Computational Representation Theory – Lecture I

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Group Theory and Computational Methods ICTS-TIFR, Bangalore, 05 – 14 November 2016

CONTENTS

- Representations and Characters
- Ordinary Character Tables
- Omputation of Character Tables

REPRESENTATIONS AND CHARACTERS ORDINARY CHARACTER TABLES COMPUTATION OF CHARACTER TABLES

Throughout this lecture, G denotes a finite group and F a field.

REPRESENTATIONS: DEFINITIONS

An *F*-representation of *G* of degree *d* is a homomorphism

 $\mathfrak{X}: G \to \mathrm{GL}(V),$

where V is a d-dimensional F-vector space. (This is also called a representation of G on V.)

To accord with GAP, we let GL(V) act from the right on V.

For computations one chooses a basis of *V* and obtains a matrix representation $G \rightarrow GL_d(F)$.

IRREDUCIBLE REPRESENTATIONS

 $\mathfrak{X} : G \to GL(V)$ is reducible, if either $V = \{0\}$, or if there exists a subspace W < V, $0 \neq W \neq V$, s.t. $w \mathfrak{X}(g) \in W$ for all $w \in W$ and $g \in G$. (*W* is *G*-invariant.)

Equivalently, there is a basis of V, w.r.t. which $\mathfrak{X}(g)$ has matrix

$$egin{bmatrix} \mathfrak{X}_{W}(g) & \mathsf{0} \ \hline st \mathfrak{X}_{V/W}(g) \end{bmatrix}$$

for all $g \in G$.

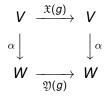
In this case, \mathfrak{X}_W and $\mathfrak{X}_{V/W}$ are matrix representations of degrees dim *W* and dim *V* – dim *W*, respectively.

Otherwise \mathfrak{X} is called irreducible.

Representations: Equivalence

Two representations $\mathfrak{X} : G \to GL(V)$, and $\mathfrak{Y} : G \to GL(W)$ on vector spaces *V* and *W* are called equivalent,

if there exists an isomorphism $\alpha : V \rightarrow W$ such that the following diagram commutes for all $g \in G$:



(W.r.t. suitable bases of *V* and *W*, the matrices for $\mathfrak{X}(g)$ and $\mathfrak{Y}(g)$ are simultaneously similar.)

REPRESENTATIONS: CLASSIFICATION

- There are only finitely many irreducible *F*-representations of *G* up to equivalence. Their number is at most equal to the number of conjugacy classes of *G* containing elements *g* such that char(*F*) ∤ |*g*|.
- **2** Classify all irreducible representations of *G*.
- Describe all irreducible representations of all finite simple groups.
- Use a computer for sporadic simple groups.

CHARACTERS

Let $\mathfrak{X} : G \to GL(V)$ be an *F*-representation of *G*.

The character afforded by \mathfrak{X} is the map

$$\chi_{\mathfrak{X}}: \boldsymbol{G} o \boldsymbol{F}, \quad \boldsymbol{g} \mapsto \operatorname{Trace}(\mathfrak{X}(\boldsymbol{g})).$$

 $\chi_{\mathfrak{X}}$ is constant on conjugacy classes: a class function on *G*.

Equivalent representations have the same character.

An *F*-character of *G* is the character of some *F*-representation.

IRREDUCIBLE CHARACTERS

If \mathfrak{X} is irreducible, $\chi_{\mathfrak{X}}$ is called an irreducible character.

Facts

- If $W \leq V$ is G-invariant, then $\chi_{\mathfrak{X}} = \chi_{\mathfrak{X}_W} + \chi_{\mathfrak{X}_{V/W}}$.
- **2** There are only finitely many irreducible characters of G.
- The set of irreducible characters of G is linearly independent (in Maps(G, F)).
- Every character is a sum of irreducible characters.
- Two irreducible representations of G are equivalent, if and only if their characters are equal.
- Suppose that char(F) = 0. Then **any** two representations of G are equivalent, if and only if their characters are equal.

THE ORDINARY CHARACTER TABLE

From now on let $F = \mathbb{C}$.

Put Irr(*G*) := set of irreducible \mathbb{C} -characters of *G*, Irr(*G*) = { χ_1, \ldots, χ_k }.

Let g_1, \ldots, g_k be representatives of the conjugacy classes of *G* (same *k* as above!).

The square matrix

$$\left[\chi_i(g_j)\right]_{1\leq i,j\leq k}$$

is called the ordinary character table of G.

EXAMPLE: ALTERNATING GROUP A_5

EXAMPLE (CHARACTER TABLE OF A_5)

	1 <i>a</i>	2 <i>a</i>	3 <i>a</i>	5 <i>a</i>	5b
χ_1	1	1	1	1	1
χ_{2}	3	-1	0	Α	* A
χ_{3}	3	-1	0	* A	Α
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

 $A = (1 - \sqrt{5})/2, \qquad *A = (1 + \sqrt{5})/2$

 $\begin{array}{ll} 1\in 1a, & (1,2)(3,4)\in 2a, & (1,2,3)\in 3a, \\ & (1,2,3,4,5)\in 5a, & (1,3,5,2,4)\in 5b \end{array}$

GOALS AND RESULTS

Aim

Describe all ordinary character tables of all finite simple groups and related finite groups.

Almost done:

- For alternating groups: Frobenius, Schur
- For groups of Lie type: Green, Deligne, Lusztig, Shoji, ...
- Solution For sporadic groups and other "small" groups:

Atlas of Finite Groups, Conway, Curtis, Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...] (http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard problems in algebra, number theory, geometry and combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.

Character tables in GAP and MAGMA are

- taken from a character table library (which in GAP currently contains 2279 tables), or
- computed from scratch (using, e.g., the Burnside-Dixon-Schneider algorithm or lattice reduction), or
- Scomputed from a generic character table.

THE ORTHOGONALITY RELATIONS

Let $\mathcal{C}(G)$ denote the set of \mathbb{C} -valued class functions on G, and $\mathbb{Z}[\operatorname{Irr}(G)] := \{\sum_{i=1}^{k} z_i \chi_i \mid z_i \in \mathbb{Z} \text{ for all } i\} \subseteq \mathcal{C}(G).$ Define the inner product $\langle -, - \rangle$ on $\mathcal{C}(G)$ by

$$\langle \chi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g^{-1}).$$

FACTS

• Irr(G) = { χ_1, \ldots, χ_k } is an ON basis of C(G).

2
$$\alpha = \sum_{i=1}^{k} \langle \chi_i, \alpha \rangle \chi_i$$
 for $\alpha \in \mathcal{C}(G)$.

- **5** $\alpha \in C(G)$ is a character if and only if $\langle \chi_i, \alpha \rangle \in \mathbb{N}$ for all *i*.
- Suppose $\alpha \in \mathbb{Z}[\operatorname{Irr}(G)]$. Then $\alpha \in \operatorname{Irr}(G)$ if and only if $\langle \alpha, \alpha \rangle = 1$ and $\alpha(1) > 0$.

CLASS MULTIPLICATION COEFFICIENTS

Let C_1, \ldots, C_k be the conjugacy classes of G.

Define the class multiplication coefficients c_{ijl} ($1 \le i, j, l \le k$) by

$$c_{ijl} := |\{(x, y) \mid x \in C_i, y \in C_j, xy \in C_l\}|/|C_l|.$$

Put
$$M_i := [c_{ijl}] \in \mathbb{N}^{k \times k}, i = 1, ..., k.$$

THEOREM (BURNSIDE)

The ordinary character table of G can be computed from

- The common column eigenvectors of M_1, \ldots, M_k , or
- **2** the common row eigenvectors of M_1, \ldots, M_k , or
- the corresponding eigenvalues.

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let C_1, \ldots, C_k be the conjugacy classes of $G, g_i \in C_i$, $i = 1, \ldots, k, g_1 = 1$.

Let $\chi \in Irr(G)$. Then for all $1 \le i \le k$, there are $\omega_{\chi,i} \in \mathbb{C}$ such that

$$\omega_{\chi,i}[\chi(g_1),\ldots,\chi(g_k)]=[\chi(g_1),\ldots,\chi(g_k)]M_i.$$

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)

- Compute the matrices M_i , $1 \le i \le k$.
- **2** Find the common row eigenvectors χ'_1, \ldots, χ'_k of these.

Computations are done in a finite field and lifted back to \mathbb{C} . Usually, not all of the matrices M_i have to be computed.

CONSTRUCTIONS OF CHARACTERS, I

Product. Let χ , ψ be characters of *G*. Then the product $\chi \cdot \psi$, defined by

$$[\chi \cdot \psi](\boldsymbol{g}) := \chi(\boldsymbol{g}) \, \psi(\boldsymbol{g}), \quad \boldsymbol{g} \in \boldsymbol{G}$$

is a character as well (proof later).

Symmetrisation. Let χ be a character of *G*. Then $S^2(\chi)$ and $\Lambda^2(\chi)$ defined by

$$S^{2}(\chi)(g) = rac{1}{2} \left(\chi(g)^{2} + \chi(g^{2})
ight), \qquad \Lambda^{2}(\chi)(g) = rac{1}{2} \left(\chi(g)^{2} - \chi(g^{2})
ight)$$

are characters as well.

Restriction. Let $H \le G$ and χ a character of *G*. Then the restriction χ_H of χ to *H* is a character of *H*.

CONSTRUCTIONS OF CHARACTERS, II

Induction. Let $H \leq G$, and ψ a character of H.

Then ψ^{G} defined by

$$\psi^G(\boldsymbol{g}) := \sum_{i=1}^l rac{|\mathcal{C}_G(\boldsymbol{g})|}{|\mathcal{C}_H(h_i)|} \psi(h_i), \quad \boldsymbol{g} \in \boldsymbol{G},$$

where h_1, \ldots, h_l are representatives of the *H*-conjugacy classes contained in the *G*-conjugacy class of *g*, is a character of *G*.

 $\psi^{\rm G}$ is called an induced character.

BRAUER'S INDUCTION THEOREM

Recall $\mathbb{Z}[Irr(G)] := \{\sum_{i=1}^{k} z_i \chi_i \mid z_i \in \mathbb{Z} \text{ for all } i\}.$

An element of $\mathbb{Z}[Irr(G)]$ is a generalised character.

DEFINITION

 $E \leq G$ is called elementary, if $E = P \times C$, with P a p-group for some prime p, and C a cyclic group.

 \mathcal{E} : set of elementary subgroups of G.

For $E \in \mathcal{E}$, write $\operatorname{Ind}_{E}^{G}(\mathbb{Z}[\operatorname{Irr}(E)]) := \{\psi^{G} \mid \psi \in \mathbb{Z}[\operatorname{Irr}(E)]\}.$

THEOREM (BRAUER'S INDUCTION THEOREM)

 $\mathbb{Z}[\operatorname{Irr}(G)] = \sum_{E \in \mathcal{E}} \operatorname{Ind}_{E}^{G}(\mathbb{Z}[\operatorname{Irr}(E)]).$

GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA): In the following, $I \cup B \subseteq \mathbb{Z}[Irr(G)]$ such that

$$I \subseteq Irr(G)$$
 and $\langle I, B \rangle = 0.$ (1)

Repeat the following steps until |I| + |B| = |Irr(G)| and det $\langle B, B \rangle = 1$:

- Compute $L \subseteq \mathbb{Z}[Irr(G)]$ using above constructions;
- **2** $L \leftarrow$ projection of *L* to $\langle I \rangle^{\perp}$ (using inner product);
- Using the LLL-algorithm (Lenstra-Lenstra-Lovács), compute a basis *I*' ∪ *B*' of ⟨*B* ∪ *L*⟩_ℤ satisfying (1);

$$I \leftarrow I \cup I', B \leftarrow B'.$$

GENERATE AND SPLIT: REMARKS

- By Brauer's induction theorem, the above procedure terminates, if in Step 1 all induced characters of all elementary subgroups are generated.
- In implementation (Unger), an irredundant subset of these is generated successively.
- A hybrid method, using a starting set / computed with Burnside-Dixon-Schneider is reasonable.
- LLL does not guarantee to find all vectors of norm 1 (though in the experiments it does, according to Unger).
- So If it terminates with $B \neq \emptyset$, try to find the factorisations $M = AA^{tr}$ for Gram matrix $M = \langle B, B \rangle$.
- Recently, Breuer, Malle and O'Brien have recomputed the character tables of the sporadic groups (except for *B* and *M*) using Unger's algorithm.

GENERIC CHARACTER TABLES

Generic character tables are

 programs for computing the character table of each individual group of an infinite series of groups, e.g., S_n or A_n for n ∈ N, or Weyl groups,

using recursive formulae for the character values (Murnaghan-Nakayama type formulae) or

parametrised character tables for an infinite series of groups, e.g., SL₂(q) or SU₃(q), q a prime power.
 Conjugacy classes and characters are parametrised; character values are given in terms of the parameters.
 These are computed through Deligne-Lusztig theory.
 Individual tables are obtained by specialisation.

THE GENERIC CHARACTER TABLE FOR $SL_2(q)$, q Even

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline C_1 & C_2 & C_3(a) & C_4(b) \\ \hline \chi_1 & 1 & 1 & 1 & 1 \\ \chi_2 & q & 0 & 1 & -1 \\ \chi_3(m) & q+1 & 1 & \zeta^{am} + \zeta^{-am} & 0 \\ \hline \chi_4(n) & q-1 & -1 & 0 & -\xi^{bn} - \xi^{-bn} \\ \hline a, m = 1, \dots, (q-2)/2, & b, n = 1, \dots, q/2, \\ \zeta := \exp(\frac{2\pi\sqrt{-1}}{q-1}), & \xi := \exp(\frac{2\pi\sqrt{-1}}{q+1}) \\ \begin{bmatrix} \mu^a & 0 \\ 0 & \mu^{-a} \end{bmatrix} \in C_3(a) \ (\mu \in \mathbb{F}_q \text{ a primitive } (q-1) \text{ th root of } 1) \\ \begin{bmatrix} \nu^b & 0 \\ 0 & \nu^{-b} \end{bmatrix} \stackrel{\leq}{\sim} C_4(b) \ (\nu \in \mathbb{F}_{q^2} \text{ a primitive } (q+1) \text{ th root of } 1) \\ \end{array}$$
 Specialising *q* to 4, gives the character table of SL_2(4) \cong A_5. \end{array}

CHEVIE

CHEVIE is a computer algebra project for symbolic calculations with generic character tables of groups of Lie type, Coxeter groups, Iwahori-Hecke algebras and other related structures (http://www.math.rwth-aachen.de/~CHEVIE/).

It is (currently) based on GAP-3, and MAPLE. But there will be a GAP-4 version.

Authors: Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, Jean Michel and Götz Pfeiffer

REFERENCES

- J. J. CANNON AND W. BOSMA (EDS.), Handbook of Magma Functions, Edition 2.13 (2006), 4350 pages, (http://magma.maths.usyd.edu.au/magma/).
- THE GAP GROUP, GAP Groups, Algorithms, and Programming, Version 4.4.10, 2007, (http://www.gap-system.org).
- D. F. HOLT, B. EICK AND E. A. O'BRIEN, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2005.
- K. LUX AND H. PAHLINGS, Representations of Groups. A computational approach. Cambridge University Press, 2010.
- W. R. UNGER, Computing the character table of a finite group, J. Symbol. Comput. 41 (2006), 847–862.

Thank you for your attention!

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I