IMPRIMITIVE IRREDUCIBLE REPRESENTATIONS OF FINITE QUASISIMPLE GROUPS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Group Theory and Computational Methods ICTS-TIFR, Bangalore, 05 – 14 November 2016

CONTENTS

Maximal subgroups of finite classical groups

- The Aschbacher approach
- C₂-obstructions
- The main objective
- On imprimitive representations of finite quasisimple groups
 - Characteristic 0
 - Positive characteristic
 - Reduction theorems
 - Lusztig series

PROLOGUE: A JOINT PROJECT

The following joint project with William J. Husen and Kay Magaard started back in 1999.

Project

Classify the pairs $(G, G \rightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over a field $k = \bar{k}$,
- **3** $G \rightarrow SL(V)$ is absolutely irreducible and imprimitive.

EXPLANATIONS

• G is quasisimple, if G = G' and G/Z(G) is simple.

 G → SL(V) is imprimitive, if V = V₁ ⊕ · · · ⊕ V_t, t > 1, the action of G permuting the V_i. Equivalently, V ≅ Ind^G_H(V₁) := kG ⊗_{kH} V₁ as kG-modules, where H := Stab_G(V₁).

THE FINITE CLASSICAL GROUPS

From now on, k is a finite field, V an n-dimensional k-vector space, and X a finite classical group on V.

To be more specific, $V = \mathbb{F}_q^n$ (i.e. $k = \mathbb{F}_q$), and

•
$$X = SL_n(q)$$
 $(n \ge 2)$, or

2
$$X = \operatorname{Sp}_n(q)$$
 $(n \ge 4 \text{ even})$, or

$$X = \Omega_n(q) \quad (n \ge 7 \text{ odd}), \text{ or }$$

•
$$X = \Omega_n^{\pm}(q)$$
 $(n \ge 8 ext{ even}), ext{ or }$

$$V = \mathbb{F}_{q^2}^n$$
 (i.e. $k = \mathbb{F}_{q^2}$), and

5
$$X = SU_n(q) \quad (n \ge 3).$$

In Cases 2–5, the group X is the stabilizer of a non-degenerate form (symplectic, quadratic or hermitian) on V.

THE ASCHBACHER CLASSIFICATION

Let X be a finite classical group as above.

Overall objective: Determine the maximal subgroups of *X*.

Approach: Aschbacher's subgroup classification theorem.

There are nine classes of subgroups $C_1(X), \ldots, C_8(X)$ and S(X) of X such that the following holds.

THEOREM (ASCHBACHER, '84)

Let $H \leq X$ be a maximal subgroup of X. Then

$$H \in \cup_{i=1}^{8} \mathcal{C}_{i}(X) \cup \mathcal{S}(X).$$

But: An element in $\bigcup_{i=1}^{8} C_i(X) \cup S(X)$ is not necessarily a maximal subgroup of *X*.

Kleidman-Liebeck and Bray-Holt-Roney-Dougal: Determine the maximal subgroups among the members of $\bigcup_{i=1}^{8} C_i(X)$ (amot).

THE CLASS $\mathcal{S}(X)$

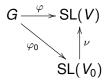
Let $X \leq SL(V)$ be a finite classical group as above, and $H \leq X$.

DEFINITION

- $H \in \mathcal{S}(X)$, if $H = N_X(G)$, where $G \leq X$ is quasisimple, such that
 - $\varphi: G \rightarrow X \leq SL(V)$ is absolutely irreducible, and

ont realizable over a smaller field.

 $[\varphi: G \rightarrow SL(V)$ is realizable over a smaller field, if φ factors as



for some proper subfield $k_0 \leq k$, a k_0 -vector space V_0 with $V = k \otimes_{k_0} V_0$, and a representation $\varphi_0 : G \to SL(V_0)$.]

The structure of $H \in \mathcal{S}(X)$

Let
$$H = N_X(G) \in \mathcal{S}(X)$$
.
Put $Z := Z(X)$.

Then

$$C_X(G)=Z=C_X(H)=Z(H),$$

as $\varphi : G \to X$ is absolutely irreducible.

Also, $H/ZG \leq Out(G)$ is solvable by Schreier's conjecture.

Hence $F^*(H) = ZG$ and thus $G = F^*(H)' = H^{\infty}$.

Moreover, H/Z is almost simple, i.e. there is a nonabelian simple group *S* such that H/Z fits into a short exact sequence

$$1 \to S \to H/Z \to \operatorname{Aut}(S) \to 1$$

On the maximality of the elements of $\mathcal{S}(X)$

Let
$$H = N_X(G) \in \mathcal{S}(X)$$
.

QUESTION

Is *H* a maximal subgroup of *X*?

If not, there is a maximal subgroup K of X with

 $H \lneq K \lneq X$.

By the definiton of the classes $C_i(X)$ and S(X), we have

$$K \in \mathcal{C}_2(X) \cup \mathcal{C}_4(X) \cup \mathcal{C}_7(X) \cup \mathcal{S}(X).$$

In this talk we investigate the possibility $K \in C_2(X)$, which we call a C_2 -obstruction to the maximality of H.

The subgroup class $\mathcal{C}_2(X)'$

Let $H \leq X$. We say that $H \in \mathcal{C}_2(X)'$, if

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_t \tag{1}$$

such that

(a) *H* permutes the set $\{V_1, \ldots, V_t\}$;

(b) $t \ge 2;$

- (c) if $X \neq SL_n(q)$, then either
 - the V_i are non-degenerate and pairwise orthogonal, or
 - t = 2 and V_1 , V_2 are totally singular.

In particular, if $H \in C_2(X)'$, then $\varphi : H \to X$ is imprimitive.

The group *H* belongs to $C_2(X)$, if *H* is the **full** stabilizer of a decomposition (1) satisfying (a)–(c).

The C_2 -obstruction

Let
$$H = N_X(G) \in \mathcal{S}(X)$$
. (Recall that $G = H^{\infty}$.)

PROPOSITION

There exists $H \lneq K \lneq X$ with $K \in C_2(X)$ if and only if $H \in C_2(X)'$.

Proof. The only if direction is trivial.

Suppose that $H \in C_2(X)'$, stabilizing a decomposition (1) satisfying (a) – (c).

Let *K* denote the stabilizer in *X* of this decomposition.

Then K^{∞} does not act absolutely irreducibly on *V* (by the explicit description of *K* in all cases for *X*).

In particular, $H \leq K$.

If $H \in \mathcal{C}_2(X)'$, then $G \in \mathcal{C}_2(X)'$, and $\varphi : G \to X$ is imprimitive.

AN EXAMPLE: THE MATHIEU GROUP M_{11}

Let X be a finite classical group.

Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$. Is $Z(X) \times G$ maximal in X? **NO**, except for $\varphi : M_{11} \to SL_5(3)$.

EXAMPLES

 $\begin{array}{ll} (1) \ M_{11} \rightarrow A_{11} \rightarrow \Omega^+_{10}(3) & (\mathcal{S}\text{-obstruction}). \\ (2) \ M_{11} \rightarrow SO_{55}(\ell) \ is \ imprimitive, \ \ell \geq 5 & (\mathcal{C}_2\text{-obstruction}). \\ (3) \ Also: \ M_{11} \rightarrow M_{12} \rightarrow A_{12} \rightarrow SO_{11}(\ell) \rightarrow SO_{55}(\ell), \ \ell \geq 5. \\ (4) \ M_{11} \rightarrow 2.M_{12} \rightarrow SL_{10}(3) & (\mathcal{S}\text{-obstruction}). \\ (5) \ M_{11} \rightarrow SL_5(3) \rightarrow \Omega^-_{24}(3) & (\mathcal{S}\text{-obstruction}). \end{array}$

What about $\varphi: M \to \Omega_{196882}^{-}(2)$? (*M*: Monster)

THE MAIN OBJECTIVE

To determine the triples (G, k, V) allowing a C_2 -obstruction, we plan to perform the following steps.

OBJECTIVE (THE H.-HUSEN-MAGAARD PROJECT)

Determine all triples $(G, \mathbf{k}, \mathbf{V})$ such that

- G is a finite quasisimple group,
- k is an algebraically closed field,
- V is an irreducible, imprimitive kG-module,
- faithfully representing G.

The case $char(\mathbf{k}) = 0$ is included as a model for the desired classification; it has provided most of the ideas for an approach to the general case.

THE FINITE QUASISIMPLE GROUPS

Theorem

A finite quasisimple group is one of

- a covering group of a sporadic simple group;
- **2** a covering group of an alternating group A_n , $n \ge 5$;
- an exceptional covering group of a simple finite reductive group or the Tits simple group;
- a quotient of a quasisimple finite reductive group.

FINITE REDUCTIVE GROUPS

Let **G** denote a reductive algebraic group over \mathbb{F} , the algebraic closure of the prime field \mathbb{F}_p .

Let *F* denote a Steinberg morphism of **G**.

Then $G := \mathbf{G}^{F}$ is a finite reductive group of characteristic *p*.

An *F*-stable Levi subgroup **L** of **G** is split, if **L** is a Levi complement in an *F*-stable parabolic subgroup **P** of **G**.

Such a pair (**L**, **P**) gives rise to a parabolic subgroup $P = \mathbf{P}^F$ of *G* with Levi complement $L = \mathbf{L}^F$.

THE CHARACTERISTIC **0** CASE

THEOREM

The triples $(G, \mathbf{k}, \mathbf{V})$ of the main objective, i.e.

- G is a finite quasisimple group,
- k is an algebraically closed field,
- V is an irreducible, imprimitive kG-module,

are known if $char(\mathbf{k}) = 0$.

Here are some references:

- sporadic groups [H.-Husen-Magaard, '15]
- alternating [Djoković-Malzan, '76; Nett-Noeske, '11]
- exceptional covering and Tits [H.-Husen-Magaard, '15]
- finite reductive groups [H.-Husen-Magaard, 15'; H.-Magaard, '16+]

REDUCTIVE GROUPS IN DEFINING CHARACTERISTICS

The following result of Seitz contains the classification for finite reductive groups in defining characteristic.

THEOREM (GARY SEITZ, '88)

Let G be a quasisimple finite reductive group over \mathbb{F} .

Suppose that **V** is an irreducible, imprimitive $\mathbb{F}G$ -module. Then G is one of

```
SL_{2}(5), SL_{2}(7), SL_{3}(2), Sp_{4}(3),
```

and V is the Steinberg module.

Thus it remains to study finite reductive groups in non-defining characteristics.

THE POSITIVE CHARACTERISTIC CASE

THEOREM (H.-HUSEN-MAGAARD, '15)

The triples $(G, \mathbf{k}, \mathbf{V})$ of the main objective, i.e.

- G is a finite quasisimple group,
- k is an algebraically closed field,
- V is an irreducible, imprimitive kG-module,

are known if

- G is sporadic;
- *G* is an exceptional covering group of a finite reductive group or the Tits simple group;
- G is a Suzuki or Ree group, G = G₂(q), or G is a Steinberg triality group.

It remains to consider alternating groups or finite reductive groups in case $p \neq \text{char}(\mathbf{k}) > 0$.

THE MAIN REDUCTION THEOREM

Let G be a quasisimple finite reductive group of characteristic p.

Suppose that G

- does not have an exceptional Schur multiplier,
- is not isomorphic to a finite reductive group of a different characteristic.

Let **k** be an algebraically closed field with char(\mathbf{k}) $\neq p$.

THEOREM (H.-HUSEN-MAGAARD, '15)

Let G and **k** be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\operatorname{Ind}_{H}^{G}(V_{1})$ is irreducible for some **k**H-module V_{1} .

Then H = P is a parabolic subgroup of G.

PARABOLIC INDUCTION

Let *G* be a quasisimple finite reductive group of characteristic *p*, and let **k** be an algebraically closed field with char(\mathbf{k}) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, '15)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a **k**P-module such that $Ind_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

In other words, $\operatorname{Ind}_{P}^{G}(V_{1})$ is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification problem, reducing certain aspects to Weyl groups or Iwahori-Hecke algebras.

LUSZTIG SERIES

Let $G = \mathbf{G}^F$ be a finite reductive group. Let $G^* = \mathbf{G}^{*F}$ denote a dual reductive group. We have

$$\mathsf{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^* -conjugacy classes of semisimple elements of G^*).

THEOREM (LUSZTIG, H.-HUSEN-MAGAARD, '15)

(a) If $C_{\mathbf{G}^*}(s) \leq \mathbf{L}^*$, where $\mathbf{L}^* \leq \mathbf{G}^*$ is a split Levi subgroup, then every $\chi \in \mathcal{E}(\mathbf{G}, [s])$ is Harish-Chandra induced from L.

(b) Suppose that $C_{\mathbf{G}^*}(s)$ is connected and **not** contained in a proper split Levi subgroup of \mathbf{G}^* .

Then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

In particular, the elements of $\mathcal{E}(G, [1])$ are HC-primitive.

NON-CONNECTED CENTRALIZERS

Write $C_{\mathbf{G}^*}^{\circ}(s)$ for the connected component of $C_{\mathbf{G}^*}(s)$. Lusztig's generalized Jordan decomposition: There is an equivalence relation \sim on $\mathcal{E}(G, [s])$ and a bijection

$$\mathcal{E}(G, [s])/_{\!\!\sim} o \mathcal{E}(C^{\circ}_{\mathbf{G}^*}(s)^F, [1])/_{\!\!\approx}, \quad [\chi] \mapsto [\lambda],$$

where \approx denotes $C_{\mathbf{G}^*}(s)^F$ -orbits on $\mathcal{E}(C_{\mathbf{G}^*}^{\circ}(s)^F, [1])$.

THEOREM (H.-MAGAARD, '16+)

Let $\chi \in \mathcal{E}(G, [s])$ and $\lambda \in \mathcal{E}(C^{\circ}_{\mathbf{G}^*}(s)^F, [1])$ with $[\chi] \mapsto [\lambda]$. (a) If

$$C_{\mathbf{G}^*}(s)_{\lambda}^F \ C_{\mathbf{G}^*}^{\circ}(s) \le \mathbf{L}^*, \tag{2}$$

($L^* \leq G^*$ split Levi), then χ is Harish-Chandra induced from L. (b) Suppose that **G** is simple and simply connected. If χ is Harish-Chandra imprimitive, there is a proper split F-stable Levi subgroup L^* of G^* such that Condition (2) is satisfied.

THE CASE OF $SL_n(q)$

Let $G = GL_n(q)$. Then $G^* = G$. Let $s \in G$ be semisimple.

We may write $s = s_1 \oplus s_2 \oplus \cdots \oplus s_e$ with $EV(s_i) \cap EV(s_j) = \emptyset$ for $i \neq j$ (where $EV(s_i) =$ multiset of eigenvalues of s_i). Then

$$C_G(s) = \operatorname{GL}_{n_1}(q^{d_1}) imes \operatorname{GL}_{n_2}(q^{d_2}) imes \cdots imes \operatorname{GL}_{n_e}(q^{d_e}).$$

We have $\mathcal{E}(G, [s]) = \{\chi_{s,\lambda} \mid \lambda \in \mathcal{E}(C_G(s), [1])\}$, and $\mathcal{E}(C_G(s), [1]) \leftrightarrow \{(\pi_1, \dots, \pi_e) \mid \pi_i \vdash n_i, 1 \leq i \leq e\}.$

THEOREM (H.-MAGAARD '16+)

Let $\chi := \chi_{s,\lambda} \in \mathcal{E}(G, [s])$ with $\lambda \leftrightarrow (\pi_1, \dots, \pi_e)$. Let χ' be any constituent of $\operatorname{Res}_{\operatorname{SL}_n(q)}^G(\chi)$. Then χ' is Harish-Chandra primitive, if and only if $n_1 = n_2 = \dots = n_e, d_1 = d_2 = \dots = d_e, \pi_1 = \pi_2 = \dots = \pi_e,$ and $\operatorname{EV}(s_i) = \alpha^i \operatorname{EV}(s_1)$ for some $\alpha \in \mathbb{F}_q$.

Thank you for listening!