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RECOLLECTION

AIM

Classify all irreducible representations of all finite simple groups
and related finite groups.

In the following, let G = GF be a finite reductive group of
characteristic p, and let k be an algebraically closed field with
char(k) = `.

Today we consider the case 0 6= ` 6= p.
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A SIMPLIFICATION: BRAUER CHARACTERS

Let V be a kG-module.

The character χV of V as defined in Lecture 2 does not convey
all the desired information, e.g.,

χV (1) only gives the dimension of V modulo `.

Instead one considers the Brauer character ϕV of V .

This is obtained by consistently lifting the eigenvalues of the
linear transformation of g ∈ G`′ on V to characteristic 0.
(G`′ is the set of `-regular elements of G.)

Thus ϕV : G`′ → K , where K is a suitable field with
char(K ) = 0, and ϕV (g) = sum of the eigenvalues of g on V
(viewed as elements of K ).

In particular, ϕV (1) equals the dimension of V .
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THE BRAUER CHARACTER TABLE

If V is simple, ϕV is called an irreducible Brauer character.

Two simple kG-modules are isomorphic if and only if their
Brauer characters are equal.

Put IBr`(G) := {ϕV | V simple kG-module}.

(If ` - |G|, then IBr`(G) = Irr(G).)

C`′ : set of representatives of the conjugacy classes of G
contained in G`′ .

The square matrix [
ϕ(g)

]
ϕ∈IBr`(G),g∈C`′

is the Brauer character table or `-modular character table of G.
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THE 13-MODULAR CHARACTER TABLE OF SL3(3)

Let G = SL3(3). Then |G| = 5 616 = 24
· 33
· 13.

EXAMPLE (THE 13-MODULAR CHARACTER TABLE OF SL3(3))

1a 2a 3a 3b 4a 6a 8a 8b

ϕ1 1 1 1 1 1 1 1 1
ϕ2 11 3 2 −1 −1 0 −1 −1
ϕ3 13 −3 4 1 1 0 −1 −1
ϕ4 16 0 −2 1 0 0 0 0
ϕ5 26 2 −1 −1 2 −1 0 0
ϕ6 26 −2 −1 −1 0 1

√
−2 −

√
−2

ϕ7 26 −2 −1 −1 0 1 −
√
−2

√
−2

ϕ8 39 −1 3 0 −1 −1 1 1
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GOALS AND RESULTS

AIM

Describe all Brauer character tables of all finite simple groups
and related finite groups.

In contrast to the case of ordinary character tables
(i.e. char(k) = 0, cf. Lecture 2), this is wide open:

1 For alternating groups: complete up to A17

2 For groups of Lie type: only partial results
3 For sporadic groups up to McL and other “small” groups (of

order ≤ 109): An Atlas of Brauer Characters, Jansen, Lux,
Parker, Wilson, 1995
More information is available on the web site of the
Modular Atlas Project:
(http://www.math.rwth-aachen.de/˜MOC/)
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THE DECOMPOSITION NUMBERS

For χ ∈ Irr(G), write χ̂ for the restriction of χ to G`′ .

Then there are integers dχϕ ≥ 0, χ ∈ Irr(G), ϕ ∈ IBr`(G), such
that

χ̂ =
∑

ϕ∈IBr`(G)

dχϕ ϕ.

These integers are called the decomposition numbers of G
modulo `.

The matrix D = [dχϕ] is the decomposition matrix of G.
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PROPERTIES OF BRAUER CHARACTERS

IBr`(G) is linearly independent (in Maps(G`′, K )) and so the
decomposition numbers are uniquely determined.

The elementary divisors of D are all 1 (i.e., the decomposition
map defined by χ 7→ χ̂ is surjective). Thus:

Knowing Irr(G) and D is equivalent to knowing Irr(G) and IBr`(G).

If G is `-soluble, Irr(G) and IBr`(G) can be sorted such that D
has shape

D =
[

In
D′

]
,

where In is the (n × n) identity matrix (Fong-Swan theorem).
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UNIPOTENT BRAUER CHARACTERS

The concept of decomposition numbers can be used to define
unipotent Brauer characters of a finite reductive group.
Let G = GF be a finite reductive group of characteristic p.
(Recall that char(k) = ` 6= p.)
Recall that Irru(G) =

{χ ∈ Irr(G) | χ occurs in RG
T (1) for some maximal torus T of G}.

This yields a definition of IBru
` (G).

DEFINITION (UNIPOTENT BRAUER CHARACTERS)

IBru
` (G) = {ϕ ∈ IBr`(G) | dχϕ 6= 0 for some χ ∈ Irru(G)}.

The elements of IBru
` (G) are called the unipotent Brauer

characters of G.

A simple kG-module is unipotent, if its Brauer character is.
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JORDAN DECOMPOSITION OF BRAUER CHARACTERS

The investigations are guided by the following main conjecture.

CONJECTURE

Suppose that Z (G) is connected. Then there is a labelling

IBr`(G)↔ {ϕs,µ | s ∈ G∗ semisimple , ` - |s|, µ ∈ IBru
` (CG∗(s))},

such that ϕs,µ(1) = |G∗ : CG∗(s)|p′ µ(1).

Moreover, D can be computed from the decomposition
numbers of unipotent characters of the various CG∗(s).

Known to be true for GLn(q) (Dipper-James, 1980s) and if
CG∗(s) is a Levi subgroup of G∗ (Bonnafé-Rouquier, 2003).
The truth of this conjecture would reduce the computation of
decomposition numbers to unipotent characters.
Consequently, we will restrict to this case in the following.
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THE UNIPOTENT DECOMPOSITION MATRIX

Put Du
:= restriction of D to Irru(G)× IBru

` (G).

THEOREM (GECK-H., 1991; GECK, 1993)
(Some conditions apply.)
|Irru(G)| = |IBru

` (G)| and Du is invertible over Z.

CONJECTURE (GECK, 1997)
(Some conditions apply.) With respect to suitable orderings of
Irru(G) and IBru

` (G), Du has shape
1
? 1
...

...
. . .

? ? ? 1

 .

This would give a canonical bijection Irru(G)←→ IBru
` (G).



DECOMPOSITION NUMBERS UNIPOTENT BRAUER CHARACTERS (q-)SCHUR ALGEBRAS JAMES’ CONJECTURE

ABOUT GECK’S CONJECTURE

Geck’s conjecture on Du is known to hold for
GLn(q) (Dipper-James, 1980s)
GUn(q) (Geck, 1991)
G a classical group and ` “linear” (Gruber-H., 1997)
Sp4(q) (White, 1988 – 1995)
Sp6(q) (An-H., 2006)
G2(q) (Shamash-H., 1989 – 1992)
F4(q) (Köhler, 2006)
E6(q) (Geck-H., 1997; Miyachi, 2008)
Steinberg triality groups 3D4(q) (Geck, 1991)
Suzuki groups (for general reasons)
Ree groups (Himstedt-Huang, 2009)
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LINEAR PRIMES, I

Suppose G = GF with F (aij) = (aq
ij ) for some power q of p.

Put e := min{i | ` divides q i
− 1}, the order of q in F∗`.

If G is classical (6= GLn(q)) and e is odd, ` is linear for G.

EXAMPLE

G = SO2m+1(q), |G| = qm2
(q2
− 1)(q4

− 1) · · · (q2m
− 1).

If `||G| and ` - q, then ` | q2d
− 1 for some minimal d.

Thus ` | qd
− 1 (` linear and e = d) or ` | qd

+ 1 (e = 2d).

Now Irru(G) is a union of Harish-Chandra series E1, . . . , Er .

THEOREM (FONG-SRINIVASAN, 1982, 1989)
Suppose that G 6= GLn(q) is classical and that ` is linear.
Then Du

= diag[11, . . . ,1r ] with square matrices 1i

corresponding to Ei .



DECOMPOSITION NUMBERS UNIPOTENT BRAUER CHARACTERS (q-)SCHUR ALGEBRAS JAMES’ CONJECTURE

LINEAR PRIMES, II

Let 1 := 1i be one of the decomposition matrices from above.
Then the rows and columns of 1 are labelled by bipartitions of
a for some integer a. (Harish-Chandra theory.)

THEOREM (GRUBER-H., 1997)
In general,

1 =


30 ⊗3a

. . .

3i ⊗3a−i
. . .

3a ⊗30


Here 3i ⊗3a−i is the Kronecker product of matrices, and 3i is
the `-modular unipotent decomposition matrix of GLi(q).
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THE v -SCHUR ALGEBRA

Let v be an indeterminate an put A := Z[v , v−1
].

Dipper and James (1989) have defined a remarkable A-algebra
SA,v (Sn), called the generic v -Schur algebra, such that:

1 SA,v (Sn) is free and of finite rank over A.

2 SA,v (Sn) is constructed from the generic Iwahori-Hecke
algebra HA,v (Sn), which is contained in SA,v (Sn) as a
subalgebra (with a different unit).

3 Q(v)⊗A SA,v (Sn) is a quotient of the quantum group
Uv (gln).
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THE q-SCHUR ALGEBRA

Let G = GLn(q).

Then Du
= (dλ,µ), with λ, µ ∈ Pn.

Let SA,v (Sn) be the v -Schur algebra, and let S := Sk ,q(Sn) be
the k -algebra obtained by specializing v to the image of q ∈ k .

This is called the q-Schur algebra, and satisfies:

1 S has a set of (finite-dimensional) standard modules Sλ,
indexed by Pn.

2 The simple S-modules Dλ are also labelled by Pn.

3 If [Sλ
: Dµ
] denotes the multiplicity of Dµ as a composition

factor in Sλ, then [Sλ
: Dµ
] = dλ,µ.

As a consequence, the dλ,µ are bounded independently of q
and of `.
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CONNECTIONS TO DEFINING CHARACTERISTICS, I

Let Sk ,q(Sn) be the q-Schur algebra introduced above.

Suppose that ` | q − 1 so that q ≡ 1(mod `).

Then Sk ,q(Sn) ∼= Sk (Sn), where Sk (Sn) is the Schur algebra
studied by J. A. Green (1980).

A partition λ of n may be viewed as a dominant weight of
GLn(k) [λ = (λ1, λ2, . . . , λm)↔ λ1ε1 + λ2ε2 + · · · + λmεm].

Thus there are corresponding kGLn(k)-modules V (λ) and L(λ).

If λ and µ are partitions of n, we have

[V (λ) : L(µ)] = [Sλ
: Dµ
] = dλ,µ.

The first equality comes from the significance of the Schur
algebra, the second from that of the q-Schur algebra.
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CONNECTIONS TO DEFINING CHARACTERISTICS, II

Thus the `-modular decomposition numbers of GLn(q) for
prime powers q with ` | q − 1, determine the composition
multiplicities of certain simple modules L(µ) in certain Weyl
modules V (λ) of GLn(k), namely if λ and µ are partitions of n.

FACTS (SCHUR, GREEN)
Let λ and µ be partitions with at most n parts.

1 [V (λ) : L(µ)] = 0, if λ and µ are partitions of different
numbers.

2 If λ and µ are partitions of r ≥ n, then the composition
multiplicity [V (λ) : L(µ)] is the same in GLn(k) and GLr (k).

Hence the `-modular decomposition numbers of all GLr (q),
r ≥ 1, ` | q − 1 determine the composition multiplicities of all
Weyl modules V (λ) of GLn(k). (Thank you Jens!)
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CONNECTIONS TO SYMMETRIC GROUP REPR’S

As for the Schur algebra, there are standard kSn- modules Sλ,
called Specht modules, labelled by the partitions λ of n.

The simple kSn-modules Dµ are labelled by the `-regular
partitions µ of n (no part of µ is repeated ` or more times).

The `-modular decomposition numbers of Sn are the [Sλ
: Dµ
].

THEOREM (JAMES, 1980)

[Sλ
: Dµ
] = [V (λ) : L(µ)], if µ is `-regular.

THEOREM (ERDMANN, 1995)
For partitions λ, µ of n, there are `-regular partition t(λ), t(µ) of
`n + (`− 1)n(n − 1)/2 such that

[V (λ) : L(µ)] = [St(λ)
: Dt(µ)

].
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AMAZING CONCLUSION

Recall that ` is a fixed prime and k an algebraically closed field
of characteristic `.

Each of the following three families of numbers can be
determined from any one of the others:

1 The `-modular decomposition numbers of Sn for all n.

2 The `-modular decomposition numbers of the unipotent
characters of GLn(q) for all primes powers q with ` | q − 1
and all n.

3 The composition multiplicities [V (λ) : L(µ)] of
kGLn(k)-modules for all n and all dominant weights λ, µ.

Thus all these problems are really hard.
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JAMES’ CONJECTURE

Let G = GLn(q). Recall that e = min{i | ` divides q i
− 1}.

James has computed all matrices Du for n ≤ 10.

CONJECTURE (JAMES, 1990)
If e` > n , then Du only depends on e (neither on ` nor q).

THEOREM

(1) The conjecture is true for n ≤ 10 (James, 1990).

(2) If ` >> 0, Du only depends on e (Geck, 1992).
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LARGE PRIMES

In fact, Geck proved the following factorisation property.

THEOREM (GECK, 1992)
Let Du be the `-modular decomposition matrix of the q-Schur
algebra Sk ,q(Sn). Then Du

= DeD` for two square matrices De

and D`, where De only depends on e and D` only on `.
Moreover, D` = I for ` >> 0.

There is an algorithm to compute the matrices De.

THEOREM (LASCOUX-LECLERC-THIBON; ARIKI;
VARAGNOLO-VASSEROT (1996 – 99))
The matrix De can be computed from the canonical basis of a
certain highest weight module of the quantum group Uv (ŝle).
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A UNIPOTENT DECOMPOSITION MATRIX FOR GL5(q)

Let G = GL5(q), e = 2 (i.e., ` | q + 1 but ` - q − 1), and assume
` > 2. Then Du

= De equals

(5) 1
(4, 1) 1
(3, 2) 1
(3, 12) 1 1 1
(22, 1) 1 1 1
(2, 13) 1 1
(15) 1 1 1

The triangular shape defines ϕλ, λ ∈ P5.
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ON THE DEGREE POLYNOMIALS

The degrees of the ϕλ are “polynomials in q”.

λ ϕλ(1)

(5) 1
(4, 1) q(q + 1)(q2

+ 1)

(3, 2) q2(q4
+ q3

+ q2
+ q + 1)

(3, 12) (q2
+ 1)(q5

− 1)

(22, 1) (q3
− 1)(q5

− 1)

(2, 13) q(q + 1)(q2
+ 1)(q5

− 1)

(15) q2(q3
− 1)(q5

− 1)

THEOREM (BRUNDAN-DIPPER-KLESHCHEV, 2001)
The degrees of χλ(1) and of ϕλ(1) as polynomials in q are the
same.
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AN ANALOGUE OF JAMES’ CONJECTURE?

Let {G(q) | q a prime power with ` - q} be a series of finite
groups of Lie type, e.g. {GUn(q)} or {SOn(q)} (n fixed).

QUESTION

Is an analogue of James’ conjecture true for {G(q)}?

More precisely, is there a factorisation Du
= DeD` such that De

and D` only depend on e, respectively `, and such that D` = I
for large enough `?

If yes, only finitely many matrices Du to compute:

e takes only finitely many values since the rank of G(q) is
fixed;

there are only finitely many “small” `’s.



DECOMPOSITION NUMBERS UNIPOTENT BRAUER CHARACTERS (q-)SCHUR ALGEBRAS JAMES’ CONJECTURE

OTHER q-SCHUR ALGEBRAS?

The following is a weaker form of the above question.

CONJECTURE

The entries of Du are bounded independently of q and `.

This conjecture is known to be true for
GLn(q) (Dipper-James),
G classical and ` linear (Gruber-H., 1997),
GU3(q), Sp4(q) (Okuyama-Waki, 1998, 2002),
Suzuki groups (cyclic defect) and Ree groups 2G2(q)

(Landrock-Michler, 1980).

QUESTION

Is there a q-Schur algebra for {G(q)}, whose `-modular
decomposition matrix equals Du?
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Thank you for your listening!
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