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PROLOGUE: A JOINT PROJECT

The following joint project with William J. Husen and Kay
Magaard started back in 1999.

PROJECT

Classify the pairs (G,G→ SL(V )) such that

1 G is a finite quasisimple group,
2 V a finite dimensional vector space over a field k = k̄ ,
3 G→ SL(V ) is absolutely irreducible and imprimitive.

EXPLANATIONS

1 G is quasisimple, if G = G′ and G/Z (G) is simple.
2 G→ SL(V ) is imprimitive, if V = V1 ⊕ · · · ⊕ Vt , t > 1,

the action of G permuting the Vi .
Equivalently, V ∼= IndG

H(V1) := kG ⊗kH V1 as kG-modules,
where H := StabG(V1).

What is the motivation for this project and its extensions?
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THE FINITE CLASSICAL GROUPS

From now on, k is a finite field, V an n-dimensional k -vector
space, and X a finite classical group on V .

To be more specific, V = Fn
q (i.e. k = Fq), and

1 X = SLn(q) (n ≥ 2), or

2 X = Spn(q) (n ≥ 4 even), or

3 X = Ωn(q) (n ≥ 7 odd), or

4 X = Ω±n (q) (n ≥ 8 even), or

V = Fn
q2 (i.e. k = Fq2), and

5 X = SUn(q) (n ≥ 3).

In Cases 2–5, the group X is the stabilizer of a non-degenerate
form (symplectic, quadratic or hermitian) on V .
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THE ASCHBACHER CLASSIFICATION

Let X be a finite classical group as above.
Overall objective: Determine the maximal subgroups of X .
Approach: Aschbacher’s subgroup classification theorem.
There are nine classes of subgroups C1(X ), . . . , C8(X ) and
S(X ) of X such that the following holds.

THEOREM (ASCHBACHER, ’84)
Let H ≤ X be a maximal subgroup of X . Then

H ∈ ∪8
i=1Ci(X ) ∪ S(X ).

But: An element in ∪8
i=1Ci(X ) ∪ S(X ) is not necessarily a

maximal subgroup of X .
Kleidman-Liebeck and Bray-Holt-Roney-Dougal: Determine the
maximal subgroups among the members of ∪8

i=1Ci(X ) (amot).
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THE CLASS S(X )

Let X ≤ SL(V ) be a finite classical group as above, and H � X .

DEFINITION

H ∈ S(X ), if H = NX (G), where
G ≤ X is quasisimple, such that

1 ϕ : G→ X ≤ SL(V ) is absolutely irreducible, and
2 not realizable over a smaller field.

[ϕ : G→ SL(V ) is realizable over a smaller field, if ϕ factors as

G

ϕ0
""

ϕ // SL(V )

SL(V0)

ν

OO

for some proper subfield k0 � k , a k0-vector space V0 with
V = k ⊗k0 V0, and a representation ϕ0 : G→ SL(V0).]
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THE STRUCTURE OF H ∈ S(X )

Let H = NX (G) ∈ S(X ).

Put Z := Z (X ).

Then
CX (G) = Z = CX (H) = Z (H),

as ϕ : G→ X is absolutely irreducible.

Also, H/ZG ≤ Out(G) is solvable by Schreier’s conjecture.

Hence F ∗(H) = ZG and thus G = F ∗(H)′ = H∞.

Moreover, H/Z is almost simple, i.e. there is a nonabelian
simple group S such that H/Z fits into a short exact sequence

1→ S → H/Z → Aut(S)→ 1
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ON THE MAXIMALITY OF THE ELEMENTS OF S(X )

Let H = NX (G) ∈ S(X ).

QUESTION

Is H a maximal subgroup of X?

If not, there is a maximal subgroup K of X with

H � K � X .

By the definiton of the classes Ci(X ) and S(X ), we have

K ∈ C2(X ) ∪ C4(X ) ∪ C7(X ) ∪ S(X ).

In this talk we investigate the possibility K ∈ C2(X ), which we
call a C2-obstruction to the maximality of H.
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THE SUBGROUP CLASS C2(X )′

Let H ≤ X . We say that H ∈ C2(X )′, if

V = V1 ⊕ V2 ⊕ · · · ⊕ Vt (1)

such that
(a) H permutes the set {V1, . . . ,Vt};
(b) t ≥ 2;
(c) if X 6= SLn(q), then either

the Vi are non-degenerate and pairwise orthogonal, or
t = 2 and V1, V2 are totally singular.

In particular, if H ∈ C2(X )′, then ϕ : H → X is imprimitive.

The group H belongs to C2(X ), if H is the full stabilizer of a
decomposition (1) satisfying (a)–(c).
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THE C2-OBSTRUCTION

Let H = NX (G) ∈ S(X ). (Recall that G = H∞.)

PROPOSITION

There exists H � K � X with K ∈ C2(X ) if and only if
H ∈ C2(X )′.

Proof. The only if direction is trivial.

Suppose that H ∈ C2(X )′, stabilizing a decomposition (1)
satisfying (a) – (c).

Let K denote the stabilizer in X of this decomposition.

Then K∞ does not act absolutely irreducibly on V (by the
explicit description of K in all cases for X ).

In particular, H � K . �

If H ∈ C2(X )′, then G ∈ C2(X )′, and ϕ : G→ X is imprimitive.



MAXIMAL SUBGROUPS OF FINITE CLASSICAL GROUPS ON IMPRIMITIVE REPRESENTATIONS OF FINITE QUASISIMPLE GROUPS

AN EXAMPLE: THE MATHIEU GROUP M11

Let X be a finite classical group.
Let ϕ : M11 → X be absolutely irreducible, faithful, and not
realizable over a smaller field. (All such (ϕ,X ) are known.)
Put G := ϕ(M11). Then NX (G) = Z (X )×G.
Is Z (X )×G maximal in X?
NO, except for ϕ : M11 → SL5(3).

EXAMPLES

(1) M11 → A11 → Ω+
10(3) (S-obstruction).

(2) M11 → SO55(`) is imprimitive, ` ≥ 5 (C2-obstruction).
(3) Also: M11 → M12 → A12 → SO11(`)→ SO55(`), ` ≥ 5.
(4) M11 → 2.M12 → SL10(3) (S-obstruction).
(5) M11 → SL5(3)→ Ω−24(3) (S-obstruction).

What about ϕ : M → Ω−196882(2)? (M: Monster)
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THE MAIN OBJECTIVE

To determine the triples (G, k ,V ) allowing a C2-obstruction, we
plan to perform the following steps.

OBJECTIVE (THE H.-HUSEN-MAGAARD PROJECT)

Determine all triples (G,k,V) such that
G is a finite quasisimple group,

k is an algebraically closed field,

V is an irreducible, imprimitive kG-module,

faithfully representing G.

The case char(k) = 0 is included as a model for the desired
classification; it has provided most of the ideas for an approach
to the general case.
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THE FINITE QUASISIMPLE GROUPS

THEOREM

A finite quasisimple group is one of

1 a covering group of a sporadic simple group;

2 a covering group of an alternating group An, n ≥ 5;

3 an exceptional covering group of a simple finite reductive
group or the Tits simple group;

4 a quotient of a quasisimple finite reductive group.
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FINITE REDUCTIVE GROUPS

Let G denote a reductive algebraic group over F, the algebraic
closure of the prime field Fp.

Let F denote a Steinberg morphism of G.

Then G := GF is a finite reductive group of characteristic p.

An F -stable Levi subgroup L of G is split, if L is a Levi
complement in an F -stable parabolic subgroup P of G.

Such a pair (L,P) gives rise to a parabolic subgroup P = PF

of G with Levi complement L = LF .
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THE CHARACTERISTIC 0 CASE

THEOREM

The triples (G,k,V) of the main objective, i.e.
G is a finite quasisimple group,
k is an algebraically closed field,
V is an irreducible, imprimitive kG-module,

are known if char(k) = 0.

Here are some references:
1 sporadic groups [H.-Husen-Magaard, ’15]

2 alternating [Djoković-Malzan, ’76; Nett-Noeske, ’11]

3 exceptional covering and Tits [H.-Husen-Magaard, ’15]

4 finite reductive groups [H.-Husen-Magaard, 15’;
H.-Magaard, ’16+]
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REDUCTIVE GROUPS IN DEFINING CHARACTERISTICS

The following result of Seitz contains the classification for finite
reductive groups in defining characteristic.

THEOREM (GARY SEITZ, ’88)
Let G be a quasisimple finite reductive group over F.

Suppose that V is an irreducible, imprimitive FG-module.

Then G is one of

SL2(5),SL2(7),SL3(2),Sp4(3),

and V is the Steinberg module.

Thus it remains to study finite reductive groups in non-defining
characteristics.
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THE POSITIVE CHARACTERISTIC CASE

THEOREM (H.-HUSEN-MAGAARD, ’15)

The triples (G,k,V) of the main objective, i.e.
G is a finite quasisimple group,
k is an algebraically closed field,
V is an irreducible, imprimitive kG-module,

are known if
G is sporadic;
G is an exceptional covering group of a finite reductive
group or the Tits simple group;
G is a Suzuki or Ree group, G = G2(q), or G is a
Steinberg triality group.

It remains to consider alternating groups or finite reductive
groups in case p 6= char(k) > 0.
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THE MAIN REDUCTION THEOREM

Let G be a quasisimple finite reductive group of characteristic p.

Suppose that G

1 does not have an exceptional Schur multiplier,
2 is not isomorphic to a finite reductive group of a different

characteristic.

Let k be an algebraically closed field with char(k) 6= p.

THEOREM (H.-HUSEN-MAGAARD, ’15)
Let G and k be as above. Let H ≤ G be a maximal subgroup.
Suppose that IndG

H(V1) is irreducible for some kH-module V1.

Then H = P is a parabolic subgroup of G.
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PARABOLIC INDUCTION

Let G be a quasisimple finite reductive group of characteristic
p, and let k be an algebraically closed field with char(k) 6= p.

According to our main reduction theorem, we may restrict our
investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, ’15)
Let P be a parabolic subgroup of G with unipotent radical U.
Let V1 be a kP-module such that IndG

P (V1) is irreducible.
Then U is in the kernel of V1.
In other words, IndG

P (V1) is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification
problem, reducing certain aspects to Weyl groups or
Iwahori-Hecke algebras.
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LUSZTIG SERIES

Let G = GF be a finite reductive group.
Let G∗ = G∗F denote a dual reductive group.
We have

Irr(G) =
⋃
[s]

E(G, [s]),

a disjoint union into rational Lusztig series ([s] runs through the
G∗-conjugacy classes of semisimple elements of G∗).

THEOREM (LUSZTIG, H.-HUSEN-MAGAARD, ’15)

(a) If CG∗(s) ≤ L∗, where L∗ ≤ G∗ is a split Levi subgroup, then
every χ ∈ E(G, [s]) is Harish-Chandra induced from L.
(b) Suppose that CG∗(s) is connected and not contained in a
proper split Levi subgroup of G∗.
Then every element of E(G, [s]) is Harish-Chandra primitive.

In particular, the elements of E(G, [1]) are HC-primitive.



MAXIMAL SUBGROUPS OF FINITE CLASSICAL GROUPS ON IMPRIMITIVE REPRESENTATIONS OF FINITE QUASISIMPLE GROUPS

NON-CONNECTED CENTRALIZERS

Write C◦G∗(s) for the connected component of CG∗(s).
Lusztig’s generalized Jordan decomposition: There is an
equivalence relation ∼ on E(G, [s]) and a bijection

E(G, [s])/∼ → E(C◦G∗(s)F , [1])/≈, [χ] 7→ [λ],

where ≈ denotes CG∗(s)F -orbits on E(C◦G∗(s)F , [1]).

THEOREM (H.-MAGAARD, ’16+)

Let χ ∈ E(G, [s]) and λ ∈ E(C◦G∗(s)F , [1]) with [χ] 7→ [λ].
(a) If

CG∗(s)F
λ C◦G∗(s) ≤ L∗, (2)

(L∗ ≤ G∗ split Levi), then χ is Harish-Chandra induced from L.
(b) Suppose that G is simple and simply connected.
If χ is Harish-Chandra imprimitive,
there is a proper split F -stable Levi subgroup L∗ of G∗ such that
Condition (2) is satisfied.
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THE CASE OF SLn(q)

Let G = GLn(q). Then G∗ = G. Let s ∈ G be semisimple.

We may write s = s1 ⊕ s2 ⊕ · · · ⊕ se with EV(si)∩EV(sj) = ∅ for
i 6= j (where EV(si) = multiset of eigenvalues of si ). Then

CG(s) = GLn1(qd1)×GLn2(qd2)× · · · ×GLne (qde ).

We have E(G, [s]) = {χs,λ | λ ∈ E(CG(s), [1])}, and

E(CG(s), [1])↔ {(π1, . . . , πe) | πi ` ni ,1 ≤ i ≤ e}.

THEOREM (H.-MAGAARD ’16+)

Let χ := χs,λ ∈ E(G, [s]) with λ↔ (π1, . . . , πe).
Let χ′ be any constituent of ResG

SLn(q)(χ).
Then χ′ is Harish-Chandra primitive, if and only if
n1 = n2 = · · · = ne, d1 = d2 = · · · = de, π1 = π2 = · · · = πe,
and EV(si) = αiEV(s1) for some α ∈ Fq.
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Thank you for listening!
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