COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Group Theory and Computational Methods ICTS-TIFR, Bangalore, 05 – 14 November 2016

CONTENTS

- Condensation
- An Example: The Fischer Group Fi₂₃ Modulo 2

NOTATION

Throughout this lecture, *G* denotes a finite group and *F* a field.

Also, $\mathfrak A$ denotes a finite-dimensional F-algebra, $J(\mathfrak A)$ the Jacobson radical of $\mathfrak A$ (i.e., the intersection of the maximal right ideals of $\mathfrak A$).

mod-α: category of finite-dimensional right α-modules

CONDENSATION: MOTIVATION

The MeatAxe can reduce representations of degree up to 200 000 over \mathbb{F}_2 .

Over larger fields, only smaller degrees are feasible.

To overcome this problem, Condensation is used (Thackray, Parker, ca. 1980).

CONDENSATION: THEORY [J. A. GREEN 1980]

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $\operatorname{mod-}\mathfrak{A} \to \operatorname{mod-}e\,\mathfrak{A}e, \ V \mapsto Ve.$

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let S_1, \ldots, S_n be the simple \mathfrak{A} -modules (up to isomorphism).

Suppose that $S_1 e \neq 0, \dots, S_m e \neq 0$, $S_{m+1} e = \dots = S_n e = 0$.

Then S_1e, \ldots, S_me are exactly the simple $e\mathfrak{A}e$ -modules (up to isomorphism).

As the Condensation functor is exact, it sends a composition series of $V \in \text{mod-} \mathfrak{A}$ to a composition series of $V \in \text{mod-} \mathfrak{A}e$.

CONDENSATION: MORITA EQUIVALENCE

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of FG, extended by 0 from $G_{D'}$ to G.)

A projective \mathfrak{A} -module is a direct sum of PIMs.

A finite-dimensional F-algebra $\mathfrak B$ is Morita equivalent to $\mathfrak A$, if $\mathfrak B \cong \operatorname{End}_{\mathfrak A}(Q)$ for a projective module Q of $\mathfrak A$ containing every PIM of $\mathfrak A$ (up to isomorphism) as a direct summand.

Morita equivalent algebras have "the same" representations.

CONDENSATION: IDEMPOTENTS

Let $H \leq G$ with char $(F) \nmid |H|$. Then

$$e := e_H := \frac{1}{|H|} \sum_{x \in H} x \in FG$$

is a suitable idempotent.

Other idempotents can be used, e.g.,

$$e = \frac{1}{|H|} \sum_{x \in H} \lambda(x^{-1}) x \in FG,$$

where $\lambda: H \to F^*$ is a homomorphism (Noeske, 2005).

CONDENSATION: PERMUTATION MODULES, I

Let $e := e_H = 1/|H| \sum_{x \in H}$ be as above.

Let V be the permutation FG-module w.r.t. an action of G on the finite set Ω . Then Ve is the set of H-fixed points in V.

Task: Given $g \in G$, determine the action of ege on Ve,

without the explicit computation of the action of g on V.

THEOREM (THACKRAY AND PARKER, 1981)

This can be done!

CONDENSATION: PERMUTATION MODULES, II

Let $\Omega_1, \ldots, \Omega_m$ be the *H*-orbits on Ω .

The orbits sums $\widehat{\Omega}_j := \sum_{\omega \in \Omega_j} \omega \in V$ form a basis of Ve.

W.r.t. this basis, the (i, j)-entry a_{ij} of the matrix of ege on Ve equals

$$a_{ij} = rac{1}{|\Omega_i|} |\Omega_i g \cap \Omega_j|.$$

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to

- compute Ω_j and $|\Omega_j|$, $1 \le j \le m$,
- **2** decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

Parker and Wilson suggested Direct Condensation methods; these were later extended and implemented by Cooperman, Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ω_j by suborbits of subgroups U < H. Iterate this idea.

Details depend on the realisation of the action on Ω .

TENSOR PRODUCTS AND INDUCED MODULES

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of ege on $(V \otimes W)e$, without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let *M* be a subgroup of *G* and let *W* be an *FM*-module.

The induced module is the FG-module $W \otimes_{FM} FG$.

Task: Given $g \in G$, determine action of ege on $(W \otimes_{FM} FG)e$, without the explicit computation of the action of g on $W \otimes_{FM} FG$.

THEOREM (MÜLLER AND ROSENBOOM, 1997)

This can be done!

HOMOMORPHISM SPACES

Let M be a subgroup of G, W an FM-module and V an FG-FM-bimodule.

Then $Hom_{FM}(V, W)$ is a right *FG*-module:

$$v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \mathsf{Hom}_{FM}(V, W), g \in G.$$

EXAMPLES

- Hom_{FM}(FG, F) \cong permutation module corresponding to permutation action of G on $\Omega := M \backslash G$.
- **②** Hom_F(V^* , W) $\cong V \otimes W$ for V, $W \in \text{mod-}FG$. ($V^* = \text{Hom}_F(V, F)$.)
- **③** Hom_{FM}(FG, W) \cong W \otimes _{FM} FG.

Lux, Neunhöffer, Noeske develop general Condensation programs for such homomorphism spaces.

CONDENSATION: SOME APPLICATIONS

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981:

2-modular character table of McL.

Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997:

Brauer tree of Th modulo 19.

dim(V) = 976841775, dim(Ve) = 1403.

Müller, Neunhöffer, Röhr, Wilson, 2002:

Brauer trees of Ly modulo 37 and 67.

dim(V) = 1113229656.

More applications later.

THE BASIC ALGEBRA

DEFINITION

A finite-dimensional F-algebra B is called basic, if

$$\mathfrak{B}_{\mathfrak{B}}=Q_1\oplus Q_2\oplus\cdots\oplus Q_n$$

with PIMs Q_i such that $Q_i \not\cong Q_j$ for $1 \le i \ne j \le n$.

Alternatively, if $\mathfrak{B}/J(\mathfrak{B})$ is a direct sum of division algebras.

FACTS

Let P_1, \ldots, P_n be the PIMs of $\mathfrak A$ (up to isomorphism). Then $\mathfrak B := \operatorname{End}_{\mathfrak A}(P_1 \oplus \cdots \oplus P_n)$ is a basic algebra Morita equivalent to $\mathfrak A$, the basic algebra of $\mathfrak A$.

This is the smallest algebra Morita equivalent to \mathfrak{A} .

MORITA EQUIVALENT ALGEBRAS

If $dim(\mathfrak{A})$ is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*.

Need idempotent $e \in FG$ with $Se \neq 0$ for all simple FG-modules S (or all simple modules in a block).

This can be checked with the modular character table of G, if $e = e_H$ for some $H \le G$ with char $(F) \nmid |H|$.

Example: Principal block \mathfrak{B}_0 of HS modulo 5, |H| = 192. $\dim(\mathfrak{B}_0) = 15364500$, $\dim(e_H\mathfrak{B}_0e_H) = 767$.

See KLAUS Lux, Faithful Condensation for Sporadic Groups, (http://math.arizona.edu/~klux/habil.html).

Applications: Cartan matrices for group algebras, cohomology computations.

CONDENSATION: HISTORY

THE GENERATION PROBLEM

We investigate *Ve* through the MeatAxe, using matrices of generators of *eFGe*.

QUESTION (THE GENERATION PROBLEM)

How can eFGe be generated with "a few" elements?

If $\mathcal{E} \subseteq FG$ with $F(\mathcal{E}) = FG$, then in general $F(e\mathcal{E}e) \subseteq eFGe$.

- Let $\mathfrak{C} := F \langle e \mathcal{E} e \rangle \leq e F G e$. Instead of V e we consider the \mathfrak{C} -module $V e |_{\mathfrak{C}}$.
- We can draw conclusions on V from Ve, but not from $Ve|_{\mathfrak{C}}$.

GENERATION AND MATCHING

THEOREM (F. NOESKE, 2005)

Let $H \subseteq N \subseteq G$. If \mathcal{T} is a set of double coset representatives of $N \setminus G/N$ and \mathcal{N} a set of generators of N, then we have for $e = e_H$:

$$eFGe = F\langle e\mathcal{N}e, e\mathcal{T}e \rangle$$

as F-algebras.

More sophisticated results by Noeske on generation are available, but have not found applications yet.

Matching Problem: Let $e, e' \in FG$ be idempotents. Suppose $S, S' \in \text{mod-}FG$ are simple, and we know Se and S'e'. Can we decide if $S \cong S'$? Yes! (Noeske, 2008)

CONDENSING PROJECTIVE MODULES

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)

If P = eFG is projective, then $End_{FG}(P) = eFGe = Pe$, and "generation" can be checked. E.g. $dim(End_{FG}(P))$ known.

Example (G = Th, p = 5)

- ① (Done in 2007 with Jon Carlson): $P = e_H FG$, for $H = 3xG_2(3)$, $\dim(P) = 7124544000$, $\dim_F(\operatorname{End}_{FG}(P)) = 788 \rightsquigarrow some\ progress$
- ② (Envisaged): $\dim(Q) = 43\,957\,879\,875$, $\dim_F(\operatorname{End}_{FG}(Q)) = 21\,530$ \Rightarrow almost finish Th modulo 5

THE FISCHER GROUP Fi23

Let G denote the Fischer group Fi_{23} .

This is a sporadic simple group of order

4 089 470 473 293 004 800.

G has a maximal subgroup *M* of index 31 671, isomorphic to $2.Fi_{22}$, the double cover of the Fischer group Fi_{22} .

In joint work with Max Neunhöffer and F. Noeske we have computed the 2-modular character table of G.

SOME REPRESENTATIONS OF Fi23

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let V denote the corresponding permutation module over F (thus $\dim_F(V) = 31\,671$).

Using the MeatAxe we found: *V* contains composition factors 1,782,1494,3588,19940 (denoted by their degrees). (This took about 4 days of CPU time in 8 GB main memory.)

Using Condensation we analysed the ten tensor products:

$$782 \otimes 782, 782 \otimes 1494, \dots, 19940 \otimes 19940.$$

Note: $\dim_F(19\,940\otimes 19\,940)=367\,603\,600$. One such matrix over \mathbb{F}_2 would need $\approx 18\,403\,938$ GB.

THE CONDENSATION FOR Fi_{23}

- **1** We took $H \le G$, $|H| = 3^9 = 19683$.
- We found that eFGe and FG are Morita equivalent (a posteriori).

One such matrix over \mathbb{F}_2 needs ≈ 77.8 MB.

About 1 week of CPU time to compute the action of one element ege on $(19\,940 \otimes 19\,940)e$.

• Every irreducible FG-module (of the principal 2-block) occurs in $19\,940 \otimes 19\,940$.

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with Brauer characters using GAP and MOC gave all the irreducible 2-modular characters of *G*.

Degrees of the irreducible 2-modular characters of Fi_{23} :

```
1, 782, 1494, 3588, 19940, 57408, 79442, 94588, 94588, 583440, 724776, 979132, 1951872, 1997872, 1997872, 5812860, 7821240, 8280208, 17276520, 34744192, 73531392, 97976320, 166559744, 504627200, 504627200.
```

Using similar methods, Görgen and Lux have recently computed the irreducible characters of Fi_{23} over \mathbb{F}_3 . (Largest condensed module:184 644, largest module found: 34 753 159.)

REFERENCES

- D. F. HOLT, B. EICK AND E. A. O'BRIEN, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2005.
- K. Lux, Algorithmic methods in modular representation theory, Habilitationsschrift, RWTH Aachen University, 1997.
- K. Lux and H. Pahlings, Representations of Groups. A computational approach. Cambridge University Press, 2010.
- J. MÜLLER, M. NEUNHÖFFER AND R. WILSON, Enumerating big orbits and an application: B acting on the cosets of Fi₂₃, J. Algebra 314, 2007, 75–96.
- F. NOESKE, Morita-Äquivalenzen in der algorithmischen Darstellungstheorie, Dissertation, RWTH Aachen University, 2005.

Thank you for your attention!