REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE
 Lecture III: REPRESENTATIONS IN NON-DEFINING CHARACTERISTICS

Gerhard Hiss

Lehrstuhl D für Mathematik
RWTH Aachen University

Summer School

Finite Simple Groups and Algebraic Groups:
Representations, Geometries and Applications
Berlin, August 31 - September 10, 2009

Recollection

AIM

Classify all irreducible representations of all finite simple groups and related finite groups.

In the following, let $G=\mathbf{G}^{F}$ be a finite reductive group of characteristic p, and let k be an algebraically closed field with $\operatorname{char}(k)=\ell$.

Today we consider the case $0 \neq \ell \neq p$.

A simplification: Brauer Characters

Let V be a $k G$-module.
The character χ_{V} of V as defined in Lecture 2 does not convey all the desired information, e.g.,
$\chi v(1)$ only gives the dimension of V modulo ℓ. Instead one considers the Brauer character φ_{V} of V.

This is obtained by consistently lifting the eigenvalues of the linear transformation of $g \in G_{\ell^{\prime}}$ on V to characteristic 0 . ($G_{\ell^{\prime}}$ is the set of ℓ-regular elements of G.)

Thus $\varphi_{V}: G_{\ell^{\prime}} \rightarrow K$, where K is a suitable field with $\operatorname{char}(K)=0$, and $\varphi_{V}(g)=$ sum of the eigenvalues of g on V (viewed as elements of K).

In particular, $\varphi_{V}(1)$ equals the dimension of V.

The Brauer Character Table

If V is simple, φ_{V} is called an irreducible Brauer character.
Two simple $k G$-modules are isomorphic if and only if their Brauer characters are equal.

Put $\operatorname{IBr}_{\ell}(G):=\left\{\varphi_{V} \mid V\right.$ simple $k G$-module $\}$.
(If $\ell \nmid|G|$, then $\operatorname{IBr}_{\ell}(G)=\operatorname{Irr}(G)$.)
$\mathcal{C}_{\ell^{\prime}}$: set of representatives of the conjugacy classes of G contained in $G_{\ell^{\prime}}$.

The square matrix

$$
[\varphi(g)]_{\varphi \in \mid \mathrm{Br}_{\ell}(G), g \in \varrho_{\ell^{\prime}}}
$$

is the Brauer character table or ℓ-modular character table of G.

The 13-Modular Character Table of $\mathrm{SL}_{3}(3)$

Let $G=\mathrm{SL}_{3}(3)$. Then $|G|=5616=2^{4} \cdot 3^{3} \cdot 13$.

Example (The 13-Modular Character Table of $\mathrm{SL}_{3}(3)$)

	$1 a$	$2 a$	$3 a$	$3 b$	$4 a$	$6 a$	$8 a$	$8 b$
φ_{1}	1	1	1	1	1	1	1	1
φ_{2}	11	3	2	-1	-1	0	-1	-1
φ_{3}	13	-3	4	1	1	0	-1	-1
φ_{4}	16	0	-2	1	0	0	0	0
φ_{5}	26	2	-1	-1	2	-1	0	0
φ_{6}	26	-2	-1	-1	0	1	$\sqrt{-2}$	$-\sqrt{-2}$
φ_{7}	26	-2	-1	-1	0	1	$-\sqrt{-2}$	$\sqrt{-2}$
φ_{8}	39	-1	3	0	-1	-1	1	1

Goals and Results

AIM

Describe all Brauer character tables of all finite simple groups and related finite groups.

In contrast to the case of ordinary character tables
(i.e. $\operatorname{char}(k)=0$, cf. Lecture 2), this is wide open:
(1) For alternating groups: complete up to A_{17}
(2) For groups of Lie type: only partial results

- For sporadic groups up to McL and other "small" groups (of order $\leq 10^{9}$): An Atlas of Brauer Characters, Jansen, Lux, Parker, Wilson, 1995
More information is available on the web site of the Modular Atlas Project: (http://www.math.rwth-aachen.de/-MOC/)

The Decomposition Numbers

For $\chi \in \operatorname{lrr}(G)$, write $\hat{\chi}$ for the restriction of χ to $G_{\ell^{\prime}}$.

Then there are integers $d_{x \varphi} \geq 0, \chi \in \operatorname{Irr}(G), \varphi \in \operatorname{IBr}_{\ell}(G)$, such that

$$
\hat{x}=\sum_{\varphi \in \mid \mathrm{Br}_{r_{l}(G)}} d_{x \varphi} \varphi .
$$

These integers are called the decomposition numbers of G modulo ℓ.

The matrix $D=\left[d_{x \varphi}\right]$ is the decomposition matrix of G.

Properties of Brauer characters

$\mathrm{IBr}_{\ell}(G)$ is linearly independent (in $\operatorname{Maps}\left(G_{\ell^{\prime}}, K\right)$) and so the decomposition numbers are uniquely determined.

The elementary divisors of D are all 1 (i.e., the decomposition map defined by $\chi \mapsto \hat{\chi}$ is surjective). Thus:

Knowing $\operatorname{lrr}(G)$ and D is equivalent to knowing $\operatorname{lrr}(G)$ and $\operatorname{IBr}_{\ell}(G)$.
If G is ℓ-soluble, $\operatorname{Irr}(G)$ and $\operatorname{IBr}_{\ell}(G)$ can be sorted such that D has shape

$$
D=\left[\frac{I_{n}}{D^{\prime}}\right],
$$

where I_{n} is the $(n \times n)$ identity matrix (Fong-Swan theorem).

Unipotent Brauer characters

The concept of decomposition numbers can be used to define unipotent Brauer characters of a finite reductive group.
Let $G=\mathbf{G}^{F}$ be a finite reductive group of characteristic p.
(Recall that $\operatorname{char}(k)=\ell \neq p$.)
Recall that $\operatorname{Irr}^{u}(G)=$
$\left\{\chi \in \operatorname{lrr}(G) \mid \chi\right.$ occurs in $R_{\mathbf{T}}^{\mathbf{G}}(\mathbf{1})$ for some maximal torus \mathbf{T} of $\left.\mathbf{G}\right\}$.
This yields a definition of $\mathrm{IBr}_{\ell}^{U}(G)$.
DEFINITION (UNIPOTENT BRAUER CHARACTERS)
$\operatorname{IBr}_{\ell}{ }^{U}(G)=\left\{\varphi \in \operatorname{IBr}_{\ell}(G) \mid d_{\chi \varphi} \neq 0\right.$ for some $\left.\chi \in \operatorname{Irr}^{u}(G)\right\}$.
The elements of $\mathrm{IBr}_{\ell}^{u}(G)$ are called the unipotent Brauer characters of G.

A simple $k G$-module is unipotent, if its Brauer character is.

Jordan decomposition of Brauer characters

The investigations are guided by the following main conjecture.
Conjecture
Suppose that $Z(\mathbf{G})$ is connected. Then there is a labelling

$$
\operatorname{IBr}_{\ell}(G) \leftrightarrow\left\{\varphi_{s, \mu} \mid s \in G^{*} \text { semisimple }, \ell \nmid|\mathcal{S}|, \mu \in \operatorname{IBr}_{\ell}^{u}\left(C_{G^{*}}(s)\right)\right\},
$$

such that $\varphi_{s, \mu}(1)=\left|G^{*}: C_{G^{*}}(s)\right|_{p^{\prime}} \mu(1)$.
Moreover, D can be computed from the decomposition numbers of unipotent characters of the various $C_{G^{*}}(s)$.

Known to be true for $\mathrm{GL}_{n}(q)$ (Dipper-James, 1980s) and if $C_{\mathbf{G}^{*}}(s)$ is a Levi subgroup of \mathbf{G}^{*} (Bonnafé-Rouquier, 2003).
The truth of this conjecture would reduce the computation of decomposition numbers to unipotent characters.
Consequently, we will restrict to this case in the following.

The Unipotent decomposition matrix

Put $D^{u}:=$ restriction of D to $\operatorname{Irr}^{u}(G) \times \operatorname{IBr}_{\ell}^{u}(G)$.
Theorem (Geck-H., 1991; GECK, 1993)
(Some conditions apply.)
$\left|\left|\mathrm{Ir}^{u}(G)\right|=\left|\mathrm{IBr}_{\ell}^{u}(G)\right|\right.$ and D^{u} is invertible over \mathbb{Z}.

Conjecture (Geck, 1997)
(Some conditions apply.) With respect to suitable orderings of $\operatorname{Irr}^{u}(G)$ and $\mathrm{IBr}_{\ell}^{u}(G), D^{u}$ has shape

$$
\left[\begin{array}{cccc}
1 & & & \\
\star & 1 & & \\
\vdots & \vdots & \ddots & \\
\star & \star & \star & 1
\end{array}\right]
$$

This would give a canonical bijection $\operatorname{Irr}^{U}(G) \longleftrightarrow \operatorname{IBr}_{\ell}^{U}(G)$.

About Geck's Conjecture

Geck's conjecture on D^{u} is known to hold for

- $\mathrm{GL}_{n}(q)$ (Dipper-James, 1980s)
- $\mathrm{GU}_{n}(q)$ (Geck, 1991)
- G a classical group and ℓ "linear" (Gruber-H., 1997)
- $\mathrm{Sp}_{4}(q)$ (White, 1988-1995)
- Sp_{6} (q) (An-H., 2006)
- $G_{2}(q)$ (Shamash-H., 1989 - 1992)
- $F_{4}(q)$ (Köhler, 2006)
- $E_{6}(q)$ (Geck-H., 1997; Miyachi, 2008)
- Steinberg triality groups ${ }^{3} D_{4}(q)$ (Geck, 1991)
- Suzuki groups (for general reasons)
- Ree groups (Himstedt-Huang, 2009)

LINEAR PRIMES, I

Suppose $G=\mathbf{G}^{F}$ with $F\left(a_{i j}\right)=\left(a_{i j}^{q}\right)$ for some power q of p.
Put $e:=\min \left\{i \mid \ell\right.$ divides $\left.q^{i}-1\right\}$, the order of q in \mathbb{F}_{ℓ}^{*}.
If G is classical $\left(\neq \mathrm{GL}_{n}(q)\right)$ and e is odd, ℓ is linear for G.

Example

$G=\mathrm{SO}_{2 m+1}(q),|G|=q^{m^{2}}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2 m}-1\right)$.
If $\ell||G|$ and $\ell \nmid q$, then $\ell| q^{2 d}-1$ for some minimal d.
Thus $\ell \mid q^{d}-1(\ell$ linear and $e=d)$ or $\ell \mid q^{d}+1(e=2 d)$.
Now $\operatorname{Irr}^{u}(G)$ is a union of Harish-Chandra series $\varepsilon_{1}, \ldots, \varepsilon_{r}$.

Theorem (Fong-Srinivasan, 1982, 1989)

Suppose that $G \neq \mathrm{GL}_{n}(q)$ is classical and that ℓ is linear. Then $D^{u}=\operatorname{diag}\left[\Delta_{1}, \ldots, \Delta_{r}\right]$ with square matrices Δ_{i} corresponding to ε_{i}.

LINEAR PRIMES, II

Let $\Delta:=\Delta_{i}$ be one of the decomposition matrices from above.
Then the rows and columns of Δ are labelled by bipartitions of a for some integer a. (Harish-Chandra theory.)

TheOrem (Gruber-H., 1997)
In general,

$$
\Delta=\left[\begin{array}{ccccc}
\Lambda_{0} \otimes \Lambda_{a} & & & & \\
& \ddots & & & \\
& & \Lambda_{i} \otimes \Lambda_{a-i} & & \\
& & & \ddots & \\
& & & & \Lambda_{a} \otimes \Lambda_{0}
\end{array}\right]
$$

Here $\Lambda_{i} \otimes \Lambda_{a-i}$ is the Kronecker product of matrices, and Λ_{i} is the ℓ-modular unipotent decomposition matrix of $\mathrm{GL}_{i}(q)$.

The v-Schur ALGEBRA

Let v be an indeterminate an put $A:=\mathbb{Z}\left[v, v^{-1}\right]$.
Dipper and James (1989) have defined a remarkable A-algebra $s_{A, v}\left(S_{n}\right)$, called the generic v-Schur algebra, such that:
(1) $\delta_{A, v}\left(S_{n}\right)$ is free and of finite rank over A.
(2) $\left\{_{A, v}\left(S_{n}\right)\right.$ is constructed from the generic Iwahori-Hecke algebra $\mathscr{H}_{A, v}\left(S_{n}\right)$, which is contained in $\&_{A, v}\left(S_{n}\right)$ as a subalgebra (with a different unit).

- $\mathbb{Q}(v) \otimes_{A} \delta_{A, v}\left(S_{n}\right)$ is a quotient of the quantum group $u_{v}\left(\mathfrak{g l}_{n}\right)$.

THE q-Schur ALGEBRA

Let $G=G L_{n}(q)$.
Then $D^{u}=\left(d_{\lambda, \mu}\right)$, with $\lambda, \mu \in \mathcal{P}_{n}$.
Let $\delta_{A, v}\left(S_{n}\right)$ be the v-Schur algebra, and let $s:=\ell_{k, q}\left(S_{n}\right)$ be the k-algebra obtained by specializing v to the image of $q \in k$.

This is called the q-Schur algebra, and satisfies:
(1) $\&$ has a set of (finite-dimensional) standard modules \mathbf{S}^{λ}, indexed by \mathscr{P}_{n}.
(2) The simple s-modules \mathbf{D}^{λ} are also labelled by \mathcal{P}_{n}.
(3) If $\left[\mathbf{S}^{\lambda}: \mathbf{D}^{\mu}\right]$ denotes the multiplicity of \mathbf{D}^{μ} as a composition factor in \mathbf{S}^{λ}, then $\left[\mathbf{S}^{\lambda}: \mathbf{D}^{\mu}\right]=d_{\lambda, \mu}$.

As a consequence, the $d_{\lambda, \mu}$ are bounded independently of q and of ℓ.

CONNECTIONS TO DEFINING CHARACTERISTICS, I

Let $s_{k, q}\left(S_{n}\right)$ be the q-Schur algebra introduced above.
Suppose that $\ell \mid q-1$ so that $q \equiv 1(\bmod \ell)$.
Then $s_{k, q}\left(S_{n}\right) \cong s_{k}\left(S_{n}\right)$, where $s_{k}\left(S_{n}\right)$ is the Schur algebra studied by J. A. Green (1980).

A partition λ of n may be viewed as a dominant weight of $\mathrm{GL}_{n}(k)\left[\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \leftrightarrow \lambda_{1} \varepsilon_{1}+\lambda_{2} \varepsilon_{2}+\cdots+\lambda_{m} \varepsilon_{m}\right]$.

Thus there are corresponding $k \mathrm{GL}_{n}(k)$-modules $V(\lambda)$ and $L(\lambda)$.
If λ and μ are partitions of n, we have

$$
[V(\lambda): L(\mu)]=\left[\mathbf{S}^{\lambda}: \mathbf{D}^{\mu}\right]=d_{\lambda, \mu}
$$

The first equality comes from the significance of the Schur algebra, the second from that of the q-Schur algebra.

Connections to defining characteristics, II

Thus the ℓ-modular decomposition numbers of $\mathrm{GL}_{n}(q)$ for prime powers q with $\ell \mid q-1$, determine the composition multiplicities of certain simple modules $L(\mu)$ in certain Weyl modules $V(\lambda)$ of $\mathrm{GL}_{n}(k)$, namely if λ and μ are partitions of n.

Facts (Schur, Green)

Let λ and μ be partitions with at most n parts.
(1) $[V(\lambda): L(\mu)]=0$, if λ and μ are partitions of different numbers.
(2) If λ and μ are partitions of $r \geq n$, then the composition multiplicity $[V(\lambda): L(\mu)]$ is the same in $\mathrm{GL}_{n}(k)$ and $\mathrm{GL}_{r}(k)$.

Hence the ℓ-modular decomposition numbers of all $\mathrm{GL}_{r}(q)$, $r \geq 1, \ell \mid q-1$ determine the composition multiplicities of all Weyl modules $V(\lambda)$ of $\mathrm{GL}_{n}(k)$. (Thank you Jens!)

CONNECTIONS TO SYMMETRIC GROUP REPR'S

As for the Schur algebra, there are standard $k S_{n}$ - modules S^{λ}, called Specht modules, labelled by the partitions λ of n.

The simple $k S_{n}$-modules D^{μ} are labelled by the ℓ-regular partitions μ of n (no part of μ is repeated ℓ or more times).
The ℓ-modular decomposition numbers of S_{n} are the $\left[S^{\lambda}: D^{\mu}\right.$].
Theorem (James, 1980)
$\left[S^{\lambda}: D^{\mu}\right]=[V(\lambda): L(\mu)]$, if μ is ℓ-regular.

ThEOREM (ERDMANN, 1995)

For partitions λ, μ of n, there are ℓ-regular partition $t(\lambda), t(\mu)$ of $\ell n+(\ell-1) n(n-1) / 2$ such that

$$
[V(\lambda): L(\mu)]=\left[S^{t(\lambda)}: D^{t(\mu)}\right] .
$$

AmaZing conclusion

Recall that ℓ is a fixed prime and k an algebraically closed field of characteristic ℓ.

Each of the following three families of numbers can be determined from any one of the others:
(1) The ℓ-modular decomposition numbers of S_{n} for all n.
(2) The ℓ-modular decomposition numbers of the unipotent characters of $\mathrm{GL}_{n}(q)$ for all primes powers q with $\ell \mid q-1$ and all n.

- The composition multiplicities $[V(\lambda): L(\mu)]$ of $k G L_{n}(k)$-modules for all n and all dominant weights λ, μ.

Thus all these problems are really hard.

JAMES' CONJECTURE

Let $G=\operatorname{GL}_{n}(q)$. Recall that $e=\min \left\{i \mid \ell\right.$ divides $\left.q^{i}-1\right\}$.
James has computed all matrices D^{u} for $n \leq 10$.

Conjecture (James, 1990)
If e $\ell>n$, then D^{u} only depends on e (neither on ℓ nor q).

ThEOREM

(1) The conjecture is true for $n \leq 10$ (James, 1990).
(2) If $\ell \gg 0, D^{u}$ only depends on e (Geck, 1992).

LARGE PRIMES

In fact, Geck proved the following factorisation property.

Theorem (Geck, 1992)

Let D^{u} be the ℓ-modular decomposition matrix of the q-Schur algebra $s_{k, q}\left(S_{n}\right)$. Then $D^{u}=D_{e} D_{\ell}$ for two square matrices D_{e} and D_{ℓ}, where D_{e} only depends on e and D_{ℓ} only on ℓ. Moreover, $D_{\ell}=\mid$ for $\ell \gg 0$.

There is an algorithm to compute the matrices D_{e}.

> THEOREM (LASCOUX-LECLERC-THIBON; ARIKI;
> VARAGNOLO-VASSEROT $(1996-99))$

The matrix D_{e} can be computed from the canonical basis of a certain highest weight module of the quantum group $u_{v}\left(\widehat{\mathfrak{s l}_{e}}\right)$.

A UNIPOTENT DECOMPOSITION MATRIX FOR $G L_{5}(q)$

Let $G=\operatorname{GL}_{5}(q), e=2$ (i.e., $\ell \mid q+1$ but $\ell \nmid q-1$), and assume $\ell>2$. Then $D^{u}=D_{e}$ equals

The triangular shape defines $\varphi_{\lambda}, \lambda \in \mathcal{P}_{5}$.

On THE DEGREE POLYNOMIALS

The degrees of the φ_{λ} are "polynomials in q ".

λ	$\varphi_{\lambda}(1)$
(5)	1
$(4,1)$	$q(q+1)\left(q^{2}+1\right)$
$(3,2)$	$q^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)$
$\left(3,1^{2}\right)$	$\left(q^{2}+1\right)\left(q^{5}-1\right)$
$\left(2^{2}, 1\right)$	$\left(q^{3}-1\right)\left(q^{5}-1\right)$
$\left(2,1^{3}\right)$	$q(q+1)\left(q^{2}+1\right)\left(q^{5}-1\right)$
$\left(1^{5}\right)$	$q^{2}\left(q^{3}-1\right)\left(q^{5}-1\right)$

THEOREM (BRUNDAN-DIPPER-KLESHCHEV, 2001)
The degrees of $\chi_{\lambda}(1)$ and of $\varphi_{\lambda}(1)$ as polynomials in q are the same.

An Analogue of James' conjecture?

Let $\{G(q) \mid q$ a prime power with $\ell \nmid q\}$ be a series of finite groups of Lie type, e.g. $\left\{\mathrm{GU}_{n}(q)\right\}$ or $\left\{\mathrm{SO}_{n}(q)\right\}$ (n fixed).

Question

Is an analogue of James' conjecture true for $\{G(q)\}$?
More precisely, is there a factorisation $D^{u}=D_{e} D_{\ell}$ such that D_{e} and D_{ℓ} only depend on e, respectively ℓ, and such that $D_{\ell}=1$ for large enough ℓ ?

If yes, only finitely many matrices D^{u} to compute:

- e takes only finitely many values since the rank of $G(q)$ is fixed;
- there are only finitely many "small" ℓ 's.

OTHER q-SCHUR ALGEBRAS?

The following is a weaker form of the above question.

CONJECTURE

The entries of D^{u} are bounded independently of q and ℓ.
This conjecture is known to be true for

- $\mathrm{GL}_{n}(q)$ (Dipper-James),
- G classical and ℓ linear (Gruber-H., 1997),
- $\mathrm{GU}_{3}(q), \mathrm{Sp}_{4}(q)$ (Okuyama-Waki, 1998, 2002),
- Suzuki groups (cyclic defect) and Ree groups ${ }^{2} G_{2}(q)$ (Landrock-Michler, 1980).

QUESTION

Is there a q-Schur algebra for $\{G(q)\}$, whose ℓ-modular decomposition matrix equals D^{U} ?

Acknowledgement

These lectures owe very much to suggestions by Frank Lübeck,
to whom I wish to express my sincere thanks.

Thank you for your listening!

