REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE Lecture III: Representations in non-defining

CHARACTERISTICS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Summer School Finite Simple Groups and Algebraic Groups: Representations, Geometries and Applications Berlin, August 31 – September 10, 2009

RECOLLECTION

AIM

Classify all irreducible representations of all finite simple groups and related finite groups.

In the following, let $G = \mathbf{G}^F$ be a finite reductive group of characteristic p, and let k be an algebraically closed field with char(k) = ℓ .

Today we consider the case $0 \neq \ell \neq p$.

A SIMPLIFICATION: BRAUER CHARACTERS

Let V be a kG-module.

The character χ_V of *V* as defined in Lecture 2 does not convey all the desired information, e.g.,

 $\chi_V(1)$ only gives the dimension of V modulo ℓ .

Instead one considers the Brauer character φ_V of V.

This is obtained by consistently lifting the eigenvalues of the linear transformation of $g \in G_{\ell'}$ on *V* to characteristic 0. $(G_{\ell'}$ is the set of ℓ -regular elements of *G*.)

Thus $\varphi_V : G_{\ell'} \to K$, where *K* is a suitable field with char(*K*) = 0, and $\varphi_V(g)$ = sum of the eigenvalues of *g* on *V* (viewed as elements of *K*).

In particular, $\varphi_V(1)$ equals the dimension of *V*.

THE BRAUER CHARACTER TABLE

If *V* is simple, φ_V is called an irreducible Brauer character.

Two **simple** kG-modules are isomorphic if and only if their Brauer characters are equal.

Put $\operatorname{IBr}_{\ell}(G) := \{\varphi_V \mid V \text{ simple } kG \text{-module}\}.$

(If $\ell \nmid |G|$, then $\mathsf{IBr}_{\ell}(G) = \mathsf{Irr}(G)$.)

 $c_{\ell'}$: set of representatives of the conjugacy classes of G contained in $G_{\ell'}.$

The square matrix

$$\left[\varphi(\boldsymbol{g})\right]_{\varphi\in\mathsf{IBr}_{\ell}(G),\boldsymbol{g}\in\mathfrak{C}_{\ell'}}$$

is the Brauer character table or ℓ -modular character table of G.

JAMES' CONJECTURE

The 13-Modular Character Table of $SL_3(3)$

Let $G = SL_3(3)$. Then $|G| = 5616 = 2^4 \cdot 3^3 \cdot 13$.

EXAMPLE (THE 13-MODULAR CHARACTER TABLE OF $SL_3(3)$)										
		1 <i>a</i>	2 <i>a</i>	3 <i>a</i>	3b	4 <i>a</i>	6 <i>a</i>	8 <i>a</i>	8 <i>b</i>	
	$arphi_1$	1	1	1	1	1	1	1	1	
	φ_2	11	3	2	-1	-1	0	-1	-1	
	$arphi_3$	13	-3	4	1	1	0	-1	-1	
	$arphi_4$	16	0	-2	1	0	0	0	0	
	$arphi_5$	26	2	-1	-1	2	-1	0	0	
	$arphi_{6}$	26	-2	-1	-1	0	1	$\sqrt{-2}$	$-\sqrt{-2}$	
	$arphi_7$	26	-2	-1	-1	0	1	$-\sqrt{-2}$	$\sqrt{-2}$	
	φ_8	39	-1	3	0	-1	-1	1	1	

GOALS AND RESULTS

AIM

Describe all Brauer character tables of all finite simple groups and related finite groups.

In contrast to the case of ordinary character tables (i.e. char(k) = 0, cf. Lecture 2), this is wide open:

- For alternating groups: complete up to A₁₇
- For groups of Lie type: only partial results
- Solution For sporadic groups up to McL and other "small" groups (of order ≤ 10⁹): An Atlas of Brauer Characters, Jansen, Lux, Parker, Wilson, 1995

More information is available on the web site of the Modular Atlas Project:

(http://www.math.rwth-aachen.de/~MOC/)

THE DECOMPOSITION NUMBERS

For $\chi \in Irr(G)$, write $\hat{\chi}$ for the restriction of χ to $G_{\ell'}$.

Then there are integers $d_{\chi\varphi} \ge 0$, $\chi \in Irr(G)$, $\varphi \in IBr_{\ell}(G)$, such that

$$\hat{\chi} = \sum_{\varphi \in \mathsf{IBr}_{\ell}(G)} d_{\chi \varphi} \varphi.$$

These integers are called the decomposition numbers of G modulo ℓ .

The matrix $D = [d_{\chi\varphi}]$ is the decomposition matrix of *G*.

PROPERTIES OF BRAUER CHARACTERS

 $\operatorname{IBr}_{\ell}(G)$ is linearly independent (in Maps($G_{\ell'}, K$)) and so the decomposition numbers are uniquely determined.

The elementary divisors of *D* are all 1 (i.e., the decomposition map defined by $\chi \mapsto \hat{\chi}$ is surjective). Thus:

Knowing Irr(G) and *D* is equivalent to knowing Irr(G) and $IBr_{\ell}(G)$.

If *G* is ℓ -soluble, Irr(*G*) and IBr_{ℓ}(*G*) can be sorted such that *D* has shape

$$D = \left[\frac{I_n}{D'}\right],$$

where I_n is the $(n \times n)$ identity matrix (Fong-Swan theorem).

UNIPOTENT BRAUER CHARACTERS

The concept of decomposition numbers can be used to define unipotent Brauer characters of a finite reductive group. Let $G = \mathbf{G}^F$ be a finite reductive group of characteristic p. (Recall that $char(k) = \ell \neq p$.) Recall that $Irr^u(G) =$

 $\{\chi \in Irr(G) \mid \chi \text{ occurs in } R^{\mathbf{G}}_{\mathbf{T}}(\mathbf{1}) \text{ for some maximal torus } \mathbf{T} \text{ of } \mathbf{G} \}.$

This yields a definition of $IBr_{\ell}^{u}(G)$.

DEFINITION (UNIPOTENT BRAUER CHARACTERS)

 $\mathsf{IBr}^{u}_{\ell}(G) = \{ \varphi \in \mathsf{IBr}_{\ell}(G) \mid d_{\chi\varphi} \neq 0 \text{ for some } \chi \in \mathsf{Irr}^{u}(G) \}.$

The elements of $\operatorname{IBr}_{\ell}^{u}(G)$ are called the unipotent Brauer characters of *G*.

A simple kG-module is unipotent, if its Brauer character is.

JORDAN DECOMPOSITION OF BRAUER CHARACTERS

The investigations are guided by the following main conjecture.

CONJECTURE

Suppose that $Z(\mathbf{G})$ is connected. Then there is a labelling

 $\mathsf{IBr}_{\ell}(G) \leftrightarrow \{\varphi_{s,\mu} \mid s \in G^* \text{ semisimple }, \ell \nmid |s|, \mu \in \mathsf{IBr}_{\ell}^u(C_{G^*}(s))\},$

such that $\varphi_{s,\mu}(1) = |G^*: C_{G^*}(s)|_{p'} \mu(1)$.

Moreover, D can be computed from the decomposition numbers of **unipotent** characters of the various $C_{G^*}(s)$.

Known to be true for $GL_n(q)$ (Dipper-James, 1980s) and if $C_{\mathbf{G}^*}(s)$ is a Levi subgroup of \mathbf{G}^* (Bonnafé-Rouquier, 2003). The truth of this conjecture would reduce the computation of decomposition numbers to unipotent characters. Consequently, we will restrict to this case in the following.

THE UNIPOTENT DECOMPOSITION MATRIX

Put $D^u :=$ restriction of D to $Irr^u(G) \times IBr^u_{\ell}(G)$.

THEOREM (GECK-H., 1991; GECK, 1993)

(Some conditions apply.)

 $|\operatorname{Irr}^{u}(G)| = |\operatorname{IBr}_{\ell}^{u}(G)|$ and D^{u} is invertible over \mathbb{Z} .

CONJECTURE (GECK, 1997)

(Some conditions apply.) With respect to suitable orderings of $Irr^{u}(G)$ and $IBr^{u}_{\ell}(G)$, D^{u} has shape

This would give a canonical bijection $Irr^{u}(G) \longleftrightarrow IBr^{u}_{\ell}(G)$.

ABOUT GECK'S CONJECTURE

Geck's conjecture on D^u is known to hold for

- GL_n(q) (Dipper-James, 1980s)
- GU_n(q) (Geck, 1991)
- G a classical group and ℓ "linear" (Gruber-H., 1997)
- Sp₄(q) (White, 1988 1995)
- Sp₆(q) (An-H., 2006)
- G₂(q) (Shamash-H., 1989 1992)
- F₄(q) (Köhler, 2006)
- *E*₆(*q*) (Geck-H., 1997; Miyachi, 2008)
- Steinberg triality groups ³D₄(q) (Geck, 1991)
- Suzuki groups (for general reasons)
- Ree groups (Himstedt-Huang, 2009)

LINEAR PRIMES, I

Suppose $G = \mathbf{G}^{F}$ with $F(a_{ij}) = (a_{ij}^{q})$ for some power q of p.

Put $e := \min\{i \mid \ell \text{ divides } q^i - 1\}$, the order of q in \mathbb{F}_{ℓ}^* .

If G is classical (\neq GL_n(q)) and e is odd, ℓ is linear for G.

EXAMPLE

$$G = SO_{2m+1}(q), |G| = q^{m^2}(q^2 - 1)(q^4 - 1)\cdots(q^{2m} - 1).$$

If $\ell ||G|$ and $\ell \nmid q$, then $\ell |q^{2d} - 1$ for some minimal d.
Thus $\ell |q^d - 1$ (ℓ linear and $e = d$) or $\ell |q^d + 1$ ($e = 2d$).

Now $Irr^{u}(G)$ is a union of Harish-Chandra series $\mathcal{E}_{1}, \ldots, \mathcal{E}_{r}$.

THEOREM (FONG-SRINIVASAN, 1982, 1989)

Suppose that $G \neq GL_n(q)$ is classical and that ℓ is linear. Then $D^u = diag[\Delta_1, ..., \Delta_r]$ with square matrices Δ_i corresponding to \mathcal{E}_i .

LINEAR PRIMES, II

Let $\Delta := \Delta_i$ be one of the decomposition matrices from above. Then the rows and columns of Δ are labelled by bipartitions of *a* for some integer *a*. (Harish-Chandra theory.)

Here $\Lambda_i \otimes \Lambda_{a-i}$ is the Kronecker product of matrices, and Λ_i is the ℓ -modular unipotent decomposition matrix of $GL_i(q)$.

THE V-SCHUR ALGEBRA

Let *v* be an indeterminate an put $A := \mathbb{Z}[v, v^{-1}]$.

Dipper and James (1989) have defined a remarkable *A*-algebra $\mathscr{S}_{A,v}(S_n)$, called the generic *v*-Schur algebra, such that:

- $\mathscr{S}_{A,v}(S_n)$ is free and of finite rank over A.
- $\mathscr{S}_{A,v}(S_n)$ is constructed from the generic lwahori-Hecke algebra $\mathscr{H}_{A,v}(S_n)$, which is contained in $\mathscr{S}_{A,v}(S_n)$ as a subalgebra (with a different unit).
- $\mathbb{Q}(v) \otimes_A \mathscr{S}_{A,v}(S_n)$ is a quotient of the quantum group $\mathcal{U}_v(\mathfrak{gl}_n)$.

THE *q***-SCHUR** ALGEBRA

Let $G = \operatorname{GL}_n(q)$.

Then $D^{u} = (d_{\lambda,\mu})$, with $\lambda, \mu \in \mathcal{P}_{n}$.

Let $\mathscr{S}_{A,v}(S_n)$ be the *v*-Schur algebra, and let $\mathscr{S} := \mathscr{S}_{k,q}(S_n)$ be the *k*-algebra obtained by specializing *v* to the image of $q \in k$.

This is called the *q*-Schur algebra, and satisfies:

- δ has a set of (finite-dimensional) standard modules S^λ, indexed by P_n.
- **2** The simple *s*-modules \mathbf{D}^{λ} are also labelled by \mathcal{P}_n .
- If [S^λ : D^μ] denotes the multiplicity of D^μ as a composition factor in S^λ, then [S^λ : D^μ] = d_{λ,μ}.

As a consequence, the $d_{\lambda,\mu}$ are bounded independently of q and of ℓ .

CONNECTIONS TO DEFINING CHARACTERISTICS, I

Let $\delta_{k,q}(S_n)$ be the *q*-Schur algebra introduced above.

Suppose that $\ell \mid q - 1$ so that $q \equiv 1 \pmod{\ell}$.

Then $\mathscr{S}_{k,q}(S_n) \cong \mathscr{S}_k(S_n)$, where $\mathscr{S}_k(S_n)$ is the Schur algebra studied by J. A. Green (1980).

A partition λ of *n* may be viewed as a dominant weight of $GL_n(k)$ [$\lambda = (\lambda_1, \lambda_2, ..., \lambda_m) \leftrightarrow \lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2 + \cdots + \lambda_m \varepsilon_m$].

Thus there are corresponding $kGL_n(k)$ -modules $V(\lambda)$ and $L(\lambda)$.

If λ and μ are partitions of *n*, we have

$$[V(\lambda): L(\mu)] = [\mathbf{S}^{\lambda}: \mathbf{D}^{\mu}] = d_{\lambda,\mu}.$$

The first equality comes from the significance of the Schur algebra, the second from that of the q-Schur algebra.

CONNECTIONS TO DEFINING CHARACTERISTICS, II

Thus the ℓ -modular decomposition numbers of $\operatorname{GL}_n(q)$ for prime powers q with $\ell \mid q - 1$, determine the composition multiplicities of **certain** simple modules $L(\mu)$ in **certain** Weyl modules $V(\lambda)$ of $\operatorname{GL}_n(k)$, namely if λ and μ are partitions of n.

FACTS (SCHUR, GREEN)

Let λ and μ be partitions with at most n parts.

- $[V(\lambda) : L(\mu)] = 0$, if λ and μ are partitions of different numbers.
- If λ and μ are partitions of $r \ge n$, then the composition multiplicity $[V(\lambda) : L(\mu)]$ is the same in $GL_n(k)$ and $GL_r(k)$.

Hence the ℓ -modular decomposition numbers of **all** GL_{*r*}(*q*), $r \ge 1, \ell \mid q - 1$ determine the composition multiplicities of **all** Weyl modules $V(\lambda)$ of GL_{*n*}(*k*). (Thank you Jens!)

CONNECTIONS TO SYMMETRIC GROUP REPR'S

As for the Schur algebra, there are standard kS_n - modules S^{λ} , called Specht modules, labelled by the partitions λ of *n*.

The simple kS_n -modules D^{μ} are labelled by the ℓ -regular partitions μ of *n* (no part of μ is repeated ℓ or more times).

The ℓ -modular decomposition numbers of S_n are the $[S^{\lambda} : D^{\mu}]$.

THEOREM (JAMES, 1980)

 $[S^{\lambda}: D^{\mu}] = [V(\lambda): L(\mu)], \text{ if } \mu \text{ is } \ell\text{-regular.}$

THEOREM (ERDMANN, 1995)

For partitions λ , μ of n, there are ℓ -regular partition $t(\lambda)$, $t(\mu)$ of $\ell n + (\ell - 1)n(n - 1)/2$ such that

 $[V(\lambda): L(\mu)] = [S^{t(\lambda)}: D^{t(\mu)}].$

AMAZING CONCLUSION

Recall that ℓ is a fixed prime and k an algebraically closed field of characteristic ℓ .

Each of the following three families of numbers can be determined from any one of the others:

- The ℓ -modular decomposition numbers of S_n for all n.
- The ℓ -modular decomposition numbers of the unipotent characters of $\operatorname{GL}_n(q)$ for all primes powers q with $\ell \mid q 1$ and all n.
- The composition multiplicities [V(λ) : L(μ)] of kGL_n(k)-modules for all n and all dominant weights λ, μ.

Thus all these problems are really hard.

JAMES' CONJECTURE

Let $G = GL_n(q)$. Recall that $e = \min\{i \mid \ell \text{ divides } q^i - 1\}$.

James has computed all matrices D^u for $n \le 10$.

CONJECTURE (JAMES, 1990)

If $e\ell > n$, then D^u only depends on e (neither on ℓ nor q).

THEOREM

(1) The conjecture is true for $n \le 10$ (James, 1990).

(2) If $\ell >> 0$, D^u only depends on e (Geck, 1992).

LARGE PRIMES

In fact, Geck proved the following factorisation property.

THEOREM (GECK, 1992)

Let D^u be the ℓ -modular decomposition matrix of the q-Schur algebra $\mathscr{S}_{k,q}(S_n)$. Then $D^u = D_e D_\ell$ for two square matrices D_e and D_ℓ , where D_e only depends on e and D_ℓ only on ℓ . Moreover, $D_\ell = I$ for $\ell >> 0$.

There is an algorithm to compute the matrices D_e .

THEOREM (LASCOUX-LECLERC-THIBON; ARIKI; VARAGNOLO-VASSEROT (1996 – 99))

The matrix D_e can be computed from the canonical basis of a certain highest weight module of the quantum group $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$.

A UNIPOTENT DECOMPOSITION MATRIX FOR $GL_5(q)$

Let $G = GL_5(q)$, e = 2 (i.e., $\ell \mid q + 1$ but $\ell \nmid q - 1$), and assume $\ell > 2$. Then $D^u = D_e$ equals

The triangular shape defines φ_{λ} , $\lambda \in \mathcal{P}_5$.

JAMES' CONJECTURE

ON THE DEGREE POLYNOMIALS

The degrees of the φ_{λ} are "polynomials in q".

λ	$arphi_{\lambda}(1)$
(5)	1
(4, 1)	$q(q+1)(q^2+1)$
(3, 2)	$q^2(q^4 + q^3 + q^2 + q + 1)$
(3, 1 ²)	$(q^2 + 1)(q^5 - 1)$
$(2^2, 1)$	$(q^3 - 1)(q^5 - 1)$
(2 , 1 ³)	$q(q+1)(q^2+1)(q^5-1)$
(1 ⁵)	$q^2(q^3-1)(q^5-1)$

THEOREM (BRUNDAN-DIPPER-KLESHCHEV, 2001)

The degrees of $\chi_{\lambda}(1)$ and of $\varphi_{\lambda}(1)$ as polynomials in q are the same.

AN ANALOGUE OF JAMES' CONJECTURE?

Let $\{G(q) \mid q \text{ a prime power with } \ell \nmid q\}$ be a series of finite groups of Lie type, e.g. $\{GU_n(q)\}$ or $\{SO_n(q)\}$ (*n* fixed).

QUESTION

Is an analogue of James' conjecture true for $\{G(q)\}$?

More precisely, is there a factorisation $D^u = D_e D_\ell$ such that D_e and D_ℓ only depend on e, respectively ℓ , and such that $D_\ell = I$ for large enough ℓ ?

If **yes**, only finitely many matrices D^u to compute:

- *e* takes only finitely many values since the rank of *G*(*q*) is fixed;
- there are only finitely many "small" ℓ 's.

OTHER *q***-S**CHUR ALGEBRAS?

The following is a weaker form of the above question.

CONJECTURE

The entries of D^u are bounded independently of q and ℓ .

This conjecture is known to be true for

- GL_n(q) (Dipper-James),
- G classical and ℓ linear (Gruber-H., 1997),
- GU₃(q), Sp₄(q) (Okuyama-Waki, 1998, 2002),
- Suzuki groups (cyclic defect) and Ree groups ${}^{2}G_{2}(q)$ (Landrock-Michler, 1980).

QUESTION

Is there a q-Schur algebra for $\{G(q)\}$, whose ℓ -modular decomposition matrix equals D^u ?

ACKNOWLEDGEMENT

These lectures owe very much to suggestions by

Frank Lübeck,

to whom I wish to express my sincere thanks.

Thank you for your listening!