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Abstract. Let G be a finite group and let k be an algebraically closed
field of characteristic p. We classify the indecomposable liftable kG-
modules in blocks with cyclic defect groups. The indecomposable, non-
projective, non-simple modules in such a block are constructed from
certain paths in the Brauer tree of the block (see [Jan69]). We determine
those paths that give rise to liftable modules. We also find the characters
of the lifts of these modules and obtain information about their Green
correspondents.

1. Introduction

We consider a finite group G and an algebraically closed field k of charac-
teristic p. The aim of this note is to classify the indecomposable liftable
modules of kG which lie in a kG-block with a cyclic defect group. This will
be called a cyclic block in the following.
The structure of a cyclic block is encoded in its Brauer tree. This is a finite
tree, together with a planar embedding and, possibly, a multiplicity assigned
to one of its vertices. In [Jan69], Janusz has given a construction of all non-
projective, non-simple indecomposable modules in a cyclic block in terms of
certain paths on its Brauer tree.
Here, we determine those paths that give rise to the indecomposable liftable
modules, and describe the characters of their lifts. We also obtain informa-
tion about the Green correspondents of the indecomposable liftable modules.
Indecomposable direct summands of permutation kG-modules are trivial
source modules and hence are liftable. One of the motivations for our work
was the attempt to understand the trivial source modules in cyclic blocks.
Let us now describe our results in more detail. For this purpose we introduce
a p-modular system (K,R, k). A kG-module X is liftable, if there exists an
RG-lattice M such that X ∼= k ⊗R M . Now let B denote a kG-block with
a cyclic defect group. The embedded Brauer tree of B is denoted by σ.
The embedding is determined by specifying, for each vertex of σ, a cyclic
ordering of the edges incident to this vertex. Consider two edges E and F
of σ incident to the vertex χ. We say that F is a successor of E aorund χ,
if F comes next to E in the cyclic ordering of the edges around χ. We use
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2 The Indecomposable Liftable Modules in Cyclic Blocks

the convention that in a drawing of σ in a plane, the successor of an edge is
the counter-clockwise neighbour of this edge.
The vertices of the Brauer tree are labelled by irreducible K-characters of
B. (We label the exceptional vertex of σ, if one exists, by any one of the
exceptional characters.) The edges of σ are labelled by the simple kG-
modules in B. By a leaf of σ we either mean a vertex of valency 1 or the
edge incident to it. Thus the leaves of σ correspond to the simple liftable
B-modules.
There are two types of non-projective, non-simple indecomposable modules
in B, corresponding to the two types of paths displayed in Figures 4 and
5. The modules of Type I, constructed from paths of Type I, and of Type
II, constructed from paths of Type II, are distinguished by the fact that
the socles and the heads of the Type I modules do not have any common
constituent.
The description of the indecomposable liftable B-modules of Type I is rather
restrictive.

Theorem 1.1. Let τ be a path of Type I on the Brauer tree of B. Then
the indecomposable module X constructed from τ is liftable if and only if τ
is as in Figure 1 and one of the following cases occurs:

© E0 © E1 ©
χ0 χ1 χ2

Figure 1. Path of the liftable Type I modules

(a) χ1 is not the exceptional vertex. Then the character of a lift of X equals
χ1.
(b) χ1 is the exceptional vertex, which has multiplicity m. Each of E0 and
E1 occurs t times as composition factor of X for some 1 ≤ t ≤ m. The
character of any lift of X is a sum of t distinct exceptional characters.
In particular, X is uniserial in both cases, and the head of X is either
isomorphic to E0 or E1. If the head of X is isomorphic to E0, the successor
of E1 around χ1 equals E0, and if the head of X is isomorphic to E1, the
successor of E0 around χ1 equals E1.

The description of the liftable Type II modules of B depends on which sorts
of paths the Brauer tree admits. The possible structures of the liftable Type
II modules are not as restricted as in the case of Type I.

Theorem 1.2. Let τ be a path of Type II on the Brauer tree. Then the
indecomposable module X constructed from τ is liftable if and only if τ is
one of the paths given in Figure 2, and the following restrictions apply in
the respective cases:
Case 1: The vertex χ0 is a leaf of the Brauer tree.
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χ0 χ1 χs χλ

Case 1: © E0 © © Es ⊙
χu0 χ0 χ1 χs χλ

Case 2: © Eu0 © E0 © © Es ⊙
χu0

©

Eu0
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χ0 χ1 χs χλ

Case 3: © E0 © © Es ⊙
© Ed0

ppppppp

χd0

Figure 2. Paths of the liftable Type II modules

Case 2: Either Eu0 is in the head or in the socle of X. If Eu0 is in the head
of X, the successor of E0 around χ0 is Eu0. If Eu0 is in the socle of X, the
successor of Eu0 around χ0 is E0.
Case 3: The successor of Eu0 around χ0 is E0 and Eu0 is in the socle of X.
In Cases 1 and 3, there are m − 1 indecomposable modules, and in Case 2
there are 2(m−1) indecomposable modules for the given τ . These are distin-
guished by a parameter t with 1 ≤ t ≤ m− 1, indicating that the multiplicity
of the composition factor Es of X equals t+ 1.
The character of any lift of X equals χ0 +χ1 + · · ·χs +µ, where µ is a sum
of t distinct exceptional characters.

In Section 2 we set up our notation and present background material. In
Section 3 we restrict the possible paths from which liftable modules can be
constructed. The proof of Theorem 1.1 is completed in Subsection 3.1. In
Section 4 we determine the number of indecomposable liftable modules of B
using Green correspondence and show that this agrees with the number of
possible candidates found in Section 3. This yields a proof of Theorem 1.2.
Finally, in Section 5 we determine the Green correspondents of the indecom-
posable liftable modules in terms of the Heller operator.

2. Background and preliminaries

Let us begin fixing some notation and assumptions, which we refer to as
Hypothesis 2.1 later on.

Hypothesis 2.1. Fix a finite group G. Let (K,R, k) be a splitting p-
modular system for G such that k is an algebraically closed field of charac-
teristic p. Let B be a kG-block with cyclic defect group D of order pd. We
denote its unique subgroup of order p by D1 and the normaliser of D1 in G



4 The Indecomposable Liftable Modules in Cyclic Blocks

by N . Note that N contains all the normalisers NG(Di) of the subgroups
Di ≤ D of order pi for 1 ≤ i ≤ d, so that we can consider Green corre-
spondence between kG and kN . If V is an indecomposable non-projective
kG-module with vertex contained in D, we denote its Green correspondent
in N by f(V ). If V belongs to B, then f(V ) belongs to the Brauer cor-
respondent b of B (compare [Alp86, Corollary 14.4]). Likewise, if Y is an
indecomposable kN -module with vertex in D, then g(Y ) denotes its Green
correspondent in G.
The Brauer tree of B is denoted by σ. We consider σ as a tree with a planar
embedding in the sense of [Alp86, Sec. V.17]. The Brauer tree of b is a
star with the exceptional vertex (if one exists) at the centre. The number of
simple kN -modules belonging to b is denoted by e. This is also the number
of simple modules of B. Put m := (pd − 1)/e. If m > 1, it is called the
exceptional multiplicity of B.
Throughout the whole paper, we allow, for the sake of simplicity, the im-
precision of using the same notation for the edges of σ and the simple B-
modules, as well as the same notation for the vertices of σ and the characters
of irreducible KG-modules belonging to B.
Finally, let X be an indecomposable non-projective B-module.

Let us fix some further notation. Let U be a kG-module and V a kN -
module. Then the Heller-translates of U and V are denoted by Ω(U) and
Ω(V ), respectively. In particular, the notation Ω for the Heller operator is
used in either group ring, kG and kN . The head and the socle of U are
denoted by hd(U) and soc(U), respectively.
If χ is a character of KG, then Mχ denotes an RG-lattice in a KG-module
with character χ. Moreover, if M is an RG-lattice, let M be its reduction
modulo p, i.e. M := k ⊗R M , and put KM := K ⊗R M . Finally, if χ is
a KG-character, we denote by χ the Brauer character such that χ and χ
coincide on p′-conjugacy classes.
A kG-module U is liftable, if there exists an RG-lattice M with M ∼= U . By
a lift of U we understand any such lattice M or the character of KM . The
following theorem of Zassenhaus is useful as it imposes certain restrictions
on indecomposable liftable kG-modules.

Theorem 2.2 (Zassenhaus, [La83, La. I.17.3]). Let M be an RG-lattice and
let χ be the character of KM . Let χ = χ1+χ2 for two KG-characters χ1, χ2.
Then M contains R-pure submodules N1, N2, such that χi is the character
of KNi for i = 1, 2. In particular, M contains submodules isomorphic to
N i with Brauer characters χi, i = 1, 2.

Here is an application of the above theorem which will be used later on.

Lemma 2.3. Suppose that X is liftable and let χ be the character of some
lift of X. Consider the subgraph σX of σ consisting of all the vertices of
σ which correspond to constituents of χ, and all the edges of σ connecting
such vertices. Then σX is connected.
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Proof. Suppose the contrary. Then we can write χ = µ + ν with non-
zero characters µ, ν of G such that µ and ν have no common irreducible
constituent. By Theorem 2.2, there are submodules Y and Z of X with
Brauer characters µ and ν, respectively. Now Y ∩ Z = 0, since the two
modules have no composition factor in common. Since χ = µ + ν, the
dimensions of Y and Z add up to the dimension of X. Hence X = Y ⊕ Z,
contradicting the indecomposability of X. �

The following lemma allows us to transfer the analysis of the indecomposable
liftable B-modules to the respective Green correspondent in b (and vice
versa).

Lemma 2.4. Let the assumptions be as in Hypothesis 2.1. If Y is an inde-
composable liftable non-projective kG-module belonging to B, then f(Y ) is
an indecomposable liftable non-projective kN -module belonging to b.
If U is an indecomposable liftable non-projective b-module, than g(U) is an
indecomposable liftable non-projective kG-module belonging to B.

Proof. The assertion that g(U) is an indecomposable liftable kG-module,
if U is an indecomposable liftable b-module, has been proven by Peacock
in [Pea77, Thm. 2.8] (with the help of [Tho67, Lemma 1]). Considering
[Alp86, Thm. 17.3], the other assertion is proven similarly. �

Let us briefly recall the construction of the indecomposable modules of B
according to Janusz [Jan69] (see also [Fei82, Section VII.12]). Recall that
X is an indecomposable non-projective B-module. Assume in addition that
X is not simple.
Janusz showed that X can be constructed from a certain path τ on σ,
together with a selection of every second edge in τ and, in case m is larger
than 1, a multiplicity associated to one of the edges. Two types of paths
arise, a Type I path as in Figure 4, and a Type II path as in Figure 5. The
Type I path is supposed to start at the edge E0. Type II paths only arise
for m > 1. In this case the vertex of the Type II path labelled by χλ is
the exceptional vertex of the Brauer tree σ of B. The path of Figure 5 is
understood to start in χu0, cross χ0, continue to χλ, turn direction, cross
χs, . . . , χ0 and end in χd0. An edge is displayed with a double line, as shown
in the following figure, if this edge is crossed twice in the path.

©
Ei−1 © Ei ©

Ei+1 ©
χi−1 χi χi+1 χi+2

The label χi on a vertex of the path always denotes an ordinary irreducible
character of B associated to this vertex. If this is the exceptional vertex, χi

denotes any one of the exceptional characters of G.
Let ∆ denote the set of selected edges of τ (or their indices). If i ∈ ∆, we
also say that the edge Ei is marked. The head and the socle constituents of
X correspond to the marked edges, and to the unmarked edges respectively.
For each i ∈ ∆ there is a submodule Xi of X with unique head Ei, whose
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Ei

Xi :=

Ei−1 Ei+1

Figure 3. Submodule Xi of X

socle consists of the edges of τ adjacent to Ei. In case τ contains the
edges Ei−1 and Ei+1, the module Xi may be visualised as in Figure 3. The
composition factors of the left leg of Xi, from bottom to top, correspond to
the edges of σ adjacent to χi encountered on a clock-wise walk around χi

from Ei−1 to Ei. The composition factors of the right leg of Xi, from top
to bottom, correspond to the edges of σ adjacent to χi+1 encountered on
a counter-clockwise walk around χi+1 from Ei to Ei+1. A walk around the
exceptional vertex of σ may include several full circles. In case Ei is the first
or the last edge in τ , the module Xi is uniserial.
We have X =

∑
i∈∆Xi. In fact X is obtained abstractly by amalgamating

modules isomorphic to Xi along their common socle constituents. In [Fei82,
VII.12], the module Xi is called V 0

i (ni) which is in fact isomorphic to the
one called Vi(ni). We may visualise X as follows:

. . . Ei−2 Ei Ei+2

Ei−1 Ei+1 Ei+3 . . .

Here, {. . . , Ei−2, Ei, Ei+2, . . .} are the head constituents of X, i.e. ∆ =
{. . . , i − 2, i, i + 2, . . .}, whereas {. . . , Ei−1, Ei+1, Ei+3, . . .} are the socle
constituents of X.
The module X is called of Type I or of Type II, if it is constructed from a
path of Type I or of Type II, respectively. By construction, X is of Type
I if and only if the head and the socle of X have no common irreducible
constituent (up to isomorphism).

Remark 2.5. (a) The liftable simple B-modules are exactly those corre-
sponding to leaves of σ.
(b) Let X be associated to the path τ with first vertex χ0 and first edge E0.
Then no simple B-module corresponding to an edge of σ adjacent to χ0 and
different from E0 is a composition factor of X. This follows directly from
the construction of X from τ .

Lemma 2.6. Let X be associated to the path τ of Type I as in Figure 4
with n ≥ 2. Suppose that χ1 does not label the exceptional vertex of σ.
Suppose further that 1 ∈ ∆, i.e. that E1 is in the head of X. Then X has
no submodule S with Brauer character χ1 and with soc(S) = E0.
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Proof. Assume that S is such a submodule. Note that S is indecomposable,
as its socle is simple. Put

W :=
∑

i∈∆\{1}

Xi,

withXi as in the discussion above, so thatX = X1+W . Then E0 6≤ soc(W ),
hence S ∩W = 0. Thus we have an injective homomorphism

S ↪→ X → (X1 +W )/W ∼= X1/(X1 ∩W ).

There are two cases to be considered:
(i) S ∼= X1/(X1 ∩W ). Then dimX = dim(S +W ), so that X = S +W is
a direct sum, as S ∩W = 0. Since S 6= X1, we have W 6= 0, contradicting
the indecomposability of X.
(ii) S is a proper submodule ofX1/(X1∩W ). Then S ≤ rad(X1/(X1∩W )) =
rad(X1)/(X1 ∩W ). Now rad(X1) is a direct sum of two uniserial modules
U1 and U2, with socles E0 and E2, respectively. It follows that X1 ∩ W
is isomorphic to a submodule of U2, and in turn that S is isomorphic to a
submodule of U1. However, U1 does not have composition factors isomorphic
to E1, a contradiction. �

Lemma 2.7. Suppose that m > 1. If X is liftable, then the multiplicity of
an exceptional character in any lift of X is at most one.

Proof. Let Q be a projective cover of X. By construction, hd(X) contains
at most one simple module corresponding to an edge of σ connected to the
exceptional vertex. Thus Q contains at most one indecomposable summand
which is the projective cover of such a simple module. Thus the lift of Q
either contains no exceptional character at all, or else the sum of all excep-
tional characters. By [Gr74, (3.6b)], any lift of X is an epimorphic image of
the lift of Q. This proves the assertion. �

3. Necessary conditions for liftability

Here we derive some necessary conditions on indecomposable liftable mod-
ules of B. Throughout this section we impose the assumptions and notations
of Hypothesis 2.1.

3.1. Modules of Type I.

Lemma 3.1. Suppose that X is of Type I constructed from the path τ as
in Figure 4. If X is liftable, the ordinary characters χ0 and χn+1 (i.e. the
left- and rightmost vertices of τ) are not constituents of any lift of X (even
if they are leaves of σ).

Proof. Assume that χ0 is a constituent of a lift of X. By Remark 2.5(b),
χ0 is a leaf of σ. In this case, E0 is the only constituent of the reduction
modulo p of Mχ0 and should therefore occur in the head and in the socle of
X by Theorem 2.2. But this contradicts the assumption that X is of Type
I. The proof for χn+1 is similar. �
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© E0 © E1 © © En ©
χ0 χ1 χ2 χn χn+1

Figure 4. Type I path

The following lemma leads to the proof of Theorem 1.1.

Lemma 3.2. Let X be a liftable module of Type I associated to the path τ
as in Figure 4. Then the following assertions hold.
(a) Only n = 1 is possible, so that X is uniserial with one of the following
structures:

(i)
E1
...
E0

(ii)
E0
...
E1

.

(b) If X is as in (b)(i), the successor of E0 around the vertex χ1 is E1. If
X is as in (b)(ii), the successor of E1 around the vertex χ1 is E0.
(c) If χ1 does not label the exceptional vertex of σ, then any lift of X has
character χ1.
(d) Let χ1 label the exceptional vertex of σ and let t be the multiplicity of
E0 as a composition factor of X. Then any lift of X is the sum of t distinct
exceptional characters.

Proof. (a) Assume that n > 1. By relabelling, if necessary, we may assume
that χ1 does not label the exceptional vertex of σ. Suppose first that E0

is in the socle of X. By Lemma 3.1, any lift of X must contain χ1 as a
constituent. By Theorem 2.2, there is a submodule S of X with Brauer
character χ1. Since E0 is the only constituent of S in soc(X), we must have
soc(S) = E0. Since n > 2, this contradicts Lemma 2.6. If E0 is in the head
of X, we consider X∗, the contragredient dual of X, a module of the dual
block B∗. The path of the Brauer tree of B∗ giving rise to X∗ is the same
as the path for X, with the complementary choice of ∆, i.e. E∗

0 is in the
socle of X∗. As above we obtain n = 1.
(b) This follows from the liftability and the construction of X.
(c) This follows from (a).
(d) From (a) we get that any lift of X is a sum of t exceptional characters.
By Lemma 2.7, these are all distinct. �

The proof of Theorem 1.1 is now an immediate consequence of Lemma 3.2.
Note that every irreducible KG-module belonging to a cyclic block and not
being associated to a leaf of the Brauer tree, gives rise to a module of Type
I as described in Theorem 1.1(a). Note also that these modules occur in
Green’s walk around the Brauer tree (see [Gr74]).

3.2. Modules of Type II. Indecomposable modules of Type II belonging
to B are constructed from a path τ of Type II as shown in Figure 5. It is
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understood that if i < 0 or j < 0, the corresponding branches of τ are not
present.

© Eu0 © Eu1 © ©
Eui

χ0HH
HH

HH
H

χu0 χu1 χu2 χui

© E0 © © Es ⊙
χ1 χs χλ

©
Ed0

©
Ed1

© ©
Edj

vvvvvvv

χd0 χd1 χd2 χdj

Figure 5. Type II path

Lemma 3.3. Assume that X is liftable of Type II, associated to a path τ as
in Figure 5. If i ≥ 0 or j ≥ 0, then χu0, respectively χd0 are not constituents
of any lift of X.

Proof. This follows immediately from Theorem 2.2, Remark 2.5(b), and the
fact that Eu0, respectively Ed0 only occur in the socle or the head of X, but
not in both. �

Lemma 3.4. Assume that X is liftable of Type II, associated to a path τ
as in Figure 5. Then neither i nor j in Figure 5 is greater than zero.

Proof. Suppose that i ≥ 1. Then each of Eu0 and Eu1 occurs with multiplic-
ity 1 as a composition factor of X. Let χ be the character of a lift of X. By
Lemma 3.3, χu0 is not contained in χ. Hence χu1 occurs with multiplicity 1
in χ. In turn χu2 (if i ≥ 2) or χ0 (if i = 1), does not occur in χ. This
contradicts Lemma 2.3.
The same argument excludes the case j ≥ 1. �

χu0 χ0 χ1 χs χλ

© Eu0 © E0 © © Es ⊙
χd0 χ0 χ1 χs χλ

© Ed0 © E0 © © Es ⊙
Figure 6. Special paths of Type II

Note that the sets of indecomposable modules (up to isomorphism) obtained
from the two paths in Figure 6 are the same if Eu0 is isomorphic to Ed0

(see [Fei82, La. VII.12.5]). It therefore remains to discuss indecomposable
liftable non-projective modules of Type II, which are associated to one of
the three types of paths shown in Figure 2.
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Lemma 3.5. Let τ be one of the paths in Figure 2. Suppose that the mod-
ule X constructed from τ is liftable. Assume that Es occurs t + 1 times as
a composition factor of X for some 1 ≤ t ≤ m− 1.
(a) If τ is not as in Figure 2, Case 1, with s = 0, then the character of
any lift of X equals χ0 + χ1 + · · · + χs + µ, where µ is a sum of t distinct
exceptional characters. In particular, χ0 is a leaf of σ.
(b) If τ is as in Figure 2, Case 1, with s = 0, then χ0 or χλ is a leaf of
the Brauer tree. Suppose that e > 1, so that exactly one of χ0, χλ is a leaf.
Then in the first case, the character of any lift of X equals χ0+µ, where µ is
a sum of t distinct exceptional characters. In the latter case, the character
of any lift of X is a sum of t+ 1 distinct exceptional characters.

Proof. (a) Assume that χ0 is not a constituent of some lift L(X) of X. Then
τ is as in Case 1 by Lemma 3.3, since otherwise Eu0 is a composition factor
of X. Note that E0 occurs twice as a composition factor in X in Case 1,
namely in the socle and in the head of X. Hence χ1 occurs twice in the
character of L(X) by assumption. Let Q be the projective cover of X. As
hd(X) = E0 ⊕ E1 ⊕ · · · ⊕ Es, the character of the lift L(Q) of Q equals
χ0 + 2χ1 + . . .+ 2χs + ψ, where ψ is the sum of the exceptional characters.
We have a short exact sequence

0 // Ω(X) // Q // X // 0,

which lifts to the short exact sequence

0 // L(Ω(X)) // L(Q) // L(X) // 0,

where L(Ω(X)) and L(Q) are lifts of Ω(X) and of Q, respectively. By
our assumption, the character of L(Ω(X)) equals χ0 + ϑ, where χ1 is not a
constituent of ϑ. This contradicts Lemma 2.3, since Ω(X) is indecomposable.
Thus χ0 occurs in the character of L(X) with multiplicity one. By Remark
2.5(b), this implies that χ0 is a leaf of σ in Case 1. Moreover, χi occurs in
the character of L(X) for 1 ≤ i ≤ s. Finally, the character of L(X) contains
exactly t exceptional constituents, which are distinct by Lemma 2.7.
(b) The composition factor E0 occurs t+ 1 times in X. Thus, if χ0 is not a
leaf, liftability is only possible if χλ is a leaf. If χ0 is not a leaf of σ, then χ0

cannot be a constituent of the character of a lift of X by Remark 2.5(b). If
χλ is not a leaf of σ then χ0 must be a constituent of the character of any
lift of X, since X has composition factors occurring with multiplicity t. �

Remark 3.6. Assume that G has a cyclic Sylow p-subgroup P which is
not of prime order. Then any Scott module whose vertex is smaller than P
arises from a path τ as in Figure 2, Case 1.

Lemma 3.7. Let τ be one of the paths in Figure 2, Case 2, and assume
that the module X constructed from τ is liftable.
If Eu0 is not marked, the succesor of Eu0 around χ0 is E0. If Eu0 is marked,
the successor of E0 around χ0 is Eu0.
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Proof. This follows from the construction of X. If Eu0 is not marked, then
a simple B-module corresponding to an edge of σ adjacent to χ0 and lying
between Eu0 and E0 is not a composition factor of X. On the other hand,
since χ0 is a constituent of a lift of X, every simple B-module corresponding
to an edge of σ adjacent to χ0 must occur in X as a composition factor. �

Lemma 3.8. Let τ be one of the paths in Figure 2, Case 3, and assume
that the module X constructed from τ is liftable. Then Eu0 is not marked
and the successor of Eu0 around χ0 is Ed0.

Proof. Note that under the hypothesis that Eu0 is marked, each of Eu0 and
Ed0 occur twice as composition factors of X. As neither χu0 nor χd0 can
be constituents of any lift of X by Lemma 3.7, χ0 must occur twice as a
constituent of a lift of X. This leads to a contradiction as in the proof of
Lemma 3.5(a).
The second assertion is clear (see the proof of Lemma 3.7). �

4. Characterisation of the indecomposable liftable modules

So far we have described possible structures of indecomposable liftable non-
projective B-modules. The natural question that arises is which of them are
indeed liftable. The answer is simple: As long as the Brauer tree admits a
structure as described as above and as long as the respective restrictions are
satisfied, the module is in fact liftable.
For the proof of this assertion we use a graph theoretic counting argument.
Before doing so, we need some preliminaries. As before, we use the notation
and assumptions in Hypothesis 2.1. Recall that the Brauer tree of b is a star
with e edges and its exceptional vertex (if one exists) at the centre. Recall
that m denotes the exceptional multiplicity of b.

Lemma 4.1. (a) If e > 1, there are e(2m + 1) indecomposable liftable b-
modules.
(b) If e = 1, there are m+ 1 indecomposable liftable b-modules.

Proof. (a) There are e simple and e projective indecomposable b-modules,
and these are all liftable. By Lemma 3.2, Lemma 3.5, and Lemma 3.7 we find
em candidates for indecomposable liftable modules of Type I and e(m− 1)
candidates for indecomposable liftable modules of Type II (only Case 1).
Thus we need to show that these candidates are in fact liftable. Let Y be
such a module with socle V0. Then Y is isomorphic to a liftable submodule
of the projective cover of V0 by Theorem 2.2. Thus we find the proposed
number of liftable modules in total.
(b) The same argument as in (a) applies, except for the fact that there are
only m+ 1 indecomposable b-modules in total. �

Note that in the special case that the Brauer tree of B is a star with the
exceptional vertex at the centre, then the preceding Lemma gives already
a proof of the fact we are aiming at in this section. We will thus assume
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. . .

. . . ©
Eχ,f

Eχ,1 ssssssssss

Eχ,f−1
KKKKKKKKKK

Eχ,f+1
wwwwwwwwww

Eχ,vχ−1
GGGGGGGGGG

Eχ,vχ © © Es ⊙
χ

. . .

Figure 7. Labelling of edges on Brauer tree at χi

that e > 1 in the following. We need to show that the number of candidates
for indecomposable liftable non-projective modules determined in Subsec-
tion 3.1 and Subsection 3.2 equals 2em. Indeed, in this case, all possible
candidates are then liftable by Lemma 2.4.

Lemma 4.2. Suppose that e > 1. Then the number of indecomposable
B-modules which are either simple or projective indecomposable or which
satisfy the restrictions described in Subsection 3.1 and Subsection 3.2 equals
e(2m+ 1).

Proof. There are e projective indecomposable modules and 2e indecompos-
able modules, which arise from Green’s walk around the Brauer tree (see
[Gr74]). The latter are simple or satisfy the restrictions derived in Subsec-
tion 3.1. Thus we are done if m = 1.
Suppose then that m > 1. Let χ be an arbitrary vertex of σ different from
the exceptional one and let the edges emanating from χ in σ be labelled
as in Figure 7. Denote the valency of the vertex χ by vχ. Then there are
exactly vχ(m − 1) indecomposable modules of Type II arising from paths
as in Theorem 1.2, which start in one of the edges incident to χ. These
vχ(m− 1) modules can be described by the starting edge Eχ,i, the marking
of the edges, and a multiplicity. First assume that vχ ≥ 2. Then we have
the following possible paths and edge markings:

• Type II, Case 2: Starting edge Eχ,1 and Eχ,1 marked;
• Type II, Case 3: Starting edge Eχ,j , for 1 ≤ j ≤ vχ − 2, and Eχ,j

not marked;
• Type II, Case 2: Starting edge Eχ,vχ−1 and Eχ,vχ−1 not marked.

Finally, if χ is a leaf, i.e. vχ = 1, there is only one possible path of Type
II, Case 1. Note that each of the above marked paths gives rise to m − 1
indecomposable modules, according to the multiplicity associated to the
marked edge incident to the exceptional vertex.
Now let χ be the exceptional vertex with valency vχ. If vχ > 1, i.e. if χ is
not a leaf, then there are exactly vλ distinct marked paths of Type I as in
Lemma 3.2 with χ as their middle vertex. Each of these paths gives rise to m
indecomposable modules, one of which is contained in Green’s walk. If χ is a
leaf, the path of Type II as in Lemma 3.5(b) gives rise to m indecomposable
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modules, one of which has already been counted. Thus we can associate to
the exceptional vertex χ exactly vχ(m− 1) indecomposable modules.
We have now accounted for all the marked paths and their multiplicities
arising in Subsections 3.1 and 3.2.
It is well known, that ∑

χ∈σ

vχ = 2e.

As there are at most vχ(m− 1) indecomposable liftable modules associated
to each vertex as above, we get at most 2e(m − 1) indecomposable liftable
modules which are not projective or which do not arise from Green’s walk.
Summing up, there are

e+ 2e+ 2e(m− 1) = e(2m+ 1)

indecomposable liftable modules in total. �

It is clear that the above lemma together with the results of Section 3 proves
Theorem 1.2.

5. The Green correspondents

In this section we determine the Green correspondents of the indecomposable
liftable B-modules. The main tool is the Heller operator, which commutes
with the Green correspondence. The orbits of Ω on the indecomposable
non-projective b-modules are well known and easy to describe. There are
m orbits of Ω on this set, each of length 2e. One of these orbits consists of
the simple modules V0, V1 := Ω2(V0), . . . , Ve−1 := Ω2e−2(V0), together with
Ω(V0),Ω(V1) = Ω3(V0), . . . ,Ω(Ve−1) = Ω2e−1(V0). The Green correspon-
dents of the elements in this orbit are exactly the indecomposable modules
occurring in Green’s walk around the Brauer tree [Gr74].
If m = 1, i.e. d = 1 and e = p − 1, then the above modules are all of the
indecomposable liftable non-projective modules of B.
We may and will thus assume in the following that m > 1. Also, X denotes
an indecomposable liftable non-projective module in B.

Lemma 5.1. The number of exceptional characters is the same in any lift
of X.

Proof. This is a consequence of our classification. �

Definition 5.2. We write m(X) for the number of exceptional characters
in a lift of X.

Lemma 5.3. Assume that the exceptional vertex is contained in the path τ
associated to X. Then m(X) +m(Ω(X)) = m.

Proof. The assumptions imply that the projective cover Q of X has an
indecomposable direct summand corresponding to an edge connected to the
exceptional vertex. The lifts of the other direct summands of Q have no
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exceptional constituents. Thus the exceptional characters are constituents
of the lift of Q, each with multiplicity one. This implies the result. �

Theorem 5.4. Suppose that m > 1. Fix an edge E of σ connected to the
exceptional vertex. For each 1 ≤ t ≤ m let Xt denote a uniserial liftable
module with head E and m(Xt) = t. (If the exceptional vertex of σ is a leaf,
then Xt is simple or of Type II and has all composition factors isomorphic
to E. Otherwise, Xt is of Type I. In either case, E has multiplicity t as a
composition factor of Xt.)
(a) The Ω-orbit containing Xm is Green’s orbit.
(b) Suppose that t < m and let Y be a member of the Ω-orbit containing Xt.
Then

m(Y ) =
{
t, if Y = Ω2i(Xm) for some i,
m− t, if Y = Ω2i+1(Xm) for some i.

(c) We have

m(f(Xt)) =
{
t, if m(f(Xm)) = m,
m− t, if m(f(Xm)) = 0.

Moreover, all Green correspondents f(Xt) for 1 ≤ t ≤ m have the same
head.
(d) Each Ω-orbit on the set of (isomorphism classes of) indecomposable
liftable non-projective B-modules contains exactly one of the Xt.

Proof. (a) This follows from the results of Green [Gr74, Theorem 2].
(b) This is a consequence of Lemma 5.3 as any indecomposable liftable non-
projective module of B not contained in Green’s orbit satisfies the hypothesis
of that lemma.
(c) By [Fei82, Theorem VII.2.14], the composition length of f(X1) equals
e or pd − e. In the first case, m(f(X1)) = 1, and in the second case
m(f(X1)) = m. In particular, f(X1) is either short or long in the terminol-
ogy of [Pea75]. Thus [Pea75, Corollary 3.7] carries over to the case where
the Green correspondent of a simple B-module is replaced by f(X1). Next,
the proof of [Pea75, Theorem 3.10] carries over to the situation W = Xt

(1 ≤ t ≤ m− 1), and the simple module being replaced by X1. In the first
case, [Pea75, Theorem 3.10 (a)] yields m(f(Xt+1)) = t+1, and in the second
case, this yields m(f(Xt+1)) = m − (t + 1). In particular, the first case is
equivalent to m(f(Xm)) = m. The last assertion also follows along these
lines.
(d) This follows from the corresponding fact for b together with (c). �
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