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Abstract. We compute the irreducible constituents of the re-
strictions of all unipotent characters of the groups Sp4(q) and
Sp6(q) and odd q to their maximal parabolic subgroups stabilizing
a line. It turns out that these restrictions are multiplicity free.

We also obtain general information about the restrictions of
Harish-Chandra induced characters.

1. Introduction

This is a sequel to our paper [1], where we investigated the restriction
of the Steinberg character of a finite symplectic group G over a field of
odd characteristic to the maximal parabolic subgroup P ofG stabilizing
a line. We determined the irreducible constituents of this restriction
up to the constituents in the product of the Steinberg character of a
Levi subgroup L of P with a Weil character of L. This information
was sufficient to get a complete answer for G = Sp4(q) and Sp6(q).

The constituents of the product of the Steinberg character with a
Weil character were computed in [6] for all finite symplectic groups,
thus completing the work of [1]. It turned out that the restriction of
the Steinberg character of G to P is multiplicity free.

This paper is the first step in generalizing this result to all unipotent
characters. The information we obtain is sufficient to determine the
irreducible constituents of the unipotent characters for G = Sp4(q)
and Sp6(q), and again, all these restrictions are multiplicity free.

There is not much evidence that this pattern should persist for G =
Sp2m(q) for m > 2, but we do conjecture that there is an upper bound,
only depending on the Lie rank of G but not on q, for the composition
multiplicities in the restrictions of the unipotent characters of G to P .

Our motivation for this work is the `-modular representation theory
of G. Suppose that there exists such a bound M as above. Let χ

2000 Mathematics Subject Classification. 20C33 (20C15 20G40).
Key words and phrases. Symplectic Groups, Unipotent Characters, Parabolic

Subgroup.

1



be a unipotent character of G. Then it follows from a standard ar-
gument, that the `-modular decomposition numbers dχ,ϕ are bounded
from above by Mc, where c is the largest diagonal entry in the `-
modular Cartan matrix of P . Since by Clifford theory the `-modular
representation theory of P can be reduced to that of L and to the
parabolic subgroup of L analogous to P , the above bound is a basis
for induction. For example, it has been used in [1] to prove Donovan’s
conjecture for Sp6(q) if ` > 3.

Our general results, true for all symplectic groups G, are based on
Mackey’s theorem. Namely, we do not restrict individual unipotent
characters of G to P , but characters obtained from Harish-Chandra
induction from L. That is, we start with an irreducible character σ of L,
view it as a character of P via inflation, and consider the character χ
of G obtained by inducing σ from P to G. One part of the restriction
of χ to P is determined recursively, the other part only modulo the
constituents of the product of σ with a Weil character of L. As an
intermediate result we compute all these products in Sp4(q).

This method does not give information about the restrictions of cus-
pidal unipotent characters, of course. However, the restriction of the
cuspidal unipotent character of Sp4(q) to P can be obtained by other
means, and Sp6(q) does not have any cuspidal unipotent character. Our
results show that, in order to establish the existence of a bound M as
conjectured above, it would suffice to restrict cuspidal unipotent char-
acters and to bound the multiplicities in the products of unipotent
characters with the Weil characters.

2. Notation and recollections

In this section we fix some notation and recall some of the results of
[1], taking the opportunity to correct some inaccuracies of that paper.

Throughout our paper, we write G := Gn := Spn(q) for a non-
negative even integer n = 2m and an odd prime power q. We adopt
the convention that G0 = Sp0(q) is the trivial group. To be specific,
we always take G to be the matrix group

G := Gn := Spn(q) := {x ∈ GLn(q) | xtJ̃nx = J̃n}.
(As in [1], we usually denote matrices by boldface letters.) With respect
to the standard basis of the column vector space Fn

q , the Gram matrix
of our symplectic form defining G has shape

J̃n :=

[
0 Jm

−Jm 0

]
,
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where Jm denotes the (m×m)-matrix with 1s along the anti-diagonal
and 0s elsewhere.

The following special matrices and subgroups are relevant for our
paper. Usually the index n on the symbol for a subgroup indicates the
format of the matrices of its elements. Assume n ≥ 2 for the remainder
of this section. For x ∈ Spn−2(q) and a ∈ F∗q, we put

(1) sn(x, a) :=

 a 0 0
0 x 0
0 0 a−1

 ,
and

L := Ln :=
{
sn(x, a) | x ∈ Spn−2(q), a ∈ F∗q

}
.

We write L′n for the subgroup of Ln consisting of the matrices sn(x, a)
of (1) with a = 1. Then L′n

∼= Spn−2(q) and except for n = 4 and
q = 3, L′n is the commutator subgroup of Ln. We have the factorization
Ln = A× L′n, where

(2) A := An :=


 a 0 0

0 In−2 0
0 0 a−1

 | a ∈ F∗q

 .

(Here and in the following, we write In for the (n×n)-identity matrix.)
Occasionally we identify Gn−2 = Spn−2(q) with the subgroup L′n of Gn.

Next, for v ∈ Fn−2
q and z ∈ Fq we put

un(v, z) :=

 1 vtJ̃n−2 z
0 In−2 v
0 0 1

 ,
and

U := Un := {un(v, z) | v ∈ Fn−2
q , z ∈ Fq}.

Then P := Pn := UnLn is a maximal parabolic subgroup of G fixing
the line 〈[1, 0, . . . , 0]t〉. The group U is the unipotent radical of P and L
is its Levi complement. The center Z(U) of U consists of the matrices
un(0, z), z ∈ Fq, the quotient U/Z(U) is isomorphic to Fn−2

q , and the
action of L′n on U/Z(U) by conjugation is equivalent to the natural
action of Spn−2(q) on Fn−2

q .
The ordinary irreducible characters of P can be classified into three

types:

Type 1: Characters with U in their kernel.
Type 2: Characters with Z(U) but not U in their kernel.
Type 3: Characters with Z(U) not in their kernel.
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Note that for n = 2 there are no characters of Type 2 (since Z(U) = U
in this case). We now recall the parametrization and construction of
the characters of P from [1, Section 2.2].

Characters of Type 1 are parametrized by Irr(L). The character of
Type 1 corresponding to σ ∈ Irr(L) is denoted by 1ψσ and defined by

1ψσ = InflP
L(σ).

We have 1ψσ(1) = σ(1).
Characters of Type 2 are parametrized by Irr(Pn−2). The character

of Type 2 corresponding to µ ∈ Irr(Pn−2) is denoted by 2ψµ and defined
as follows. Suppose that n ≥ 4 and let ζ be a nontrivial irreducible
complex character of the additive group of Fq. Define λ ∈ Irr(U) by
λ(un(v, z)) := ζ(vn−2), where v = [v1, . . . , vn−2]

t ∈ Fn−2
q . Let Tn :=

TP (λ) be the inertia subgroup of λ in P . Then Tn = UP̃n−2 with
a subgroup P̃n−2 of L satisfying A × P̃n−2 = A × Pn−2. (Contrary
to what we have written in [1, p. 254, penultimate line], we identify
Pn−2 ≤ Gn−2 with the subgroup {sn(x, 1) | x ∈ Pn−2} ≤ L ≤ G.)

For the precise form of P̃n−2 see [1, 2.3.2]. Let λ̂ be the extension

of λ to Tn such that ResTn

P̃n−2
(λ̂) = 1P̃n−2

. For µ ∈ Irr(Pn−2) put µ̃ :=

Res
A×Pn−2

P̃n−2
(1A � µ) ∈ Irr(P̃n−2). Then

2ψµ := IndPn
Tn

(λ̂ · InflTn

P̃n−2
(µ̃)).

We have 2ψµ(1) = (qn−2 − 1)µ(1).
Characters of Type 3 are parametrized by Irr(L′) in such a way that

each ϑ ∈ Irr(L′) parametrizes four characters ofG, denoted by 3ψ
i,ε
ϑ with

i ∈ {1, 2} and ε ∈ {+,−}. These are constructed as follows. To have a
consistent choice for all the symplectic groups we are considering, we fix
two non-trivial irreducible complex characters ζ1 and ζ2 of the additive
group of Fq, such that ζ1 and ζ2 are not conjugate under the group
of squares of F∗q. We view ζ1 and ζ2 as irreducible characters of Z(U)
via the isomorphism z 7→ un(0, z). Then ζ1 and ζ2 are representatives
of the two orbits of A on Irr(U) \ {1U}. There are unique irreducible
characters ρi of U with ρi(1) = qm−1 (recall that n = 2m) such that
ResU

Z(U)(ρi) = qm−1ζi, i = 1, 2. The inertia subgroup of the ρi equals
P ′Z = P ′ × Z with Z = Z(G) and P ′ = UL′. Moreoever, the ρi

extend to characters ρ̂i of P ′, and these extensions are unique except
in the case n = 4 and q = 3, where we choose the extensions as in [5,
Theorem 2.4]. The trivial extensions of the ρ̂i to P ′Z are denoted by
the same symbols. Each irreducible character ϑ of L′ has two extensions
to L′Z = L′ × Z, namely ϑ · 1ε

Z with the sign ε ∈ {+,−}, where 1+
Z
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and 1−Z denote the trivial and non-trivial irreducible characters of Z,
respectively. For each such ϑ we put

3ψ
i,ε
ϑ := IndP

P ′Z(ρ̂i · InflP ′Z
L′Z (ϑ · 1ε

Z)),

i = 1, 2 and ε ∈ {+,−}. We have 3ψ
i,ε
ϑ (1) = qm−1(q − 1)ϑ(1)/2.

It is convenient to expand the parametrization of the irreducible
characters of P of a given type to all characters of this type. This
is achieved by a linear extension of the parametrizing map. Thus, for
example, if σ =

∑
niσi is a character of L, where the ni are positive in-

tegers and σi ∈ Irr(L), then 1ψσ denotes the Type 1 character
∑
ni

1ψσi

of P .
Finally, we introduce some pieces of character theoretic notation.

Let H be a finite group. Character always means complex character.
If χ is a character of H, we write χ̄ for the complex conjugate of χ.
The trivial character of H is denoted by 1H . If H has a unique normal
subgroup of index 2, we write 1−H for the unique linear character of H
of order 2. Given two characters χ and ψ of H, we say that ψ is a
subcharacter of χ if χ− ψ is a character.

3. A first approach for restricting unipotent characters

It will be useful for our explicit calculations in the cases m = 2
and m = 3 to discuss a general approach for obtaining information
about composition multiplicities of certain unipotent characters re-
stricted to P . Throughout this section, we fix an irreducible char-
acter σ of L′, extended trivially to a character, also denoted by σ, of
L = A× L′. We write RG

L (σ) for the Harish-Chandra induced charac-
ter, i.e., RG

L (σ) = IndG
P (σ), where σ is viewed as a character of P via

inflation. We are interested in ResG
P (RG

L (σ)). Every unipotent charac-
ter of G, except a cuspidal one, is a constituent in some such RG

L (σ).
Thus our approach is restricted to the non-cuspidal unipotent charac-
ters. Moreoever, we do not obtain the restriction of a single irreducible
character, but only of the sum of certain irreducibles. Nevertheless,
this method has turned out to be useful in our specific computations.

The Weyl group W of G is of type Cm. Let us denote the standard
reflections of W by S := {s1, s2, . . . , sm}, where we choose notation in
such a way that s2, . . . , sm are conjugate in W and s1 is not conjugate
to any of s2, . . . , sm. (Alternatively, s1 is the reflection along a long
root and s2, . . . , sm are reflections along short roots.) Putting J :=
S \ {sm}, then P is the standard parabolic subgroup PJ and L = LJ

is its standard Levi subgroup.
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Mackey’s theorem yields

(3) ResG
P (RG

L (σ)) =
∑

d∈DJ,J

IndP
dP∩P (Res

dP
dP∩P (dσ)),

where DJ,J is the set of distinguished double coset representatives for
the WJ -WJ -double coset of W (see [2, Section 2.7]). (We write, unam-

biguously, dP and dσ for ḋP and ḋσ, respectively, where ḋ is a suitable
inverse image of d in G as in [2, Section 2.8].)

First we collect some known facts about DJ,J and the groups dP ∩P
for d ∈ DJ,J .

Lemma 3.1. Assume m ≥ 2, let J = {s1, . . . , sm−1} and put s := sm

and t := smsm−1 · · · s2s1s2 · · · sm−1sm.
(a) DJ,J = {1, s, t}.
(b) tP ∩ P = L.
(c) Put K := sJ ∩ J . Then K = {s1, . . . , sm−2} and

sP ∩ P = (sU ∩ U)(sL ∩ U)(sU ∩ L)LK .

Moreoever, QK := (sU ∩ L)LK is the standard parabolic subgroup of L
corresponding to K, and sU ∩ L is the unipotent radical of QK.

(d) We have Z(U) ≤ sL ∩ U and sU ∩ U has order q.
Put R := (sU ∩ U)(sL ∩ U). Then sP ∩ P = RQK. We have R =

{un(v, z) | v = (v1, . . . , vn−2) ∈ Fn−2
q , vn−2 = 0, z ∈ Fq}. In particular,

R has index q in U and so RQK has index q in PK = UQK. Finally,
QK = A× Pn−2.

Proof. (a) For 1 ≤ j ≤ m put rj := sj · · · sm−1sm. Let DJ de-
note the set of distinguished left coset representatives of the parabolic
subgroup WJ in W . Then

DJ = {1, t, rj, r
−1
j t | 2 ≤ j ≤ m}.

The result now follows from DJ,J = D−1
J ∩DJ (see [2, Section 2.7]).

(b) This is easy to check by a direct computation.
(c) Since s commutes with each of s1, . . . , sm−2, but not with sm−1,

it is clear that K is as claimed. The remaining statements are proved
in [2, 2.8].

(d) This is clear. �
It will perhaps help the reader to follow the somewhat technical

arguments in Theorem 3.3 below, if we give the relevant structures of
Lemma 3.1 in terms of matrices. First we describe inverse images of s
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and t in G (denoted by the same letters). We may take

s =

 J2 0 0
0 In−4 0
0 0 J2


and

t =

 0 0 1
0 In−2 0
−1 0 0

 .
Then

sU ∩ U =


 I2 0 aI2

0 In−4 0
0 0 I2

 | a ∈ Fq


and

sU ∩ L =


 1 0 0

0 un−2(v, z) 0
0 0 1

 | v ∈ Fn−4
q , z ∈ Fq

 .

Note that sU ∩L was called Ũn−2 in [1, 2.3.2], but here we will just call
it Un−2 (in accordance with our convention to view Gn−2 as a subgroup
of G). Putting

An−2 := sA

we have
sL ∩ L = LK = A× An−2 × L′n−2

with

L′n−2 =


 I2 0 0

0 x 0
0 0 I2

 | x ∈ Spn−4(q)

 ∼= Spn−4(q).

For the proof of the main theorem of this section we need the following
technical lemma.

Lemma 3.2. For n ≥ 6 put

An,n−2 :=


 aI2 0 0

0 In−4 0
0 0 a−1I2

 | a ∈ F∗q

 ,

r := sm−1, and An−4 := rAn−2. Furthermore, let

Q′
K := A× Un−2P̃n−4 ≤ QK .

Then
rs(RQK′) ∩ UP̃n−2 = (rR)Y
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with

Y = (rUn−2∩Un−2)(
rLn−2∩Un−2)(

rUn−2∩Ln−2)(An,n−2×An−4×L′n−4).

In particular, A× Y = A× (rP n−2 ∩ Pn−2).

Proof. We have

P̃n−2 = An,n−2Un−2L
′
n−2

and
Q′

K = AUn−2P̃n−4 = AUn−2
srAn,n−2Un−4L

′
n−4.

Hence
rs(RQK′) = (rR)An,n−2

r(An−2Un−2Un−4L
′
n−4),

since s(RUn−2) = RUn−2. This easily implies that
rs(RQK′) ∩ UP̃n−2 = (rR)Y

with

Y := An,n−2Un−2L
′
n−2 ∩ An,n−2

r(An−2Un−2Un−4L
′
n−4)

= An,n−2[Un−2L
′
n−2 ∩ r(An−2Un−2Un−4L

′
n−4)].

By Lemma 3.1(c), applied to Gn−2, we have
rP n−2 ∩ Pn−2 =

(rUn−2 ∩ Un−2)(
rLn−2 ∩ Un−2)(

rUn−2 ∩ Ln−2)(An−2 × An−4 × L′n−4).

Put

Y ′ := (rUn−2 ∩ Un−2)(
rLn−2 ∩ Un−2)(

rUn−2 ∩ Ln−2)(An−4 × L′n−4),

so that rP n−2 ∩ Pn−2 = An−2Y
′. Clearly,

Y ′ ≤ Un−2L
′
n−2 ∩ r(An−2Un−2Un−4L

′
n−4),

since rLn−2 ∩ Un−2 = rUn−4.
On the other hand, Un−2L

′
n−2 = P ′

n−2 ≤ Pn−2, and so

Un−2L
′
n−2 ∩ r(An−2Un−2Un−4L

′
n−4) ≤ P ′

n−2 ∩ rP n−2

= P ′
n−2 ∩ rP n−2 ∩ Pn−2

= P ′
n−2 ∩ An−2Y

′ = Y ′.

Thus Y = An,n−2Y
′ and the result follows. �

We now come to the main result of this section. Recall that P = PJ

with J = S \ {sm} and that we are interested in ResG
P (RG

L (σ)) for an
irreducible character σ of L with A in its kernel. In view of (3) and
Lemma 3.1, we have to determine

IndP
L(Res

tP
L (tσ))
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and
IndP

RQK
(Res

sP
RQK

(sσ)).

SinceRQK = sP∩P is s-invariant, we have Res
sP
RQK

(sσ) = s
(
ResP

RQK
(σ)

)
.

Also, ResP
RQK

(σ) = InflRQK

Pn−2
(ResL′

Pn−2
(σ)). Thus IndP

RQK
(Res

sP
RQK

(sσ)) is

a sum of characters of the form IndP
RQK

(sν), where ν is an irreducible
character of Pn−2, viewed as a character of RQK = R(A × Pn−2) via
inflation. The answer depends on the type of ν.

Theorem 3.3. Assume that n ≥ 4. Let σ be an irreducible character
of L with A in its kernel. Then the following statements hold.

(a) Res
tP
L (tσ) = σ. In particular,

IndP
tP∩P (Res

tP
tP∩P (tσ)) = IndP

L(σ).

(b) Let ν be an irreducible character of Pn−2 of Type 1. We view ν
as an irreducible character of LK = A×Ln−2 = A×An−2 ×L′n−2, and
also as an irreducible character of RQK via inflation. Then

IndP
RQK

(sν) = 1ψΣ + 2ψν ,

where Σ = RL
LK

(sν).
(c) Suppose that n ≥ 6 and let ν be an irreducible character of Pn−2

of Type 2. Suppose that ν = 2ψν0
, with ν0 ∈ Irr(Pn−4). Then

IndP
RQK

(sν) = 2ψΣ

with Σ = Ind
Pn−2
rP n−2∩Pn−2

(rν0), where r = sm−1 and ν0 is viewed as a
character of rP n−2 ∩ Pn−2 via inflation.

(d) Let ν be an irreducible character of Pn−2 of Type 3, say ν = 3ψ
i,ε
ϑ′0

for some i ∈ {1, 2}, some ε ∈ {+,−}, and some ϑ′0 ∈ Irr(L′n−2). Let
ϑ0 := 1−An−2

� ϑ′0 ∈ Irr(Ln−2), and put

ϑ := RL′

Ln−2
(ϑ0).

Then
IndP

RQK
(sν) = 3ψ

i,ε
ϑ .

Proof. For the sake of legibility, we suppress the symbol for inflation
in the following proof.

(a) Since t centralizes L′, we have Res
tP
L (tσ) = σ.

(b) We first consider the special case that An−2 is in the kernel of ν.
Then sν = ν since s centralizes L′n−2. Let ν̃ denote the irreducible

character of P̃n−2 corresponding to ν. (See the notation of [1, 2.3.2],
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an account of which is given in Section 2.) We have(
IndUQK

UP̃n−2
(λ̂ · ν̃), IndUQK

RQK
(ν)

)
=

(
λ̂ · ν̃,ResUQK

UP̃n−2
(IndUQK

RQK
(ν))

)
=

(
λ̂ · ν̃, Ind

UP̃n−2

RP̃n−2
(ResRQK

RP̃n−2
(ν))

)
=

(
Res

UP̃n−2

RP̃n−2
(λ̂) · ν̃, ν̃

)
= (ν̃, ν̃) = 1,

since R ≤ U is in the kernel of λ̂ and Res
UP̃n−2

P̃n−2
(λ̂) = 1P̃n−2

.

Thus 2ψν = IndP
UP̃n−2

(λ̂ · ν̃) is a constituent of IndP
RQK

(ν). Also, ν is

a constituent of IndUQK

RQK
(ν), hence 1ψΣ is a subcharacter of IndP

RQK
(ν).

The result follows by comparing degrees.
Now we deal with the general case. Write ν = 1A � ξ � ν ′ with

irreducible characters ξ of An−2 and ν ′ of L′n−2. Then sν = sξ�1An−2�ν
′.

Viewing sξ as a linear character of P via inflation, we obtain

IndP
RQK

(sν) = sξ · (1ψΣ′ + 2ψν′),

with Σ′ = RL
LK

(ν ′). The result follows from the observations sξ · 1ψΣ′ =
1ψΣ and sξ · 2ψν′ = 2ψν .

(c) We first show that Z(U) is in the kernel of IndP
RQK

(sν). Indeed,
Z(U) = s(Z(Un−2)), and so Z(U) is in the kernel of sν. Hence Z(U) is
in the kernel of IndP

RQK
(sν).

Next we show that IndP
RQK

(sν) does not have any constituents of
Type 1. We have

(4)
(
ResP

U(IndP
RQK

(sν)), 1U

)
=

(
sν,ResP

RQK
(IndP

U(1U))
)
,

and every constituent of ResP
RQK

(IndP
U(1U)) has R in its kernel. On

the other hand, sL ∩ U ≤ R, and so sU ∩ L ≤ sR. This implies that R
is not in the kernel of sν, since sU ∩ L, the unipotent radical of Pn−1,
is not in the kernel of ν by assumption. This implies that the scalar
product in Equation (4) is zero, and hence IndP

RQK
(sν) does not have

any constituent with U in its kernel.
Thus IndP

RQK
(sν) only contains constituents of Type 2.

Let λn−2 be the irreducible character of Un−2 analogous to λ, and let

λ̂n−2 be the extension of λn−2 to Un−2P̃n−4, with Res
Un−2P̃n−4

P̃n−4
(λ̂n−2) =

1P̃n−4
. Then, by definition,

(5) ν = Ind
Pn−2

Un−2P̃n−4
(λ̂n−2 · Infl

Un−2P̃n−4

P̃n−4
(ν̃0)).
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We put Q′
K := A×Un−2P̃n−4 ≤ QK , and inflate the characters in Equa-

tion (5) over the normal subgroup RA of RQ′
K and RQK . Suppressing

the symbols for inflation, this yields

(6) ν = IndRQK

RQ′
K
(λ̂n−2 · ν̃0).

Since r ∈ P , we obtain

(7) IndP
RQK

(sν) = rIndP
RQK

(sν) = IndP
rs(RQ′

K)(
rŝλn−2 · rsν̃0).

Put Σ̃ := Res
A×Pn−2

P̃n−2
(1A�Σ). Then 2ψΣ = IndP

UP̃n−2
(λ̂·Infl

UP̃n−2

P̃n−2
(Σ̃). We

claim that λ̂ · Infl
UP̃n−2

P̃n−2
(Σ̃) is a subcharacter of ResP

UP̃n−2
(IndP

RQK
(sν)).

By Frobenius reciprocity, this would imply that 2ψΣ is a subcharacter

of IndP
RQK

(sν), since every irreducible constituent of λ̂ · Infl
UP̃n−2

P̃n−2
(Σ̃)

induces to an irreducible Type 2 character of P . Since IndP
RQK

(sν) and
2ψΣ have the same degree, this would imply the desired result.

So it suffices to prove the claim. By Mackey’s theorem and Equa-

tion (7), it suffices to show that λ̂ · Infl
UP̃n−2

P̃n−2
(Σ̃) is a subcharacter of

Ind
UP̃n−2

UP̃n−2∩rs(RQ′
K)

(
Res

rs(RQ′
K)

UP̃n−2∩rs(RQ′
K)

(rŝλn−2 · rsν̃0)
)
.

By Lemma 3.2 we have

UP̃n−2 ∩ rs(RQ′
K) = (rR)Y

with Y ≤ P̃n−2 such that A× Y = A× (rP n−2 ∩ Pn−2).

Now rsUn−2 ≤ U , and rŝλn−2 and λ agree on this subgroup of U .

Clearly rR is in the kernel of rsν̃0, and so rŝλn−2 · rsν̃0 extends to the

character λ̂ · rsν̃0 of UY . In particular, λ̂ · rsν̃0 is a constituent of
IndUY

(rR)Y (rŝλn−2 · rsν̃0). Since λ extends to λ̂ ∈ Irr(UP̃n−2), it follows

that λ̂ · Ind
P̃n−2

Y (rsν̃0) is a subcharacter of Ind
UP̃n−2

(rR)Y (rŝλn−2 · rsν̃0). Since

Ind
P̃n−2

Y (rsν̃0) = Σ̃, our claim follows.
(d) We have Z(U) ≤ sL∩U ≤ R, and so a similar argument as in (c)

with U replaced by Z(U) shows that IndP
RQK

(sν) only has constituents
of Type 3.

The proof now proceeds in several steps.
Step 1: We identify the subgroup (sU ∩ L)L′n−2 = Un−2L

′
n−2 of

RPn−2 with P ′
n−2. Clearly, s centralizes L′n−2 and s

(
(sU ∩ L)L′n−2

)
=

(sL ∩ U)L′n−2. Let β be the irreducible character of degree qm−2 of
(sU ∩L)L′n−2 = P ′

n−2 such that sβ lies over ζi, i.e., β(un−2(0, z)) = ζi(z)
for z ∈ F∗q. Now An−2 centralizes (sL ∩ U)L′n−2 and

(sL ∩ U)Ln−2 = An−2 × (sL ∩ U)L′n−2.
11



Moreover, (sU∩U)(sU∩L) is a normal subgroup of RPn−2 with quotient
group isomorphic to (sL ∩ U)Ln−2. Viewing 1−An−2

� sβ as a character
of RPn−2 via inflation, we obtain

ResUL′

UPn−2
(ρ̂i) = Ind

UPn−2

RPn−2
(1−An−2

� sβ).

Proof of Step 1: This is exactly Statement (b) of [5, Theorem 2.4].
Notice that our Pn−2 corresponds to P (E+, j), our U to H(E, j) and
our R to H(E⊥

+ , j) of [5], where E+ is the subspace of Fn−2
q spanned by

the first standard basis vector.

Step 2: Let ξ := β · ϑ′0 where we view ϑ′0 as a character of P ′
n−2

via inflation over Un−2. Then ξ is a constituent of Res
Pn−2

P ′
n−2

(ν). Again

viewing 1An−2 � sξ as a character of RPn−2 via inflation, we obtain

Ind
UPn−2

RPn−2
(1An−2 � sξ) = ResUL′

UPn−2
(ρ̂i) · ϑ0,

where ϑ0 is viewed as a character of UPn−2 via inflation over UUn−2.

Proof of Step 2: The first assertion is clear by the construction of
the Type 3 characters of Pn−2. Using Step 1 we obtain

ResUL′

UPn−2
(ρ̂i) · ϑ0 = Ind

UPn−2

RPn−2
(1−An−2

� sβ) · ϑ0

= Ind
UPn−2

RPn−2
((1−An−2

� sβ) · ϑ0).

It remains to observe that 1An−2 � sξ = (1−An−2
� sβ) · ϑ0 as characters

of RPn−2.

Step 3: IndUL′

RPn−2
(1An−2 � sξ) = ρ̂i · InflUL′

L′ (ϑ), where ϑ is viewed as
a character of UL′ via inflation over U .

Proof of Step 3: From Step 2 we obtain

IndUL′

RPn−2
(1An−2 � sξ) = IndUL′

UPn−2
(Ind

UPn−2

RPn−2
(1An−2 � sξ))

= IndUL′

UPn−2
(ResUL′

UPn−2
(ρ̂i) · ϑ0)

= ρ̂i · IndUL′

UPn−2
(ϑ0)

= ρ̂i · IndL′

Pn−2
(ϑ0)

= ρ̂i ·RL′

Ln−2
(ϑ0)

= ρ̂i · ϑ.

Step 4: IndP
RQK

(sν) = 3ψ
i,ε
ϑ .

Proof of Step 4: We have

ResP
UL′×Z(IndP

RQK
(sν)) = IndUL′×Z

RPn−2×Z(ResRQK

RPn−2×Z(sν)).

12



Now (1An−2 � sξ) � 1ε
Z is an irreducible constituent of ResRQK

RPn−2×Z(sν),

and hence (ρ̂i·InflUL′

L′ (ϑ))�1ε
Z is a subcharacter of ResP

UL′×Z(IndP
RQK

(sν))

by Step 3. Clifford theory and the construction of 3ψ
i,ε
ϑ now proves the

claim in Step 4. �

Remark 3.4. Note that IndP
L(σ) has been computed in [1, Proposi-

tion 3.2]. There is a slight inaccuracy in the formulation of this result
in [1]. With the notation introduced above, the correct statement is as
follows:

IndP
L(σ) = 1ψσ

+
∑

µ∈Irr(Pn−2)

〈
ResL′

Pn−2
(σ), µ

〉
Pn−2

2ψµ

+
∑

ϑ∈Irr(L′)

〈σ · ω̄1, ϑ〉L′
3ψ

1,+
ϑ + 〈σ · ω̄2, ϑ〉L′

3ψ
2,+
ϑ .

The difference is in the occurrence of the ω̄i in the third summand, but
this is exactly what we prove in [1].

Corollary 3.5. Suppose that n ≥ 4. Then

ResG
P (RG

L (1L)) = 2 · 1ψ1L
+ 1ψΣ + 2 · 2ψ1Pn−2

+ 3ψ
1,+
ω̄1

+ 3ψ
2,+
ω̄2
,

where Σ = RL
LK

(1LK
). (Notice that 1ψΣ contains another trivial con-

stituent 1ψ1L
= 1P .)

Proof. One constituent 1ψ1L
= 1P arises from the P -P -double coset

representative 1. The representative t yields the summand IndP
L(1L) =

1ψ1L
+2ψ1Pn−2

+3ψ
1,+
ω̄1

+3ψ
2,+
ω̄2

by Theorem 3.3(a) and Remark 3.4. Finally,

s gives the summand 1ψΣ + 2ψ1Pn−2
by Theorem 3.3(b). �

4. Values of some characters of P on U

Before we begin to compute the restrictions of the unipotent charac-
ters of G to P for G = Sp4(q) and Sp6(q), we collect some facts about
values of certain characters of P on its unipotent radical U . In the fol-
lowing, we use the notation of Section 2 for the irreducible characters
of P .

The non-trivial elements of Z(U) fall into two P -conjugacy classes,
c1 := {un(0, z) | 0 6= z ∈ Fq is a square}, and c2 := {un(0, z) | 0 6= z ∈
Fq is a non-square}. Fix elements zi ∈ ci, and let Ci be the conjugacy
class of G containing zi, i = 1, 2. Then C1 6= C2. Indeed, since P is

13



a maximal subgroup of G and since P normalizes 〈zi〉, it follows that
NG(〈zi〉) = P for i = 1, 2. But c1 6= c2, so C1 6= C2.

There is an automorphism α := αn of G, which fixes P and inter-
changes c1 and c2, and thus C1 and C2. (In particular, α is not an inner
automorphism.) To be specific, we may take

(8) αn(x) := J̃n(a)(x−1)tJ̃n(a)−1, x ∈ G,
where a ∈ Fq is a fixed non-square, and J̃n(a) is the matrix

J̃n(a) :=

[
0 Jm

−a−1Jm 0

]
.

Clearly, α permutes the irreducible characters of each type among
themselves.

In Section 2 we have chosen two irreducible characters ζ1 and ζ2
representing the two orbits of P on the set of non-trivial irreducible
characters of Z(U). We may choose notation such that ζ2 = αζ1. Then
the two irreducible characters ρi of U lying above ζi are also conjugate
by α, as are their extensions ρ̂i to their inertia subgroup P ′Z. It is
easy to check that α centralizes A and fixes L′, where it induces the
automorphism αn−2, also denoted by α. This implies that

(9) α
(

3ψ
1,ε
ϑ

)
= 3ψ

2,ε
αϑ ,

for all ϑ ∈ Irr(L′) and all ε ∈ {+,−}. If ϑ is a character of L′, we put

3ψ̃
ε

ϑ := 3ψ
1,ε
ϑ + 3ψ

2,ε
αϑ .

It follows from the transitivity of P on U/Z(U) \ {Z(U)} and on
Z(U) \ {1} that U \ Z(U) is a single conjugacy class of P . Let u ∈
U \ Z(U).

Lemma 4.1. Let σ, µ and ϑ be characters of L, Pn−2 and L′, re-
spectively. Then the corresponding characters of P have the following
values on U .

Character 1 zi u

1ψσ σ(1) σ(1) σ(1)
2ψµ (qn−2 − 1)µ(1) (qn−2 − 1)µ(1) −µ(1)
3ψ̃

ε

ϑ qm−1(q − 1)ϑ(1) −qm−1ϑ(1) 0

Proof. The first row and the first column of the character values
are clear. Let 2ψµ be a Type 2 irreducible character of P with µ ∈
Irr(Pn−2); then Z(U) lies in the kernel of 2ψµ which gives the entry

in the second row at zi. Now 2ψµ is a character of P̄ := P/Z(U). If

Ū := U/Z(U), then Ū is a normal subgroup of P̄ of order qn−2. Since
14



P̄ acts transitively on the non-trivial irreducible characters of Ū , it
follows that

ResP̄
Ū(2ψµ) = e

∑
λ∈Irr(Ū)\{1Ū}

λ

for some integer e ≥ 1. Thus 2ψµ(u) = 2ψµ(uZ(U)) = −e. But

(qn−2 − 1)µ(1) = 2ψµ(1) = e(qn−2 − 1),

so e = µ(1) and 2ψµ(u) = −µ(1).

To prove the third row, let 3ψ
i,ε
ϑ be a Type 3 irreducible character

of P , where ϑ ∈ Irr(L′), i ∈ {1, 2} and ε ∈ {+,−}. By construc-

tion, ρi is a constituent of ResP
U(3ψ

i,ε
ϑ ). Since ResU

Z(U)(ρi) = qm−1ζi, the
orthogonality relations imply that ρi(u) = 0 and thus

3ψ
i,ε
ϑ (u) = 0.

Finally, let Ā denote a set of representatives for the quotient of A
modulo its subgroup of order 2. Then the restriction of 3ψ

1,ε
ϑ to U

equals

ϑ(1)
∑
a∈Ā

aρ1,

by the construction of 3ψ
1,ε
ϑ (see [1, 2.3.3] or Section 2). Similarly, the

restriction to U of 3ψ
2,ε
αϑ equals

ϑ(1)
∑
a∈Ā

aρ2.

Hence the restriction of 3ψ
1,ε
ϑ + 3ψ

2,ε
αϑ to Z(U) equals

ϑ(1)qm−1
∑

ζ∈Irr(Z(U))\{1Z(U)}

ζ,

which has the claimed value on the zi. �
This result can be used to obtain some information about the compo-
nents of the various types in a restricted α-invariant character.

Lemma 4.2. Let χ be a character of G. Write

ResG
P (χ) = 1χ+ 2χ+ 3χ,

where iχ denotes the sum of the constituents of Type i in ResG
P (χ),

i = 1, 2, 3. We call iχ the Type i component of ResG
P (χ).

If χ is α-invariant, then

1χ(1) + 2χ(1) =
1

q
(χ(1) + (q − 1)χ(z))

15



and
3χ(1) =

q − 1

q
(χ(1)− χ(z)) ,

where z is a non-trivial element in the center of U .

Proof. We have iχ(1) = iχ(z) for i = 1, 2 by Lemma 4.1. Also,
since χ is α-invariant, the constituents of Type 3 of ResG

P (χ) occur in
α-conjugate pairs. From (9) and Lemma 4.1 we find

3χ(1) = −3χ(z)(q − 1).

The claim follows from the two equations

χ(1) = 1χ(1) + 2χ(1) + 3χ(1)

and

χ(z) = 1χ(1) + 2χ(1)− 1

q − 1
3χ(1).

�
We record one further useful result.

Lemma 4.3. Let χ ∈ Irr(G) such that Z(G) is in the kernel of χ.

(This is the case if χ is unipotent.) If ϑ ∈ Irr(L′) such that 3ψ
i,ε
ϑ occurs

in ResG
P (χ) for some i ∈ {1, 2} and ε ∈ {+,−}, then ε = +.

Proof. Every irreducible constituent of ResG
P (χ) has Z(G) in its

kernel. By construction, this is not the case for the characters 3ψ
i,−
ϑ ,

i = 1, 2. �

5. The restrictions of the unipotent characters of Sp4(q)

Let χ be a unipotent character of G = Spn(q). (We adopt the con-
vention that the adjective “unipotent” implies irreducible.) Then χ
is labeled by a symbol Λ. We will identify a symbol Λ with a triple
[µ, λ, d], where d is an odd, positive integer and µ and λ are parti-
tions such that |µ| + |λ| + (d2 − 1)/4 = m (see [2, Sections 11.4, 13.2
and 13.8]). Here, |µ| denotes the sum of the parts of µ.

Suppose that n = 4, so that G = Sp4(q). Then G has 6 unipotent
characters. In this section we determine their restrictions to P = P4.
In the course of the proof we are going to refer to the character table
of G determined by Srinivasan in [10] for some character values as well
as for the notation for certain irreducible characters of G. The lat-
ter also becomes relevant in the next section where we consider Sp6(q)
and its parabolic subgroup, some of whose characters are labelled by
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irreducible characters of Sp4(q). We thus have to match the Weil char-
acters ω1 and ω2 with the Weil characters of Srinivasan’s character
table.

First note that the conjugacy class C1 introduced in Section 4 is
called A21 in [10]. The Weil characters of [10] are denoted by θ7 + θ3

and θ8 + θ4 (the sum θ8 + θ3 is not a Weil character, since its value on
the class A21 equals zero). We now choose our character ζ1 ∈ Irr(Fq)
in such a way that ω̄1 = θ7 + θ3.

The following lemma serves two purposes. Firstly, we introduce a
notation for the irreducible Weil characters of L′ = Sp2(q), and sec-
ondly we collect some facts about Harish-Chandra induced characters
of Sp4(q), needed in the course of the proof of our main result in the
following section. We write ∗RG

L for Harish-Chandra restriction from G
to L. Thus ∗RG

L = 1χ in the notation of Lemma 4.2.

Lemma 5.1. Let G = Sp4(q). Then L = A × L′ with L′ = Sp2(q)
∼=

SL2(q). Let ν3, ν7 ∈ Irr(L′) be defined by
∗RG

L(θi) = 1−A � νi, i = 3, 4, 7, 8.

(By [12, Proposition 2.2(v)], ∗RG
L(θi) is of this form, and ν3, ν7 are

irreducible Weil characters of L′ of degrees (q + 1)/2 and (q − 1)/2,
respectively.)

(a) Let ϑ = 1−A � ν7. Then

RG
L (ϑ) = θ5 + θ7.

(b) Let ϑ = 1−A � ν3. Then

RG
L (ϑ) = Φ9 + θ2 + θ3.

By applying the outer automorphism α of G we obtain RG
L (ϑ) for ϑ =

1−A � ν8 and ϑ = 1−A � ν4.

Proof. (a) Note that ϑ is a cuspidal character of L. The inertia
group WG(L, ϑ) is of order 2. Thus RG

L (ϑ) = χ1 + χ2 with two distinct
irreducible characters χ1 and χ2. By construction, θ7 occurs in RG

L (ϑ).
Putting χ2 := θ7, we have χ1(1) = q2(q2 − 1)/2. Now θ5 and θ6 are the
only irreducible characters of G of this degree.

Since θ7+θ3 is a Weil character of G, it follows from [5, Corollary 2,5]
that

ResG
L′(θ7 + θ3) = q(ν7 + ν3).

This allows us to compute the values of ν7 and ν3 on the element
z′1 = sz1 ∈ L′. The intersection of the G-conjugacy class of z1 with P
splits into two P -conjugacy classes with representatives z1 and z′1. We
can thus compute the value of RG

L (ϑ) on z1, giving our result.
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(b) This time, ϑ lies in the Harish-Chandra series of the character
1−A4

� 1−A2
of the maximal split torus A4 × A2 of G. Moreoever, ϑ

corresponds to one of the two irreducible characters of the subgroup 〈s1〉
of W (in the sense of [3, Theorem (70.24)]). Inducing these characters
to W , we obtain exactly three constituents in each case.

The characters of G in the Harish-Chandra series of G corresponding
to (L, 1−A4

� 1−A2
) are θi, i = 1, . . . , 4, and Φ9, where Φ9 corresponds

to the character of degree 2 of W (see [11, Appendix]). Again, by
construction, θ3 occurs in RG

L (ϑ). For reasons of degrees, Φ9 also occurs.
The remaining constituent is θ1 or θ2. With the same argument as in (a)
we conclude that θ2 occurs. This gives the result. �

Remark 5.2. For the convenience of the reader we display the values
of the irreducible Weil characters of Sp4(q) and Sp2(q) on the classes C0

containing the identity element, and on the classes C1 and C2 intro-
duced at the beginning of Section 4. In the following table, we put
δ := (−1)(q−1)/2.

θ7 θ3 ν7 ν3

C0
1
2
(q2 − 1) 1

2
(q2 + 1) 1

2
(q − 1) 1

2
(q + 1)

C1
1
2

(
−1− qδ

√
δq

)
1
2

(
1− qδ

√
δq

)
1
2

(
−1− δ

√
δq

)
1
2

(
1− δ

√
δq

)
C2

1
2

(
−1 + qδ

√
δq

)
1
2

(
1 + qδ

√
δq

)
1
2

(
−1 + δ

√
δq

)
1
2

(
1 + δ

√
δq

)
The main result of this section is as follows.

Theorem 5.3. Let χΛ be a unipotent character of G = Sp4(q). Then
ResG

P (χΛ) is as given in Table 1. We have

ResL′

P2
(StL′) = 1P2 + 3ψ

1,+
1 + 3ψ

2,+
1 .

(Notice that here 1 denotes the trivial character of the trivial group

L′2 and that 3ψ
1,+
1 and 3ψ

2,+
1 are the two irreducible characters of P2 of

degree (q − 1)/2 with Z(G) in their kernels.) Also

(ν7 + ν3) · StL′ =
∑

ϑ ∈ Irr(SL2(q))
ϑ(1) 6= 1, (q − 1)/2

ϑ.

In particular, ResG
P (χΛ) is multiplicity free.

Remarks. (a) Here is a short explanation of how to read Table 1. The
first column contains the symbols labelling the unipotent characters
of G. The decomposition of ResG

P (χΛ) is given in the row labelled
by Λ. The second column contains characters σ of L, described in the
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Table 1. Restrictions of unipotent characters of Sp4(q)

Λ ResG
P (χΛ)

Type 1 Type 2 Type 3

[2,−, 1] [1,−, 1]
[−,−, 3] ν8

[12,−, 1] [1,−, 1] 1P2 ν7

[1, 1, 1] [1,−, 1] + [−, 1, 1] 1P2 ν3

[−, 2, 1] [−, 1, 1] ν4

[−, 12, 1] [−, 1, 1] ResL′

P2
(StL′) (ν7 + ν3) · StL′

obvious way through symbols, such that 1ψσ is the Type 1 component
of ResG

P (χΛ). Similarly, the third column contains the characters µ
of P2 such that 2ψµ is the Type 2 component of ResG

P (χΛ). Finally,

the character ϑ in the last column indicates that 3ψ̃
+

ϑ is the Type 3
component of ResG

P (χΛ). (We will show that the unipotent characters
of G are α-invariant.)

(b) The decomposition of the characters ResL′

P2
(StL′) and (ν7+ν3)·StL′

can be found in [1, p. 257] and [1, Section 4], respectively.

Proof. Let χ = χΛ be a unipotent character of G. If χ is the trivial
character 1G, then its restriction to P is the trivial character 1P . If χ
is the Steinberg character StG of G, then its restriction to P is given
in [1, Example 3.5(c)]. So we may suppose that χ 6= 1G and χ 6= StG.

The constituents of Type 1 in the restrictions are easily computed
by the branching rule for the Weyl group of G and a general result of
Harish-Chandra theory (see [3, Theorem (70.24)]). In order to simplify
the arguments for the constituents of Types 2 and 3, we are going to
apply Corollary 3.5. Since

RG
L (1L) = χ[2,−,1] + χ[12,−,1] + χ[1,1,1],

we obtain from Corollary 3.5:

(10) ResG
P (χ[12,−,1]+χ[1,1,1]) = 2·1ψ1L

+1ψStL
+2·2ψ1Pn−2

+3ψ
1,+
ω̄1

+3ψ
2,+
ω̄2
.

Since χ[12,−,1] is the unique constituent of its degree in RG
L (1L), it is

α-invariant. Hence all unipotent characters of G are α-invariant, so we
can apply Lemma 4.2.
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Case 1. Λ = [12,−, 1] and Λ = [1, 1, 1].
Let χ = χΛ with Λ = [12,−, 1]. Then χ(1) = q(q2 + 1)/2. By

Harish-Chandra theory we have 1χ = χ[1,−,1]. In the notation of [10],
χ = θ12. This can be proved as follows: The degrees of Irr(G) imply
that χ[12,−,1] = θ12 or θ11 and χ[1,1,1] = θ9. By Lemma 4.1, the right
hand side of Equation (10) has value q2 + q on z1. Since θ9(z1) =
θ9(A21) = q(q + 1)/2, it follows by (10) that χ[12,−,1](z1) = q(q + 1)/2
and thus by [10], χ[12,−,1] = θ12. Note this implies that χ[−,2,1] = θ11.

Using χ(z1) = q(q + 1)/2, it follows from Lemma 4.2 that

3χ(1) =
1

2
q(q − 1)2 and 2χ(1) = q2 − 1.

In view of Equation (10) and the degrees of the characters given in
Section 2, this determines the constituents of ResG

P (χ[12,−,1]), and of

ResG
P (χ[1,1,1]) completely.

Case 2. Λ = [−, 2, 1].
Let χ = χΛ. Then χ(1) = q(q2 + 1)/2. By Harish-Chandra theory

we have 1χ = χ[−,1,1]. In the notation of [10], χ = θ11, and so χ(z1) =
θ11(A21) = −q(q − 1)/2. It follows from Lemma 4.2 that

3χ(1) =
1

2
q(q2 − 1) and 2χ = 0.

In order to determine the Type 3 component, we use Theorem 3.3 with
σ = χ[−,1,1], the Steinberg character of L′. We have

RG
L (χ[−,1,1]) = χ[−,2,1] + χ[−,12,1] + χ[1,1,1].

Since ResG
P (StG) = IndP

L(StL), we obtain from (3) and Theorem 3.3(a):

(11) ResG
P (χ[−,2,1] + χ[1,1,1]) = 1ψχ[−,1,1]

+ IndP
RQK

s(ResP
RQK

(χ[−,1,1])).

Now
ResL′

P2
(StL′) = 1P2 + 3ψ

1,+
1 + 3ψ

2,+
1 .

The only Type 3 constituents in (11) arise from the two Type 3 con-

stituents in ResL′

P2
(StL′). In this situation, L′2 = {1}, and L2 = A2 is

the torus of L′ of order q − 1. From Harish-Chandra theory we obtain

RL′

L2
(1−L2

) = ν3 + ν4.

Since ω̄+ = ν3 occurs as label for the Type 3 component of ResG
P (χ[1,1,1]),

the result of Table 1 follows from Theorem 3.3(e).
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Case 3. Λ = [−,−, 3].
Let χ = χΛ with Λ = [−,−, 3]. Then χ is the cuspidal character

of G, so that 1χ = 0. In the notation of [10], χ = θ10, and so χ(1) =
q(q − 1)2/2 and χ(z1) = θ10(A21) = −q(q − 1)/2. By Lemma 4.2,

3χ(1) =
1

2
q(q − 1)2.

Since χ(1) = 3χ(1), we have 2χ = 0 and hence χ = 3χ. It follows from
Lemmas 4.3 and 4.1 that

3χ = 3ψ
1,+
ϑ + 3ψ

2,+
αϑ = 3ψ̃

+

ϑ

for some character ϑ of L′ of degree (q − 1)/2.
Suppose ϑ is not one of the two Weil characters of degree (q − 1)/2.

Then ϑ = (q − 1)/2 · 1L′ since ν(1) > (q − 1)/2 for all ν ∈ Irr(L′) \
{1L′ , ν7, ν8} (see [7]). Then

(12) ResG
P (χ) =

1

2
(q − 1)3ψ̃

+

1L′
.

Let C21(1) be the conjugacy class of G described in [10, p. 491]. Then
C21(1) ∩ P 6= ∅ and χ(C21(1)) = −1. This contradicts (12).

It follows that ϑ = ν7 or ν8. Suppose that ϑ = ν7, so that by Case 1,

3ψ̃
+

ϑ = ResG
P (χ[12,−,1])− 1P − 2ψ1P2

.

Put z′1 := sz1 with s as in Section 3. Then z′1 ≤ Z(U2) ≤ L, and one
computes 2ψ1P2

(z′1) = q − 1. Hence(
ResG

P (χ[12,−,1])− 1P − 2ψ1P2

)
(z′1) =

1

2
q(q − 1).

On the other hand, χ(z′1) = θ10(A21) = −q(q−1)/2. This is impossible,
so that ϑ = ν8. �

Proposition 5.4. Let G = Sp4(q) and t = 1
2
(q − 1). We will follow

the notation of [10]. In particular, θ3 and θ7 are the irreducible Weil
characters of G of degrees (q2 + 1)/2 and (q2 − 1)/2, respectively, and
ω̄1 = θ3 + θ7 and ω̄2 = θ4 + θ8 are the two distinct Weil characters of
degree q2. Then

(θ3 + θ7) · χ[−,−,3] = θ8 + Φ4 +
t∑

k=1

ξ′21(k) +
t−1∑
k=1

ξ′42(k),

(θ3 + θ7) · χ[−,2,1] = θ4 + Φ7 + Φ9 +
t∑

k=1

ξ22(k) +
t−1∑
k=1

ξ41(k),
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Table 2. Restrictions of unipotent characters of Sp6(q)

Λ ResG
P (χΛ)

Type 1 Type 2 Type 3

Type 1 Type 2 Type 3

[2, 1, 1] [2,−, 1] + [1, 1, 1] [1,−, 1] θ3

[−, 3, 1] [−, 2, 1] θ4

[21,−, 1] [2,−, 1] + [12,−, 1] [1,−, 1] θ7

[1,−, 3] [−,−, 3] θ8

[1, 2, 1] [1, 1, 1] + [−, 2, 1] [−, 1, 1] Φ9

[12, 1, 1] [12,−, 1] + [1, 1, 1] [1,−, 1] + [−, 1, 1] 1P2 θ2 + θ5

[1, 12, 1] [−, 12, 1] + [1, 1, 1] [1,−, 1] + [−, 1, 1] 1P2 ν3
αϑ[−,21,1]

[−, 21, 1] [−, 12, 1] + [−, 2, 1] [−, 1, 1] ν4 ϑ[−,21,1]

[13,−, 1] [12,−, 1] [1,−, 1] 1P2 ν7
αϑ[−,1,3]

[−, 1, 3] [−,−, 3] ν8 ϑ[−,1,3]

ϑ[−,21,1] := θ1 + θ4 + Φ7 + Φ9 +
∑

1≤k≤ 1
2
(q−1)

ξ22(k) +
∑

1≤k≤ 1
2
(q−3)

ξ41(k)

ϑ[−,1,3] := θ6 + θ8 + Φ4 +
∑

1≤k≤ 1
2
(q−1)

ξ′21(k) +
∑

1≤k≤ 1
2
(q−3)

ξ′42(k)

(θ3 + θ7) · χ[1,1,1] = θ2 + θ3 + θ5 + Φ8 + Φ9 +
t∑

k=1

ξ21(k) +
t−1∑
k=1

ξ42(k),

(θ3 + θ7) · χ[12,−,1] = θ2 + θ5 + θ7 + Φ3 +
t∑

k=1

ξ′22(k) +
t−1∑
k=1

ξ′41(k).

Proof. Using the character table of Sp4(q) given in [10] together
with the corrections in [9], one can verify the claimed decompositions
of (θ3 + θ7) · χΛ for Λ ∈ {[−,−, 3], [−, 2, 1], [1, 1, 1], [12,−, 1]}, except
for the following three typos (in the notation of [10]): Φ3(C21(i)) =
−ε̃′, ξ′41(k)(D1) = 1

2
(q2 − 1)((−1)k − (−1)t) = 1

2
(q2 − 1)d(k, t), and

Φ7(B3(i, j)) = (−1)i + (−1)j = s(i, j). These corrections can be found
in [13]. �
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6. The restrictions of the unipotent characters of Sp6(q)

Now let n = 6, so that G = Sp6(q), q odd, and L = A × L′ with
L′ = Sp4(q).

For a symbol Λ, if σ is the unipotent character of L labelled by Λ,
then we denote by 1ψΛ the character 1ψσ of P .

Theorem 6.1. Let χ = χΛ be a non-trivial unipotent character of
G = Sp6(q) different from the Steinberg character. Then ResG

P (χΛ) is
as given in Table 2. In particular, ResG

P (χΛ) is multiplicity free.

Proof. Since the unipotent characters of G have pairwise different
degrees, they are α-invariant and Lemma 4.2 can be applied. The
Type 1 components of the restrictions are easily determined by Harish-
Chandra theory. The values of the unipotent characters on the class C1

containing z1 (see the introduction to Section 4) can be found in [8] or
CHEVIE [4].

Case 1: Λ = [21,−, 1] and [2, 1, 1].

We have
RG

L (1L) = χ[3,−,1] + χ[21,−,1] + χ[2,1,1].

Thus Corollary 3.5 yields for the sum of the Type 2 and the Type 3
components of ResG

P (χ[21,−,1] + χ[2,1,1]):

(13) 2 · 2ψ1P4
+ 3ψ

1,+
ω̄1

+ 3ψ
2,+
ω̄2

= 2 · 2ψ1P4
+ 3ψ̃

+

θ7
+ 3ψ̃

+

θ3
.

Let χ := χΛ with Λ = [21,−, 1]. Then

χ(1) =
1

2
q(q + 1)(q3 + 1) and χ(z1) =

1

2
q(q + 1)(q2 + 1).

We have 1χ = 1ψ1L
+ 1ψ[12,−,1] and so, by Lemma 4.2,

3χ(1) =
1

2
q2(q − 1)(q2 − 1) and 2χ(1) = q4 − 1.

Since 2ψµ(1) = (q4 − 1)µ(1), it follows from (13) that µ = 1P4 . Note
that 1P4 , being a Type 1 character of P4, gives the entry [1,−, 1] in the
corresponding row and column of Table 2. In the same way we obtain
3χ. Then (13) also gives the restriction of χ[2,1,1].

Case 2: Λ = [−, 3, 1], [−, 21, 1] or [1, 2, 1].

We have
RG

L (χ[−,2,1]) = χ[−,3,1] + χ[−,21,1] + χ[1,2,1].
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By (3) and Theorem 3.3 we have

ResG
P (χ[−,3,1] + χ[−,21,1] + χ[1,2,1]) = 1ψχ[−,2,1]

+IndP
RQK

s(ResP
RQK

(χ[−,2,1]))

+IndP
L(χ[−,2,1]).

By Theorem 5.3 we obtain

(14) ResL′

P4
(χ[−,2,1]) = 1ψχ[−,1,1]

+ 3ψ̃
+

ν4
.

Theorem 3.3(d) and 3.3(e) yield for the sum of the Type 2 and the
Type 3 contribution of (14):

(15) 2ψ[−,1,1] +
3ψ̃

+

ϑ ,

with

(16) ϑ = RL′

L4
(1−A4

� ν4) = Φ9 + θ1 + θ4.

(see Lemma 5.1(b)).
Finally, Theorem 3.3(a) and Remark 3.4 give

(17) IndP
L(χ[−,2,1]) = 1ψ[−,2,1] +

2ψ[−,1,1] +
2ψµ + 3ψ̃

+

ϑ ,

with µ = 3ψ̃
+

ν4
and ϑ = (θ7 + θ3) · χ[−,2,1].

Let χ = χΛ with Λ = [−, 3, 1]. Then

χ(1) =
1

2
q(q2 + 1)(q2 − q + 1) and χ(z1) = −1

2
q(q − 1)(q2 + 1).

From 1χ = 1ψ[−,2,1] and Lemma 4.2 we obtain

3χ(1) =
1

2
q2(q − 1)(q2 + 1) and 2χ(1) = 0.

Thus 3χ = 3ψ̃
+

ϑ with a character ϑ of Sp4(q) of degree (q2 + 1)/2. On
the other hand, by (16) and (17), the irreducible constituents of ϑ are
among the constituents of Φ9+θ1+θ4 or (θ7+θ3)·χ[−,2,1]. Proposition 5.4
now implies that ϑ = θ4.

Next let χ = χΛ with Λ = [1, 2, 1]. Then
1χ = 1ψ[1,1,1] +

1ψ[−,2,1].

In addition,

χ(1) = q2(q2 + q + 1)(q2 − q + 1) and χ(z1) = q2.

By Lemma 4.2,
3χ(1) = q3(q − 1)(q2 + 1) and 2χ(1) = q(q4 − 1).

24



Since 2ψµ(1) = (q4 − 1)µ(1), it follows that

2χ = 2ψµ

with µ a character of P4 of degree q. By (15) and (17), this implies
that µ = χ[−,1,1].

Also, 3χ is labelled by a character ϑ of Sp4(q) of degree q(q2 + 1).
Proposition 5.4 now implies as above that ϑ = Φ9.

The result for χ[−,21,1] now also follows.

Case 3: Λ = [13,−, 1] and [12, 1, 1].

We have
RG

L (χ[12,−,1]) = χ[13,−,1] + χ[21,−,1] + χ[12,1,1].

By (3) and Theorem 3.3 we have

ResG
P (χ[13,−,1] + χ[21,−,1] + χ[12,1,1]) = 1ψχ[12,−,1]

+IndP
RQK

s(ResP
RQK

(χ[12,−,1]))

+IndP
L(χ[12,−,1]).

By Theorem 5.3 we obtain

(18) ResL′

P4
(χ[12,−,1]) = 1ψχ[1,−,1]

+ 2ψ1P2
+ 3ψ̃

+

ν7
.

Theorem 3.3(d) and 3.3(e) yield for the sum of the Type 2 and the
Type 3 contribution of (18):

(19) 2ψ[1,−,1] +
2ψµ + 3ψ̃

+

ϑ ,

with µ = IndP4
rP 4∩P4

(1P2) and ϑ = RL′
L4

(1−A4
� ν7). By Theorem 3.3(b)

we have

(20) µ = IndP4
rP 4∩P4

(1P2) = 1ψ[1,−,1] +
1ψ[−,1,1] +

2ψ1P2
,

and, by Lemma 5.1(a),

(21) ϑ = RL′

L4
(1−A4

� ν7) = θ5 + θ7.

Finally, Theorem 3.3(a) and Remark 3.4 give

(22) IndP
L(χ[12,−,1]) = 1ψ[12,−,1] +

2ψ[1,−,1] +
2ψµ1

+ 2ψµ2
+ 3ψ̃

+

ϑ ,

with µ1 = 2ψ1P2
, µ2 = 3ψ̃

+

ν7
and ϑ = (θ7 + θ3) · χ[12,−,1].

Taking into account that we have already computed the restriction
of χ[21,−,1], by (19), (20) and (22), the labels for the Type 2 constituents

of ResG
P (χ[13,−,1] + χ[12,1,1]) are exactly the constituents of

(23) 2 · 1ψ[1,−,1] +
1ψ[−,1,1] + 2 · 2ψ1P2

+ 3ψ̃
+

ν7
.
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Similarly, by (19), (21) and (22), the labels for the Type 3 con-
stituents of ResG

P (χ[13,−,1] + χ[12,1,1]) are exactly the constituents of

(24) θ5 + (θ7 + θ3) · χ[12,−,1].

Let χ = χΛ with Λ = [12, 1, 1]. Then
1χ = 1ψ[1,1,1] +

1ψ[12,−,1]

and in addition,

χ(1) = q3(q4 + q2 + 1) and χ(z1) = q3(q2 + 1).

By Lemma 4.2,
3χ(1) = q6(q − 1) and 2χ(1) = q(q + 1)(q4 − 1).

Since 2ψµ(1) = (q4 − 1)µ(1), it follows that

2χ = 2ψµ

with µ a character of P4 of degree q(q + 1). It follows from (23) that
µ = 1ψ[1,−,1] +

1ψ[−,1,1] +
2ψ1P2

.

Moreover 3χ is labelled by a character ϑ of Sp4(q) with ϑ(1) = q4.
Now χ is also contained in RG

L (χ[1,1,1]), and so ResG
P (χ) is a subcharacter

of ResG
P (RG

L (χ[1,1,1])). In particular, the Type 3 component of ResG
P (χ)

is contained in (30) below. This implies that ϑ = θ2 + θ5.
The result for χ = χΛ with Λ = [13,−, 1] now also follows.

Case 4: Λ = [1, 12, 1].

We have

RG
L (χ[1,1,1]) = χ[2,1,1] + χ[12,1,1] + χ[1,2,1] + χ[1,12,1].

By (3) and Theorem 3.3 we have

ResG
P (RG

L (χ[1,1,1])) = 1ψχ[1,1,1]

+IndP
RQK

s(ResP
RQK

(χ[1,1,1]))

+IndP
L(χ[1,1,1]).

By Theorem 5.3 we obtain

(25) ResL′

P4
(χ[1,1,1]) = 1ψχ[1,−,1]

+ 1ψχ[−,1,1]
+ 2ψ1P2

+ 3ψ̃
+

ν3
.

Theorem 3.3(d) and 3.3(e) yield for the sum of the Type 2 and the
Type 3 contribution of (25):

(26) 2ψ[1,−,1] +
2ψ[−,1,1] +

2ψµ + 3ψ̃
+

ϑ ,
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with µ = IndP4
rP 4∩P4

(1P2) and ϑ = RL′
L4

(1−A4
� ν3). By Theorem 3.3(b)

we have

(27) µ = IndP4
rP 4∩P4

(1P2) = 1µ[1,−,1] +
1µ[−,1,1] +

2µ1P2
,

and, by Lemma 5.1(b),

(28) ϑ = RL′

L4
(1−A4

� ν3) = Φ9 + θ2 + θ3.

Finally, Theorem 3.3(a) and Remark 3.4 give

(29) IndP
L(χ[1,1,1]) = 1ψ[1,1,1] +

2ψ[1,−,1] +
2ψ[−,1,1] +

2ψµ1
+ 2ψµ2

+ 3ψ̃
+

ϑ ,

with µ1 = 2ψ1P2
, µ2 = 3ψ̃

+

ν3
and ϑ = (θ7 + θ3) · χ[1,1,1].

It follows that the Type 3 component of ResG
P (RG

L (χ[1,1,1])) is labelled
by the character

(30) Φ9 + θ2 + θ3 + (θ7 + θ3) · χ[1,1,1]

of Sp4(q).
Taking into account that we have already computed the restrictions

of χ[2,1,1], χ[12,1,1] and χ[1,2,1], the labels for the Type 2 constituents of

ResG
P (χ[1,12,1]) are exactly the constituents of

(31) 1ψ[1,−,1] +
1ψ[−,1,1] +

2ψ1P2
+ 3ψ̃

+

ν3
.

Similarly, the labels for the Type 3 constituents of ResG
P (χ[1,12,1]) are

exactly the constituents constituents of (θ7+θ3) ·χ[1,1,1]−θ5. The result
for χ[1,12,1] follows.

Case 5: Λ = [1,−, 3] or [−, 1, 3].

We have
RG

L (χ[−,−,3]) = χ[1,−,3] + χ[−,1,3].

By (3) and Theorem 3.3 we obtain

ResG
P (χ[1,−,3] + χ[−,1,3]) = χ[−,−,3]

+IndP
RQK

s(ResP
RQK

(χ[−,−,3]))

+IndP
L(χ[−,−,3]).

From Theorem 5.3 we have

(32) ResL′

P4
(χ[−,−,3]) = 3ψ̃

+

ν8
.

Thus Theorem 3.3(e) yields

(33) IndP
RQK

s(ResP
RQK

(χ[−,−,3])) = 3ψ̃
+

ϑ ,

with ϑ = RL′
L4

(1−A4
� ν8). By Lemma 5.1(a),

(34) ϑ = RL′

L4
(1−A4

� ν8) = θ6 + θ8.
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Finally, Theorem 3.3(a) and [1, Proposition 2.3] give

(35) IndP
L(χ[−,−,3]) = 1ψ[−,−,3] +

2ψµ + 3ψ̃
+

ϑ ,

with µ = 3ψ̃
+

ν8
and ϑ = (θ7 + θ3) · χ[−,−,3].

Now let χ = χΛ with Λ = [1,−, 3]. Then

χ(1) =
1

2
q(q − 1)(q3 − 1) and χ(z1) = −1

2
q(q − 1)(q2 + 1).

Harish-Chandra theory gives
1χ = 1ψ[−,−,3].

By Lemma 4.2,

3χ(1) =
1

2
q2(q − 1)(q2 − 1) and 2χ(1) = 0.

Hence
3χ = 3ψ̃

+

ϑ

for some character ϑ of L′ of degree (q2−1)/2. Proposition 5.4 and (34)
now imply that ϑ = θ8. This also concludes the proof for χΛ with
Λ = [−, 1, 3]. �
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We thank Frank Lübeck for clarifying discussions on the subtleties
of the parametrization of unipotent characters as well as for his hint to
reference [11].

Most of this work was done during two visits of the second author at
the Department of Mathematics of the University of Auckland in 2007
and 2008. He wishes to express his sincere thanks to all the persons of
the department for their hospitality, and also to the Marsden Fund of
New Zealand who supported his visits via grant #9144/3608549.

References

[1] J. An and G. Hiss, Restricting the Steinberg character in finite symplectic
groups, J. Group Theory 9 (2006), 251–264.

[2] R.W. Carter, Finite groups of Lie type: Conjugacy classes and complex
characters, Wiley, 1985.

[3] C. W. Curtis and I. Reiner, Methods of representation theory Vol. II,
Wiley, 1987.
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