FINITE GROUPS OF LIE TYPE AND THEIR REPRESENTATIONS – LECTURE II

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Groups St Andrews 2009 in Bath University of Bath, August 1 – 15, 2009

- Notions of representation theory
- Presentations of (finite) reductive groups
- Lusztig's conjecture

REPRESENTATIONS: DEFINITIONS

Let G be a group and k a field.

A *k*-representation of *G* is a homomorphism $\mathfrak{X} : G \to GL(V)$, where *V* is a *k*-vector space. (\mathfrak{X} is also called a representation of *G* on *V*.)

If $d := \dim_k(V)$ is finite, *d* is called the degree of \mathfrak{X} .

 \mathfrak{X} reducible, if there exists a *G*-invariant subspace $0 \neq W \neq V$ (i.e. $\mathfrak{X}(g)(w) \in W$ for all $w \in W$ and $g \in G$).

In this case we obtain a sub-representation of G on W and a quotient representation of G on V/W.

Otherwise, \mathfrak{X} is called irreducible.

There is a natural notion of equivalence of *k*-representations.

COMPOSITION SERIES

Let \mathfrak{X} be a *k*-representation of *G* on *V* with dim $V < \infty$.

Consider a chain $\{0\} < V_1 < \cdots < V_l = V$ of *G*-invariant subspaces, such that the representation \mathfrak{X}_i of *G* on V_i/V_{i-1} is irreducible for all $1 \le i \le l$.

Choosing a basis of *V* through the V_i , we obtain a matrix representation $\tilde{\mathfrak{X}}$ of *G*, equivalent to \mathfrak{X} , s.t.:

$$\tilde{\mathfrak{X}}(g) = \begin{bmatrix} \mathfrak{X}_1(g) & \star & \cdots & \star \\ 0 & \mathfrak{X}_2(g) & \cdots & \star \\ 0 & 0 & \ddots & \star \\ 0 & 0 & \cdots & \mathfrak{X}_l(g) \end{bmatrix} \text{ for all } g \in G.$$

The \mathfrak{X}_i (or the V_i/V_{i-1}) are called the irreducible constituents (or composition factors) of \mathfrak{X} (or of *V*).

They are unique up to equivalence and ordering.

MODULES AND THE GROUP ALGEBRA

Let $\mathfrak{X} : G \to GL(V)$ be a *k*-representation of *G* on *V*.

For $v \in V$ and $g \in G$, write $g.v := \mathfrak{X}(g)(v)$. This makes *V* into a left *kG*-module.

Here, *kG* denotes the group algebra of *G* over *k*:

$$kG := \left\{ \sum_{g \in G} a_g g \mid a_g \in k, \, a_g = 0 \text{ for almost all } g
ight\},$$

with multiplication inherited from G.

- \mathfrak{X} is irreducible if and only if *V* is a simple *kG*-module.
- \mathfrak{X} and $\mathfrak{Y}: G \to GL(W)$ are equivalent, if and only if *V* and *W* are isomorphic as *kG*-modules.

CLASSIFICATION OF REPRESENTATIONS

Let G now be finite.

- There are only finitely many irreducible k-representations of G up to equivalence.
- Classify" all irreducible representations of all finite simple groups.
- Most" finite simple groups are groups of Lie type. Find labels for their irreducible representations, find the degrees of these, etc.

THREE CASES

In the following, let $G = \mathbf{G}^{F}$ be a finite reductive group.

Recall that **G** is a connected reductive algebraic group over $\overline{\mathbb{F}}_{p}$ and that *F* is a Frobenius morphism of **G**.

Let *k* be algebraically closed with char(k) = $\ell \ge 0$.

It is natural to distinguish three cases:

- $\ell = \rho$ (usually $k = \overline{\mathbb{F}}_{\rho}$); defining characteristic
- **2** $\ell = 0$; ordinary representations
- **(9)** $\ell > 0, \ell \neq p$; non-defining characteristic

In this lecture, I will talk about Case 1, and the remaining two lectures are devoted to Cases 2 and 3.

A ROUGH SURVEY

Let $k = \overline{\mathbb{F}}_{p}$ and let (**G**, *F*) be a finite reductive group over *k*.

By a *k*-representation of **G** we understand a rational hom.

- An irreducible *k*-representation of **G** has finite degree.
- The irreducible k-representations of G are classified by dominant weights, i.e. we have labels for these irreducible k-representations.
- "Every" irreducible k-representation of G = G^F is the restriction of an irreducible k-representation of G to G.

What are dominant weights?

Which irreducible representations of **G** restrict to irreducible representations of *G*?

CHARACTER GROUP AND COCHARACTER GROUP

For the remainder of this lecture, let **G** be a connected reductive algebraic group over $k = \overline{\mathbb{F}}_{p}$ and let **T** be a maximal torus of **G**. (All of these are conjugate.)

Recall $\mathbf{T} \cong k^* \times k^* \times \cdots \times k^*$. The number *r* of factors is an invariant of **G**, the rank of **G**.

Put $X := X(\mathbf{T}) := \text{Hom}(\mathbf{T}, k^*)$. Then $X \cong \bigoplus_{1}^{r} \text{Hom}(k^*, k^*)$.

Now Hom(k^*, k^*) $\cong \mathbb{Z}$, so X is a free abelian group of rank r ($\chi \in \text{Hom}(k^*, k^*)$ is of the form $\chi(t) = t^z$ for some $z \in \mathbb{Z}$).

Similarly, $Y := Y(\mathbf{T}) := \text{Hom}(k^*, \mathbf{T})$ is free abelian of rank *r*.

X and Y are the character group and cocharacter group, resp.

There is a natural duality $X \times Y \to \mathbb{Z}$, $(\chi, \gamma) \mapsto \langle \chi, \gamma \rangle$, defined by $\chi \circ \gamma \in \text{Hom}(k^*, k^*) \cong \mathbb{Z}$.

AN EXAMPLE: $GL_n(k)$

Let $\mathbf{G} = \operatorname{GL}_n(k)$. Take

$$\mathbf{T} := \{ \text{diag}[t_1, t_2, \dots, t_n] \mid t_1, \dots, t_n \in k^* \},\$$

the maximal torus of diagonal matrices. (Thus $GL_n(k)$ has rank *n*.)

X has basis $\varepsilon_1, \ldots, \varepsilon_n$ with

 $\varepsilon_i(\operatorname{diag}[t_1, t_2, \ldots, t_n]) = t_i.$

Y has basis $\varepsilon'_1, \ldots \varepsilon'_n$ with

$$\varepsilon'_i(t) = \operatorname{diag}[1, \ldots, 1, t, 1, \cdots, 1],$$

where the *t* is on position *i*.

Clearly, $\{\varepsilon_i\}$ and $\{\varepsilon'_i\}$ are dual with respect to the pairing $\langle -, - \rangle$.

ROOTS AND COROOTS

Let **B** be a Borel subgroup of **G** containing **T**.

Then **B** = **UT** with **U** \lhd **B** and **U** \cap **T** = {1}. (Recall that **G** has a split *BN*-pair of characteristic *p*.)

The minimal subgroups of **U** normalised by **T** are called root subgroups.

A root subgroup is isomorphic to $\mathbf{G}_a := (k, +)$. The action of **T** on a root subgroup gives rise to a homomorphism $\mathbf{T} \to \operatorname{Aut}(\mathbf{G}_a)$.

Since $Aut(\mathbf{G}_a) \cong k^*$, we obtain an element of *X*. The characters obtained this way are the positive roots of **G** w.r.t. **T** and **B**.

The set of positive roots is denoted by Φ^+ , and the set $\Phi := \Phi^+ \cup (-\Phi^+) \subset X$ is the root system of **G**.

One can also define a set $\Phi^{\vee} \subset Y$ of coroots of **G** w.r.t. **T** and **B**.

The roots and the coroots of $GL_n(k)$

Let $\mathbf{G} = \operatorname{GL}_n(k)$ and \mathbf{T} be as above. We choose \mathbf{B} as group of upper triangular matrices. Then \mathbf{U} is the subgroup of upper triangular unipotent matrices.

The root subgroups are the groups $\mathbf{U}_{ij} := \{I_n + aI_{ij} \mid a \in k\},\ 1 \le i < j \le n$, where I_{ij} denotes the elementary matrix with 1 on position (i, j) and 0 elsewhere.

The positive root α_{ij} determined by **U**_{ij} equals $\varepsilon_i - \varepsilon_j$.

Indeed, if $\mathbf{t} = \text{diag}[t_1, \dots, t_n]$, then $\mathbf{t}(I_n + aI_{ij})\mathbf{t}^{-1} = I_n + t_i t_j^{-1} aI_{ij}$. On the other hand, $(\varepsilon_i - \varepsilon_j)(\mathbf{t}) = t_i t_j^{-1}$.

We have
$$\Phi = \{\alpha_{ij} \mid \alpha_{ij} = \varepsilon_i - \varepsilon_j, 1 \le i \ne j \le n\}$$
 and $\Phi^{\vee} = \{\alpha_{ij}^{\vee} \mid \alpha_{ij}^{\vee} = \varepsilon_i' - \varepsilon_j', 1 \le i \ne j \le n\}.$

Note that $\mathbb{Z}\Phi$ and $\mathbb{Z}\Phi^{\vee}$ have rank n-1.

THE ROOT DATUM

The quadruple (X, Φ , Y, Φ^{\vee}) satisfies:

- X and Y are free abelian groups of the same rank and there is a duality $X \times Y \rightarrow \mathbb{Z}$, $(\chi, \gamma) \mapsto \langle \chi, \gamma \rangle$.
- Φ and Φ^{\vee} are finite subsets of *X* and of *Y*, respectively, and there is a bijection $\Phi \rightarrow \Phi^{\vee}, \alpha \mapsto \alpha^{\vee}$.
- So For α ∈ Φ we have ⟨α, α[∨]⟩ = 2. Denote by s_α the "reflection" of X defined by

$$\mathbf{S}_{\alpha}(\chi) = \chi - \langle \chi, \alpha^{\vee} \rangle \alpha,$$

and let s_{α}^{\vee} be its adjoint $(s_{\alpha}^{\vee}(\gamma) = \gamma - \langle \alpha, \gamma \rangle \alpha^{\vee})$. Then $s_{\alpha}(\Phi) = \Phi$ and $s_{\alpha}^{\vee}(\Phi^{\vee}) = \Phi^{\vee}$.

A quadruple $(X, \Phi, Y, \Phi^{\vee})$ as above is called a root datum. **G** is determined by its root datum up to isomorphism.

THE WEYL GROUP

The Weyl group $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ acts on X and we have

 $W \cong \langle \boldsymbol{s}_{\alpha} \mid \alpha \in \Phi \rangle \leq \operatorname{Aut}(X).$

Suppose that **G** is semisimple. Then rank $X = \operatorname{rank} \mathbb{Z}\Phi$.

In this case Φ is a root system in $V := X \otimes_{\mathbb{Z}} \mathbb{R}$ and W is its Weyl group (where V is equipped with an inner product (-, -)satisfying $\langle \beta, \alpha^{\vee} \rangle = 2(\beta, \alpha)/(\alpha, \alpha)$ for all $\alpha, \beta \in \Phi$).

W is a Coxeter group with Coxeter generators $\{s_{\alpha} \mid \alpha \in \Pi\}$, where $\Pi \subset \Phi^+$ is a base of Φ (which is uniquely determined by this property).

WEIGHT SPACES

Let M be a finite-dimensional k**G**-module.

For
$$\lambda \in X = X(\mathbf{T}) = \text{Hom}(\mathbf{T}, k^*)$$
 put

$$M_{\lambda} := \{ v \in M \mid tv = \lambda(t)v \text{ for all } t \in \mathbf{T} \}.$$

If $M_{\lambda} \neq \{0\}$, then λ is called a weight of M and M_{λ} is the corresponding weight space. (Thus M_{λ} is a simultaneous eigenspace for all $t \in \mathbf{T}$.)

Crucial Fact:

$$M=\bigoplus_{\lambda\in X}M_{\lambda},$$

i.e. *M* is a direct sum of its weight spaces.

This follows from the fact that the elements of T act as commuting semisimple linear operators on M.

DOMINANT WEIGHTS AND SIMPLE MODULES

The elements of the set

 $X^+ := \{\lambda \in X \mid 0 \le \langle \lambda, \alpha^{\vee} \rangle \text{ for all } \alpha \in \Phi^+\} \subset X$

are called dominant weights of **T** (w.r.t. Φ^+). Order X^+ by $\mu \leq \lambda$ if and only if $\lambda - \mu \in \mathbb{N}\Phi^+$.

THEOREM (CHEVALLEY, LATE 1950S)

- For each $\lambda \in X^+$ there is a simple $k\mathbf{G}$ -module $L(\lambda)$.
- **2** dim $L(\lambda)_{\lambda} = 1$. If μ is a weight of $L(\lambda)$, then $\mu \le \lambda$. (Thus λ is called the highest weight of $L(\lambda)$.)
- If M is a simple kG-module, then M ≅ L(λ) for some λ ∈ X⁺.

dim $L(\lambda)$ is not known in general.

NATURAL AND ADJOINT REPRESENTATIONS OF $GL_n(k)$

Let
$$\mathbf{G} = \operatorname{GL}_n(k)$$
.

EXAMPLE

• Let $M := k^n$ be the natural module of $k\mathbf{G}$.

The weights of *M* are the ε_i , $1 \le i \le n$. The highest of these is ε_1 (recall that $\varepsilon_i - \varepsilon_j \in \Phi^+$ for i < j). Thus $M = L(\varepsilon_1)$.

Let M := {x ∈ k^{n×n} | tr(x) = 0}. Then M is a simple kG-module by conjugation (the adjoint module). The weights of M are the roots α_{ij} and 0. The highest one of these is α_{1n} = ε₁ − ε_n. Thus M = L(ε₁ − ε_n).

STEINBERG'S TENSOR PRODUCT THEOREM

For $q = p^m$, put

 $X_q^+ := \{\lambda \in X \mid 0 \le \langle \lambda, \alpha^{\vee} \rangle < q \text{ for all } \alpha \in \Pi \} \subset X^+.$

Let *F* denote the standard Frobenius morphism $(a_{ij}) \mapsto (a_{ij}^p)$. If *M* is a *k***G**-module, we put $M^{[i]} := M$, with twisted action $g.v := F^i(g).v, g \in G, v \in M$.

THEOREM (STEINBERG'S TENSOR PRODUCT THEOREM, 1963)

For $\lambda \in X_q^+$ write $\lambda = \sum_{i=0}^{m-1} p^i \lambda_i$ with $\lambda_i \in X_p^+$. Then $L(\lambda) = L(\lambda_0) \otimes_k L(\lambda_1)^{[1]} \otimes_k \cdots \otimes_k L(\lambda_{m-1})^{[m-1]}$.

THEOREM (STEINBERG, 1963)

If $\lambda \in X_q^+$, then the restriction of $L(\lambda)$ to $G = \mathbf{G}^{F^m}$ is simple. If **G** is simply connected, i.e. $Y = \mathbb{Z}\Phi^{\vee}$, then every simple *k*G-module arises this way.

The irreducible representations of $SL_2(k)$ (Brauer-Nesbitt, 1941)

Let $\mathbf{G} = \mathrm{SL}_2(k)$.

Then *G* acts as group of *k*-algebra automorphisms on the polynomial ring $k[x_1, x_2]$ in two variables, the action being defined by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}.$$

For d = 0, 1, ... let M_d denote the set of homogeneous polynomials in $k[x_1, x_2]$ of degree d. Then M_d is **G**-invariant, hence a k**G**-module, and dim $M_d = d + 1$.

Moreover, M_d is a simple $k\mathbf{G}$ -module, in fact $M_d = L(d\varepsilon_1)$.

Thus $SL_2(p)$ has exactly the simple modules M_0, \ldots, M_{p-1} of dimensions $1, \ldots, p$.

WEYL MODULES

From now on assume that **G** is simply connected, i.e. $Y = \mathbb{Z}\Phi^{\vee}$.

For each $\lambda \in X^+$, there is a distinguished finite-dimensional k**G**-module $V(\lambda)$. The $V(\lambda)$ s are called Weyl modules.

Construction of $V(\lambda)$ through reduction modulo *p*.

Recall that **G** is obtained as group of automorphisms of \mathfrak{g}_k , where \mathfrak{g} is a semisimple Lie algebra over \mathbb{C} .

For $\lambda \in X^+$, let $V(\lambda)_{\mathbb{C}}$ be a simple \mathfrak{g} -module. This has a suitable \mathbb{Z} -form $V(\lambda)_{\mathbb{Z}}$. Then $V(\lambda) := k \otimes_{\mathbb{Z}} V(\lambda)_{\mathbb{C}}$ can be equipped with the structure of a $k\mathbf{G}$ -module.

FORMAL CHARACTERS

Let *M* be a finite-dimensional *k***G**-module. Recall that

$$M=\bigoplus_{\lambda\in X}M_{\lambda}.$$

Clearly, dim *M* can be recovered by the vector $(\dim M_{\lambda})_{\lambda \in X}$.

It is convenient to view this as an element of $\mathbb{Z}X$.

Introduce a \mathbb{Z} -basis e^{λ} , $\lambda \in X$, of $\mathbb{Z}X$ with $e^{\lambda}e^{\mu} = e^{\lambda+\mu}$.

DEFINITION

The formal character of M is the element

ch
$$M := \sum_{\lambda \in X} \dim M_{\lambda} e^{\lambda}$$

of $\mathbb{Z}X$.

CHARACTERS OF WEYL MODULES

The characters of the Weyl modules $V(\lambda)$ can be computed from Weyl's character formula. In particular, dim $V(\lambda)$ is known.

Put $a_{\lambda,\mu} := [V(\lambda): L(\mu)] :=$ multiplicity of $L(\mu)$ as a composition factor of $V(\lambda)$.

FACT

$$a_{\lambda,\lambda} = 1$$
, and if $a_{\lambda,\mu} \neq 0$, then $\mu \leq \lambda$.

We obviously have

$$\operatorname{ch} V(\lambda) = \operatorname{ch} L(\lambda) + \sum_{\mu < \lambda} a_{\lambda,\mu} \operatorname{ch} L(\mu).$$

Once the $a_{\lambda,\mu}$ are known, ch $L(\lambda)$ and thus dim $L(\lambda)$ can be computed recursively from ch $V(\mu)$ with $\mu \leq \lambda$ (there are only finitely many such μ).

COXETER GROUPS

Let $M = (m_{ij})_{1 \le i,j \le r}$ be a symmetric matrix with $m_{ij} \in \mathbb{Z} \cup \{\infty\}$ satisfying $m_{ii} = 1$ and $m_{ij} > 1$ for $i \ne j$.

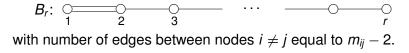
The group

$$W := W(M) := \langle s_1, \ldots, s_r \mid (s_i s_j)^{m_{ij}} = 1 (i \neq j), s_i^2 = 1 \rangle_{\text{group}},$$

is called the Coxeter group of M, the elements s_1, \ldots, s_r are the Coxeter generators of W.

The relations $(s_i s_j)^{m_{ij}} = 1$ $(i \neq j)$ are called the braid relations. In view of $s_i^2 = 1$, they can be written as $s_i s_j s_i \cdots = s_j s_i s_j \cdots$

The matrix *M* is usually encoded in a Coxeter diagram, e.g.



THE IWAHORI-HECKE ALGEBRA

Let *W* be a Coxeter group w.r.t. the matrix $M = (m_{ij})$.

Let *A* be a commutative ring and $v \in A$. The algebra

$$\mathcal{H}_{A,v}(W) := \left\langle T_{s_1}, \ldots, T_{s_r} \mid T_{s_i}^2 = v1 + (v-1)T_{s_i}, \text{ braid rel's } \right\rangle_{A\text{-alg.}}$$

is called the lwahori-Hecke algebra of W over A with parameter v.

Braid rel's: $T_{s_i} T_{s_j} T_{s_i} \cdots = T_{s_j} T_{s_i} T_{s_j} \cdots (m_{ij} \text{ factors on each side})$

Fact

 $\mathcal{H}_{A,v}(W)$ is a free A-algebra with A-basis T_w , $w \in W$.

Note that $\mathcal{H}_{A,1}(W) \cong AW$, so that $\mathcal{H}_{A,v}(W)$ is a deformation of AW, the group algebra of W over A.

KAZHDAN-LUSZTIG POLYNOMIALS

Let W be a Coxeter group as above and let \leq denote the Bruhat order on W.

Let v be an indeterminate, put $A := \mathbb{Z}[v, v^{-1}]$ and $u := v^2$.

There is an involution ι on $\mathcal{H}_{A,u}(W)$ determined by $\iota(v) = v^{-1}$ and $\iota(T_w) = (T_{w^{-1}})^{-1}$ for all $w \in W$.

THEOREM (KAZHDAN-LUSZTIG, 1979)

There is a unique basis C'_{W} , $w \in W$ of $\mathcal{H}_{A,u}(W)$ such that

■
$$C'_{w} = v^{-\ell(w)} \sum_{y \le w} P_{y,w} T_{w}$$
 with $P_{w,w} = 1$, $P_{y,w} \in \mathbb{Z}[u]$,
deg $P_{y,w} \le (\ell(w) - \ell(y) - 1)/2$ for all $y < w \in W$.

The $P_{y,w} \in \mathbb{Z}[u]$, $y \le w \in W$, are called the Kazhdan-Lusztig polynomials of W.

THE AFFINE WEYL GROUP

Recall that the Weyl group W acts on X as a group of linear transformations.

Let $\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$, and define the dot-action of *W* as follows: $w.\lambda := w(\lambda + \rho) - \rho, \qquad \lambda \in X, w \in W.$ Define

$$W_{\rho} = \langle s_{\alpha,z} \mid \alpha \in \Phi^+, z \in \mathbb{Z} \rangle.$$

Here, $s_{\alpha,z}(\lambda) = s_{\alpha} \cdot \lambda + zp\alpha$ is an affine reflection of *X*.

 W_p is a Coxeter group, called the affine Weyl group.

Each W_{ρ} -orbit on X contains a unique element in $\overline{C} := \{\lambda \in X \mid 0 \le \langle \lambda + \rho, \alpha^{\vee} \rangle \le \rho \text{ for all } \alpha \in \Phi^+ \}.$

LUSZTIG'S CONJECTURE

Let $\lambda_0 \in X$ with $0 < \langle \lambda_0 + \rho, \alpha^{\vee} \rangle < p$ for all $\alpha \in \Phi^+$ (such a λ_0 only exists if $p \ge h := h(W)$). Fix $w \in W_p$ such that $w.\lambda_0 \in X_p^+$.

THEOREM (ANDERSEN, JANTZEN, EARLY 80S)

ch $L(w.\lambda_0) = \sum_{w'} b_{w,w'}$ ch $V(w'.\lambda_0)$, with $w' \in W_p$ such that $w'.\lambda_0 \le w.\lambda_0$ and $w'.\lambda_0 \in X^+$. The $b_{w,w'}$ are independent of λ_0 .

For $p \ge h$, the computation of ch $L(\lambda)$ for any $\lambda \in X^+$ can be reduced to one of these cases.

CONJECTURE (LUSZTIG'S CONJECTURE, 1980)

 $b_{w,w'} = (-1)^{\ell(w)+\ell(w')} P_{w_0w',w_0w}(1)$, in particular, the $b_{w,w'}$ are also independent of p. (w_0 : longest element in $W \leq W_p$.)

THEOREM (ANDERSEN-JANTZEN-SOERGEL, 1994)

Lusztig's conjecture is true provided p >> 0.

REFERENCES

- R.W. CARTER, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, 1985.
- J. E. HUMPHREYS, Modular representations of finite groups of Lie type, Cambridge University Press, 2006.
- J. E. HUMPHREYS, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
- J. C. JANTZEN, Representations of algebraic groups, Academic Press, 1987.

Thank you for your listening!