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Abstract

We determine the 35 irreducible 3-modular characters of the Fischer group Fi23. This
completes the calculation of all modular character tables of this group.

1 Introduction

We complete the determination of the modular character tables of Fischer’s second sporadic sim-
ple group Fi23 by constructing the 3-modular character table using computational methods. For the
other modular character tables of Fi23 see [Hiss and Lux, 1989],[Hiss and Lux, 1994], and [Hiss et al., 2006].
Our result is a contribution to the overall goal of computing the modular character tables of all
sporadic simple groups and more generally the modular character tables of the groups given in the
ATLAS, [Wilson et al., 2016], see also [Breuer et al., 2016].

For the convenience of the reader we summarize the major steps in the proof:

1) It follows from the ordinary character table of Fi23 that there are three blocks of Fi23 in
characteristic 3. All but the principal block are dealt with easily, and so we can focus mainly
on the principal block and its 32 modular irreducible characters. The methods we apply are
a combination of computing with modular characters and of computing with explicit matrix
representations.

2) A basic approach to finding all the modular irreducible characters consists of constructing
all the irreducible representations (in the principal block) of Fi23 by determining the com-
position factors of tensor products of irreducible representations of Fi23 recursively. More
precisely, we take tensor products of known nontrivial irreducible representations, determine
the composition factors, use these composition factors to form new tensor products etc. until
all 32 irreducible representations have been found and their modular characters have been
determined.

By the straightforward generalization of the Burnside-Brauer theorem to modular characters,
see [Isaacs, 1994, page 59] and [Lux and Pahlings, 2010, Exercise 4.3.4 page 320] this ap-
proach is guaranteed to succeed. However, computationally, taking tensor products works
well as long as the representations are not too big for being analyzed by the MeatAxe,
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see [Parker, 1984] and [Ringe, 1994]. So, when analyzing the tensor products is getting infeasi-
ble, we will avoid finding the composition factors directly and instead apply the condensation
method, see [Lux and Pahlings, 2010], [Lux and Wiegelmann, 1998], and [Lux et al., 2012],
to these tensor products.

3) As the starting point of our investigation we take two representations given in R.A. Wilson’s
online Atlas (via its GAP interface): an irreducible representation, 253a, of degree 253 over the
field with three elements, F3, and the transitive permutation representation on 31671 points
of Fi23 on the cosets of the largest maximal subgroup 2.Fi22. By analyzing the tensor product
of 253a with itself and the permutation representation (over F3) directly, we get the following
8 irreducible representations 1a, 253a, 528a, 2806a, 4830a, 13122a, 13122b, 27048a. We then
proceed by analyzing the tensor product of 253a with 528a and obtain a ninth irreducible
representation 20470a as a composition factor.

4) We compute the modular characters of the nine irreducible representations constructed so far.

5) Using character theory we check that the nine irreducible modular characters together with
the modular characters of 23 chosen tensor products of the nine irreducible modular characters
form a basis of the space of all rational linear combinations of the modular characters in the
principal block. The decomposition of this basis into the modular irreducible characters, that
means the base change matrix from the basis to the irreducible modular characters, determines
the modular characters of the principal block.

6) Finally, we determine the decomposition of the tensor products using the condensation method.
More precisely, we show that condensation with a chosen subgroup gives a Morita equivalence.
To verify the Morita equivalence we show that no irreducible representation of Fi23 vanishes
when condensed. This is easy to show for the nonprincipal blocks. For the principal block
we prove this by taking a generating set for the condensation algebra described by Noeske’s
criterion, see [Noeske, 2005], and exhibiting 32 irreducible condensed representations. The
established Morita equivalence allows us to determine the decomposition matrix from 5) by
determining instead the decomposition matrix for the condensed tensor products by applying
the MeatAxe to the condensed tensor products.

Our computations were performed with the help of the computer algebra system GAP and vari-
ous implementations of the MeatAxe, in particular the C-MeatAxe, see [Ringe, 1994], and the GAP-
package chop developed by F. Noeske and M. Neunhöffer, see [Neunhöffer and Noeske, 2016a]. Fur-
thermore, we have made substantial use of the condensation methods developed in [Noeske, 2005] by
F. Noeske, and the GAP-package cond, see [Neunhöffer and Noeske, 2016b], developed by F. Noeske
and M. Neunhöffer. One of the authors has also implemented an adaptive approach to chopping,
for details see Remark 1.

The degrees of the irreducible 3-modular characters in increasing order are displayed in Ta-
ble 1. The first 32 characters belong to the principal block, followed by the two of the block of
defect 1 and the last character has defect 0. The decomposition matrix of the block of cyclic de-
fect is given in Table 3 and the decomposition matrix of the principal block is given in the Appendix.

Acknowledgments: We would like to thank the following institutions for computing support
in particular for the access and generous CPU time on several HPC computers: the Department
of Computer Science, St. Andrews, Scotland, the Computer Cluster Service of RWTH Aachen
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Table 1: The degrees of the irreducible 3-modular characters of Fi23
ϕ3 ϕ4 ϕ5 ϕ6 ϕ1 ϕ8 ϕ9 ϕ7 ϕ2 ϕ18

1 253 528 2806 4 830 13,122 13,122 20 470 27,048 79,718
ϕ10 ϕ14 ϕ11 ϕ15 ϕ20 ϕ12 ϕ13 ϕ16 ϕ17 ϕ19

86,273 134,298 253,230 362,342 538,407 725,374 725,374 818,972 818,972 1,252,120
ϕ21 ϕ23 ϕ24 ϕ22 ϕ26 ϕ25 ϕ27 ϕ28 ϕ31 ϕ32

2,317,180 2,541,706 2,587,707 4,372,622 7,116,660 7,260,778 10,241,165 14,540,255 25,951,520 27,425,385
ϕ29 ϕ30 ϕ33 ϕ34 ϕ35

29,713,355 34,753,159 207,793,431 289,103,904 476,702,577

University, Germany, the University of Arizona High Performance Computing facilities, Lehrstuhl
B für Mathematik, RWTH Aachen University, Germany, and the Computer Science Department,
Queens College, New York, U.S.A. We also would like to thank F. Lübeck for fruitful discussions.

2 The block structure

Using the GAP-interface [Breuer, 2012] to the Atlas character tables, see [Conway et al., 1985], we
access the ordinary character table of Fi23 and compute some of the invariants of the 3-blocks as
printed in Table 2.

Table 2: The blocks of Fi23
Principal block Block 2 Block 3

Defect 13 1 0
Number of ordinary irreducible characters 94 3 1
Number of irreducible Brauer characters 32 2 1

The decomposition matrix of the second block can be found in Table 3 and follows from the
theory of blocks of cyclic defect, see [Hiss and Lux, 1989].

Table 3: The decomposition matrix of Block 2
ϕ33 ϕ34

207,793,431 1 .
289,103,904 . 1
496,897,335 1 1

Of the 35 conjugacy classes of Fi23 with order co-prime to 3, exactly three pairs are not real:
16A/B, 22A/B and 23A/B. By Brauer’s permutation lemma, see [Lux and Pahlings, 2010, Theo-
rem 2.2.13], we conclude that there are exactly three pairs of complex conjugate irreducible modular
characters. Since the irreducible modular characters not in the principal block are all real valued,
we conclude that the three pairs of complex conjugate characters all lie in the principal block.

Furthermore, the field F3 of three elements is a splitting field of all the irreducible representations
of Fi23 in characteristic 3, since any 3-regular element is conjugate to its 3rd power, as can be checked
from the 3-powermap of the ordinary character table.
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3 Some modular characters

From now on let G := Fi23 and F := F3. In the following an irreducible F -representation of G will
be labeled by its degree followed by the letters a, b, etc. and its modular character will be labeled
in the same way. Further we denote by a, b the standard group generators of G that are defined by
the GAP-package AtlasRep, see [Wilson et al., 2011].

As a starting point we consider the permutation representation of G of degree 31671 on the cosets
of 2.Fi22, which is included in the AtlasRep package. Applying the program chop of M. Ringe’s
C-Meataxe [Ringe, 1994] in version 2.4.3 we obtain the following composition factors and their
multiplicities over F :

3× 1a, 2× 253a, 4× 528a, 1× 2806a, 1× 13122a, 1× 13122b. (1)

Analogously, we obtain the composition factors and their multiplicities of the tensor product
253a⊗F 253a:

1a, 2× 528a, 2× 4830a, 1× 13122a, 1× 13122b, 1× 27048a. (2)

Finally, an application of the program chop to the tensor product 253a ⊗F 528a reveals the com-
position factor 20470a. Since we do not care for a full analysis of this tensor product, we abort the
program after it has constructed the 20470a. At this stage, we have nine irreducible representations
to work with.

Next, we compute the corresponding modular characters of the nine irreducible representations
by using the GAP-function BrauerCharacterValue. This function implements the definition of a
modular character value as described in [Jansen et al., 1995, pages xvii-xviii], and we apply it to the
nine representations. All 3-regular G-conjugacy classes of elements but 13A/B, 16A/B, 22B/C, 23A/B, 26A/B
are rational and the character fields for these latter classes are as follows.

13A/B 16A/B 22B/C 23A/B 26A/B

Q(−1+
√
13

2 ) Q(
√
−2) Q(−1+

√
−11

2 ) Q(−1+
√
−23

2 ) Q(−1+
√
13

2 )

It follows that there are automorphisms of the ordinary character table of G interchanging the
classes 16A/B, 22B/C, 23A/B, 26A/B independently.

The GAP-package AtlasRep does not include a straight line program that produces representa-
tives for the conjugacy classes of G but it offers a straight line program that constructs generators
for representatives of the conjugacy classes of maximal cyclic subgroups. So, we get representatives
for all rational 3-regular conjugacy classes of elements straightforwardly. For each of the pairs of
classes 16A/B, 22B/C, 23A/B, 26A/B a generator of the representative of the corresponding con-
jugacy class of maximal subgroups can lie in either class of the pair and we may choose this class
in view of the available table automorphisms of the ordinary table of G. Our choices are as follows.

First, we define the generator of the representative of the conjugacy class of maximal cyclic
subgroups containing elements of 26A/26B to lie in the conjugacy class 26B. Note that the character

value of this generator (as computed in GAP) in the representation 253a is −3−
√
13

2 , and hence we
can use the representation 253a to identify elements in 26B resp. 26A. Furthermore, we take the
square of the generator as a representative of the conjugacy class 13A using the 2-powermap of the
ordinary character table of G.

Next, for the representations 13122a, 13122b and the conjugacy classes 16A/B, 22B/C, 23A/B
we proceed as follows:
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1) The computed modular character values of 13122a and 13122b on the generator of the maximal
cyclic subgroup of order 16 as produced by the straight line program shows that their modular
character values on 16A/B are not real. Hence the modular characters of 13122a and 13122b
are complex conjugate.

2) We determine the sum of the modular characters of 13122a and 13122b from the modular char-
acter of the permutation representation on 31671 points. Since their characters are complex
conjugate, we get their values on all but the pairs of classes 16A/B, 22B/C, 23A/B.

3) We define the representation 13122a to be the irreducible representation of degree 13122 in
the socle of the tensor product 253a⊗F 253a, a fact which we will use in Section 7.

4) We define the representatives of the classes 16A, 22A, 23A as the generators of the represen-
tatives of the maximal cyclic subgroups containing elements in 16A/B,22B/C, and 23A/B
(as produced by the straight line program). The modular character values of 13122a on these

elements are 2
√
−2,
√
−11, 1+

√
−23
2 . We note that we can use 13122a to identify the classes.

Finally, the modular character of 27048a can be derived from the character of the tensor product
253a with itself, since we already know the characters of the other composition factors.

We can now check that the nine irreducible modular characters of the irreducible representa-
tions constructed so far, 1a, 253a, 528a, 2806a, 4830a, 13122a, 13122b, 20470a, 27048a, (abbreviated
by N1, . . . , N9 in Table 7) together with the modular characters of 23 selected tensor products of
these representations form a basis B of the Q-span of the modular characters in the principal block.
The 23 selected tensor products are

a) 253a tensored with 528a, 2806a, 4830a, 13122a, 20470a, 27048a, abbreviated N10 to N15,

b) 528a tensored with 528a, 4830a, 13122a, 20470a, 27048a, abbreviated N16 to N20,

c) 2806a tensored with 2806a, 4830a, 13122a, 20470a, 27048a, abbreviated N21 to N25,

d) 4830a tensored with 4830a, 13122a, 20470a, 27048a, abbreviated N26 to N29,

e) 13122a tensored with 13122a, 20470a, 27048a, abbreviated N30 to N32.

4 Choice of a condensation subgroup

We denote by M the 10th maximal subgroup of G of isomorphic to (22 × 21+8).(3 × U4(2)).2,
see [Conway et al., 1985]. Furthermore let K be the largest normal 2-subgroup of M , so K ∼=
22 × 21+8. We take K as the condensation subgroup with corresponding fix idempotent

e :=
1

|K|
∑
x∈K

x.

We seek to find the composition factors and their multiplicities of selected tensor products of
the irreducible representations determined in Section 3 by regarding their images under the exact
condensation functor

Φe : mod-FG→ mod-eFGe,
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which maps an FG-module V to Φe(V ) := V e. Given the modular character ϕ of an FG-module
V , the dimension of the condensed module V e is also called the condensed degree ϕc of ϕ and may
be computed as the scalar product

ϕc(1) := (ϕK , 1K) = dimV e. (3)

It follows that the condensed degrees of the three irreducible representations not in the principal
block with modular characters ϕ33, ϕ34, and ϕ35, see Section 2, are 100683, 145152, 226476 and
hence these irreducible representations do not map to 0 when condensed.

5 Generators of the condensed algebra

To perform the condensations, we need a set of algebra generators for eFGe. According to
[Noeske, 2005], one such generating set is given by {ege | g ∈ S} where the set S ⊆ G is the
union of a set of group generators for M and a complete set of non-trivial M -M - double coset
representatives.

We make use of the GAP package AtlasRep version 1.6 (experimental), which can be obtained
from the developers on request, since it contains a straight line program for the maximal subgroup
M not yet contained in the released version 1.5 of AtlasRep. We are left with the task of calculating
the double coset representatives. By Mackey’s formula we can compute the number of double cosets
as the norm of the corresponding permutation character 1GM , which is 303. Hence |S| = 2 + 303− 1
(with the trivial double coset omitted). Note that compared to the situation for the 2-modular
case, see [Hiss et al., 2006], the number of double cosets we have to consider is about tenfold.

Following the approach in [Hiss et al., 2006], we first consider the action of G on the orbit xG of
a non-trivial M -fixpoint x in the irreducible matrix representation 528a constructed in Section 3.
The set xG is isomorphic as a G-set to the set of right M -cosets in G, thus a set of double coset
representatives consists of elements g1, . . . , g303 ∈ G such that the M -orbits xgjM are pairwise
distinct for 1 ≤ j ≤ 303. A rough estimate for the amount of storage memory needed for xG
gives 3 · 528 · [G : M ]Bit ≈ 1.54TB, and hence calls for a different method than the standard orbit
algorithm.

To this end, we employ the orbit-by-suborbit-algorithm described in [Müller et al., 2007], which
is part of the GAP-package orb, see [Müller et al., 2014]. Instead of fully enumerating the M -
suborbits of xG, only specific points in each M -orbit are stored. Two helper groups U1 ≤ U2 ≤M
of sizes 384 and 7,680 are used to define those specific points called U2-minimal points.

With this approach, we find 302 M -orbits in xG after enumerating 1.4 million points of xG (see
Table 5 for their lengths). The last and very small orbit of length 180 only appears after considering
more than 101 million points, of which only 2 million are held in memory at each time.

The required memory is less than 8 GB. Straight line programs for g1 to g303 are available
from words in the generators of G. The one for g303 has too many lines to be of practical use,
so we construct a different straight line program of length 293 instead of 2487 by precomputing
frequently-occurring subwords.

6 Applying condensation

We first want to show that e is a faithful idempotent, i.e. Se 6= 0 for all simple FG-modules S,
which we only have to verify for the simple FG-modules in the principal block. This then implies
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that FG and eFGe are Morita equivalent.
In order to achieve this goal efficiently, we will work with a subalgebra A of eFGe generated by

two elements x1, x2. These two generators are defined as x1 = e(y1y2)e, x2 = e(ab)2e, where a, b are
the standard generators of G, see Section 3, and y1, y2 are the generators produced by the straight
line program for the maximal subgroup M of Fi23.

We proceed as follows: we exhibit 32 pairs of A-submodules, (Vi,Wi), i = 1, . . . , 32, with
Vi ≤ Wi, of the condensed eFGe-modules of the tensor products N27, N28, N31, N32, (whose
composition factors are all in the principal block). We verify that they are even eFGe-submodules
by showing invariance under all 304 generators of eFGe. Furthermore, we show that their quotients
Wi/Vi considered as A-modules and as eFGe-modules are all simple and pairwise nonisomorphic.
Since there are 32 simple FG-modules in the principal block, and we have exhibited 32 pairwise
nonisomorphic simple eFGe-modules, we have shown that no simple FG-module S in the principal
block vanishes when condensed. So we conclude that eFGe and FG are Morita equivalent. More-
over, we see that restriction from eFGe to A gives a bijection of the simple eFGe-modules up to
isomorphism (in the principal block) onto the corresponding simple A-modules up to isomorphism.

The second goal is to find the composition factors and their multiplicities of the 23 tensor
product FG-modules from Section 3, which are all in the principal block.

We again apply condensation with the subalgebra A. More precisely, we determine the A-
composition factors and their multiplicities in the condensed tensor products. Since we have shown
that restriction from eFGe to A gives a bijection of simple eFGe- and simple A-modules in the
principal block, the composition factors and their multiplicities of the condensed tensor products
as eFGe-modules follow from this explicit bijection.

The multiplicities of the A-composition factors in the two largest condensed modules, namely
the condensed modules of N31 with dimension 128358 and N32 with dimension 184644 are not
found by the program chop of the GAP-package Chop directly. First note that the dimension of
N32 is about 10 times bigger than the dimension of the largest condensed tensor product that had
to be considered in the 2-modular case, see [Hiss et al., 2006]. Instead we guide the analysis by
the program chop in the following way: we first determine a cyclic A-submodule in the condensed
module of N31, and an ascending chain of five cyclic A-submodules in the condensed module of
N32 and feed the smaller subquotients to the program chop.

The cyclic submodules are found as follows: we apply the C-MeatAxe program pwkond to
determine a peakword w for the simple A-module 1a with respect to 28 already known simple
A-modules from smaller condensed tensor products. This means that w has nullity one when
evaluated in the simple A-module 1a and is invertible when evaluated in any of the other 27 simple
A-modules. The important property of the peakword w is that vectors in its stable null space
when evaluated in a given A-module V with composition factors amongst the 28 simple A-modules
generate A-submodules of a very special type: modulo their radical they are a direct sum of the
simple A-module 1a, for details see [Lux et al., 1994]. The resulting peakword w computed by
pwkond is:

w := x4
1x2x

2
1 + x2x

2
1x2x1x

2
2 + x2x

2
1x

3
2x1 + x1x2x

2
1x

2
2x1 + x2x1x2x1x2x1 + id.

Next, we compute a variant of the minimal polynomial of T , the matrix of w in the condensed module
of N32. We choose a vector v in N32 and compute the monic polynomial p in the polynomial ring
F[X] of least degree such that p(T ) is the zero matrix. It turns out that the polynomial p of the
chosen vector v has lowest term x6, and hence p can be factored as p = x6 · q for some polynomial q
co-prime to x. The vectors v · q(T )T 5−i, i = 0, . . . , 5 are all in the stable null space of T and we use
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the spinning procedure of the GAP-package Chop to compute the ascending chain of A-submodules
they generate. The resulting dimensions are:

5911, 9621, 42949, 65070, 99842, 145292.

The subquotients in this ascending chain of A-submodules are of dimension less than 60.000
and therefore are more amenable to be dealt with by the chop program of the GAP-package Chop.

In the case of the condensed module of N31, where we are aiming at a single subspace, it turns
out that the A-submodule generated by the whole null space of the 4th power of the peakword w
gives a convenient A-submodule of dimension 52924.

Remark 1 The algebra A was initially found by trial and error. One of the authors has written an
extension to the program chop of the GAP-package Chop: it takes a small subset of the generators
of eFGe described by Noeske’s criterion and tries to verify that a composition series found for
the algebra generated by the subset is invariant under all generators of eFGe. In case it is not,
the program adds the first element found for which the series is not invariant and recomputes
a composition series etc. In this way, we determined a subset of size 8, and worked with the
corresponding algebra generated by those 8 elements. However, for the last two condensed modules,
the condensed modules of N31, N32, we decided to look for an even smaller subset. The result of
our successful search are the elements x1 and x2 from the beginning of this section.

Remark 2 The computational challenges involve restricting the matrix representations of G to
the condensation subgroup K, performing precomputations for the condensation algorithm and fi-
nally evaluating and condensing specific elements of G. The demands on memory and computation
time are foremost dependent on the degrees of the matrix representations, the number of algebra
generators and the length of the straight line programs used. See Table 6 for an overview.

The overall process greatly benefits from a parallel run of the invariance tests during the adaptive
approach described above. However for groups larger than Fi23 the matrix representation degrees
may easily become the single prohibiting factor.

Table 7 gives the composition factors and their multiplicities of the condensed tensor products.

7 Matching simple FG-modules and their condensations

Finally, we match each of the nine simple FG-modules S from Section 3 with the corresponding
condensed simple eFGe-module Se. Table 4 summarizes the correspondence.

Table 4: Simple FG-modules and their condensations
1a 253a 528a 2806a 4830a 13122a 13122b 20470a 27048a
1a 5a 17a 15a 10b 54a 54b 45a 10a

The matchings for 253a, 528a and 2806a can already be inferred from their respective condensed
degrees which in turn are easily computed using their modular characters and Formula 3.

We settle the correct matching for 13122a/b by looking at the tensor product module 253a⊗F

253a and the corresponding condensed tensor product. Recall from Section 3 that we have defined
13122a to be in the socle of the tensor product. Since FG and eFGe are Morita equivalent, and
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54a is in the socle of the condensed tensor product, it follows that 13122a corresponds to 54a and
hence 13122b corresponds to 54b. Note that 54a labels the 9th row of the multiplicity matrix of
the condensed tensor products and 54b the 8th row. This implies that the modular character ϕ9 is
the modular character of 13122a and ϕ8 is the modular character of 13122b. The correspondence
for 4830a and 27048a also follows by comparing the composition factors and their multiplicities in
253a⊗F 253a (see Equation 2) and its condensation.

8 Computing the irreducible modular characters

The irreducible modular characters in the principal block can now be computed by multiplying
the inverse of the multiplicity matrix (transposed) with the basis B from Section 3. The resulting
decomposition matrix can be found in the Appendix.

Tables

Table 5: Length of the M -orbits in Section 5
1×1 1×180 1×540 1×810

1×1536 1×3456 1×4320 3×12960
1×23040 2×69120 1×73728 1×81920

8×103680 1×110592 1×122880 1×138240
2×207360 1×276480 1×368640 8×414720
3×829440 1×983040 3×1105920 10×1244160

1×1327104 1×1474560 5×1658880 5×2211840
1×2654208 1×2949120 23×3317760 1×4423680
9×6635520 3×8847360 21×9953280 19×13271040

2×17694720 21×19906560 20×26542080 34×39813120
5×53084160 42×79626240 29×159252480 5×318504960

Table 6: Computation time

Representation
Restriction to K

Precomputation Adaptive Chop
left factor right factor

253a⊗F 253a 4s 32s (full run)
253a⊗F 528a 23s 76s (full run)

253a⊗F 4830a 2,6h 4h (full run)
4830a⊗F 4830a 7,1h 20h (full run)
253a⊗F 20470a 1s 1-2d per matrix 13h up to 2h per matrix

4830a⊗F 27048a 3h 2-3d per matrix 36h up to 13h per matrix
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