjDk − ckjDkDj = 0,

cikDiDk − (cik − c)DkDi = −xiDk.

The cases xi = xk = 0 and xi = xj = 0 could be done analogously.

D type : every xm is equal to zero. There are no additional constraints on cij and
it is not surprising, since this type consists of quasi–commutative algebras
with relations

DlDm =
cml

clm
DmDl, (l,m) ∈ {(i, j), (i, k), (j, k)}

As we can see, we obtained the same classification of G–algebras among the
diffusion algebras as in [17]. The advantage of our approach lies in the automation
of the process, in particular, we can consider more variables and build the classifi-
cation, using the computer algebra methods only. Thus, the proposed approach is
limited only by the overall performance of the computing facilities.

6 Concluding remarks

We have shown the nature of non–degeneracy conditions and their interplay
with the PBW basis property in a wide class of algebras. Through combining both
noncommutative and commutative computational methods we are able to classify
families of parametric algebras having PBW basis and being noetherian domains.

In the work [19], H. Kredel introduced a generalization of algebras of solvable
type. He considered rings, which do not necessarily commute with the ground
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field but the corresponding relations are compatible with monomial orderings. In
such rings the existence of PBW basis is interesting question, partially answered
by H. Kredel. Another objects of interest are iterated Ore extensions (many rings
of solvable type could be presented like such extensions), where the classical way
of construction does not guarantee the non–degeneracy. It is quite interesting to
investigate these rings for further generalization of non–degeneracy conditions and
for the existence of theorems, analogous to the Theorem 2.3. There are several
works by T. Gateva-Ivanova on skew polynomial rings with binomial relations,
where noetherian and other important properties of such rings were studied with
the help of Gröbner bases.

We created a computer algebra system Singular:Plural ([21]), a kernel ex-
tension of a well–known in the commutative world system Singular ([12]). Thus
we have the same user programming language, common libraries, help system etc.
It turns out to be very useful while performing the computations like in the previous
chapter, that is, when we need combined (i.e. both commutative and noncommu-
tative) applications of Gröbner bases at the same time. As far as we know, Singu-
lar:Plural is the only modern system allowing user to do such combined compu-
tations. Main computational objects in the system are GR–algebras, where we can
compute Gröbner bases for left and two–sided ideals and for left modules, modules of
syzygies, free resolutions, intersections with subalgebras and many more (see [21] or
[22] for description of all these algorithms). We put a lot of efforts in implementing
the algorithms as efficient as possible and the latest tests indicate that the perfor-
mance of Singular:Plural is quite good. You can find detailed information on
Singular:Plural either in [22] or at http://www.singular.uni-kl.de/plural.
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[21] Levandovskyy, V.: On Gröbner bases for noncommutative G-algebras, in H. Kredel,

W. K. Seiler (eds.) Proc. of the 8th Rhine Workshop on Computer Algebra, Mannheim,

Germany, 2002.
[22] Levandovskyy V.; Schönemann, H. Plural — a computer algebra system for noncommutative

polynomial algebras. In Proc. of the International Symposium on Symbolic and Algebraic
Computation (ISSAC’03), ACM Press (2003).

[23] Mora, T.: An introduction to commutative and noncommutative Gröbner bases, Theor. Com-
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