Trends in Computer Algebraic Analysis

Viktor Levandovskyy
Lehrstuhl D für Mathematik, RWTH Aachen, Germany

28.06. ACA 2012, Sofia, Bulgaria
What is computer algebraic Analysis?

Algebraization as a Trend
Algebra: Ideas, Concepts, Methods, Abstractions

Computer algebra works with algebraic concepts in a (semi-)algorithmic way at three levels:

1. Theory: Methods of Algebra in a constructive way
2. Algorithmics: Algorithms (or procedures) and their Correctness, Termination and Complexity results (if possible)
3. Realization: Implementation, Testing, Benchmarking, Challenges; Distribution, Lifecycle, Support and software-technical aspects
What is computer-algebraic Analysis?

Algebraic Analysis

1. As a notion, it arose in 1958 in the group of Mikio Sato (Japan)
2. Main objects: systems of linear partial DEs, generalized functions
3. Main idea: study systems and generalized functions in a coordinate-free way (i.e. by using modules, sheaves, categories, localizations, homological algebra, . . .)
4. Keywords: D-Modules, (sub-)holonomic D-Modules, regular resp. irregular holonomic D-Modules
5. Interplay: singularity theory, special functions,

Other ingredients: symbolic algorithmic methods for discrete resp. continuous problems (like symbolic summation, symbolic integration etc.)
Some big names in Computer-algebraic Analysis

- W. Gröbner and B. Buchberger: Gröbner bases and constructive ideal/module theory
- O. Ore: Ore Extension and Ore Localization
- I. M. Gel’fand and A. Kirillov: GK-Dimension
- B. Malgrange: M. isomorphism, M. ideal, ...
- J. Bernstein, M. Sato, M. Kashiwara et al.: D-Modules theory
- ...
Let K be a computable field, that is $(+,−,·,:)$ can be performed algorithmically.
Moreover, let \mathcal{F} be a K-vector space ("function space").

Let x be a local coordinate in \mathcal{F}. It induces a K-linear map $X : \mathcal{F} → \mathcal{F}$, i.e. $X(f) = x · f$ for $f ∈ \mathcal{F}$.
Moreover, let $\sigma_x : \mathcal{F} → \mathcal{F}$ be a K-linear map.
Then, in general, $\sigma_x ∘ X \neq X ∘ \sigma_x$, that is $\sigma_x(x · f) \neq x · \sigma_x(f)$ for $f ∈ \mathcal{F}$.

The non-commutative relation between σ_x and X can be often read off by analyzing the properties of σ_x like, for instance, the product rule.
Let $f : \mathbb{C} \to \mathbb{C}$ be a differentiable function and $\partial(f(x)) := \frac{\partial f}{\partial x}$.

Product rule tells us that $\partial(x \, f(x)) = x \, \partial(f(x)) + f(x)$, what is translated into the following relation between operators

$$(\partial \circ x - x \circ \partial - 1)(f(x)) = 0.$$

The corresponding operator algebra is the 1st Weyl algebra

$$D_1 = K\langle x, \partial \mid \partial x = x\partial + 1 \rangle.$$
Classical examples: shift algebra

Let \(g \) be a sequence in discrete argument \(k \) and \(s \) is the shift operator \(s(g(k)) = g(k + 1) \). Note, that \(s \) is multiplicative.

Thus \(s(kg(k)) = (k + 1)g(k + 1) = (k + 1)s(g(k)) \) holds.

The operator algebra, corr. to \(s \) is the 1st **shift algebra**

\[
S_1 = K \langle k, s \mid sk = (k + 1)s = ks + s \rangle.
\]

Intermezzo

For a function in differentiable argument \(x \) and in discrete argument \(k \) the natural operator algebra is

\[
A = D_1 \otimes_K S_1 = K \langle x, k, \partial_x, s_k \mid \partial_x x = x\partial_x + 1, \ s_k k = ks_k + s_k, \ xk = kx, \ xs_k = s_k x, \ \partial_x k = k\partial_x, \ \partial_x s_k = s_k \partial_x \rangle.
\]
Examples form the q-World

Let $k \subset K$ be fields and $q \in K^*$.

In q-calculus and quantum algebras three situations are common for a fixed k: (a) $q \in k$, (b) q is a root of unity over k, and (c) q is transcendental over k and $k(q) \subseteq K$.

Let $\partial_q(f(x)) = \frac{f(qx)-f(x)}{(q-1)x}$ be a q-differential operator. The corr. operator algebra is the 1st q-Weyl algebra

$$D_1^{(q)} = K\langle x, \partial_q \mid \partial_q x = q \cdot x\partial_q + 1 \rangle.$$

The 1st q-shift algebra corresponds to the q-shift operator $s_q(f(x)) = f(qx)$:

$$K_q[x, s_q] = K\langle x, s_q \mid s_q x = q \cdot xs_q \rangle.$$
Two frameworks for bivariate operator algebras

Algebra with linear (affine) relation

Let $q \in K^*$ and $\alpha, \beta, \gamma \in K$. Define

$$\mathcal{A}^{(1)}(q, \alpha, \beta, \gamma) := K\langle x, y \mid yx - q \cdot xy = \alpha x + \beta y + \gamma \rangle$$

Because of integration operator $\mathcal{I}(f(x)) := \int_{0}^{x} f(t)dt$, obeying the relation $\mathcal{I}x - x\mathcal{I} = -\mathcal{I}^2$ we need yet more general framework.

Algebra with nonlinear relation

Let $N \in \mathbb{N}$ and $c_0, \ldots, c_N, \alpha \in K$. Then $\mathcal{A}^{(2)}(q, c_0, \ldots, c_N, \alpha)$ is

$K\langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{n} c_i y_i + \alpha x + c_0 \rangle$ or

$K\langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{n} c_i x_i + \alpha y + c_0 \rangle$.
Theorem (L.–Koutschan–Motsak, 2011)

\[A^{(1)}(q, \alpha, \beta, \gamma) = K\langle x, y \mid yx - q \cdot xy = \alpha x + \beta y + \gamma \rangle, \]

where \(q \in K^\ast \) and \(\alpha, \beta, \gamma \in K \)

is isomorphic to the 5 following \textbf{model algebras}:

1. \(K[x, y] \),
2. the 1st Weyl algebra \(D_1 = K\langle x, \partial \mid \partial x = x\partial + 1 \rangle \),
3. the 1st shift algebra \(S_1 = K\langle x, s \mid sx = xs + s \rangle \),
4. the 1st q-commutative algebra \(K_q[x, s] = K\langle x, s \mid sx = q \cdot xs \rangle \),
5. the 1st q-Weyl algebra \(D_1^{(q)} = K\langle x, \partial \mid \partial x = q \cdot x\partial + 1 \rangle \).
Theorem (L.–Makedonsky–Petravchuk, unpublished)

For \(N \geq 2 \) and \(c_0, \ldots, c_N, \alpha \in K \), \(\mathcal{A}^{(2)}(q, c_0, \ldots, c_N, \alpha) \)
\(= K \langle x, y \mid yx - q \cdot xy = \sum_{i=1}^{N} c_i y^i + \alpha x + c_0 \rangle \) is isomorphic to . . .

1. \(K_q[x, s] \) or \(D_1^{(q)} \), if \(q \neq 1 \),
2. \(S_1 = K \langle x, s \mid sx = xs + s \rangle \), if \(q = 1 \) and \(\alpha \neq 0 \),
3. \(K \langle x, y \mid yx = xy + f(y) \rangle \), where \(f \in K[y] \) with \(\deg(f) = N \), if \(q = 1 \) and \(\alpha = 0 \).

\(K \langle x, y \mid yx = xy + f(y) \rangle \cong K \langle z, w \mid wz = zw + g(w) \rangle \) if and only if \(\exists \lambda, \nu \in K^* \) and \(\exists \mu \in K \), such that \(g(t) = \nu f(\lambda t + \mu) \) (in particular \(\deg(f) = \deg(g) \)).
Example: Legendre’s differential equation

\[(x^2 - 1)P''_n(x)^2 + 2xP'_n(x) - n(1 + n)P_n(x) = 0\]

- \(x\) is differentiable with \(\partial_x\) as corr. operator
- if \(n \in \mathbb{Z}\), \(n\) is discretely shiftable with \(s_n\) as corr. op.

then there is a recursive formula of Bonnet (order 2 in \(s_n\))

\[(n + 1)P_{n+1}(x) - (2n + 1)xP_n(x) + nP_{n-1}(x) = 0.\]
Example: Legendre’s differential equation

\[\mathcal{O} := K\langle n, s_n \mid s_n n = ns_n + s_n \rangle \otimes_K K\langle x, \partial_x \mid \partial_x x = x\partial_x + 1 \rangle. \]

From the system of equations

\[
\begin{align*}
(x^2 - 1)P''_n(x)^2 + 2xP'_n(x) - n(1 + n)P_n(x) &= 0, \\
(n + 1)P_{n+1}(x) - (2n + 1)xP_n(x) + nP_{n-1}(x) &= 0.
\end{align*}
\]

one obtains the matrix \(P \in \mathcal{O}^{2 \times 1} \); thus \(M = \mathcal{O}/\mathcal{O}^{1 \times 2}P \) and

\[
\begin{bmatrix}
(x^2 - 1)\partial_x^2 + 2x\partial_x - n(1 + n) \\
(n + 2)s_n^2 - (2n + 3)xs_n + n + 1
\end{bmatrix} \cdot P_n(x) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

With the help of Gröbner bases: a minimal generating set of the left ideal \(P \) contains a compatibility condition

\[
(n + 1)s_n\partial_x - (n + 1)x\partial_x - (n + 1)^2 \equiv (n + 1)(s_n\partial_x - x\partial_x + n + 1).
\]
Solutions and Malgrange isomorphism

Let \mathcal{F} be K-vector space and a left \mathcal{O}-module, then

$$\text{Sol}_{\mathcal{O}}(P, \mathcal{F}) := \{ f \in \mathcal{F}^{m \times 1} : Pf = 0 \}.$$

Malgrange Isomorphism

There exists an isomorphism of abelian groups (and K-vector spaces)

$$\text{Hom}_{\mathcal{O}}(M, \mathcal{F}) = \text{Hom}_{\mathcal{O}}(\mathcal{O}^{1 \times m}/\mathcal{O}^{1 \times \ell} P, \mathcal{F}) \cong \text{Sol}_{\mathcal{O}}(P, \mathcal{F}),$$

$$(\phi : M \to \mathcal{F}) \mapsto (\phi(e_1), \ldots, \phi(e_m)) \in \mathcal{F}^{m \times 1}.$$
Question: What is better to use in modeling: operator algebras with constant or with polynomial coefficients?

Answer: with polynomial coefficients.

Theorem (Zerz–L.–Schindelar, 2011)

Let $K = \mathbb{R}$, $p_i \in K[x_1, \ldots, x_n]^\ell$ and $V = Kp_1 + \cdots + Kp_m$. Let \mathcal{O} be the n-th Weyl algebra and $\text{Ann}_\mathcal{O}(V) \subset \mathcal{O}$ be the minimal left ideal of equations, having p_1, \ldots, p_m as solutions. Then

$$\text{Sol}_\mathcal{O}(\mathcal{O}/\text{Ann}_\mathcal{O}(V), C^\infty(\mathbb{R}^\ell)) = V.$$
Let A be a Noetherian domain and S a multiplicatively closed set in A, where $0 \notin S$.

A commutative implies the existence of $S^{-1}A$. A non-commutative: if S is an Ore set in A, $\exists S^{-1}A$.

Ore condition

For all $s_1 \in S$, $r_1 \in A$ there exist $s_2 \in S$, $r_2 \in A$, such that

$$r_1s_2 = s_1r_2,$$

that is

$$s_1^{-1}r_1 = r_2s_2^{-1}.$$
The **Ore localization** of A w.r.t S is a Ring $A_S := S^{-1}A$ together with an injective homomorphism $\phi : A \to A_S$, such that

(i) for all $s \in S$ $\phi(s)$ is a unit in A_S,
(ii) for all $f \in A_S$, $\exists a \in A$, $s \in S$ s. t. $f = \phi(s)^{-1}\phi(a)$.

Example

- Let $S = A^* := A \setminus \{0\}$. Then $S^{-1}A \cong \text{Quot}(A)$.
- If $K \varsubsetneq S \varsubsetneq A^*$, then $A \to A_S \to \text{Quot}(A)$,
- For any S, $S^{-1}A$ is an A-module (not finitely generated),
- in general A is not an $S^{-1}A$-module.

S^{-1} gives rise to a functor $A\text{-mod} \to S^{-1}A\text{-mod}$.
With Ore localization we can recognize, that

\[K(X)[\partial_1; \sigma_1, \delta_1] \cdots [\partial_m; \sigma_m, \delta_m] \cong (K[X]\{0\})^{-1}K\langle X, \partial_1, \ldots, \partial_m \mid \ldots \rangle \]

and the functor \(S^{-1} \) connects categories of modules.

Algorithmic aspects

Algorithmic computations over \(S^{-1}A \) can be replaced **completely** with computations over \(A \).

Keywords: **integer strategy, fraction-free strategy**.

For instance, a Gröbner basis theory over \(A \) induces a Gröbner basis theory over \(S^{-1}A \).

There are implementations for the rational localization \(K(X)\langle \partial_1, \ldots \rangle \).
Polynomial or rational Coefficients?

Let A be a K-algebra and $S \subset A$ a mult. closed Ore set in A. Moreover, let
- $M \cong A^n / A^m P$, a finitely presented left A-module,
- \mathcal{F} a left A-module,
- $\tilde{\mathcal{F}}$ a left $S^{-1}A$-module.

- $S^{-1}M \cong (S^{-1}A)^n / (S^{-1}A)^m P$.

$$\text{Sol}_A(M, \tilde{\mathcal{F}}) \cong \text{Sol}_{S^{-1}A}(S^{-1}M, \tilde{\mathcal{F}}),$$

Assume $\tilde{\mathcal{F}} \subset \mathcal{F}$ as left A-modules. Then
$$\text{Sol}_A(M, \tilde{\mathcal{F}}) \subseteq \text{Sol}_A(M, \mathcal{F}),$$
Let $\mathcal{G} \subset \mathcal{F}$ be function spaces, i.e. K-vector spaces and left \mathcal{O}-modules over a fixed operator algebra \mathcal{O}.

Let $f \in \mathcal{F}$, then $\text{Ann}_{\mathcal{O}}^\mathcal{F} f := \{ p \in \mathcal{O} : pf = 0 \in \mathcal{F} \}$ is the annihilator of f, which is a left ideal in \mathcal{O}.

Let $I \subsetneq \mathcal{O}$ be an ideal and suppose, that $\dim_K(\mathcal{G}) < \infty$. I is called the complete annihilator of \mathcal{G} over \mathcal{O}, if the following properties hold:

"most powerful": if $\forall g \in \mathcal{G} \rg = 0$ for $r \in \mathcal{O}$, then $r \in I$

"unfalsified": $\text{Sol}_\mathcal{O}(\mathcal{O}/I, \mathcal{F}) = \mathcal{G}$.
The complete annihilator program

There exists no general algorithm, which can compute the complete annihilator program of \(f \) over \(\mathcal{O} \) (where \(\mathcal{O} \) is an algebra with polynomial coefficients).

Therefore one investigates some classes of \(f \) and develops special methods for the classes.

One of successes is computational \textit{D-module theory}, where among other one can compute the complete annihilators of

\[
f(x, s) = f_1(x_1, \ldots, x_n)^{s_1} \cdots f_m(x_1, \ldots, x_m)^{s_m}, \quad f_i(x) \in K[x_1, \ldots, x_n]
\]

over

\[
\mathcal{O} = \bigotimes_{i=1}^{n} K \langle x_i, \partial_i \mid \partial_i x_i = x_i \partial_i + 1 \rangle \otimes_K K[s_1, \ldots, s_m]
\]

in an algorithmic way. There are implementations.
Some computational D-module theory

Let $D_n(K) = K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \mid \partial_j x_i = x_i \partial_j + \delta_{ij} \rangle$ be the n-th Weyl algebra and $D_n[s] = D_n \otimes_K K[s]$.

Theorem (J. Bernstein, 1971/72)

Let $f(x) \in \mathbb{C}[x_1, \ldots, x_n]$. Then there exist

- an operator $P(s) \in D_n \otimes_{\mathbb{C}} \mathbb{C}[s]$,
- a monic polynomial $0 \neq b_f(s) \in \mathbb{C}[s]$ of the smallest degree (called the global Bernstein-Sato polynomial),

such that for arbitrary s the following functional equation holds

$$P(s) \cdot f^{s+1} = b_f(s) \cdot f^s.$$

Let $\text{Ann}_{D[s]}(f^s) = \{ Q(s) \in D[s] \mid Q(s) \cdot f^s = 0 \} \subset D[s]$ be the annihilator, then

$$P(s)f - b_f(s) \in \text{Ann}_{D[s]}(f^s)$$ holds.
Dimensions

- Generalized Krull dimension is called Krull-Rentschler-Gabriel dimension; not algorithmic

- Global homological dimension (of an algebra) resp. projective dimension (of a module); for modules: algorithmic (relatively expensive), implemented

- Gel’fand-Kirillov Dimension; algorithmic (relatively cheap), implemented; plays the role of Krull dimension in non-commutative case.
GK dimension and its properties

Let A be a K-algebra, generated by x_1, \ldots, x_m.

Degree filtration

Let $V = Kx_1 \oplus \ldots \oplus Kx_m$ be a vector space.
Set $V_0 = K$, $V_1 = K \oplus V$ and $V_{k+1} = V_k \oplus V^{k+1}$.
Let $M_0 \subset M$, $\dim_K M_0 < \infty$ and $AM_0 = M$.
An ascending filtration on M is defined via \(\{ H_d := V_d M_0, d \geq 0 \} \).

The **Gel’fand-Kirillov dimension** of M is defined as follows

\[
\text{GKdim}(M) = \limsup_{d \to \infty} \log_d(\dim_K H_d)
\]
Let $\deg x_i := 1$, $V_d := \{ f \mid \deg f = d \}$ and $V^d := \{ f \mid \deg f \leq d \}$.

Lemma

Let A be a K-algebra and a domain. If the standard filtration on A is compatible with the PBW Basis $\{x^\alpha \mid \alpha \in \mathbb{N}^m\}$, then $\text{GKdim}(A) = m$.

$$\dim V_d = \binom{d + m - 1}{m - 1}, \dim V^d = \binom{d + m}{m}.$$

Thus $\binom{d+m}{m} = \frac{(d+m)\ldots(d+1)}{m!} = \frac{d^m}{m!} + \ldots$ and

$$\text{GKdim}(A) = \limsup_{d \to \infty} \log_d \binom{d + m}{m} = m.$$
Gel’fand-Kirillov-Dimension: examples and properties

\[
\text{GKdim}(K\langle x_1, \ldots, x_n \rangle) = \infty \text{ for } n \geq 2.
\]
\[
\text{GKdim}(K[[x_1, \ldots, x_n]]) = \infty \text{ for } n \geq 1, \text{ when } |K| = \infty.
\]

Properties

- \(\text{GKdim } M = \sup\{\text{GKdim}(N) : N \in A - \text{mod}, \ N \subseteq M\} \),
- \(\text{GKdim } A = \sup\{\text{GKdim}(S) : S \subseteq A, \ S \text{ fin. gen. subalgebra}\} \)

Over \(G \)-algebras (and even more) there are algorithms and implementations for the computation of the GK dimension of finitely presented modules.
Elimination and dimension

Lemma

Let $I \subseteq A$ be a left ideal and $S \subseteq A$ be a finitely generated subalgebra. Then

- $I \cap S = 0$ implies $\text{GKdim } A/I \geq \text{GKdim } S$,
- $\text{GKdim } A/I < \text{GKdim } S$ implies $I \cap S \neq 0$.

Recall: Bernstein’s inequality

Let A be the n-th Weyl algebra over K with $\text{char } K = 0$ (thus $\text{GKdim } (A) = 2n$) and $0 \neq M$ be an A-module, then $\text{GKdim } M \geq n$.

Operator algebras, partial classification

Dimensions and purity

Gel'fand-Kirillov dimension

Purity
Elimination and dimension

Classically: for a function f, $\text{Ann}_\mathcal{O} f \cap K[x_1, \ldots, x_n] = 0$. Hence $\text{GKdim } \mathcal{O}/\text{Ann}_\mathcal{O} f \geq n$.

Proposition

Let $\mathcal{O} = \bigotimes_{i=1}^n \mathcal{O}_i$, $\mathcal{O}_i = K\langle x_i, o_i \mid \ldots \rangle$. Moreover, let $I \subset \mathcal{O}$ and $\text{GKdim } \mathcal{O}/I = m$. Then for any finitely generated subalgebra $S \subset \mathcal{O}$ of GK dimension $\geq m + 1$ one has $I \cap S \neq 0$.

Application: For I such that $\text{GKdim } \mathcal{O}/I = n$ we guarantee that $2n - (n + 1) = n - 1$ variables can be eliminated from I, for instance

- all but one operators,
- all but one coordinate variables.
Elimination, dimension and localization

Suppose that \(I, S \subset \mathcal{O} \) are such that
- \(S \) is an Ore set in \(\mathcal{O} \) (so \(S^{-1}\mathcal{O} \) exists)
- \(S^{-1}\mathcal{O}I \neq S^{-1}\mathcal{O} \) (i.e. \(I \) is proper in the localized algebra).

Then \(I \cap S = 0 \), what implies \(\text{GKdim} \mathcal{O}/I \geq \text{GKdim} S \).

Note, that for every \(J \in S^{-1}\mathcal{O} \) there exists \(I \in \mathcal{O} \) such that \(S^{-1}\mathcal{O}I = S^{-1}\mathcal{O}J \). In general

\[
\text{GKdim} S^{-1}\mathcal{O}/S^{-1}\mathcal{O}L \geq \text{GKdim} \mathcal{O}/L.
\]
Dimension function

Let A be a Noetherian algebra. A dimension function δ assigns a value $\delta(M)$ to each finitely generated A-module M and satisfies the following properties:

(i) $\delta(0) = -\infty$.

(ii) If $0 \to M' \to M \to M'' \to 0$ is exact sequence, then $\delta(M) \geq \sup\{\delta(M'), \delta(M'')\}$ with equality if the sequence is split.

(iii) If P is a (two-sided) prime ideal with $PM = 0$ and M is a torsion module over A/P, then $\delta(M) \leq \delta(A/P) - 1$.

- generalized Krull dimension is an exact dimension function
- Gel’fand-Kirillov dimension is a dimension function, not always exact
Let A be a K-algebra and δ a dimension function on A-mod. A module $M \neq 0$ is δ-pure, if $\forall 0 \neq N \subseteq M$, $\delta(N) = \delta(M)$.

- Purity is a useful weakening of the concept of simplicity of a module.
- Unlike simplicity, the purity (w.r.t a dimension function) is algorithmically decidable over many common algebras.

M. Barakat, A. Quadrat: Algorithms for the computation of the purity filtration of a module with $\delta = \text{homological co-grade}$; there are several implementations.
Lemma (L.)

Let A be a K-algebra and δ a dimension function on A-mod. Moreover, let $0 \neq M_1, M_2 \subset N$ be two δ-pure modules with $\delta(M_1) = \delta(M_2)$. Then

the set of δ-pure submodules (of the same dimension) of a module is a lattice, i.e.

1. $M_1 \cap M_2$ is either 0 or it is δ-pure with $\delta(M_1 \cap M_2) = \delta(M_1)$,
2. $M_1 + M_2$ is δ-pure with $\delta(M_1 + M_2) = \delta(M_1)$.
Consider the mixed system, annihilating Legendre polynomials

$$\mathcal{D} = K\langle n, s_n \mid s_n n = ns_n + s_n \rangle \otimes_K K\langle x, \partial_x \mid \partial_x x = x\partial_x + 1 \rangle.$$

$$M = \mathcal{D}/P,$$

$$P = \langle (x^2 - 1)\partial_x^2 + 2x\partial_x - n(1 + n), (n + 2)s_n^2 - (2n + 3)x s_n + n + 1, (n + 1)(s_n \partial_x - x\partial_x + n + 1) \rangle.$$

$$\text{GKdim } \mathcal{D} = 4, \quad \text{GKdim } M = 2, \quad t(M) = M = \mathcal{D}/P.$$
The purity filtration of $M = t(M)$ is $0 \subsetneq M_3 \subsetneq M_2 = M$,

$$M_3 \cong \mathcal{O}/\langle n + 1, s_n, \partial_x \rangle \text{ with } \text{GKdim } M_3 = 1.$$

What are the solutions $g(n, x)$ of this system?

Since $\partial_x (g) = 0$, one has $g(n, x) = g(n)$.

However, $g(n)$ should not be identically zero:

in case $n \in \{-1, 0, 1, \ldots\}$, one can select $g(-1) \in K$ arbitrary

(step of the jump function).

Localization

The ideal $\langle n + 1, s_n \rangle$ is two-sided and maximal. Hence the

submodule M_3 vanishes under any Ore localization in $K\langle n, s_n \ldots \rangle$,

for instance when n invertible or s_n invertible (then s_n^{-1} is present and therefore should $n \in \mathbb{Z}$ hold).
The purity filtration of $M = t(M)$ is $0 \subsetneq M_3 \subsetneq M_2 = M$. The pure part of GK dimension 2 is $t(M)/M_3 \cong \mathcal{O}/\langle (x^2 - 1)\partial_x^2 + 2x\partial_x - n(1 + n), \ (n + 2)S_n^2 - (2n + 3)xS_n + n + 1, (1 - x^2)\partial_x + (n + 1)S_n - (n + 1)x \rangle$.

For further investigations of M over localizations w.r.t. n or S_n one should then take the simplified equations.

Elimination leads to new identities

The elimination property guarantees, that 1 arbitrary variable can be eliminated; so one gets for instance

$$(n + 1)(n + 2) \cdot ((S_n^2 - 1)\partial_x - (2n + 3)S_n) \cdot P_n(x) = 0,$$

$$(1 - x^2) \cdot ((S_n^2 - 2xS_n + 1)\partial_x - S_n)) \cdot P_n(x) = 0.$$
The hypergeometric series is defined for $|z| < 1$ and $-c \notin \mathbb{N}_0$ as follows:

$$2F_1(a, b, c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}$$

We derive two annihilating ideals from $2F_1(a, b, c; z)$:

- J_a which does not contain a,
- J_c which does not contain c,

and analyze corresponding modules for purity.
Case J_a

The ideal in $\mathcal{O} = K[b, c, z]\langle s_b, s_c, \partial_z \mid \ldots \rangle$ is generated by:

\[\begin{align*}
bcSb - czDz - bc \\
bSbSc - bSc + cSc - c \\
bSb^2 - zSbDz - bSb + Sb^2 - Sb \\
b^2Sb - bzDz - b^2 + bSb - zDz - b \\
& \quad bzSbDz - z^2Dz^2 - bzDz - bSbDz + zDz^2 - bSb + bDz + b + Dz
\end{align*}\]

Let $M = M_a = \mathcal{O}/J_a$. Then $\text{GKdim } \mathcal{O} = 6$, $\text{GKdim } M = 4$.

The purity filtration of $M = t(M)$

\[
0 \subsetneq M_5 \subsetneq M_4 \subsetneq M_3 = M_2 = M_1 = M, \text{ where}
\]

\[
M/M_5 \cong \mathcal{O}/\langle bSb - zDz - b, zDzSc + cSc - c \rangle, \text{ GKdim } M/M_5 = 4
\]
The purity filtration of \(M = t(M) \)

\[
\cdots \text{ and } \quad M_5 \cong \mathcal{O}/\langle c, Sb, b + 1, zDz - Dz - 1 \rangle, \quad \text{GKdim } M_5 = 2.
\]

The solutions can be read off:

\[
\delta_{c,0} \cdot \delta_{b,-1} \cdot (\ln(z - 1) + k_0), \quad k_0 \in K
\]
Case J_c

The ideal in $\mathcal{O} = K[a, b, z]\langle s_a, s_b, \partial_z \mid \ldots \rangle$ is generated by:

$$a Sa - b Sb - a + b$$
$$b Sb^2 - SbzDz - b Sb + Sb^2 - Sb$$
$$b^2 Sb - b zDz - b^2 + b Sb - zDz - b$$
$$ab Sb - a zDz - ab + b Sb - zDz - b$$
$$b SbzDz - z^2 Dz^2 - b SbDz - b zDz + zDz^2 - b Sb + b Dz + b + Dz$$

Let $M = M_c = \mathcal{O}/J_c$. Then $\text{GKdim } \mathcal{O} = 6$, $\text{GKdim } M = 4$.

The purity filtration of $M = t(M)$

$$0 \subsetneq M_6 = M_5 = M_4 \subsetneq M_3 = M_2 = M_1 = M,$$ where

$$M/M_6 \cong \mathcal{O}/\langle b Sb - zDz - b, a Sa - zDz - a \rangle,$$ $\text{GKdim } M/M_6 = 4.$
The purity filtration of $M = t(M)$

\[M_6 \cong \mathcal{O} / \langle Sb, b + 1, Sa, a + 1, zDz - Dz - 1 \rangle, \text{ GKdim } M_6 = 2. \]

The solutions:

\[\delta_{a,-1} \cdot \delta_{b,-1} \cdot (\ln(z - 1) + k_0), \ k_0 \in K \]
Software

\[D \]-modules and algebraic analysis:

- **KAN/SM1** by N. Takayama et al.
- **D-modules package in Macaulay2** by A. Leykin and H. Tsai
- **Risa/Asir** by M. Noro et al.
- **OreModules** package suite for Maple by D. Robertz, A. Quadrat et al.
- **Singular:Plural** with a \(D \)-module suite; by V. L. et al.

Holonomic and \(D \)-finite functions:

- **Groebner, Ore algebra, Mgfun, ...** by F. Chyzak
- **HolonomicFunctions** by C. Koutschan
- **Singular:Locapal** (under development) by V. L. et al.
Thanks for your attention!

http://www.singular.uni-kl.de/