BASIC SETS

Gerhard Hiss

Representations of Reductive Groups, Celebrating the 60-th Birthday of Meinolf Geck RWTH Aachen University, June 7-9, 2023 Modular representation theory of finite groups

G a finite group, p a prime number, *B* a union of *p*-blocks of *G*

Irr(B), IBr(B): class functions on *G*, respectively $G_{p'}$

$$\mathcal{R}(B) := \mathbb{Z}[\mathsf{Irr}(B)], \mathcal{R}_{\rho}(B) := \mathbb{Z}[\mathsf{IBr}(B)]$$

 $d: \mathcal{R}(B) \rightarrow \mathcal{R}_{p}(B), \chi \mapsto \chi^{\circ}$, decomposition map

Note: *d* is surjective

DEFINITION (BRAUER, FROM 1961)

Any \mathbb{Z} -basis of $\mathcal{R}_{p}(B)$ is a *basic set* for *B*.

Motivation: Finiteness results Let $\mathcal{B} = \{\theta_j\}$ be a basic set for B.

Let $D_{\mathcal{B}} = (d_{ij})$ the *decomposition matrix* of *B* w.r.t. \mathcal{B} , and $C_{\mathcal{B}} := D_{\mathcal{B}}^t D_{\mathcal{B}}$, the *Cartan matrix* of *B* w.r.t. \mathcal{B} .

 $D := D_{\text{IBr}(B)}$ is the decomposition matrix of B $C := C_{\text{IBr}(B)} = D^t D$ is the the Cartan matrix of B

If \mathcal{B}' is another basic set, $\mathcal{B} = U \cdot \mathcal{B}'$ (with $U \in GL(\ell, \mathbb{Z})$), then $D_{\mathcal{B}'} = D_{\mathcal{B}}U$ and $C_{\mathcal{B}'} = U^t C_{\mathcal{B}}U$.

The integral quadratic form, represented by $C = D^t D$, is independent of the chosen basic set (up to equivalence).

BASIC SETS ACCORDING TO RICHARD PARKER

Recall $\mathcal{R}_p(B) := \mathbb{Z}[\mathsf{IBr}(B)]$

 $\mathcal{R}^+_p(B) := \mathbb{N}[\mathsf{IBr}(B)]:$

set of proper Brauer characters

DEFINITION (PARKER, FROM 1984)

A *basic set* for *B* is a \mathbb{Z} -basis \mathcal{B} of $\mathcal{R}_{p}(B)$ with $\mathcal{B} \subseteq \mathcal{R}_{p}^{+}(B)$.

Motivation: Computation of IBr(B)

Define $U_1 \in GL(\ell, \mathbb{Z})$ by $\mathcal{B} = U_1 \cdot IBr(B)$. Then

- U1 has non-negative entries
- $D = D_{\mathcal{B}}U_1$

Note: Knowing Irr(*B*) and \mathcal{B} , it suffices to compute U_1 How does one check if $\mathcal{B} \subseteq \mathcal{R}^+_p(B)$ is a basic set?

BASIC SETS OF PROJECTIVE CHARACTERS

IPr(*B*): the characters of the PIMs of *B* Note: IPr(*B*) = $D^t \cdot Irr(B)$

(Brauer reciprocity)

$$\mathcal{K}(B) := \mathbb{Z}[\mathsf{IPr}(B)], \, \mathcal{K}^+(B) := \mathbb{N}[\mathsf{IPr}(B)]$$

DEFINITION (PARKER, FROM 1984)

A basic set \mathcal{P} of projective characters for B is a \mathbb{Z} -basis of $\mathcal{K}(B)$ with $\mathcal{P} \subseteq \mathcal{K}^+(B)$.

Given basic sets $\mathcal{B} = \{\theta_i\}$ and $\mathcal{P} = \{\Psi_j\}$, put $U := (\langle \theta_i, \Psi_j \rangle)_{i,j}$. Define $U_2 \in GL(\ell, \mathbb{Z})$ by $\mathcal{P} = U_2^t \cdot IPr(B)$. Then

• U₂ has non-negative entries

•
$$U = U_1 U_2$$

How does one get a basic set \mathcal{P} of projective characters?

SPECIAL BASIC SETS

How does one get a basic set \mathcal{B} of Brauer characters?

DEFINITION (PARKER, FROM 1984)

A special basic set for *B* is a \mathbb{Z} -basis \mathcal{B} of $\mathcal{R}_p(B)$ with $\mathcal{B} \subseteq \{\chi^{\circ} \mid \chi \in Irr(B)\}.$

QUESTION

Do special basic sets always exist?

This question is still open today.

Answer is Yes,

- if *B* is a block of a sporadic group (computer calculations)
- if *G* is a *p*-solvable group (see next slide)
- in many more cases to follow.

DEFINITION

 $A \in \mathbb{Z}^{k \times \ell}$ (with $k \ge \ell$) has *triangular shape*, if $A = \begin{bmatrix} U \\ A' \end{bmatrix}$, where $U \in \mathbb{Z}^{\ell \times \ell}$ is lower uni-triangular.

Suppose that \mathcal{P} is a basic set of projective characters for B. Define $A \in \mathbb{N}^{k \times \ell}$ by $\mathcal{P} = A^t \cdot \operatorname{Irr}(B)$.

- If A has triangular shape, then D has.
 Indeed, A = DU₂ with U₂ ∈ N^{ℓ×ℓ}.
- If *D* has triangular shape, a special basic set exists.

If *G* is *p*-solvable, *D* has shape $\begin{bmatrix} I_{\ell} \\ D \end{bmatrix}$ (Fong-Swan theorem)

$$\left[\begin{array}{c} \ell \\ \prime \end{array} \right]$$
 with identity matrix I_{ℓ}

AN EXAMPLE (THANKS TO OLIVIER B.)

Let $G = SL(2,9) \cong 2.A_6$, p = 3, and B the "faithful" block. $D = \begin{bmatrix} 1 & 1 & . & . \\ 1 & 1 & . & . \\ . & 1 & 1 & . \\ 1 & . & . & 1 \\ . & 1 & . & . \end{bmatrix}$ (dots represent zeros)

No triangular shape, yet a special basic set exists:

Indeed,
$$\begin{bmatrix} 1 & 1 & . & . \\ . & 1 & 1 & . \\ 1 & 1 & 1 & . \\ . & 1 & 1 & . \end{bmatrix}$$
 has determinant 1.

A remedy would be to look at 3.SL(2,9), but this does not work for $G = SL(2, p^2)$, $p \ge 5$ a prime.

THEOREM (JAMES)

If $G = S_n$, then D has triangular shape.

Special basic set: $\{\chi^{\circ}_{\nu} \mid \nu \text{ p-regular partition of } n\}.$

THEOREM (DIPPER AND GECK)

Let $G = GL_n(q)$ (Dipper) or $G = GU_n(q)$ (Geck) with $p \nmid q$. Let B be the union of the unipotent blocks. Then D has triangular shape. Special basic set: { $\chi^{\circ}_{\mu} \mid \nu$ partition of n}.

Produce triangular shape basic set of projective characters by

- Harish-Chandra induction of projective characters (Dipper)
- Generalized Gelfand-Graev characters (Geck)

Arcata 1986, Josie Shamash: Brauer trees for $G_2(q)$ Left open some cases.

Back to Aachen experimented with Klaus Lux: Used Maple to compute tensor products of unipotent characters of $G_2(q)$ generically.

Could solve Shamash's problems. This was the begin of Chevie.

Talked in a seminar in Aachen. This lead to the topic of Meinolf's diploma thesis (Pahlings): Compute decomposition numbers for $SU_3(q)$.

Only solved much later by Okuyma and Waki (2002), and, with different methods, by Dudas in 2013.

THEOREM (BRUNAT-GRAMAIN, 2010 (TWO JOINT PAPERS))

Every p-block of A_n has a special basic set.

THEOREM (BRUNAT-GRAMAIN, 2020)

If p is odd, every p-block of $2.A_n$ or $2.S_n$ has a special basic set.

Here, $2.A_n$ or $2.S_n$ denote double coverings of A_n and S_n , respectivley.

The case p = 2 is contained in the first theorem.

EXAMPLE (BRUNAT-GRAMAIN-JACON, 2023)

D does not have triangular shape for $G = A_{18}, A_{19}$ and p = 3.

LUSZTIG SERIES

Let $G := \mathbf{G}^F = G(q)$ be a finite reductive group. Irr(G) is organized in Lusztig series. G^* dual reductive group; $s \in G^*$ semisimple \rightsquigarrow Lusztig series $\mathcal{E}(G, s) \subseteq \operatorname{Irr}(G)$; $\mathcal{E}(G, s) = \mathcal{E}(G, s')$ if and only if s, s' conjugate in G^* ;

$$\operatorname{Irr}(G) = \bigcup \mathcal{E}(G, s)$$

THEOREM (BROUÉ-MICHEL, 1989)

Assume $p \nmid q$. Let $s \in G^*$ be a semisimple p'-element. Then

$$\mathcal{E}_{p}(G,s) := \bigcup_{t \in C_{G^*}(s)_p} \mathcal{E}(G,st)$$

is a union of p-blocks.

Henceforth: Fix *s*, put $B := \mathcal{E}_{\rho}(G, s)$

THEOREM (GECK-H., 1991)

Suppose $Z(\mathbf{G})$ is connected and p is good for \mathbf{G} . Then $\{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\}$ is a basic set for $\mathcal{E}_{p}(G, s)$.

THEOREM (GECK, 1993)

Suppose $p \nmid (Z(\mathbf{G})/Z(\mathbf{G})^{\circ})_{F}$ and p is good for **G**. Then the same conclusion holds.

COROLLARY

Under the above hypotheses, $|\text{IBr}(\mathcal{E}_{\rho}(G, s))| = |\mathcal{E}(G, s)|$.

EXAMPLES

$$\begin{split} & G = \mathrm{SL}_3(q), \, p = 3 \mid q-1 \colon \quad |\mathcal{E}(G,1)| = 3, \, |\mathrm{IBr}(\mathcal{E}_3(G,1))| = 5. \\ & G = G_2(q), \, p = 2, \, q \text{ odd} \colon \quad |\mathcal{E}(G,1)| = 10, \, |\mathrm{IBr}(\mathcal{E}_2(G,1))| = 9. \end{split}$$

BASIC SETS IN FINITE REDUCTIVE GROUPS, II

Meinolf saw: Under our hypothesis, $L^* := C_{G^*}(t)$ is a Levi subgroup of G^* for all *p*-elements $1 \neq t$.

Let $\textbf{L} \leq \textbf{G}$ be a Levi subgroup dual to $\textbf{L}^*.$

Since $C_{\mathbf{G}^*}(st) \leq \mathbf{L}^*$, there is a bijection (Lusztig)

$$\mathcal{E}(L, st) \to \mathcal{E}(G, st), \psi \mapsto \varepsilon_{\mathsf{L}} \varepsilon_{\mathsf{G}} R_{\mathsf{L}}^{\mathsf{G}}(\psi)$$

Also, $R_{\mathsf{L}}^{\mathsf{G}}(\psi)^{\circ} = R_{\mathsf{L}}^{\mathsf{G}}(\psi^{\circ})$ and $\psi^{\circ} \in \mathbb{Z}[\mathcal{E}(L, s)]$, since $t \in Z(L^*)$.

As R_{L}^{G} preserves Lusztig series, $\{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\}$ is a generating set for $\mathcal{E}_{p}(G, s)$.

The rest of the proof is a clever counting argument due to Meinolf.

BASIC SETS IN FINITE REDUCTIVE GROUPS, III

Suppose $Z(\mathbf{G})$ is connected. Then there exists a bijection

$$\mathcal{E}(G, s) \xrightarrow{\mathcal{L}_s} \mathcal{E}(C_{G^*}(s), 1)$$

(Lusztig's Jordan decomposition of characters)

CONJECTURE (GECK-H., 1991)

Suppose $s \in G^*$ is a semisimple p'-element. Then

 $\mathcal{E}_{p}(G, s)$ and $\mathcal{E}_{p}(C_{G^{*}}(s), 1)$

have the same decomposition matrices (w.r.t. $(\mathcal{L}_{st})_t$).

CONJECTURE (GECK, CA. 1990)

Same hypotheses and p good for **G**. Then D has triangular shape, giving rise to the special basic set $\mathcal{B} = \{\chi^{\circ} \mid \chi \in \mathcal{E}(G, s)\}.$ Let the hypotheses be as on the previous slide.

THEOREM (BONNAFÉ-DAT-ROUQUIER, 2017)

Assume s not quasi-isolated. Then $\mathcal{E}_p(G, s)$ and $\mathcal{E}_p(C_{G^*}(s), 1)$ are Morita equivalent.

In fact, these authors prove a much stronger and more precise result.

THEOREM (BRUNAT-DUDAS-TAYLOR, 2021)

Suppose that p is good for G. Then D has triangular shape.

More on this in a later talk.