REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE Lecture II: Deligne-Lusztig theory and some APPLICATIONS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Summer School Finite Simple Groups and Algebraic Groups Berlin, August 31 – September 10, 2009 09/09/09

THREE CASES

AIM

Classify all irreducible representations of all finite simple groups and related finite groups.

In the following, let $G = \mathbf{G}^F$ be a finite reductive group of characteristic p and let k be an algebraically closed field.

It is natural to distinguish three cases:

- char(k) = p (usually k = 𝔽_p); defining characteristic (cf. Jantzen's lectures)
- char(k) = 0; ordinary representations
- S char(k) > 0, char(k) $\neq p$; non-defining characteristic

Today I will talk about Case 2, so assume that char(k) = 0 from now on.

A SIMPLIFICATION: CHARACTERS

Let V, V' be kG-modules.

The character afforded by V is the map

$$\chi_V: G \to k, \quad g \mapsto \operatorname{Trace}(g|V).$$

Characters are class functions.

V and *V*' are isomorphic, if and only if $\chi_V = \chi_{V'}$.

Irr(*G*) := { $\chi_V | V$ simple *kG*-module}: irreducible characters

C: set of representatives of the conjugacy classes of G

The square matrix

 $\left[\chi(g)\right]_{\chi\in \mathsf{Irr}(G),g\in\mathfrak{C}}$

is the ordinary character table of G.

BLOCKS

AN EXAMPLE: THE ALTERNATING GROUP A_5

EXAMPLE (THE CHARACTER TABLE OF $A_5 \cong SL_2(4)$)

	1 <i>a</i>	2a	3 <i>a</i>	5 <i>a</i>	5b
χ1	1	1	1	1	1
χ2	3	-1	0	Α	*A
χз	3	-1	0	* A	Α
χ4	4	0	1	-1	-1
χ5	5	1	-1	0	0

$$A = (1 - \sqrt{5})/2, \qquad *A = (1 + \sqrt{5})/2$$

 $1 \in 1a, \quad (1,2)(3,4) \in 2a, \quad (1,2,3) \in 3a, \\ (1,2,3,4,5) \in 5a, \quad (1,3,5,2,4) \in 5b$

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups and related finite groups.

Almost done:

- For alternating groups: Frobenius, Schur
- For groups of Lie type: Green, Deligne, Lusztig, Shoji, ... (only "a few" character values missing)
- S For sporadic groups and other "small" groups:

Atlas of Finite Groups, Conway, Curtis, Norton, Parker, Wilson, 1986

The generic character table for $SL_2(q)$, q even

	<i>C</i> ₁	<i>C</i> ₂	$C_3(a)$	<i>C</i> ₄ (<i>b</i>)	
χ1	1	1	1 1 $\zeta^{am} + \zeta^{-am}$ 0	1	
χ2	q	0	1	-1	
χ ₃ (<i>m</i>)	<i>q</i> + 1	1	$\zeta^{am} + \zeta^{-am}$	0	
χ ₄ (<i>n</i>)	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$	
$a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$					
$\zeta := \exp(\frac{2\pi\sqrt{-1}}{q-1}), \qquad \xi := \exp(\frac{2\pi\sqrt{-1}}{q+1})$					
$\begin{bmatrix} \mu^{a} & 0 \\ 0 & \mu^{-a} \end{bmatrix} \in C_{3}(a) \ (\mu \in \mathbb{F}_{q} \text{ a primitive } (q-1) \text{ th root of } 1)$					
$\begin{bmatrix} v^b & 0 \\ 0 & v^{-b} \end{bmatrix} \stackrel{\epsilon}{\sim} C_4(b) \ (v \in \mathbb{F}_{q^2} \text{ a primitive } (q+1) \text{ th root of 1})$					
Specialising <i>q</i> to 4, gives the character table of $SL_2(4) \cong A_5$.					

DRINFELD'S EXAMPLE

The cuspidal simple $kSL_2(q)$ -modules have dimensions q - 1 and (q - 1)/2 (the latter only occur if p is odd).

How to construct these?

Consider the affine curve

$$C = \{ (x, y) \in \overline{\mathbb{F}}_{p}^{2} \mid xy^{q} - x^{q}y = 1 \}.$$

 $G = SL_2(q)$ acts on *C* by linear change of coordinates.

Hence G also acts on the étale cohomology group

$$H^1_c(\mathcal{C}, \overline{\mathbb{Q}}_\ell),$$

where ℓ is a prime different from *p*.

It turns out that the simple $\overline{\mathbb{Q}}_{\ell}G$ -submodules of $H_c^1(C, \overline{\mathbb{Q}}_{\ell})$ are the cuspidal ones (here $k = \overline{\mathbb{Q}}_{\ell}$).

BLOCKS

DELIGNE-LUSZTIG VARIETIES

Let ℓ be a prime different from p and put $k := \overline{\mathbb{Q}}_{\ell}$.

Recall that $G = \mathbf{G}^{F}$ is a finite reductive group.

Deligne and Lusztig (1976) construct for each pair (\mathbf{T}, θ) , where **T** is an *F*-stable maximal torus of **G**, and $\theta \in \operatorname{Irr}(\mathbf{T}^F)$, a generalised character $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ of *G*. (A generalised character of *G* is an element of $\mathbb{Z}[\operatorname{Irr}(G)]$.

Let (\mathbf{T}, θ) be a pair as above.

Choose a Borel subgroup $\mathbf{B} = \mathbf{TU}$ of \mathbf{G} with Levi subgroup \mathbf{T} . (In general \mathbf{B} is **not** *F*-stable.)

Consider the Deligne-Lusztig variety associated to U,

$$Y_{\mathbf{U}} = \{g \in \mathbf{G} \mid g^{-1}F(g) \in \mathbf{U}\}.$$

This is an algebraic variety over $\overline{\mathbb{F}}_{p}$.

DELIGNE-LUSZTIG GENERALISED CHARACTERS

The finite groups $G = \mathbf{G}^F$ and $T = \mathbf{T}^F$ act on $Y_{\mathbf{U}}$, and these actions commute.

Thus the étale cohomology group $H_c^i(Y_U, \overline{\mathbb{Q}}_\ell)$ is a $\overline{\mathbb{Q}}_\ell G$ -module- $\overline{\mathbb{Q}}_\ell T$,

and so its θ -isotypic component $H^{i}_{c}(Y_{U}, \overline{\mathbb{Q}}_{\ell})_{\theta}$ is a $\overline{\mathbb{Q}}_{\ell}G$ -module,

whose character is denoted by ch $H^i_c(Y_U, \overline{\mathbb{Q}}_\ell)_{\theta}$.

Only finitely many of the vector spaces $H_c^i(Y_{\mathbf{U}}, \overline{\mathbb{Q}}_{\ell})$ are $\neq 0$. Now put

$$R_{\mathbf{T}}^{\mathbf{G}}(\theta) = \sum_{i} (-1)^{i} \mathrm{ch} \ H_{c}^{i}(Y_{\mathbf{U}}, \bar{\mathbb{Q}}_{\ell})_{\theta}.$$

This is a Deligne-Lusztig generalised character.

PROPERTIES OF DELIGNE-LUSZTIG CHARACTERS

The above construction and the following facts are due to Deligne and Lusztig (1976).

FACTS

Let (\mathbf{T}, θ) be a pair as above. Then

- **O** $R_{T}^{G}(\theta)$ is independent of the choice of **B** containing **T**.
- If θ is in general position, i.e. $N_G(\mathbf{T}, \theta)/T = \{1\}$, then $\pm R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ is an irreducible character.

FACTS (CONTINUED)

So For $\chi \in Irr(G)$, there is a pair (\mathbf{T}, θ) such that χ occurs in $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$.

A GENERALISATION

Instead of a torus **T** one can consider any *F*-stable Levi subgroup **L** of **G**.

Warning: L does in general not give rise to a Levi subgroup of *G* as used in my first lecture.

Consider a parabolic subgroup **P** of **G** with Levi complement **L** and unipotent radical **U**, not necessarily *F*-stable.

The corresponding Deligne-Lusztig variety Y_U is defined as before: $Y_U = \{g \in \mathbf{G} \mid g^{-1}F(g) \in \mathbf{U}\}.$

This is related to the one defined by Jean Michel: $Y_{\mathbf{U}} \twoheadrightarrow \{g\mathbf{U} \in \mathbf{G}/\mathbf{U} \mid g\mathbf{U} \cap F(g\mathbf{U}) \neq \emptyset\}, \quad g \mapsto g\mathbf{U}.$

One gets a Lusztig-induction map $R^{\mathbf{G}}_{\mathbf{L}\subset\mathbf{P}}: \mathbb{Z}[\operatorname{Irr}(\mathcal{L})] \to \mathbb{Z}[\operatorname{Irr}(\mathcal{G})], \mu \to R^{\mathbf{G}}_{\mathbf{L}\subset\mathbf{P}}(\mu).$

PROPERTIES OF LUSZTIG INDUCTION

The above construction and the following facts are due to Lusztig (1976).

Let **L** be an *F*-stable Levi subgroup of **G** contained in the parabolic subgroup **P**, and let $\mu \in \mathbb{Z}[\operatorname{Irr}(L)]$.

FACTS

1
$$R_{L\subset P}^{G}(\mu)(1) = \pm [G:L]_{p'} \cdot \mu(1).$$

● If **P** is *F*-stable, then $R_{L \subset P}^{G}(\mu) = R_{L}^{G}(\mu)$ is the Harish-Chandra induced character.

Solution Jean Michel's version of Y_U yields the same map $R_{L \subseteq P}^G$.

It is not known, whether $R_{L \subset P}^{G}$ is independent of **P**, but it is conjectured that this is so.

UNIPOTENT CHARACTERS

DEFINITION (LUSZTIG)

A character χ of *G* is called unipotent, if χ is irreducible, and if χ occurs in $R_{T}^{G}(1)$ for some *F*-stable maximal torus **T** of **G**, where **1** denotes the trivial character of $T = \mathbf{T}^{F}$. We write $Irr^{u}(G)$ for the set of unipotent characters of *G*.

The above definition of unipotent characters uses étale cohomology groups.

So far, no elementary description known, except for $GL_n(q)$; see below.

Lusztig classified $Irr^{u}(G)$ in all cases, **independently** of *q*.

Harish-Chandra induction preserves unipotent characters (i.e. $Irr^{u}(G)$ is a union of Harish-Chandra series), so it suffices to construct the **cuspidal** unipotent characters.

THE UNIPOTENT CHARACTERS OF $GL_n(q)$

Let $G = GL_n(q)$ and T the torus of diagonal matrices.

Then $\operatorname{Irr}^{u}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \chi \text{ occurs in } R_{T}^{G}(\mathbf{1}) \}.$

Moreover, there is bijection

$$\mathcal{P}_n \leftrightarrow \operatorname{Irr}^u(G), \quad \lambda \leftrightarrow \chi_\lambda,$$

where \mathcal{P}_n denotes the set of partitions of *n*.

This bijection arises from $\operatorname{End}_{kG}(R_T^G(\mathbf{1})) \cong \mathcal{H}_{k,q}(S_n) \cong kS_n$.

The degrees of the unipotent characters are "polynomials in q":

$$\chi_{\lambda}(1) = q^{d(\lambda)} \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q - 1)}{\prod_{h(\lambda)} (q^h - 1)},$$

with a certain $d(\lambda) \in \mathbb{N}$, and where $h(\lambda)$ runs through the hook lengths of λ .

DEGREES OF THE UNIPOTENT CHARACTERS OF $GL_5(q)$

λ	$\chi_{\lambda}(1)$
(5)	1
(4, 1)	$q(q+1)(q^2+1)$
(3, 2)	$q^2(q^4 + q^3 + q^2 + q + 1)$
(3 , 1 ²)	$q^3(q^2+1)(q^2+q+1)$
$(2^2, 1)$	$q^4(q^4 + q^3 + q^2 + q + 1)$
(2 , 1 ³)	$q^6(q+1)(q^2+1)$
(1 ⁵)	q^{10}

JORDAN DECOMPOSITION OF CONJUGACY CLASSES

This is a model classification for Irr(G).

For $g \in G$ with Jordan decomposition g = us = su, we write $C_{u,s}^G$ for the *G*-conjugacy class containing *g*.

This gives a labelling

```
{conjugacy classes of G}
\
\{C_{s,u}^{G} \mid s \text{ semisimple, } u \in C_{G}(s) \text{ unipotent}\}.
```

(In the above, the labels *s* and *u* have to be taken modulo conjugacy in *G* and $C_G(s)$, respectively.)

Moreover,
$$|C_{s,u}^G| = |G: C_G(s)||C_{1,u}^{C_G(s)}|$$
.

This is the Jordan decomposition of conjugacy classes.

EXAMPLE: THE GENERAL LINEAR GROUP ONCE MORE

 $G = \operatorname{GL}_n(q), s \in G$ semisimple. Then

$$C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_m}(q^{d_m})$$

with $\sum_{i=1}^{m} n_i d_i = n$. (This gives finitely many class types.)

Thus it suffices to classify the set of unipotent conjugacy classes u of G.

By Linear Algebra we have

 $\mathcal{U} \longleftrightarrow \mathcal{P}_n = \{ \text{partitions of } n \}$

 $C_{1,u}^G \longleftrightarrow$ (sizes of Jordan blocks of u)

This classification is generic, i.e., independent of *q*.

In general, i.e. for other groups, it depends slightly on q.

JORDAN DECOMPOSITION OF CHARACTERS

Let **G**^{*} denote the reductive group dual to **G**. If **G** is determined by the root datum $(X, \Phi, X^{\vee}, \Phi^{\vee})$, then **G**^{*} is defined by the root datum $(X^{\vee}, \Phi^{\vee}, X, \Phi)$.

EXAMPLES

(1) If
$$\mathbf{G} = \operatorname{GL}_n(\bar{\mathbb{F}}_p)$$
, then $\mathbf{G}^* = \mathbf{G}$.
(2) If $\mathbf{G} = \operatorname{SO}_{2m+1}(\bar{\mathbb{F}}_p)$, then $\mathbf{G}^* = \operatorname{Sp}_{2m}(\bar{\mathbb{F}}_p)$.

F gives rise to a Frobenius map on **G***, also denoted by F.

MAIN THEOREM (LUSZTIG; JORDAN DEC. OF CHAR'S, 1984) Suppose that $Z(\mathbf{G})$ is connected. Then there is a bijection

 $\mathsf{Irr}(G) \longleftrightarrow \{\chi_{s,\lambda} \mid s \in G^* \text{ semisimple }, \lambda \in \mathsf{Irr}^u(\mathcal{C}_{G^*}(s))\}$

(where the $s \in G^*$ are taken modulo conjugacy in G^*). Moreover, $\chi_{s,\lambda}(1) = |G^*: C_{G^*}(s)|_{g'} \lambda(1)$.

THE JORDAN DECOMPOSITION IN A SPECIAL CASE

Suppose that $s \in G^*$ is semisimple such that $L^* := C_{G^*}(s)$ is a Levi subgroup of G^* .

This is the generic situation, e.g. it is always the case if $\mathbf{G} = GL_n(\bar{\mathbb{F}}_p)$ or if |s| is divisible by good primes only.

Then there is an *F*-stable Levi subgroup L of G, dual to L*.

By Lusztig's classification of unipotent characters, $Irr^{u}(L)$ and $Irr^{u}(L^{*})$ can be identified.

Moreover, there is a linear character $\hat{s} \in Irr(L)$, "dual" to $s \in Z(L^*)$, such that

$$\chi_{\boldsymbol{s},\boldsymbol{\lambda}} = \pm R_{\mathsf{L}\subset\mathsf{P}}^{\mathsf{G}}(\hat{\boldsymbol{s}}\boldsymbol{\lambda})$$

for all $\lambda \in Irr^{u}(L) \leftrightarrow Irr^{u}(L^{*})$ (and some choice of **P**).

THE IRREDUCIBLE CHARACTERS OF $GL_n(q)$

Let $G = GL_n(q)$. Then

 $Irr(G) = \{\chi_{s,\lambda} \mid s \in G \text{ semisimple}, \lambda \in Irr^{u}(C_{G}(s))\}.$

We have $C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_m}(q^{d_m})$ with $\sum_{i=1}^m n_i d_i = n$.

Thus $\lambda = \lambda_1 \boxtimes \lambda_2 \boxtimes \cdots \boxtimes \lambda_m$ with $\lambda_i \in \operatorname{Irr}^u(\operatorname{GL}_{n_i}(q^{d_i})) \longleftrightarrow \mathscr{P}_{n_i}$.

Moreover,

$$\chi_{s,\lambda}(1) = \frac{(q^n - 1) \cdots (q - 1)}{\prod_{i=1}^m \left[(q^{d_i n_i} - 1) \cdots (q^{d_i} - 1) \right]} \prod_{i=1}^m \lambda_i(1).$$

DEGREES OF THE IRREDUCIBLE CHARACTERS OF $GL_3(q)$

$C_G(s)$	λ	$\chi_{s,\lambda}(1)$	
$\operatorname{GL}_1(q^3)$	(1)	$(q-1)^2(q+1)$	
$\operatorname{GL}_1(q^2) \times \operatorname{GL}_1(q)$	(1) 🛛 (1)	$(q-1)(q^2+q+1)$	
$\operatorname{GL}_1(q)^3$	$(1) \boxtimes (1) \boxtimes (1)$	$(q+1)(q^2+q+1)$	
$\operatorname{GL}_2(q) \times \operatorname{GL}_1(q)$	(2) ⊠ (1) (1, 1) ⊠ (1)	$q^2 + q + 1$ $q(q^2 + q + 1)$	
GL ₃ (<i>q</i>)	(3) (2, 1) (1, 1, 1)	$1 q(q+1) q^3$	

(This example was already known to Steinberg.)

LUSZTIG SERIES

Lusztig (1988) also obtained a Jordan decomposition for Irr(*G*) in case $Z(\mathbf{G})$ is not connected, e.g. if $\mathbf{G} = SL_n(\bar{\mathbb{F}}_p)$ or $\mathbf{G} = Sp_{2m}(\bar{\mathbb{F}}_p)$ with p odd.

For such groups, $C_{\mathbf{G}^*}(s)$ is not always connected, and the problem is to define $\operatorname{Irr}^u(C_{G^*}(s))$, the unipotent characters.

The Jordan decomposition yields a partition

$$\operatorname{Irr}(G) = \bigcup_{(s) \subset G^*} \mathscr{E}(G, s),$$

where (*s*) runs through the semisimple G^* -conjugacy classes of G^* and $s \in (s)$.

By definition, $\mathscr{E}(G, s) = \{\chi_{s,\lambda} \mid \lambda \in Irr^u(C_{G^*}(s))\}.$

For example $\mathscr{E}(G, 1) = \operatorname{Irr}^{u}(G)$.

The sets $\mathcal{E}(G, s)$ are called rational Lusztig series.

CONCLUDING REMARKS

 The Jordan decompositions of conjugacy classes and characters allow for the construction of generic character tables in all cases.

Let {G(q) | q a prime power} be a series of finite groups of Lie type, e.g. {GU_n(q)} or {SL_n(q)} (n fixed, q variable). Then there exists a **finite** set D of polynomials in Q[x] s.t.: If χ ∈ Irr(G(q)), then there is f ∈ D with χ(1) = f(q).

BLOCKS OF FINITE GROUPS

Let *G* be a finite group and let \mathcal{O} be a complete dvr of residue characteristic $\ell > 0$.

Then

$$\mathcal{O} G = B_1 \oplus \cdots \oplus B_r,$$

with indecomposable 2-sided ideals B_i , the blocks of $\mathcal{O}G$ (or ℓ -blocks of G).

Write

$$1 = e_1 + \cdots + e_r$$

with $e_i \in B_i$. Then the e_i are exactly the primitive idempotents in $Z(\mathcal{O}G)$ and $B_i = \mathcal{O}Ge_i = e_i\mathcal{O}G = e_i\mathcal{O}Ge_i$.

 $\chi \in Irr(G)$ belongs to B_i , if $\chi(e_i) \neq 0$.

This yields a partition of Irr(G) into ℓ -blocks.

BLOCKS

A RESULT OF FONG AND SRINIVASAN

Let $G = GL_n(q)$ or $U_n(q)$, where q is a power of p.

As for $GL_n(q)$, the unipotent characters of $U_n(q)$ are labelled by partitions of *n*.

Let $\ell \neq p$ be a prime and put

$$e := \begin{cases} \min\{i \mid \ell \text{ divides } q^i - 1\}, & \text{if } G = \operatorname{GL}_n(q) \\ \min\{i \mid \ell \text{ divides } (-q)^i - 1\}, & \text{if } G = U_n(q). \end{cases}$$

(Thus *e* is the order of *q*, respectively -q in \mathbb{F}_{ℓ}^* .)

THEOREM (FONG-SRINIVASAN, 1982)

Two unipotent characters χ_{λ} , χ_{μ} of G are in the same ℓ -block of G, if and only if λ and μ have the same e-core.

Fong and Srinivasan found a similar combinatorial description for the ℓ -blocks of the other classical groups.

A RESULT OF BROUÉ AND MICHEL

Let again *G* be a finite reductive group of characteristic *p* and let ℓ be a prime, $\ell \neq p$.

For a semisimple ℓ' -element $s \in G^*$, define

$$\mathcal{E}_{\ell}(G, s) := \bigcup_{t \in C_{G^*}(s)_{\ell}} \mathcal{E}(G, st).$$

THEOREM (BROUÉ-MICHEL, 1989)

 $\mathcal{E}_{\ell}(G, s)$ is a union of ℓ -blocks of G.

BLOCKS

A RESULT OF CABANES AND ENGUEHARD

Let *G* and ℓ be as above.

Suppose $G = \mathbf{G}^F$ with $F(a_{ij}) = (a_{ij}^q)$ for some power q of p.

Write *d* for the order of *q* in \mathbb{F}_{ℓ}^* .

A *d*-cuspidal pair is a pair (\mathbf{L} , ζ), where \mathbf{L} is an *F*-stable *d*-split Levi subgroup of \mathbf{G} , and $\zeta \in Irr(L)$ is *d*-cuspidal.

THEOREM (CABANES-ENGUEHARD, 1994)

(Some mild conditions apply.) Suppose that B is an ℓ -block of G contained in $\mathcal{E}_{\ell}(G, 1)$, the union of unipotent blocks. Then there is a d-cuspidal pair (L, ζ) such that

 $B \cap \mathfrak{E}(G, 1) = \{ \chi \in \operatorname{Irr}^{u}(G) \mid \chi \text{ is a constituent of } R_{\mathsf{L}\subset\mathsf{P}}^{\mathsf{G}}(\zeta) \}.$

A similar description applies for $B \cap \mathcal{E}(G, t)$ with $t \in (G^*)_{\ell}$.

Thank you for your listening!