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REPRESENTATIONS: DEFINITIONS

Let G be a group and k a field.

A k -representation of G is a homomorphism X : G → GL(V ),
where V is a k -vector space. (X is also called a representation
of G on V .)

If d := dimk (V ) is finite, d is called the degree of X.

X reducible, if there exists a G-invariant subspace 0 6= W 6= V
(i.e. X(g)(w) ∈ W for all w ∈ W and g ∈ G).

In this case we obtain a sub-representation of G on W and a
quotient representation of G on V/W .

Otherwise, X is called irreducible.

There is a natural notion of equivalence of k -representations.
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COMPOSITION SERIES

Let X be a k -representation of G on V with dim V < ∞.

Consider a chain {0} < V1 < · · · < Vl = V of G-invariant
subspaces, such that the representation Xi of G on Vi/Vi−1 is
irreducible for all 1 ≤ i ≤ l .

Choosing a basis of V through the Vi , we obtain a matrix
representation X̃ of G, equivalent to X, s.t.:

X̃(g) =


X1(g) ? · · · ?

0 X2(g) · · · ?

0 0
. . . ?

0 0 · · · Xl(g)

 for all g ∈ G.

The Xi (or the Vi/Vi−1) are called the irreducible constituents
(or composition factors) of X (or of V ).

They are unique up to equivalence and ordering.
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MODULES AND THE GROUP ALGEBRA

Let X : G → GL(V ) be a k -representation of G on V .

For v ∈ V and g ∈ G, write g.v := X(g)(v).
This makes V into a left kG-module.

Here, kG denotes the group algebra of G over k :

kG :=

∑
g∈G

agg | ag ∈ k , ag = 0 for almost all g

 ,

with multiplication inherited from G.

X is irreducible if and only if V is a simple kG-module.

X and Y : G → GL(W ) are equivalent, if and only if V and
W are isomorphic as kG-modules.
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CLASSIFICATION OF REPRESENTATIONS

Let G now be finite.

1 There are only finitely many irreducible k -representations
of G up to equivalence.

2 “Classify” all irreducible representations of all finite simple
groups.

3 “Most” finite simple groups are groups of Lie type. Find
labels for their irreducible representations, find the degrees
of these, etc.



NOTIONS OF REPRESENTATION THEORY REPRESENTATIONS OF (FINITE) REDUCTIVE GROUPS LUSZTIG’S CONJECTURE

THREE CASES

In the following, let G = GF be a finite reductive group.

Recall that G is a connected reductive algebraic group over F̄p

and that F is a Frobenius morphism of G.

Let k be algebraically closed with char(k) = ` ≥ 0.

It is natural to distinguish three cases:

1 ` = p (usually k = F̄p); defining characteristic

2 ` = 0; ordinary representations

3 ` > 0, ` 6= p; non-defining characteristic

In this lecture, I will talk about Case 1, and the remaining two
lectures are devoted to Cases 2 and 3.
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A ROUGH SURVEY

Let k = F̄p and let (G, F ) be a finite reductive group over k .

By a k -representation of G we understand a rational hom.

1 An irreducible k -representation of G has finite degree.

2 The irreducible k -representations of G are classified by
dominant weights, i.e. we have labels for these irreducible
k -representations.

3 “Every” irreducible k -representation of G = GF is the
restriction of an irreducible k -representation of G to G.

What are dominant weights?

Which irreducible representations of G restrict to irreducible
representations of G?
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CHARACTER GROUP AND COCHARACTER GROUP

For the remainder of this lecture, let G be a connected
reductive algebraic group over k = F̄p and let T be a maximal
torus of G. (All of these are conjugate.)

Recall T ∼= k∗
× k∗

× · · · × k∗. The number r of factors is an
invariant of G, the rank of G.

Put X := X (T) := Hom(T, k∗). Then X ∼=
⊕r

1 Hom(k∗, k∗).

Now Hom(k∗, k∗) ∼= Z, so X is a free abelian group of rank r
(χ ∈ Hom(k∗, k∗) is of the form χ(t) = tz for some z ∈ Z).

Similarly, Y := Y (T) := Hom(k∗, T) is free abelian of rank r .

X and Y are the character group and cocharacter group, resp.

There is a natural duality X × Y → Z, (χ, γ ) 7→ 〈χ, γ 〉, defined
by χ ◦ γ ∈ Hom(k∗, k∗) ∼= Z.
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AN EXAMPLE: GLn(k)

Let G = GLn(k). Take

T := {diag[t1, t2, . . . , tn] | t1, . . . , tn ∈ k∗
},

the maximal torus of diagonal matrices.
(Thus GLn(k) has rank n.)

X has basis ε1, . . . , εn with

εi(diag[t1, t2, . . . , tn]) = ti .

Y has basis ε′

1, . . . ε
′

n with

ε′

i(t) = diag[1, . . . 1, t, 1, · · · , 1],

where the t is on position i .

Clearly, {εi} and {ε′

i} are dual with respect to the pairing 〈−, −〉.
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ROOTS AND COROOTS

Let B be a Borel subgroup of G containing T.

Then B = UT with U C B and U ∩ T = {1}. (Recall that G has a
split BN-pair of characteristic p.)

The minimal subgroups of U normalised by T are called root
subgroups.

A root subgroup is isomorphic to Ga := (k , +). The action of T
on a root subgroup gives rise to a homomorphism T → Aut(Ga).

Since Aut(Ga) ∼= k∗, we obtain an element of X . The characters
obtained this way are the positive roots of G w.r.t. T and B.

The set of positive roots is denoted by 8+, and the set
8 := 8+

∪ (−8+) ⊂ X is the root system of G.

One can also define a set 8∨
⊂ Y of coroots of G w.r.t. T and B.
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THE ROOTS AND THE COROOTS OF GLn(k)

Let G = GLn(k) and T be as above. We choose B as group of
upper triangular matrices. Then U is the subgroup of upper
triangular unipotent matrices.

The root subgroups are the groups Uij := {In + aIij | a ∈ k},
1 ≤ i < j ≤ n, where Iij denotes the elementary matrix with 1 on
position (i, j) and 0 elsewhere.

The positive root αij determined by Uij equals εi − εj .

Indeed, if t = diag[t1, . . . , tn], then t(In + aIij)t−1
= In + ti t−1

j aIij .
On the other hand, (εi − εj)(t) = ti t−1

j .

We have 8 = {αij | αij = εi − εj , 1 ≤ i 6= j ≤ n} and
8∨

= {α∨

ij | α∨

ij = ε′

i − ε′

j , 1 ≤ i 6= j ≤ n}.

Note that Z8 and Z8∨ have rank n − 1.
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THE ROOT DATUM

The quadruple (X , 8, Y , 8∨) satisfies:
1 X and Y are free abelian groups of the same rank and

there is a duality X × Y → Z, (χ, γ ) 7→ 〈χ, γ 〉.
2 8 and 8∨ are finite subsets of X and of Y , respectively,

and there is a bijection 8 → 8∨, α 7→ α∨.
3 For α ∈ 8 we have 〈α, α∨

〉 = 2. Denote by sα the
“reflection” of X defined by

sα(χ) = χ − 〈χ, α∨
〉α,

and let s∨

α be its adjoint (s∨

α (γ ) = γ − 〈α, γ 〉α∨).
Then sα(8) = 8 and s∨

α (8∨) = 8∨.

A quadruple (X , 8, Y , 8∨) as above is called a root datum.

G is determined by its root datum up to isomorphism.
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THE WEYL GROUP

The Weyl group W = NG(T)/T acts on X and we have

W ∼= 〈sα | α ∈ 8〉 ≤ Aut(X ).

Suppose that G is semisimple. Then rank X = rank Z8.

In this case 8 is a root system in V := X ⊗Z R and W is its
Weyl group (where V is equipped with an inner product (−, −)

satisfying 〈β, α∨
〉 = 2(β, α)/(α, α) for all α, β ∈ 8).

W is a Coxeter group with Coxeter generators {sα | α ∈ 5},
where 5 ⊂ 8+ is a base of 8 (which is uniquely determined by
this property).
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WEIGHT SPACES

Let M be a finite-dimensional kG-module.

For λ ∈ X = X (T) = Hom(T, k∗) put

Mλ := {v ∈ M | tv = λ(t)v for all t ∈ T}.

If Mλ 6= {0}, then λ is called a weight of M and Mλ is the
corresponding weight space. (Thus Mλ is a simultaneous
eigenspace for all t ∈ T.)

Crucial Fact:
M =

⊕
λ∈X

Mλ,

i.e. M is a direct sum of its weight spaces.

This follows from the fact that the elements of T act as
commuting semisimple linear operators on M.
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DOMINANT WEIGHTS AND SIMPLE MODULES

The elements of the set

X+
:= {λ ∈ X | 0 ≤ 〈λ, α∨

〉 for all α ∈ 8+
} ⊂ X

are called dominant weights of T (w.r.t. 8+).
Order X+ by µ ≤ λ if and only if λ − µ ∈ N8+.

THEOREM (CHEVALLEY, LATE 1950S)
1 For each λ ∈ X+ there is a simple kG-module L(λ).
2 dim L(λ)λ = 1. If µ is a weight of L(λ), then µ ≤ λ.

(Thus λ is called the highest weight of L(λ).)
3 If M is a simple kG-module, then M ∼= L(λ) for some

λ ∈ X+.

dim L(λ) is not known in general.



NOTIONS OF REPRESENTATION THEORY REPRESENTATIONS OF (FINITE) REDUCTIVE GROUPS LUSZTIG’S CONJECTURE

NATURAL AND ADJOINT REPRESENTATIONS OF GLn(k)

Let G = GLn(k).

EXAMPLE

1 Let M := kn be the natural module of kG.
The weights of M are the εi , 1 ≤ i ≤ n.
The highest of these is ε1 (recall that εi − εj ∈ 8+ for i < j ).
Thus M = L(ε1).

2 Let M := {x ∈ kn×n
| tr(x) = 0}. Then M is a simple

kG-module by conjugation (the adjoint module).
The weights of M are the roots αij and 0.
The highest one of these is α1n = ε1 − εn.
Thus M = L(ε1 − εn).
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STEINBERG’S TENSOR PRODUCT THEOREM

For q = pm, put

X+

q := {λ ∈ X | 0 ≤ 〈λ, α∨
〉 < q for all α ∈ 5} ⊂ X+.

Let F denote the standard Frobenius morphism (aij) 7→ (ap
ij ).

If M is a kG-module, we put M [i]
:= M, with twisted action

g.v := F i(g).v , g ∈ G, v ∈ M.

THEOREM (STEINBERG’S TENSOR PRODUCT THEOREM, 1963)

For λ ∈ X+

q write λ =
∑m−1

i=0 piλi with λi ∈ X+

p .
Then L(λ) = L(λ0) ⊗k L(λ1)

[1]
⊗k · · · ⊗k L(λm−1)

[m−1].

THEOREM (STEINBERG, 1963)

If λ ∈ X+

q , then the restriction of L(λ) to G = GF m is simple.
If G is simply connected, i.e. Y = Z8∨, then every simple
kG-module arises this way.
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THE IRREDUCIBLE REPRESENTATIONS OF SL2(k)

(BRAUER-NESBITT, 1941)

Let G = SL2(k).

Then G acts as group of k -algebra automorphisms on the
polynomial ring k [x1, x2] in two variables, the action being
defined by: [

a b
c d

] [
x1

x2

]
=

[
ax1 + bx2

cx1 + dx2

]
.

For d = 0, 1, . . . let Md denote the set of homogeneous
polynomials in k [x1, x2] of degree d . Then Md is G-invariant,
hence a kG-module, and dim Md = d + 1.

Moreover, Md is a simple kG-module, in fact Md = L(dε1).

Thus SL2(p) has exactly the simple modules M0, . . . , Mp−1 of
dimensions 1, . . . , p.
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WEYL MODULES

From now on assume that G is simply connected, i.e. Y = Z8∨.

For each λ ∈ X+, there is a distinguished finite-dimensional
kG-module V (λ). The V (λ)s are called Weyl modules.

Construction of V (λ) through reduction modulo p.

Recall that G is obtained as group of automorphisms of gk ,
where g is a semisimple Lie algebra over C.

For λ ∈ X+, let V (λ)C be a simple g-module. This has a suitable
Z-form V (λ)Z. Then V (λ) := k ⊗Z V (λ)C can be equipped with
the structure of a kG-module.
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FORMAL CHARACTERS

Let M be a finite-dimensional kG-module. Recall that

M =

⊕
λ∈X

Mλ.

Clearly, dim M can be recovered by the vector (dim Mλ)λ∈X .

It is convenient to view this as an element of ZX .

Introduce a Z-basis eλ, λ ∈ X , of ZX with eλeµ
= eλ+µ.

DEFINITION

The formal character of M is the element

ch M :=
∑

λ∈X dim Mλ eλ

of ZX.
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CHARACTERS OF WEYL MODULES

The characters of the Weyl modules V (λ) can be computed
from Weyl’s character formula. In particular, dim V (λ) is known.

Put aλ,µ := [V (λ) : L(µ)] := multiplicity of L(µ) as a composition
factor of V (λ).

FACT

aλ,λ = 1, and if aλ,µ 6= 0, then µ ≤ λ.

We obviously have

ch V (λ) = ch L(λ) +

∑
µ<λ

aλ,µ ch L(µ).

Once the aλ,µ are known, ch L(λ) and thus dim L(λ) can be
computed recursively from ch V (µ) with µ ≤ λ (there are only
finitely many such µ).
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COXETER GROUPS

Let M = (mij)1≤i,j≤r be a symmetric matrix with mij ∈ Z ∪ {∞}

satisfying mii = 1 and mij > 1 for i 6= j .

The group

W := W (M) :=
〈
s1, . . . , sr | (sisj)

mij = 1(i 6= j), s2
i = 1

〉
group ,

is called the Coxeter group of M, the elements s1, . . . , sr are the
Coxeter generators of W .

The relations (sisj)
mij = 1 (i 6= j) are called the braid relations.

In view of s2
i = 1, they can be written as sisjsi · · · = sjsisj · · ·

The matrix M is usually encoded in a Coxeter diagram, e.g.

Br : f f f f f. . .
1 2 3 r

with number of edges between nodes i 6= j equal to mij − 2.
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THE IWAHORI-HECKE ALGEBRA

Let W be a Coxeter group w.r.t. the matrix M = (mij).

Let A be a commutative ring and v ∈ A. The algebra

HA,v (W ) :=
〈
Ts1, . . . , Tsr | T 2

si
= v1 + (v − 1)Tsi , braid rel’s

〉
A-alg.

is called the Iwahori-Hecke algebra of W over A with
parameter v .

Braid rel’s: Tsi Tsj Tsi · · · = Tsj Tsi Tsj · · · (mij factors on each side)

FACT

HA,v (W ) is a free A-algebra with A-basis Tw , w ∈ W.

Note that HA,1(W ) ∼= AW , so that HA,v (W ) is a deformation of
AW , the group algebra of W over A.
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KAZHDAN-LUSZTIG POLYNOMIALS

Let W be a Coxeter group as above and let ≤ denote the
Bruhat order on W .

Let v be an indeterminate, put A := Z[v , v−1
] and u := v2.

There is an involution ι on HA,u(W ) determined by ι(v) = v−1

and ι(Tw ) = (Tw−1)
−1 for all w ∈ W .

THEOREM (KAZHDAN-LUSZTIG, 1979)
There is a unique basis C ′

w , w ∈ W of HA,u(W ) such that
1 ι(C ′

w ) = C ′

w for all w ∈ W;
2 C ′

w = v−`(w)
∑

y≤w Py ,wTw with Pw,w = 1, Py ,w ∈ Z[u],
deg Py ,w ≤ (`(w) − `(y) − 1)/2 for all y < w ∈ W.

The Py ,w ∈ Z[u], y ≤ w ∈ W , are called the Kazhdan-Lusztig
polynomials of W .
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THE AFFINE WEYL GROUP

Recall that the Weyl group W acts on X as a group of linear
transformations.

Let ρ :=
1
2

∑
α∈8+ α, and define the dot-action of W as follows:

w .λ := w(λ + ρ) − ρ, λ ∈ X , w ∈ W .

Define
Wp = 〈sα,z | α ∈ 8+, z ∈ Z〉.

Here, sα,z(λ) = sα.λ + zpα is an affine reflection of X .

Wp is a Coxeter group, called the affine Weyl group.

Each Wp-orbit on X contains a unique element in
C̄ := {λ ∈ X | 0 ≤ 〈λ + ρ, α∨

〉 ≤ p for all α ∈ 8+
}.
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LUSZTIG’S CONJECTURE

Let λ0 ∈ X with 0 < 〈λ0 + ρ, α∨
〉 < p for all α ∈ 8+ (such a λ0

only exists if p ≥ h := h(W )). Fix w ∈ Wp such that w .λ0 ∈ X+

p .

THEOREM (ANDERSEN, JANTZEN, EARLY 80S)

ch L(w .λ0) =
∑

w ′ bw,w ′ ch V (w ′.λ0), with w ′
∈ Wp such that

w ′.λ0 ≤ w .λ0 and w ′.λ0 ∈ X+. The bw,w ′ are independent of λ0.

For p ≥ h, the computation of ch L(λ) for any λ ∈ X+ can be
reduced to one of these cases.

CONJECTURE (LUSZTIG’S CONJECTURE, 1980)

bw,w ′ = (−1)`(w)+`(w ′)Pw0w ′,w0w (1), in particular, the bw,w ′ are
also independent of p. (w0: longest element in W ≤ Wp.)

THEOREM (ANDERSEN-JANTZEN-SOERGEL, 1994)
Lusztig’s conjecture is true provided p >> 0.
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Thank you for your listening!
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