FINITE GROUPS OF LIE TYPE AND THEIR REPRESENTATIONS – LECTURE III

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Groups St Andrews 2009 in Bath University of Bath, August 1 – 15, 2009

CONTENTS

- Harish-Chandra theory
- On the second second
- Oeligne-Lusztig theory

CLASSIFICATION OF REPRESENTATIONS: RECOLLECTION

Let *G* be a finite group and *k* an algebraically closed field with $char(k) = \ell \ge 0$.

- There are only finitely many irreducible k-representations of G up to equivalence.
- **2** Classify all irreducible representations of *G*.
- Obscribe all irreducible representations of all finite simple groups.

In the following, unless otherwise said, let G be a finite reductive group of characteristic p.

In Lecture 2 we have considered the situation $\ell = p$.

In this lecture we will mainly, but not exclusively, investigate the case $\ell = 0$.

LEVI SUBGROUPS: RECOLLECTION

Recall that there is a distinguished class of subgroups of *G*, the parabolic subgroups.

One way to describe them is through the concept of split BN-pairs of characteristic p.

A parabolic subgroup *P* has a Levi decomposition P = LU, where $U = O_p(P) \triangleleft P$ is the unipotent radical of *P*, and *L* a Levi complement of *U* in *P*, i.e. *L* is a Levi subgroup of *G*.

Levi subgroups of G resemble G; in particular, they are again groups of Lie type.

Inductively, we may use the representations of the Levi subgroups to obtain information about the representations of *G*.

This is the idea behind Harish-Chandra theory.

HARISH-CHANDRA INDUCTION

Assume from now on that $\ell \neq p$.

Let *L* be a Levi subgroup of *G*, and *M* a kL-module.

View *M* as a *kP*-module via $\pi : P \rightarrow L$ (*a.v* := $\pi(a).v$ for $v \in M, a \in P$). Put

$$R_L^G(M) := \left\{ f : G \to M \mid a.f(b) = f(ab) \text{ for all } a \in P, b \in G \right\}.$$

(Modular forms.)

 $R_L^G(M)$ is a *kG*-module, called Harish-Chandra induced module. [Action of *G*: $g.f(b) := f(bg), g, b \in G, f \in R_L^G(M)$.]

 $R_{L}^{G}(M)$ is independent of the choice of *P* with $P \rightarrow L$. [Lusztig, 1977 ($\ell = 0$); Dipper-Du, 1993; Howlett-Lehrer, 1994 ($\ell > 0$)].

CENTRALISER ALGEBRAS

$$\mathcal{H}(L, M) := \operatorname{End}_{kG}(R_L^G(M)).$$

 $\mathcal{H}(L, M)$ is the centraliser algebra (or Hecke algebra) of the *kG*-module $R_L^G(M)$, i.e., $\mathcal{H}(L, M) =$

$$\left\{\gamma \in \operatorname{End}_k(R_L^G(M)) \mid \gamma(g.f) = g.\gamma(f) \text{ for all } g \in G, f \in R_L^G(M)\right\}.$$

 $\mathcal{H}(L, M)$ is used to analyse the submodules and quotients of $R_L^G(M)$.

IWAHORI'S EXAMPLE (1964)

Suppose that char(k) = 0.

Let $G = GL_n(q)$, L = T, the group of diagonal matrices, M the trivial kL-module. Then

$$\mathcal{H}(L, M) = \mathcal{H}_{k,q}(S_n),$$

the lwahori-Hecke algebra over k with parameter q associated to the Weyl group S_n of G (lwahori).

Presentation of $\mathcal{H}_{k,q}(S_n)$ (as *k*-algebra):

 $\langle T_1, \ldots, T_{n-1} \mid \text{ braid relations }, T_i^2 = q \mathbf{1}_k + (q-1) T_i \rangle_{k-\text{algebra}}.$

Braid relations:

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad (1 \le i \le n-2).$$

HARISH-CHANDRA CLASSIFICATION

Let V be a simple kG-module.

V is called cuspidal, if *V* is **not** a **submodule** of $R_L^G(M)$ for some **proper** Levi subgroup *L* of *G*.

Harish-Chandra theory (HC-induction, cuspidality) yields the following classification.

Theorem (Harish-Chandra (1968), Lusztig ('70s) ($\ell = 0$), Geck-H.-Malle (1996) ($\ell > 0$))

 $\left\{ \begin{array}{c|c} V \mid V \text{ simple } kG\text{-module } \right\} / \text{isomorphism} \\ & & \\ & \\ L \text{ Levi subgroup of } G \\ (L, M, \theta) \mid & M \text{ simple, cuspidal } kL\text{-module} \\ & & \\ \theta \text{ irred. } k\text{-rep'n of } \mathcal{H}(L, M) \end{array} \right\} / \text{conjugacy}$

PROBLEMS IN HARISH-CHANDRA THEORY

The above theorem leads to the three tasks:

- Determine the cuspidal pairs (L, M).
- **②** For each of these, "compute" $\mathcal{H}(L, M)$.
- Solution Classify the irreducible *k*-representations of $\mathcal{H}(L, M)$.

State of the art in case $\ell = 0$ (Lusztig):

- Cuspidal simple *kG*-modules arise from étale cohomology groups of Deligne-Lusztig varieties.
- $\mathcal{H}(L, M)$ is an Iwahori-Hecke algebra (Lusztig, Howlett-Lehrer) corresponding to a Coxeter group, namely $W_G(L, M) := (N_G(L, M) \cap N)L/L$ (the *N* from the *BN*-pair).
- $\mathcal{H}(L, M) \cong kW_G(L, M)$ (Tits deformation theorem).

EXAMPLE: $SL_2(q)$

Let $G = SL_2(q)$ and $\ell = 0$.

The group T of diagonal matrices is the only proper Levi subgroup; it is a cyclic group of order q - 1.

Put
$$W_G(T) := (N_G(T) \cap N)/T$$
 (:= $N_G(\mathbf{T})/T$).
Then $W_G(T) = \langle T, s \rangle/T$ with $s = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, and so $|W_G(T)| = 2$.

Let *M* be a simple kT-module. Then dim M = 1 and *M* is cuspidal, and dim $R_T^G(M) = q + 1$ (since [G:B] = q + 1).

Case 1: $W_G(T, M) = \{1\}$. Then $\mathcal{H}(T, M) \cong k$ and $R_T^G(M)$ is simple.

Case 2: $W_G(T, M) = W_G(T)$. Then $\mathcal{H}(T, M) \cong kW_G(T)$, and $R_T^G(M)$ is the sum of two simple *kG*-modules.

DRINFELD'S EXAMPLE

The cuspidal simple $kSL_2(q)$ -modules have dimensions q - 1 and (q - 1)/2 (the latter only occur if p is odd).

How to construct these?

Consider the affine curve

$$C = \{ (x, y) \in \overline{\mathbb{F}}_{p}^{2} \mid xy^{q} - x^{q}y = 1 \}.$$

 $G = SL_2(q)$ acts on *C* by linear change of coordinates. Hence *G* also acts on the étale cohomology group

$$H^1_c(\mathcal{C}, \overline{\mathbb{Q}}_r),$$

where *r* is a prime different from *p*.

It turns out that the simple $\overline{\mathbb{Q}}_r G$ -submodules of $H^1_c(C, \overline{\mathbb{Q}}_r)$ are the cuspidal ones (here $k = \overline{\mathbb{Q}}_r$).

CHARACTERS

Let G be a finite group and k a field.

Let $\mathfrak{X} : G \to \operatorname{GL}(V)$ be a *k*-representation of *G*.

The character afforded by \mathfrak{X} is the map

$$\chi_{\mathfrak{X}}: G \to k, \quad g \mapsto \operatorname{Trace}(\mathfrak{X}(g)).$$

(This is not the same as the formal character introduced in Lecture II.)

 $\chi_{\mathfrak{X}}$ is constant on conjugacy classes: a class function on *G*.

Equivalent *k*-representations have the same character.

IRREDUCIBLE CHARACTERS

If \mathfrak{X} is irreducible, $\chi_{\mathfrak{X}}$ is called an irreducible character.

Facts

- If $W \leq V$ is G-invariant, then $\chi_{\mathfrak{X}} = \chi_{\mathfrak{X}_W} + \chi_{\mathfrak{X}_{V/W}}$.
- Provide the second s
- The set of irreducible characters of G is linearly independent (in Maps(G, k)).
- Every character is a sum of irreducible characters.
- Two irreducible representations are equivalent, if and only if their characters are equal.
- Suppose that char(k) = 0. Then two representations are equivalent, if and only if their characters are equal.

THE ORDINARY CHARACTER TABLE

From now on let k be algebraically closed of characteristic 0.

Put Irr(*G*) := set of irreducible *k*-characters of *G*, Irr(*G*) = { $\chi_1, ..., \chi_m$ }.

Let g_1, \ldots, g_m be representatives of the conjugacy classes of *G* (same *m* as above!).

The square matrix

 $\left[\chi_i(g_j)\right]_{1\leq i,j\leq m}$

is called the ordinary character table of G.

AN EXAMPLE: THE ALTERNATING GROUP A_5

EXAMPLE (THE CHARACTER TABLE OF $A_5 \cong SL_2(4)$)

	1 <i>a</i>	2 <i>a</i>	3 <i>a</i>	5 <i>a</i>	5b
χ1	1	1	1	1	1
χ2	3	-1	0	Α	* A
χз	3	-1	0	* A	Α
χ4	4	0	1	-1	-1
χ5	5	1	-1	0	0

$$A = (1 - \sqrt{5})/2, \qquad *A = (1 + \sqrt{5})/2$$

 $1 \in 1a, \quad (1,2)(3,4) \in 2a, \quad (1,2,3) \in 3a, \\ (1,2,3,4,5) \in 5a, \quad (1,3,5,2,4) \in 5b$

GOALS AND RESULTS

Aim

Describe all ordinary character tables of all finite simple groups and related finite groups.

Almost done:

- For alternating groups: Frobenius, Schur
- For groups of Lie type: Green, Deligne, Lusztig, Shoji, ... (only "a few" character values missing)
- Solution For sporadic groups and other "small" groups:

Atlas of Finite Groups, Conway, Curtis, Norton, Parker, Wilson, 1986

The generic character table for $SL_2(q)$, q even

	<i>C</i> ₁	C_2	$C_3(a)$	$C_4(b)$		
χ1	1	1	1	1		
χ2	q	0	1	-1		
χ ₃ (<i>m</i>)	<i>q</i> + 1	1	$\zeta^{am} + \zeta^{-am}$	0		
χ ₄ (<i>n</i>)	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$		
$a, m = 1, \dots, (q-2)/2, $ $b, n = 1, \dots, q/2,$						
$\zeta := \exp(\frac{2\pi\sqrt{-1}}{q-1}), \qquad \xi := \exp(\frac{2\pi\sqrt{-1}}{q+1})$						
$\begin{bmatrix} \mu^{a} & 0 \\ 0 & \mu^{-a} \end{bmatrix} \in C_{3}(a) \ (\mu \in \mathbb{F}_{q} \text{ a primitive } (q-1) \text{ th root of } 1)$						
$\begin{bmatrix} v^b & 0 \\ 0 & v^{-b} \end{bmatrix} \stackrel{\epsilon}{\sim} C_4(b) \ (v \in \mathbb{F}_{q^2} \text{ a primitive } (q+1) \text{th root of 1})$						
Specialising <i>q</i> to 4, gives the character table of $SL_2(4) \cong A_5$.						

DELIGNE-LUSZTIG VARIETIES

Let *r* be a prime different from *p* and put $k := \overline{\mathbb{Q}}_r$.

Let (\mathbf{G}, F) be a finite reductive group, $G = \mathbf{G}^F$.

Deligne and Lusztig (1976) construct for each pair (\mathbf{T}, θ) , where **T** is an *F*-stable maximal torus of **G**, and $\theta \in \operatorname{Irr}(\mathbf{T}^F)$, a generalised character $R_{\mathbf{T},\theta}^{\mathbf{G}}$ of *G*. (A generalised character of *G* is an element of $\mathbb{Z}[\operatorname{Irr}(G)]$.

Let (\mathbf{T}, θ) be a pair as above.

Choose a Borel subgroup $\mathbf{B} = \mathbf{TU}$ of \mathbf{G} with Levi subgroup \mathbf{T} . (In general \mathbf{B} is **not** *F*-stable.)

Consider the Deligne-Lusztig variety associated to B,

$$X_{\mathbf{B}} = \{ g \in \mathbf{G} \mid g^{-1}F(g) \in \mathbf{U} \}.$$

This is an algebraic variety over $\overline{\mathbb{F}}_{p}$.

DELIGNE-LUSZTIG GENERALISED CHARACTERS

The finite groups $G = \mathbf{G}^F$ and $T = \mathbf{T}^F$ act on $X_{\mathbf{B}}$, and these actions commute.

Thus the étale cohomology group $H_c^i(X_{\mathbf{B}}, \overline{\mathbb{Q}}_r)$ is a $\overline{\mathbb{Q}}_r[G \times T]$ -module,

and so its θ -isotypic component $H^i_c(X_{\mathbf{B}}, \overline{\mathbb{Q}}_r)_{\theta}$ is a $\overline{\mathbb{Q}}_r G$ -module,

whose character is denoted by ch $H^i_c(X_{\mathbf{B}}, \overline{\mathbb{Q}}_r)_{\theta}$.

Only finitely many of the vector spaces $H_c^i(X_{\mathbf{B}}, \overline{\mathbb{Q}}_r)$ are $\neq 0$. Now put

$$R_{\mathbf{T},\theta}^{\mathbf{G}} = \sum_{i} (-1)^{i} \mathrm{ch} \ H_{c}^{i}(X_{\mathbf{B}}, \bar{\mathbb{Q}}_{r})_{\theta}.$$

 $R_{T,\theta}^{G}$ is independent of the choice of **B** containing **T**.

PROPERTIES OF DELIGNE-LUSZTIG CHARACTERS

The above construction and the following facts are due to Deligne and Lusztig (1976).

Facts

Let (\mathbf{T}, θ) be a pair as above. Then

$$P R_{\mathbf{T},\theta}^{\mathbf{G}}(1) = \pm [G:T]_{p'}.$$

9 If **T** is contained in an *F*-stable Borel subgroup **B**, then $R_{\mathbf{T},\theta}^{\mathbf{G}} = R_{T}^{G}(\theta)$ is the Harish-Chandra induced character.

3 If θ is in general position, i.e. $N_G(\mathbf{T}, \theta)/T = \{1\}$, then $\pm R_{\mathbf{T}, \theta}^{\mathbf{G}}$ is an irreducible character.

FACTS

For χ ∈ lrr(G), there is a pair (T, θ) such that χ occurs in the (unique) expansion of R^G_{T,θ} into lrr(G). (Recall that lrr(G) is a basis of ℤ[lrr(G)].)

UNIPOTENT CHARACTERS

DEFINITION (LUSZTIG)

An character χ of *G* is called *unipotent*, if χ is irreducible, and if χ occurs in $R_{T,1}^{G}$ for some *F*-stable maximal torus **T** of **G**, where **1** denotes the trivial character of $T = \mathbf{T}^{F}$. We write $Irr^{u}(G)$ for the set of unipotent characters of *G*.

The above definition of unipotent characters uses étale cohomology groups.

So far, no elementary description known, except for $GL_n(q)$; see below.

Lusztig classified $Irr^{u}(G)$ in all cases, **independently** of *q*.

Harish-Chandra induction preserves unipotent characters, so it suffices to construct the cuspidal unipotent characters.

The unipotent characters of $GL_n(q)$

Let $G = \operatorname{GL}_n(q)$.

Then $\operatorname{Irr}^{u}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \chi \text{ occurs in } R_{T}^{G}(1) \}.$

Moreover, there is bijection

$$\mathcal{P}_n \leftrightarrow \operatorname{Irr}^u(G), \quad \lambda \leftrightarrow \chi_\lambda,$$

where \mathcal{P}_n denotes the set of partitions of *n*.

The degrees of the unipotent characters are "polynomials in q":

$$\chi_{\lambda}(1) = q^{d(\lambda)} \frac{(q^n - 1)(q^{n-1} - 1)\cdots(q - 1)}{\prod_{h(\lambda)}(q^h - 1)},$$

with a certain $d(\lambda) \in \mathbb{N}$, and where $h(\lambda)$ runs through the hook lengths of λ .

The degrees of the unipotent characters of $GL_5(q)$

JORDAN DECOMPOSITION OF ELEMENTS

An important concept in the classification of elements of a finite reductive group is the Jordan decomposition of elements.

Since $\mathbf{G} \leq \operatorname{GL}_n(\bar{\mathbb{F}}_p)$, every $g \in \mathbf{G}$ has finite order.

Hence g has a unique decomposition as

$$g = su = us \tag{1}$$

with $u \neq p$ -element and $s \neq p'$ -element.

It follows from Linear Algebra that u is unipotent, i.e. all eigenvalues of u are equal to 1, and s is semisimple, i.e. diagonalisable.

(1) is called the Jordan decomposition of $g \in \mathbf{G}$.

If $g \in G = \mathbf{G}^{F}$, then so are *u* and *s*.

JORDAN DECOMPOSITION OF CONJUGACY CLASSES

This yields a model classification for Case 2 ($\ell = 0$) and, perhaps, Case 3 ($0 \neq \ell \neq p$).

For $g \in G$ with Jordan decomposition g = us = su, we write $C_{u,s}^G$ for the *G*-conjugacy class containing *g*.

This gives a labelling

```
{conjugacy classes of G}
\
\{C_{s,u}^{G} \mid s \text{ semisimple}, u \in C_{G}(s) \text{ unipotent}\}.
```

(In the above, the labels s and u have to be taken modulo conjugacy in G and $C_G(s)$, respectively.)

Moreover,
$$|C_{s,u}^G| = |G: C_G(s)| |C_{1,u}^{C_G(s)}|$$
.

This is the Jordan decomposition of conjugacy classes.

EXAMPLE: THE GENERAL LINEAR GROUP ONCE MORE

 $G = \operatorname{GL}_n(q), s \in G$ semisimple. Then

$$C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_m}(q^{d_m})$$

with $\sum_{i=1}^{m} n_i d_i = n$. (This gives finitely many class types.)

Thus it suffices to classify the set of unipotent conjugacy classes u of G.

By Linear Algebra we have

 $\mathcal{U} \longleftrightarrow \mathcal{P}_n = \{ \text{partitions of } n \}$

 $C_{1,u}^G \longleftrightarrow$ (sizes of Jordan blocks of u)

This classification is generic, i.e., independent of *q*. In general, i.e. for other groups, it depends slightly on *q*.

JORDAN DECOMPOSITION OF CHARACTERS

Let (\mathbf{G}, F) be a connected reductive group.

Let (\mathbf{G}^*, F) denote the dual reductive group.

If **G** is determined by the root datum $(X, \Phi, Y, \Phi^{\vee})$, then **G**^{*} is defined by the root datum $(Y, \Phi^{\vee}, X, \Phi)$.

EXAMPLES

(1) If
$$\mathbf{G} = GL_n(\bar{\mathbb{F}}_p)$$
, then $\mathbf{G}^* = \mathbf{G}$.
(2) If $\mathbf{G} = SO_{2m+1}(\bar{\mathbb{F}}_p)$, then $\mathbf{G}^* = Sp_{2m}(\bar{\mathbb{F}}_p)$.

MAIN THEOREM (LUSZTIG; JORDAN DEC. OF CHAR'S, 1984)

Suppose that $Z(\mathbf{G})$ is connected. Then there is a bijection

 $\mathsf{Irr}(G) \longleftrightarrow \{\chi_{s,\lambda} \mid s \in G^* \text{ semisimple }, \lambda \in \mathsf{Irr}^u(\mathcal{C}_{G^*}(s))\}$

Moreover, $\chi_{s,\lambda}(1) = |G^*: C_{G^*}(s)|_{p'} \lambda(1)$.

THE IRREDUCIBLE CHARACTERS OF $GL_n(q)$

Let $G = GL_n(q)$. Then

 $Irr(G) = \{\chi_{s,\lambda} \mid s \in G \text{ semisimple}, \lambda \in Irr^{u}(C_{G}(s))\}.$

We have $C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_m}(q^{d_m})$ with $\sum_{i=1}^m n_i d_i = n$.

Thus $\lambda = \lambda_1 \boxtimes \lambda_2 \boxtimes \cdots \boxtimes \lambda_m$ with $\lambda_i \in \operatorname{Irr}^u(\operatorname{GL}_{n_i}(q^{d_i})) \longleftrightarrow \mathscr{P}_{n_i}$.

Moreover,

$$\chi_{s,\lambda}(1) = \frac{(q^n - 1) \cdots (q - 1)}{\prod_{i=1}^m \left[(q^{d_i n_i} - 1) \cdots (q^{d_i} - 1) \right]} \prod_{i=1}^m \lambda_i(1).$$

The degrees of the irreducible characters of $GL_3(q)$

$C_G(s)$	λ	$\chi_{s,\lambda}(1)$	
$\operatorname{GL}_1(q^3)$	(1)	$(q-1)^2(q+1)$	
$\operatorname{GL}_1(q^2) \times \operatorname{GL}_1(q)$	(1) 🛛 (1)	$(q-1)(q^2+q+1)$	
$\operatorname{GL}_1(q)^3$	$(1) \boxtimes (1) \boxtimes (1)$	$(q+1)(q^2+q+1)$	
$\operatorname{GL}_2(q) \times \operatorname{GL}_1(q)$	$(2)\boxtimes(1)\\(1,1)\boxtimes(1)$	$q^2 + q + 1$ $q(q^2 + q + 1)$	
GL ₃ (<i>q</i>)	(3) (2, 1) (1, 1, 1)	$\begin{array}{c}1\\q(q+1)\\q^3\end{array}$	

CONCLUDING REMARKS

- There are also results by Lusztig (1988) in case Z(G) is not connected, e.g. if G = SL_n(𝔅_p) or G = Sp_{2m}(𝔅_p) with p odd. For such groups, C_{G*}(s) is not always connected, and the problem then is to define unipotent characters for C_{G*}(s)^F.
- The Jordan decomposition of conjugacy classes and characters allow for the construction of generic character tables in all cases.
- Let {G(q) | q a prime power} be a series of finite groups of Lie type, e.g. {GU_n(q)} or {SL_n(q)} (n fixed).
 Then there exists a finite set D of polynomials in Q[x] s.t.: If χ ∈ Irr(G(q)), then there is f ∈ D with χ(1) = f(q).

REFERENCES

- **R.W.** CARTER, *Simple groups of Lie type*, Wiley, 1972.
- R.W. CARTER, *Finite groups of Lie type: Conjugacy classes and complex characters*, Wiley, 1985.
- F. DIGNE AND J. MICHEL, Representations of finite groups of Lie type, London Math. Soc. Students Texts 21, Cambridge University Press, 1991.

Thank you for your listening!