Applications of Representation Theory to Compact Flat Riemannian Manifolds

Gerhard Hiss

Gerhard.Hiss@Math.RWTH-Aachen.DE

Lehrstuhl D für Mathematik, RWTH Aachen

Joint work with

•

Andrzej Szczepański (and work of many others)

Flat Manifolds (Geometry)

A Riemannian manifold X is a real, connected, differentiable n-manifold,

equipped with a Riemannian metric, i.e., a scalar product on each tangent space $T_x X$, depending smoothly on x.

X is flat, if its sectional curvature is 0.

For short: A flat manifold is a compact, flat, Riemannian manifold.

In the following, X denotes a flat manifold of dimension n.

From Geometry to Algebra, I

- The universal covering space of X equals \mathbb{R}^n .
- $\Gamma := \pi_1(X, x_0)$, the fundamental group of X, acts as group of deck transformations on \mathbb{R}^n .
- $-X \cong \mathbb{R}^n / \Gamma$ (isometric).
- $-\Gamma \leq E(n)$, the group of rigid motions of \mathbb{R}^n .
- Γ is discrete and torsion free.

The Affine Group

 $A(n) := \operatorname{GL}(n) \ltimes \mathbb{R}^n$, the affine group.

$$A(n) \cong \left\{ \left(\begin{array}{cc} A & v \\ 0 & 1 \end{array} \right) \mid A \in \mathsf{GL}(n), v \in \mathbb{R}^n \right\} \le \mathsf{GL}(n+1).$$

 $E(n) := O(n) \ltimes \mathbb{R}^n \le A(n).$

Sixth Century Conference in Representation Theory, University of Aberdeen, 26–29 October 2005 – p.6/28

From Geometry to Algebra, II

Let Γ be the fundamental group of X. Then we have:

Bieberbach 1:

(1) L := Γ ∩ ℝⁿ is a free abelian group of rank n, and a maximal abelian subgroup of Γ,
(2) G := Γ/L is finite, the holonomy group of X.

Conversely, if $\Gamma \leq E(n)$ is torsion free and satisfies (1) and (2), then \mathbb{R}^n/Γ is a flat manifold.

From Geometry to Algebra, III

Let X_i be flat *n*-manifolds with fundamental groups $\Gamma_i \leq E(n)$, i = 1, 2.

Bieberbach 2: The following are equivalent: (1) X_1 and X_2 are affine equivalent. (2) Γ_1 and Γ_2 are isomorphic. (3) Γ_1 and Γ_2 are conjugate in A(n).

Bieberbach 3: Up to affine equivalence, there are only finitely many flat *n*-manifolds.

Classification, I

 $n = 1: \text{ One flat manifold: } S^1 = \mathbb{R}/\mathbb{Z}.$ n = 2: Two flat manifolds:(1) The torus $\mathbb{R}^2/\mathbb{Z}^2$,
(2) The Klein bottle \mathbb{R}^2/Γ , with $\Gamma := \left\langle \frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\rangle.$

n = 3: Ten flat manifolds (Hantzsche and Wendt, '35), called platycosms by Conway and Rossetti.

Classification, **II**

n = 4: Classification by Brown, Bülow, Neubüser, Wondratschek and Zassenhaus, '78, (74 flat manifolds).

n = 5: Classification by Sczcepański and Cid and Schulz, '01, (1060 flat manifolds).

n = 6: Classification by Cid and Schulz, '01, (38746 flat manifolds).

Classification for n = 5, 6 completed with CARAT (http://wwwb.math.rwth-aachen.de/carat/).

Bieberbach Groups, I

A Bieberbach group of rank n is a torsion free group Γ given by a s.e.s.

$$0 \longrightarrow L \longrightarrow \Gamma \longrightarrow G \longrightarrow 1,$$

where G is finite and L is a free abelian group of rank n and a maximal abelian subgroup of Γ .

Thus *G* acts on *L* by conjugation, and we get a faithful holonomy representation $\rho : G \rightarrow O(n)$.

Moreover, Γ can be embedded into E(n), so that \mathbb{R}^n/Γ is a flat manifold.

Bieberbach Groups, II

To define a Bieberbach group we need:

- (1) $G \leq GL(L)$ finite, where L is a free abelian group (equivalently: $G \leq GL_n(\mathbb{Z})$ finite),
- (2) A special element $\alpha \in H^2(G, L)$.

[$\alpha \in H^2(G, L)$ is special, if $\operatorname{res}_U^G(\alpha) \neq 0$ for every $U \leq G$ of prime order.]

Finite groups as holonomy groups, I

Let G be a finite group.

Is *G* the holonomy group of a flat manifold?

Need:

(1) $\mathbb{Z}G$ -lattice L, with G acting faithfully, (2) $\alpha \in H^2(G, L)$ special.

Auslander-Kuranishi, '57: Take $L := \bigoplus \mathbb{Z}[G/U]$, where U runs over all subgroups of prime order, up to conjugacy.

Finite groups as holonomy groups, II

For $\mathbb{Z}G$ -lattice L put $\mathbb{Q}L := \mathbb{Q} \otimes_{\mathbb{Z}} L$, a $\mathbb{Q}G$ -mod.

Conjecture (Szczepański): *G* is the holonomy group of a flat manifold with translation lattice L, such that $\mathbb{Q}L$ is multiplicity free.

m(G): smallest n s.t. G is the holonomy group of a flat n-manifold.

Hiller: $m(C_{p^r}) = p^{r-1}(p-1)$.

Plesken, '89: determines $m(PSL_2(p))$, e.g., $m(A_5) = 15, m(PSL_2(7)) = 23.$

Reducibility of holonomy represent'n

Let Γ be a Bieberbach group:

$$0 \longrightarrow L \longrightarrow \Gamma \longrightarrow G \longrightarrow 1.$$

Theorem (Szczepański-H., '91): $\mathbb{Q}L$ is reducible.

Proved before for soluble *G* by Gerald Cliff. Our proof uses the classification of finite simple groups.

Ingredients in Proof, I

Suppose $\mathbb{Q}L$ is irreducible.

Let $\{\chi_i\}$ be the set of irreducible characters of $\mathbb{C}L$. Let p be a prime with $p \mid |G|$. Then:

(1) χ_i is in the principal *p*-block of *G*.

(2) (Plesken, '89): Suppose *G* has a cyclic Sylow *p*-subgroup. Let the Brauer tree of the principal block be $1 - \mu - \theta - \cdots$

Then $\theta \in \{\chi_i\}$.

Ingredients in Proof, II

Usually θ as in (2) is not in principal *q*-block for some prime $q \neq p$.

Generalize to non-abelian simple subnormal subgroups, use classification.

If G has normal p-subgroup N, then:

Case 1: Some prime $q \neq p$ divides |G|. Then $N \subseteq \ker(\mathbb{C}L)$ (since all χ_i are in principal q-block). Case 2: G is a p-group. Easy.

In the following, Γ denotes the fundamental group of X, the extension $0 \longrightarrow L \longrightarrow \Gamma \longrightarrow G \longrightarrow 1$

being described by $\alpha \in H^2(G,L)$.

Affine Selfequivalences, I

- Aff(X): group of affine self equivalences of X, Aff₀(X) connected component of 1.
- Aff₀(X) is a torus of dimension $b_1(X)$. ($b_1(X) = \operatorname{rk} H^0(G, L)$.)

$$\operatorname{Aff}(X)/\operatorname{Aff}_0(X) \cong \operatorname{Out}(\Gamma).$$

How small or large can Aff(X) be?

Affine Selfequivalences, II

Theorem (Hiller-Sah, '86): Suppose for some prime p dividing |G|, a Sylow p-subgroup of G is cyclic and has a normal complement. Then $b_1(X) \neq 0$. In particular Aff $_0(X) \neq 1$.

Theorem (Szczepański-H., '97): Suppose for some prime p dividing |G|, a Sylow p-subgroup of G has a normal complement (G is p-nilpotent). Then Aff $(X) \neq 1$.

The outer automorphism group of Γ

Theorem (Charlap-Vasquez, '73): There is a short exact sequence

$$0 \longrightarrow H^1(G, L) \longrightarrow \mathsf{Out}(\Gamma) \longrightarrow N_\alpha/\rho(G) \longrightarrow 1,$$

where $N_{\alpha} = N_{O(n)}(\rho(G), \alpha)$.

Sketch of proof of "*p*-nilpotency theorem":

- May assume $H^0(G, L) = 0$. Then:
- $-p \mid |H^1(G,L)|$ iff L/pL has a trivial submodule.
- *G* is *p*-nilpotent and $p \mid |H^2(G, L)|$, hence L/pL has a trivial submodule.

Finiteness of outer automorphism grp

 N_{α} is finite if and only if $C_{O(n)}(\rho(G))$ is finite. This gives the following theorem, implicitly contained in Brown et al.

Theorem: Equivalent are:

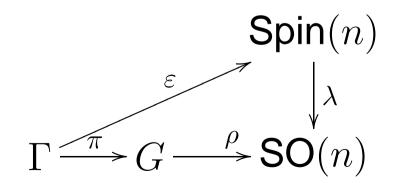
- (1) $Out(\Gamma)$ is finite.
- (2) $\mathbb{Q}L$ is multiplicity free, and $\mathbb{R}S$ is simple for every simple constituent *S* of $\mathbb{Q}L$.

Waldmüller's Example

Theorem (Waldmüller, '02): There is a 141dimensional flat manifold X with holonomy group M_{11} such that Aff(X) = 1.

Spin Structures, I

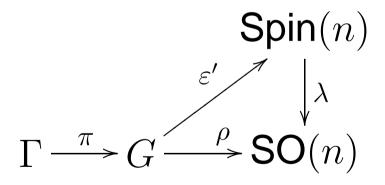
X is oriented, if $\rho(G) \leq SO(n)$. From now on assume *X* oriented. A spin structure on *X* allows to define a Dirac operator on *X*. The spin structures on *X* correspond to the lifts $\varepsilon : \Gamma \to Spin(n)$ with $\rho \circ \pi = \lambda \circ \varepsilon$:



Special Spin Structures, I

A special spin structure is a spin structure ε with $\varepsilon(L) = 1$, i.e., there exists

 $\varepsilon': G \to \operatorname{Spin}(n)$ with $\rho = \lambda \circ \varepsilon'$:



Special Spin Structures, II

There is a nice **negative** criterion by Griess and Gagola and Garrison, '82:

Theorem: Suppose there is an involution $g \in G$, such that

$$\frac{1}{2}\left(n - \operatorname{trace}(\rho(g))\right) \equiv 2(\operatorname{mod} 4).$$

Then no such ε' exists.

Spin Structures, II

Let S_2 be a Sylow 2-subgroup of G. Put $\Gamma_2 := \pi^{-1}(S_2)$, $X_2 := \mathbb{R}^n / \Gamma_2$.

Proposition (Dekimpe et al., '04): X has spin structure if and only if X_2 has spin structure.

Examples: (1) (Pfäffle, '00): All flat 3-manifolds have spin structures.

(2) (Miatello-Podestá, '04): There is $G \leq GL_6(\mathbb{Z})$, $G \cong C_2 \times C_2$, and special $\alpha_i \in H^2(G, \mathbb{Z}^6)$, i = 1, 2, such that Γ_1 has spin structure and Γ_2 doesn't.

Thank you for your attention!