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Abstract. Let G be a finite group, let k be an algebraically
closed field of positive characteristic p and let B a block of kG with
cyclic defect groups. We classify the indecomposable B-modules
which are liftable with respect to a splitting p-modular system with
residue class field k. The indecomposable non-projective modules
in B are constructed from certain paths in the Brauer tree of B
(see [Ja69]). We determine those paths that give rise to liftable
modules. We also find the characters of the lifts of these modules.

1. Introduction

We consider a finite group G, an algebraically closed field k of posi-
tive characteristic p and a block B of kG with cyclic defect groups. The
aim of this note is to classify the indecomposable B-modules which are
liftable with respect to a splitting p-modular system with residue class
field k.

The structure of a block with cyclic defect groups is encoded in its
Brauer tree. This is a finite tree, together with a planar embedding
and, possibly, a multiplicity assigned to one of its vertices. In [Ja69]
and [Ku69], Janusz and Kupisch constructed the non-projective inde-
composable modules in such a block. The construction is described in
terms of a sequence of elementary modules in [Ku69], or, equivalently,
in terms of certain paths on the Brauer tree in [Ja69]. Here, we deter-
mine those paths that correspond to the liftable modules, and describe
the characters of their lifts.

Indecomposable direct summands of permutation kG-modules are
trivial source modules and hence are liftable. One of the motivations
for our work was the attempt to understand the trivial source modules
in blocks with cyclic defect groups.

The exposition of this paper owes very much to the anonymous ref-
eree of a previous version, where we gave a more self-contained but less
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2 Indecomposable Liftable Modules in Cyclic Blocks

conceptual proof of the main result. It was the referee who suggested
to start from the fact that the Green correspondence sets up a sta-
ble equivalence between the block B and its Brauer correspondent b,
compatible with Auslander-Reiten sequences and preserving liftability
of indecomposable modules. The positions of the non-projective inde-
composable liftable b-modules on the stable Auslander-Reiten quiver
of b are easily determined. One thus has to describe the structure
of the indecomposable B-modules located at a certain distance to the
boundary of the stable Auslander-Reiten quiver of B. As the referee
suggested, this is most conveniently achieved by noticing that B mod-
ulo its socle is a string algebra in the sense of [BuRi87], which allows to
describe the arrows in the stable Auslander-Reiten quiver by a process
of adding hooks or removing cohooks. This construction is explicitly
worked out in [BC02] for Brauer tree algebras, of which B is an exam-
ple.

In this paper we proceed as follows. We produce a list of candi-
dates for the non-projective indecomposable liftable B-modules. Using
[BC02, Theorem 3.5] we show that all our candidates lie on the po-
sitions of the liftable modules on the stable Auslander-Reiten quiver
of B, and that each orbit under the Auslander-Reiten translate of the
non-projective liftable B-modules contains at least one of our candi-
dates. We then apply a result of Reiten [Rei77, Theorem 2.4] to prove
that the set of our candidates is closed under the Auslander-Reiten
translate. This shows that the set of our candidates contains all the
liftable modules.

2. The main theorem

To describe our main result, let (K,R, k) be a p-modular system such
that K has characteristic 0 and is large enough for G. A kG-module
X is liftable, if there exists an RG-lattice M such that X ∼= k ⊗RM .
Now let B, as above, denote a kG-block with cyclic defect groups.
The embedded Brauer tree of B is denoted by σ. The embedding is
determined by specifying, for each vertex of σ, a cyclic ordering of
the edges adjacent to this vertex. Consider two edges E and F of σ
adjacent to the vertex χ. We say that F is a successor of E around χ,
if F comes next to E in the cyclic ordering of the edges around χ. We
use the convention that in a drawing of σ in the plane, the successor
of an edge is the counter-clockwise neighbour of this edge.

The vertices of the Brauer tree are labelled by irreducible K-cha-
racters of B. If σ has an exceptional vertex, this is labelled by any
one of the exceptional characters and indicated by a black circle in our
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drawings. The edges of σ are labelled by the simple B-modules. A
vertex of σ and the corresponding irreducible K-character are denoted
by the same symbols, and the analogous convention is used for the edges
of σ. By a leaf of σ we either mean a vertex of valency 1 or the edge
adjacent to it. Thus the leaves of σ correspond to the simple liftable
B-modules. We use the same convention as in [Alp86, Section 17], i.e.
the edge F is a successor of E around a vertex of σ, if and only if there
is a nonsplit extension 0→ F → X → E → 0 of B-modules.

Let us assume that B has defect n ≥ 1 and that the number of
simple modules of B equals e. Put m := (pn − 1)/e. If m > 1, it
is called the exceptional multiplicity of B. Let us briefly recall the
description of the indecomposable B-modules. A non-projective, non-
zero indecomposable B-module X determines a non-empty sequence
(E1, E2, . . . , Es) of simple modules such that for all 1 ≤ i < s, one of
Ei, Ei+1 is in the socle of X and the other one is in the head of X, and
the edges Ei, Ei+1 are incident on the Brauer tree. This is called the
top-socle sequence of B, and visualised by the corresponding path in the
Brauer tree (see [Ja69, Ku69] and [Fei82, Section VII.12.]). In [BC02,
Definition 2.1], Bleher and Chinburg also assign to X a pair ε = (ε1, εs)
of signs, called the direction of X, and an integer 0 ≤ µ ≤ m, called
the multiplicty of X as follows. If X is simple, define ε = (−1, 1).
Otherwise, for i = 1, s, let εi = −1, if Ei is in the socle of X, and
εi = 1, if Ei is in the head of X. If none of the Ei is adjacent to the
exceptional vertex (in particular, if m = 0), we set µ = 0. If m > 1
and Ei is ajacent to the exceptional vertex for some 1 ≤ i ≤ s, we let µ
denote the number of composition factors of X isomorphic to Ei (this
is independent of the chosen edge adjacent to the exceptional vertex).
The module X is determined by its top-socle sequence, its direction
and its multiplicty.

A projective indecomposable B-module P has two uniserial submod-
ules P1 and P2 such that rad(P ) = P1 + P2 and soc(P ) = P1 ∩ P2. An
indecomposable B-module X is called a hook, if there is a projective
indecomposable module P such that X ∼= P/P1 or X ∼= P/P2. Notice
that hooks are uniserial. (Dually, the modules isomorphic to P1 or P2,
as P runs through the projective indecomposable B-modules are called
cohooks, but every cohook is a hook and vice versa.)

The stable Auslander-Reiten quiver Γs(B) of B is the finite tube
(Z/eZ)Apn−1 (see [Ben91, Theorem 6.5.5]). We will also give a charac-
terisation of the non-projective indecomposable liftable B-modules in
terms of their minimal distance to the boundary of Γs(B). It follows
from Green’s results in [Gr74], that the hooks and cohooks are exactly
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the modules located at the boundary of Γs(B), and that these modules
are liftable.

Theorem 2.1. Suppose that B has defect n ≥ 1 and e simple modules
and put m = (pn − 1)/e.

(a) The number of indecomposable liftable B-modules equals m+ 1 if
e = 1, and e(2m+ 1) if e > 1. If e = 1, all indecomposable B-modules
are liftable. We thus assume that e > 1 in the following.

(b) Let X be a non-projective indecomposable B-module. Then X
is liftable, if and only if the minimal distance of X to the boundary
of Γs(B) is of the form ei for 0 ≤ i ≤ b(m − 1)/2c or ei − 1 for
1 ≤ i ≤ bm/2c.

(c) The indecomposable liftable B-modules X are exactly those de-
scribed in (1)–(6) below. The modules in (3)–(6) only occur if m > 1.

(1) X is projective.
(2) X is a hook; in particular, X is uniserial with descending compo-

sition series corresponding to a counter-clockwise walk around a vertex
χ of σ (each composition factor of X occurring with multiplicity m if
χ is the exceptional vertex). The character of any lift of X equals χ or
the sum of the exceptional characters.

The number of modules of this type is 2e. These are exactly the
modules occurring in Green’s walk around the Brauer tree [Gr74] and
exactly the modules lying at the boundary of Γs(B).

(3) X corresponds to the following path with l ≥ 0; in case l > 0 the
vertex χ0 is a leaf of the Brauer tree, in case l = 0 either χ0 or χλ is
a leaf. The direction of X is (1,−1).

-� . . . . . . -�i i i yχ0 E1

Es

χ1 χl χλ

(4) X corresponds to the following path, where l ≥ 0, the successor
of E1 around χ0 is Es, and E1 is in the head of X, i.e. the direction
of X is (1, 1).

� -� . . . . . . -�i i i i y
Es

E1
χ0 χ1 χl χλ

(5) X corresponds to the following path, where l ≥ 0, the successor
of E1 around χ0 is Es, and E1 is in the socle of X, i.e. the direction
of X is (−1,−1).
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- -� . . . . . . -�i i i i yE1 E2

Es

χ0 χ1 χl χλ

(6) X corresponds to the following path, where l ≥ −1, the successor
of E1 around χ0 is Es and E1 is in the socle of X, i.e. the direction
of X is (−1, 1). (If χ0 = χλ is the exceptional vertex, we put l = −1.)

H
HHHj

�
����

-� . . . . . . -�

i
i

i i i yE1
E2

Es

χ0 χ1 χl χλ

For any of the paths in (3)–(6), there are m − 1 modules X distin-
guished by their multiplicity µ with 2 ≤ µ ≤ m (or 1 ≤ µ ≤ m − 1 in
Case (6) with l = −1).

(d) If X is as in (c), the character of any lift of X equals
∑l

i=0 χi+Ξ,
where Ξ is a sum of µ − 1 (or µ in Case (6) with l = −1) distinct
exceptional characters.

3. Preliminaries

We keep the notation introduced in the previous section. Let D be
a defect group of B of order pn with n ≥ 1. Recall that e denotes
the number of simple B-modules and m = (pn − 1)/e. The unique
subgroup of order p of D is denoted by D1 and the normaliser of D1

in G by N . If X is an indecomposable non-projective kG-module with
vertex contained in D, we denote its Green correspondent in kN by
f(X). If X belongs to B, then f(X) belongs to the Brauer correspon-
dent b of B (compare [Alp86, Corollary 14.4]). Likewise, if Y is an
indecomposable kN -module with vertex in D, then g(Y ) denotes its
Green correspondent in kG. The Brauer tree of b is a star with the
exceptional vertex (if m > 1) at the centre. The number of simple
kN -modules belonging to b is e.

The following lemma allows us to transfer the analysis of the inde-
composable liftable B-modules to the respective Green correspondent
in b (and vice versa).

Lemma 3.1. If X is an indecomposable liftable non-projective B-
module, then f(X) is an indecomposable liftable non-projective b-mod-
ule.
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If Y is an indecomposable liftable non-projective b-module, then g(Y )
is an indecomposable liftable non-projective B-module.

Proof. The assertion that g(Y ) is an indecomposable liftable kG-module,
if Y is an indecomposable liftable b-module, has been proven by Pea-
cock in [Pea77, Thm. 2.8] (with the help of [Tho67, Lemma 1]). Con-
sidering [Alp86, Thm. 17.3], the other assertion is proven similarly. �

Our next task is the determination of the indecomposable liftable b-
modules. This makes use of a theorem of Zassenhaus.

Theorem 3.2 (Zassenhaus, [La83, Lemma I.17.3]). Let M be an RG-
lattice and let χ be the character of K ⊗RM . Let χ = χ1 + χ2 for two
KG-characters χ1, χ2. Then M contains R-pure submodules N1, N2,
such that χi is the character of K ⊗R Ni for i = 1, 2. In particular,
k ⊗RM contains submodules isomorphic to k ⊗R Ni, i = 1, 2.

Lemma 3.3. An indecomposable b-module Y is liftable, if and only if
the composition length of Y is congruent to 0 or 1 modulo e.

In particular, the number of liftable b-modules equals m+1, if e = 1,
and e(2m+ 1), if e > 1.

Proof. Suppose first that Y is liftable. Since Y is uniserial, a lift of Y
can contain at most one non-exceptional character by Theorem 3.2.
The number of composition factors of the reduction modulo p of an
exceptional character equals e. Thus the composition length of Y is
congruent to 0 or 1 modulo e. The converse follows from Theorem 3.2
by starting with the projective indecomposable characters. �

Lemma 3.4. Suppose that m > 1. Let X denote an indecomposable B-
module. If X is liftable, then the multiplicity of an exceptional character
in any lift of X is at most one.

Proof. Let P be a projective cover of X. By construction (see [Fei82,
Section VII.12.])), the head of X contains at most one simple mod-
ule corresponding to an edge of σ connected to the exceptional vertex.
Thus P contains at most one indecomposable summand which is the
projective cover of such a simple module. Thus the lift of P either con-
tains no exceptional character at all, or else the sum of all exceptional
characters. By [Gr74, (3.6b)], any lift of X is an epimorphic image of
the lift of P . This proves the assertion. �

4. Proof of the theorem

Let Ω denote the Heller operator. Green correspondence sets up
an Ω2-equivariant graph isomorphism between Γs(b) and Γs(B) (see
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[Ben91, Page 203]). Let Γ be one of these Auslander Reiten quivers.
The boundary of Γ consists of two Ω2-orbits, called the two sides of the
boundary in the following. The Ω2-orbits on Γ are the sets of vertices of
fixed distance to either side of the boundary. If an orbit has distance i
to one side of the boundary, it has distance pn − 2− i = em− 1− i to
the other side.

For 0 ≤ i ≤ pn−1, the indecomposable b-modules with composition
length i constitute the Ω2-orbit with distance i−1 from the orbit of the
simple modules (see [Ben91, Page 203]), which forms one side of the
boundary of Γs(b). Lemma 3.3 now implies Theorem 2.1(a) and (b) for
the block b. Using Green correspondence together with Lemma 3.1,
we obtain Theorem 2.1(a) and (b) for B. As already remarked, the
modules described in Theorem 2.1(2) are exactly the modules lying
at the boundary of Γs(B). If m = 1, we have accounted for all the
non-projective indecomposable liftable modules.

Let us assume that m > 1 in the following. Using [BC02, Theo-
rem 3.5], one can show that the indecomposable modules described in
Theorem 2.1 lie in Ω2-orbits whose distance to one of the two sides of
the boundary is divisible by e.

Lemma 4.1. Let X be one of the modules described in Theorem 2.1(3)–
(6). Then the distance of X to one of the two sides of the boundary of
Γs(B) is divisible by e.

Proof. This follows from [BC02, Theorem 3.5]. To give the reader a
flavour of the arguments involved, we work out a special case. Let us
assume that X is as in Theorem 2.1(3) with l ≥ 1, i.e. χ1 is not the
exceptional vertex.

Using the labelling and notation of [BC02, Definition 3.2], we have
va = χ1, vz = χ0, and Sa = E1 = Sz. Thus, the walk WX of [BC02,
Definition 3.4] is of length q = 2e + 1. By [BC02, Theorem 3.5] the
distance of X to one of the two sides of the boundary equals d =
(q−1)/2+ηe = (1+η)e, where η is as defined in [BC02, Definition 3.4].
The other cases are treated similarly. �

In fact, the parameter η of the above proof is given by

η =

{
m− µ, if l is odd,
µ− 2, if l is even,

and d = (1+η)e gives the distance of X to the boundary containing E1.
The above lemma shows that the modules described in our theorem

are liftable. To show that no other liftable modules exist, we proceed as
follows. First we prove that each Ω2-orbit of liftable modules contains
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at least one of the modules described in Theorem 2.1. Finally we prove
that this set of modules is invariant under Ω2.

Lemma 4.2. Each Ω2-orbit of liftable modules on Γs(B) contains at
least one of the modules described in Theorem 2.1.

Proof. The result is clear if the Brauer tree of B is a star with the
exceptional vertex at its centre. Let us assume that this is not the
case. The modules of Theorem 2.1(2) constitute the boundary of Γs(B).
Consider a path τ as in Theorem 2.1(3). Assume that l ≥ 1 (i.e. that
the distance of χ0 to the exceptional vertex is at least 2), and that
the successor of the edge E1 around χ1 is Es (i.e. there are no edges
emanating from χ1 strictly between E1 and Es).

By [BC02, Theorem 3.5], the indecomposable module with multi-
plicity µ corresponding to τ has distance d = er to the side of the
boundary containing E1, where r = m − (µ − 1) or µ − 1 if l is odd
or even, respectively (see the remark after Lemma 4.1). Let τ ′ be
the path arising from τ by omitting the last edge. By [BC02, The-
orem 3.5], the indecomposable B-module X corresponding to τ ′ with
direction (1, 1) (i.e. X is as in Theorem 2.1(4)) and multiplicity µ has
distance d = er′ − 1 to the side of the boundary containing E1, where
r′ = µ− 1 or m− (µ− 1) if l is odd or even, respectively. Since µ can
vary between 2 and m, we obtain the claimed result. �

To finish the proof of Theorem 2.1(c), we show that Ω2 sends a module
of Theorem 2.1 to another such.

Lemma 4.3. The set of modules described in Theorem 2.1 is invariant
under Ω2.

Proof. This follows, e.g. from [Rei77, Theorem 2.4]. �

One can also use a graph theoretical counting argument to show that
the number of modules described in Theorem 2.1 equals e(2m + 1), if
e > 1. This gives an alternative proof of the fact that our theorem
describes all the liftable indecomposable modules.

Part (d) of Theorem 2.1 follows from the shape of the paths together
with Lemma 3.4.
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