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THE CONTEXT

Modular representation theory of finite groups

G a finite group, p a prime number,
B a union of p-blocks of G

Irr(B), IBr(B): class functions on G, respectively Gp′

R(B) := Z[Irr(B)], Rp(B) := Z[IBr(B)]

d : R(B)→ Rp(B), χ 7→ χ◦, decomposition map

Note: d is surjective
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BASIC SETS ACCORDING TO RICHARD BRAUER

DEFINITION (BRAUER, FROM 1961)

Any Z-basis of Rp(B) is a basic set for B.

Motivation: Finiteness results
Let B = {θj} be a basic set for B.

Let DB = (dij) the decomposition matrix of B w.r.t. B, and
CB := Dt

BDB, the Cartan matrix of B w.r.t. B.

D := DIBr(B) is the decomposition matrix of B
C := CIBr(B) = DtD is the the Cartan matrix of B

If B′ is another basic set, B = U · B′ (with U ∈ GL(`,Z)),
then DB′ = DBU and CB′ = U tCBU.

The integral quadratic form, represented by C = DtD, is
independent of the chosen basic set (up to equivalence).
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BASIC SETS ACCORDING TO RICHARD PARKER

Recall
Rp(B) := Z[IBr(B)]

R+
p (B) := N[IBr(B)]:

set of proper Brauer characters

DEFINITION (PARKER, FROM 1984)

A basic set for B is a Z-basis B of Rp(B) with B ⊆ R+
p (B).

Motivation: Computation of IBr(B)

Define U1 ∈ GL(`,Z) by B = U1 · IBr(B). Then
U1 has non-negative entries
D = DBU1

Note: Knowing Irr(B) and B, it suffices to compute U1

How does one check if B ⊆ R+
p (B) is a basic set?
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BASIC SETS OF PROJECTIVE CHARACTERS

IPr(B): the characters of the PIMs of B
Note: IPr(B) = Dt · Irr(B) (Brauer reciprocity)

K(B) := Z[IPr(B)], K+(B) := N[IPr(B)]

DEFINITION (PARKER, FROM 1984)

A basic set P of projective characters for B is a Z-basis of K(B)
with P ⊆ K+(B).

Given basic sets B = {θi} and P = {Ψj}, put U := (〈θi ,Ψj〉)i,j .
Define U2 ∈ GL(`,Z) by P = U t

2 · IPr(B). Then
U2 has non-negative entries
U = U1U2

How does one get a basic set P of projective characters?
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SPECIAL BASIC SETS

How does one get a basic set B of Brauer characters?

DEFINITION (PARKER, FROM 1984)

A special basic set for B is a Z-basis B of Rp(B) with
B ⊆ {χ◦ | χ ∈ Irr(B)}.

QUESTION

Do special basic sets always exist?

This question is still open today.
Answer is Yes,

if B is a block of a sporadic group (computer calculations)

if G is a p-solvable group (see next slide)

in many more cases to follow.
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TRIANGULAR SHAPE

DEFINITION

A ∈ Zk×` (with k ≥ `) has triangular shape, if A =

[
U
A′

]
,

where U ∈ Z`×` is lower uni-triangular.

Suppose that P is a basic set of projective characters for B.
Define A ∈ Nk×` by P = At · Irr(B).

If A has triangular shape, then D has.
Indeed, A = DU2 with U2 ∈ N`×`.
If D has triangular shape, a special basic set exists.

If G is p-solvable, D has shape
[

I`
D′

]
with identity matrix I`

(Fong-Swan theorem)
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AN EXAMPLE (THANKS TO OLIVIER B.)

Let G = SL(2,9) ∼= 2.A6, p = 3, and B the “faithful” block.

D =



1 1 . .
1 1 . .
. 1 1 .
1 . . 1
1 1 1 .
1 1 . 1

 (dots represent zeros)

No triangular shape, yet a special basic set exists:

Indeed,


1 1 . .
. 1 1 .
1 1 1 .
1 1 . 1

 has determinant 1.

A remedy would be to look at 3.SL(2,9), but this does not work
for G = SL(2,p2), p ≥ 5 a prime.
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JAMES, DIPPER AND GECK

THEOREM (JAMES)
If G = Sn, then D has triangular shape.
Special basic set: {χ◦ν | ν p-regular partition of n}.

THEOREM (DIPPER AND GECK)

Let G = GLn(q) (Dipper) or G = GUn(q) (Geck) with p - q. Let
B be the union of the unipotent blocks.
Then D has triangular shape.
Special basic set: {χ◦ν | ν partition of n}.

Produce triangular shape basic set of projective characters by
Harish-Chandra induction of projective characters (Dipper)
Generalized Gelfand-Graev characters (Geck)
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SOME HISTORY

Arcata 1986, Josie Shamash: Brauer trees for G2(q)
Left open some cases.

Back to Aachen experimented with Klaus Lux:
Used Maple to compute tensor products of unipotent
characters of G2(q) generically.

Could solve Shamash’s problems.
This was the begin of Chevie.

Talked in a seminar in Aachen.
This lead to the topic of Meinolf’s diploma thesis (Pahlings):
Compute decomposition numbers for SU3(q).

Only solved much later by Okuyma and Waki (2002), and,
with different methods, by Dudas in 2013.
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BASIC SETS FOR ALTERNATING GROUPS

THEOREM (BRUNAT-GRAMAIN, 2010 (TWO JOINT PAPERS))
Every p-block of An has a special basic set.

THEOREM (BRUNAT-GRAMAIN, 2020)
If p is odd, every p-block of 2.An or 2.Sn has a special basic set.

Here, 2.An or 2.Sn denote double coverings of An and Sn,
respectivley.
The case p = 2 is contained in the first theorem.

EXAMPLE (BRUNAT-GRAMAIN-JACON, 2023)
D does not have triangular shape for G = A18,A19 and p = 3.

GERHARD HISS BASIC SETS



LUSZTIG SERIES

Let G := GF = G(q) be a finite reductive group.
Irr(G) is organized in Lusztig series.
G∗ dual reductive group;
s ∈ G∗ semisimple Lusztig series E(G, s) ⊆ Irr(G);
E(G, s) = E(G, s′) if and only if s, s′ conjugate in G∗;

Irr(G) =
⋃
E(G, s)

THEOREM (BROUÉ-MICHEL, 1989)

Assume p - q. Let s ∈ G∗ be a semisimple p′-element. Then

Ep(G, s) :=
⋃

t∈CG∗ (s)p

E(G, st)

is a union of p-blocks.

Henceforth: Fix s, put B := Ep(G, s)
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BASIC SETS IN FINITE REDUCTIVE GROUPS, I

THEOREM (GECK-H., 1991)

Suppose Z (G) is connected and p is good for G. Then
{χ◦ | χ ∈ E(G, s)} is a basic set for Ep(G, s).

THEOREM (GECK, 1993)

Suppose p - (Z (G)/Z (G)◦)F and p is good for G. Then the
same conclusion holds.

COROLLARY

Under the above hypotheses, |IBr(Ep(G, s))| = |E(G, s)|.

EXAMPLES

G = SL3(q), p = 3 | q − 1: |E(G,1)| = 3, |IBr(E3(G,1))| = 5.
G = G2(q), p = 2, q odd: |E(G,1)| = 10, |IBr(E2(G,1))| = 9.
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BASIC SETS IN FINITE REDUCTIVE GROUPS, II

Meinolf saw: Under our hypothesis, L∗ := CG∗(t) is a Levi
subgroup of G∗ for all p-elements 1 6= t .

Let L ≤ G be a Levi subgroup dual to L∗.

Since CG∗(st) ≤ L∗, there is a bijection (Lusztig)

E(L, st)→ E(G, st), ψ 7→ εLεGRG
L (ψ)

Also, RG
L (ψ)◦ = RG

L (ψ◦) and ψ◦ ∈ Z[E(L, s)], since t ∈ Z (L∗).

As RG
L preserves Lusztig series, {χ◦ | χ ∈ E(G, s)} is a

generating set for Ep(G, s).

The rest of the proof is a clever counting argument due to
Meinolf.
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BASIC SETS IN FINITE REDUCTIVE GROUPS, III

Suppose Z (G) is connected. Then there exists a bijection

E(G, s)
Ls−→ E(CG∗(s),1)

(Lusztig’s Jordan decomposition of characters)

CONJECTURE (GECK-H., 1991)

Suppose s ∈ G∗ is a semisimple p′-element. Then

Ep(G, s) and Ep(CG∗(s),1)

have the same decomposition matrices (w.r.t. (Lst )t ).

CONJECTURE (GECK, CA. 1990)
Same hypotheses and p good for G.
Then D has triangular shape, giving rise to the special basic set
B = {χ◦ | χ ∈ E(G, s)}.
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TRIANGULAR SHAPE IN FINITE REDUCTIVE GROUPS

Let the hypotheses be as on the previous slide.

THEOREM (BONNAFÉ-DAT-ROUQUIER, 2017)

Assume s not quasi-isolated. Then Ep(G, s) and Ep(CG∗(s),1)
are Morita equivalent.

In fact, these authors prove a much stronger and more precise
result.

THEOREM (BRUNAT-DUDAS-TAYLOR, 2021)
Suppose that p is good for G. Then D has triangular shape.

More on this in a later talk.
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