BASIC SETS

Gerhard Hiss

Representations of Reductive Groups,
Celebrating the 60-th Birthday of Meinolf Geck RWTH Aachen University, June 7-9, 2023

THE CONTEXT

Modular representation theory of finite groups
G a finite group, p a prime number,
B a union of p-blocks of G
$\operatorname{Irr}(B), \operatorname{IBr}(B)$: class functions on G, respectively $G_{p^{\prime}}$
$\mathcal{R}(B):=\mathbb{Z}[\operatorname{lr}(B)], \mathcal{R}_{p}(B):=\mathbb{Z}[\operatorname{IBr}(B)]$
$d: \mathcal{R}(B) \rightarrow \mathcal{R}_{p}(B), \chi \mapsto \chi^{\circ}$, decomposition map

Note: d is surjective

Basic sets according to Richard Brauer

DEFINITION (BRAUER, FROM 1961)

Any \mathbb{Z}-basis of $\mathcal{R}_{p}(B)$ is a basic set for B.
Motivation: Finiteness results
Let $\mathcal{B}=\left\{\theta_{j}\right\}$ be a basic set for B.
Let $D_{\mathcal{B}}=\left(d_{i j}\right)$ the decomposition matrix of B w.r.t. \mathcal{B}, and $C_{\mathcal{B}}:=D_{\mathcal{B}}^{t} D_{\mathcal{B}}$, the Cartan matrix of B w.r.t. \mathcal{B}.
$D:=D_{\mathrm{IBr}(B)}$ is the decomposition matrix of B
$C:=C_{\operatorname{lBr}(B)}=D^{t} D$ is the the Cartan matrix of B
If \mathcal{B}^{\prime} is another basic set, $\mathcal{B}=U \cdot \mathcal{B}^{\prime}$ (with $U \in \mathrm{GL}(\ell, \mathbb{Z})$), then $D_{\mathcal{B}^{\prime}}=D_{\mathcal{B}} U$ and $C_{\mathcal{B}^{\prime}}=U^{t} C_{\mathcal{B}} U$.

The integral quadratic form, represented by $C=D^{t} D$, is independent of the chosen basic set (up to equivalence).

Basic sets according to Richard Parker

Recall

$$
\mathcal{R}_{p}(B):=\mathbb{Z}[\operatorname{Br}(B)]
$$

$$
\mathcal{R}_{p}^{+}(B):=\mathbb{N}[\operatorname{Br}(B)]:
$$

set of proper Brauer characters

DEfinition (Parker, FRom 1984)

A basic set for B is a \mathbb{Z}-basis \mathcal{B} of $\mathcal{R}_{p}(B)$ with $\mathcal{B} \subseteq \mathcal{R}_{p}^{+}(B)$.
Motivation: Computation of $\operatorname{IBr}(B)$
Define $U_{1} \in \operatorname{GL}(\ell, \mathbb{Z})$ by $\mathcal{B}=U_{1} \cdot \operatorname{IBr}(B)$. Then

- U_{1} has non-negative entries
- $D=D_{\mathcal{B}} U_{1}$

Note: Knowing $\operatorname{lrr}(B)$ and \mathcal{B}, it suffices to compute U_{1} How does one check if $\mathcal{B} \subseteq \mathcal{R}_{p}^{+}(B)$ is a basic set?

BASIC SETS OF PROJECTIVE CHARACTERS

$\operatorname{IPr}(B)$: the characters of the PIMs of B
Note: $\operatorname{IPr}(B)=D^{t} \cdot \operatorname{Irr}(B)$
(Brauer reciprocity)
$\mathcal{K}(B):=\mathbb{Z}[\operatorname{Pr}(B)], \mathcal{K}^{+}(B):=\mathbb{N}[\operatorname{Pr}(B)]$

DEfinition (Parker, FRom 1984)

A basic set \mathcal{P} of projective characters for B is a \mathbb{Z}-basis of $\mathcal{K}(B)$ with $\mathcal{P} \subseteq \mathcal{K}^{+}(B)$.

Given basic sets $\mathcal{B}=\left\{\theta_{i}\right\}$ and $\mathcal{P}=\left\{\Psi_{j}\right\}$, put $U:=\left(\left\langle\theta_{i}, \Psi_{j}\right\rangle\right)_{i, j}$. Define $U_{2} \in \operatorname{GL}(\ell, \mathbb{Z})$ by $\mathcal{P}=U_{2}^{t} \cdot \operatorname{IPr}(B)$. Then

- U_{2} has non-negative entries
- $U=U_{1} U_{2}$

How does one get a basic set \mathcal{P} of projective characters?

Special basic sets

How does one get a basic set \mathcal{B} of Brauer characters?
DEFINITION (PARKER, FROM 1984)
A special basic set for B is a \mathbb{Z}-basis \mathcal{B} of $\mathcal{R}_{p}(B)$ with $\mathcal{B} \subseteq\left\{\chi^{\circ} \mid \chi \in \operatorname{Irr}(B)\right\}$.

Question

Do special basic sets always exist?
This question is still open today.
Answer is Yes,

- if B is a block of a sporadic group (computer calculations)
- if G is a p-solvable group (see next slide)
- in many more cases to follow.

TRIANGULAR SHAPE

DEFINITION

$A \in \mathbb{Z}^{k \times \ell}$ (with $k \geq \ell$) has triangular shape, if $A=\left[\begin{array}{c}U \\ A^{\prime}\end{array}\right]$, where $U \in \mathbb{Z}^{\ell \times \ell}$ is lower uni-triangular.

Suppose that \mathcal{P} is a basic set of projective characters for B. Define $A \in \mathbb{N}^{k \times \ell}$ by $\mathcal{P}=A^{t} . \operatorname{Irr}(B)$.

- If A has triangular shape, then D has. Indeed, $A=D U_{2}$ with $U_{2} \in \mathbb{N}^{\ell \times \ell}$.
- If D has triangular shape, a special basic set exists.

If G is p-solvable, D has shape $\left[\begin{array}{c}I_{\ell} \\ D^{\prime}\end{array}\right]$ with identity matrix I_{ℓ} (Fong-Swan theorem)

An EXAMPLE (THANKS TO Olivier B.)

Let $G=\operatorname{SL}(2,9) \cong 2 . A_{6}, p=3$, and B the "faithful" block.
$D=\left[\begin{array}{cccc}1 & 1 & . & . \\ 1 & 1 & . & . \\ . & 1 & 1 & . \\ 1 & . & . & 1 \\ 1 & 1 & 1 & . \\ 1 & 1 & . & 1\end{array}\right]$
(dots represent zeros)

No triangular shape, yet a special basic set exists:
Indeed, $\left[\begin{array}{cccc}1 & 1 & . & . \\ . & 1 & 1 & \cdot \\ 1 & 1 & 1 & . \\ 1 & 1 & . & 1\end{array}\right]$ has determinant 1.
A remedy would be to look at $3 . \operatorname{SL}(2,9)$, but this does not work for $G=S L\left(2, p^{2}\right), p \geq 5$ a prime.

James, Dipper and Geck

THEOREM (JAMES)

If $G=S_{n}$, then D has triangular shape.
Special basic set: $\left\{\chi_{\nu}^{\circ} \mid \nu\right.$ p-regular partition of $\left.n\right\}$.

THEOREM (DIPPER AND GECK)

Let $G=\mathrm{GL}_{n}(q)$ (Dipper) or $G=\mathrm{GU}_{n}(q)$ (Geck) with $p \nmid q$. Let B be the union of the unipotent blocks.
Then D has triangular shape.
Special basic set: $\left\{\chi_{\nu}^{\circ} \mid \nu\right.$ partition of $\left.n\right\}$.

Produce triangular shape basic set of projective characters by

- Harish-Chandra induction of projective characters (Dipper)
- Generalized Gelfand-Graev characters (Geck)

Arcata 1986, Josie Shamash: Brauer trees for $G_{2}(q)$ Left open some cases.

Back to Aachen experimented with Klaus Lux: Used Maple to compute tensor products of unipotent characters of $G_{2}(q)$ generically.

Could solve Shamash's problems.
This was the begin of Chevie.
Talked in a seminar in Aachen.
This lead to the topic of Meinolf's diploma thesis (Pahlings):
Compute decomposition numbers for $\mathrm{SU}_{3}(q)$.
Only solved much later by Okuyma and Waki (2002), and, with different methods, by Dudas in 2013.

BASIC SETS FOR ALTERNATING GROUPS

THEOREM (BRUNAT-GRAMAIN, 2010 (TWO JOINT PAPERS))
 Every p-block of A_{n} has a special basic set.

Theorem (Brunat-Gramain, 2020)
If p is odd, every p-block of $2 . A_{n}$ or $2 . S_{n}$ has a special basic set.
Here, 2. A_{n} or 2. S_{n} denote double coverings of A_{n} and S_{n}, respectivley.
The case $p=2$ is contained in the first theorem.

> EXAMPLE (BRUNAT-GRAMAIN-JACON, 2023)
> D does not have triangular shape for $G=A_{18}, A_{19}$ and $p=3$.

LUSZTIG SERIES

Let $G:=\mathbf{G}^{F}=G(q)$ be a finite reductive group.
$\operatorname{lrr}(G)$ is organized in Lusztig series.
G^{*} dual reductive group;
$s \in G^{*}$ semisimple \rightsquigarrow Lusztig series $\mathcal{E}(G, s) \subseteq \operatorname{lrr}(G)$; $\mathcal{E}(G, s)=\mathcal{E}\left(G, s^{\prime}\right)$ if and only if s, s^{\prime} conjugate in G^{*};

$$
\operatorname{lrr}(G)=\bigcup \mathcal{E}(G, s)
$$

THEOREM (BROUÉ-MICHEL, 1989)
Assume $p \nmid q$. Let $s \in G^{*}$ be a semisimple p^{\prime}-element. Then

$$
\mathcal{E}_{p}(G, s):=\bigcup_{t \in C_{G^{*}}(s)_{p}} \mathcal{E}(G, s t)
$$

is a union of p-blocks.
Henceforth: Fix s, put $B:=\mathcal{E}_{p}(G, s)$

BASIC SETS IN FINITE REDUCTIVE GROUPS, I

THEOREM (GECK-H., 1991)

Suppose $Z(\mathbf{G})$ is connected and p is good for \mathbf{G}. Then $\left\{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\right\}$ is a basic set for $\mathcal{E}_{p}(G, s)$.

Theorem (GECK, 1993)

Suppose $p \nmid\left(Z(\mathbf{G}) / Z(\mathbf{G})^{\circ}\right)_{F}$ and p is good for \mathbf{G}. Then the same conclusion holds.

Corollary

Under the above hypotheses, $\left|\operatorname{Br}\left(\mathcal{E}_{p}(G, s)\right)\right|=|\mathcal{E}(G, s)|$.

EXAMPLES

$$
\begin{array}{ll}
G=S_{3}(q), p=3 \mid q-1: & |\mathcal{E}(G, 1)|=3,\left|\operatorname{Br}\left(\mathcal{E}_{3}(G, 1)\right)\right|=5 \\
G=G_{2}(q), p=2, q \text { odd: } & |\mathcal{E}(G, 1)|=10,\left|\operatorname{Br}\left(\mathcal{E}_{2}(G, 1)\right)\right|=9
\end{array}
$$

BASIC SETS IN FINITE REDUCTIVE GROUPS, II

Meinolf saw: Under our hypothesis, $\mathbf{L}^{*}:=C_{\mathbf{G}^{*}}(t)$ is a Levi subgroup of \mathbf{G}^{*} for all p-elements $1 \neq t$.

Let $\mathbf{L} \leq \mathbf{G}$ be a Levi subgroup dual to \mathbf{L}^{*}.
Since $C_{\mathbf{G}^{*}}(s t) \leq \mathbf{L}^{*}$, there is a bijection (Lusztig)

$$
\mathcal{E}(L, s t) \rightarrow \mathcal{E}(G, s t), \psi \mapsto \varepsilon_{\mathbf{L}} \varepsilon_{\mathbf{G}} R_{\mathbf{L}}^{\mathbf{G}}(\psi)
$$

Also, $R_{\mathbf{L}}^{\mathbf{G}}(\psi)^{\circ}=R_{\mathbf{L}}^{\mathbf{G}}\left(\psi^{\circ}\right)$ and $\psi^{\circ} \in \mathbb{Z}[\mathcal{E}(L, s)]$, since $t \in Z\left(L^{*}\right)$.
As $R_{\mathrm{L}}^{\mathrm{G}}$ preserves Lusztig series, $\left\{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\right\}$ is a generating set for $\mathcal{E}_{p}(G, s)$.

The rest of the proof is a clever counting argument due to Meinolf.

BASIC SETS IN FINITE REDUCTIVE GROUPS, III

Suppose $Z(\mathbf{G})$ is connected. Then there exists a bijection

$$
\mathcal{E}(G, s) \xrightarrow{\mathcal{L}_{s}} \mathcal{E}\left(C_{G^{*}}(s), 1\right)
$$

(Lusztig's Jordan decomposition of characters)
Conjecture (Geck-H., 1991)
Suppose $s \in G^{*}$ is a semisimple p^{\prime}-element. Then

$$
\mathcal{E}_{p}(G, s) \text { and } \mathcal{E}_{p}\left(C_{G^{*}}(s), 1\right)
$$

have the same decomposition matrices (w.r.t. $\left.\left(\mathcal{L}_{s t}\right)_{t}\right)$.
Conjecture (Geck, Ca. 1990)
Same hypotheses and p good for \mathbf{G}.
Then D has triangular shape, giving rise to the special basic set $\mathcal{B}=\left\{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\right\}$.

Triangular shape in finite reductive groups

Let the hypotheses be as on the previous slide.

THEOREM (BONNAFÉ-DAT-ROUQUIER, 2017)
Assume s not quasi-isolated. Then $\mathcal{E}_{p}(G, s)$ and $\mathcal{E}_{p}\left(C_{G^{*}}(s), 1\right)$ are Morita equivalent.

In fact, these authors prove a much stronger and more precise result.

THEOREM (BRUNAT-DUDAS-TAYLOR, 2021)

Suppose that p is good for \mathbf{G}. Then D has triangular shape.
More on this in a later talk.

