REPRESENTATION THEORY FOR GROUPS OF LIE TYPE

LECTURE III: DELIGNE-LUSZTIG THEORY

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

HIM Summer School Logic and Algorithms in Group Theory September 12, 2018

- 1. Characters
- 2. Deligne-Lusztig theory
- 3. Lusztig's Jordan decomposition

RECOLLECTION

Objective: Classify all irreducible representations of all finite simple groups and related finite groups,

find labels for their irreducible representations, find the degrees of these, etc.

In the following: $G = \mathbf{G}^F$ a finite reductive group over **F**, char(**F**) = p,

k an algebraically closed field.

Recall that we distinguish three cases:

- 1. char(k) = p; defining characteristic
- 2. char(k) = 0; ordinary representations
- 3. $0 < char(k) \neq p$; non-defining characteristic

Today I mainly talk about Case 2, so assume that char(k) = 0 for the time being.

A SIMPLIFICATION: CHARACTERS

Let V, V' be kG-modules.

The character afforded by *V* is the map

$$\chi_{\boldsymbol{V}}: \boldsymbol{G} \rightarrow \boldsymbol{k}, \quad \boldsymbol{g} \mapsto \operatorname{Trace}(\boldsymbol{g}|\boldsymbol{V}).$$

Characters are class functions.

V and V' are isomorphic, if and only if $\chi_V = \chi_{V'}$.

Irr(*G*) := { $\chi_V | V$ simple *kG*-module}: irreducible characters

 \mathcal{C} : set of representatives of the conjugacy classes of G

The square matrix

 $[\chi(g)]_{\chi\in \mathrm{Irr}(G),g\in\mathcal{C}}$

is the ordinary character table of G.

AN EXAMPLE: THE ALTERNATING GROUP A_5 Example (The Character Table of $A_5 \cong SL_2(4)$)

	1 <i>a</i>	2 <i>a</i>	3 <i>a</i>	5 <i>a</i>	5b
χ_1	1	1	1	1	1
χ_2	3	-1	0	Α	* A
χ_{3}	3	-1	0	* A	Α
χ_4	4	0	1	-1	-1
χ5	5	1	-1	0	0

$$A = (1 - \sqrt{5})/2, \qquad *A = (1 + \sqrt{5})/2$$

GOALS AND RESULTS

Objective: Describe all ordinary character tables of all finite simple groups and related finite groups.

Almost done:

- 1. For alternating groups: Frobenius, Schur
- 2. For groups of Lie type: Green, Deligne, **Lusztig**, Shoji, ... (only "a few" character values missing)
- 3. For sporadic groups and other "small" groups:

Atlas of Finite Groups, Conway, Curtis, Norton, Parker, Wilson, 1986

The generic character table for $SL_2(q)$, q even

DRINFELD'S EXAMPLE

The cuspidal simple $kSL_2(q)$ -modules have dimensions q-1 and (q-1)/2 (the latter only occur if p is odd).

How to construct these?

Consider the affine curve

$$C = \{(x, y) \in \mathbf{F}^2 \mid xy^q - x^qy = 1\}.$$

 $G = SL_2(q)$ acts on *C* by linear change of coordinates. Hence *G* also acts on the étale cohomology group

$$H^1_c(C, \overline{\mathbb{Q}}_\ell),$$

where ℓ is a prime different from *p*.

It turns out that the simple $\overline{\mathbb{Q}}_{\ell}G$ -submodules of $H^1_c(C, \overline{\mathbb{Q}}_{\ell})$ are the cuspidal ones (here $k = \overline{\mathbb{Q}}_{\ell}$).

Deligne-Lusztig varieties

Put $k := \overline{\mathbb{Q}}_{\ell}$.

Deligne and Lusztig (1976) construct for each pair (\mathbf{T}, θ) , where **T** is an *F*-stable maximal torus of **G**, and $\theta \in \operatorname{Irr}(\mathbf{T}^F)$, a generalised character $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ of *G*. (A generalised character of *G* is an element of $\mathbb{Z}[\operatorname{Irr}(G)]$.)

Let (\mathbf{T}, θ) be a pair as above.

Choose a Borel subgroup $\mathbf{B} = \mathbf{TU}$ of \mathbf{G} with Levi subgroup \mathbf{T} . (In general \mathbf{B} is **not** *F*-stable.)

Consider the Deligne-Lusztig variety associated to U,

$$Y_{\mathbf{U}} = \{g \in \mathbf{G} \mid g^{-1}F(g) \in \mathbf{U}\}.$$

This is an algebraic variety over F.

DELIGNE-LUSZTIG GENERALISED CHARACTERS

The finite groups $G = \mathbf{G}^F$ and $T = \mathbf{T}^F$ act on $Y_{\mathbf{U}}$, and these actions commute.

Thus the étale cohomology group $H_c^i(Y_U, \overline{\mathbb{Q}}_\ell)$ is a $\overline{\mathbb{Q}}_\ell G$ -module- $\overline{\mathbb{Q}}_\ell T$,

and so its θ -isotypic component $H^i_c(Y_U, \overline{\mathbb{Q}}_\ell)_{\theta}$ is a $\overline{\mathbb{Q}}_\ell G$ -module,

whose character is denoted by ch $H_c^i(Y_U, \overline{\mathbb{Q}}_\ell)_{\theta}$.

Only finitely many of the vector spaces $H_c^i(Y_U, \overline{\mathbb{Q}}_\ell)$ are $\neq 0$. Now put

$$R_{\mathsf{T}}^{\mathbf{G}}(\theta) = \sum_{i} (-1)^{i} \mathsf{ch} \ H_{c}^{i}(Y_{\mathsf{U}}, \bar{\mathbb{Q}}_{\ell})_{\theta}.$$

This is a Deligne-Lusztig generalised character.

PROPERTIES OF DELIGNE-LUSZTIG CHARACTERS

The above construction and the following facts are due to Deligne and Lusztig (1976).

FACTS

Let (\mathbf{T}, θ) be a pair as above. Then

- 1. $R_{T}^{G}(\theta)$ is independent of the choice of **B** containing **T**.
- 2. If θ is in general position, i.e. $N_G(\mathbf{T}, \theta)/T = \{1\}$, then $\pm R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ is an irreducible character.

FACTS (CONTINUED)

3. For $\chi \in Irr(G)$, there is a pair (\mathbf{T}, θ) such that χ occurs in $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$.

A GENERALISATION

Instead of a torus **T** one can consider any *F*-stable Levi subgroup **L** of **G**.

Warning: L does in general not give rise to a Levi subgroup of *G* in the sense of my first lecture.

Consider a parabolic subgroup **P** of **G** with Levi complement **L** and unipotent radical **U**, not necessarily *F*-stable.

The corresponding Deligne-Lusztig variety Y_U is defined as before: $Y_U = \{g \in \mathbf{G} \mid g^{-1}F(g) \in \mathbf{U}\}.$

One gets a Lusztig-induction map $R^{\mathbf{G}}_{\mathbf{L}\subset\mathbf{P}}: \mathbb{Z}[\operatorname{Irr}(L)] \to \mathbb{Z}[\operatorname{Irr}(G)], \mu \to R^{\mathbf{G}}_{\mathbf{L}\subset\mathbf{P}}(\mu).$

PROPERTIES OF LUSZTIG INDUCTION

The above construction and the following facts are due to Lusztig (1976).

Let **L** be an *F*-stable Levi subgroup of **G** contained in the parabolic subgroup **P**, and let $\mu \in \mathbb{Z}[\operatorname{Irr}(L)]$.

Facts

1.
$$R_{L\subset P}^{G}(\mu)(1) = \pm [G:L]_{p'} \cdot \mu(1).$$

2. If **P** is *F*-stable, then $R_{L\subset P}^{G}(\mu) = R_{L}^{G}(\mu)$ is the Harish-Chandra induced character.

It is now (almost) known, that $R_{L \subset P}^{G}$ is independent of **P**.

UNIPOTENT CHARACTERS

DEFINITION (LUSZTIG)

A character χ of G is called <u>unipotent</u>, if χ is irreducible, and if χ occurs in $R_{\mathsf{T}}^{\mathsf{G}}(1)$ for some *F*-stable maximal torus **T** of **G**, where **1** denotes the trivial character of $T = \mathsf{T}^{F}$. We write $\operatorname{Irr}^{u}(G)$ for the set of unipotent characters of *G*.

The above definition of unipotent characters uses étale cohomology groups.

So far, no elementary description known, except for $GL_n(q)$; see below.

Lusztig classified $Irr^{u}(G)$ in all cases, **independently** of *q*.

Harish-Chandra induction preserves unipotent characters (i.e. $Irr^{u}(G)$ is a union of Harish-Chandra series), so it suffices to construct the **cuspidal** unipotent characters.

The unipotent characters of $GL_n(q)$

Let $G = GL_n(q)$ and T the torus of diagonal matrices.

Then $Irr^{u}(G) = \{\chi \in Irr(G) \mid \chi \text{ occurs in } R_{T}^{G}(1)\}.$

Moreover, there is bijection

$$\mathcal{P}_n \leftrightarrow \operatorname{Irr}^u(G), \quad \lambda \leftrightarrow \chi_\lambda,$$

where \mathcal{P}_n denotes the set of partitions of *n*.

This bijection arises from $\operatorname{End}_{kG}(R_T^G(\mathbf{1})) \cong \mathcal{H}_{k,q}(S_n) \cong kS_n$.

The degrees of the unipotent characters are "polynomials in q":

$$\chi_{\lambda}(1) = q^{d(\lambda)} \frac{(q^n-1)(q^{n-1}-1)\cdots(q-1)}{\prod_{h(\lambda)}(q^h-1)},$$

with $d(\lambda) \in \mathbb{N}$, and $h(\lambda)$ runs through the hook lengths of λ .

Degrees of the unipotent characters of $GL_5(q)$

λ	$\chi_{\lambda}(1)$
(5)	1
(4, 1)	$q(q+1)(q^2+1)$
(3,2)	$q^2(q^4+q^3+q^2+q+1)$
(3,1 ²)	$q^{3}(q^{2}+1)(q^{2}+q+1)$
(2 ² , 1)	$q^4(q^4+q^3+q^2+q+1)$
$(2, 1^3)$	$q^{6}(q+1)(q^{2}+1)$
(1 ⁵)	q^{10}

JORDAN DECOMPOSITION OF CONJUGACY CLASSES

This is a model classification for Irr(G).

For $g \in G$ with Jordan decomposition g = us = su, we write $C_{u,s}^G$ for the *G*-conjugacy class containing *g*.

This gives a labelling

(In the above, the labels *s* and *u* have to be taken modulo conjugacy in *G* and $C_G(s)$, respectively.)

Moreover,
$$|C_{s,u}^G| = |G : C_G(s)||C_{1,u}^{C_G(s)}|.$$

This is the Jordan decomposition of conjugacy classes.

EXAMPLE: THE GENERAL LINEAR GROUP ONCE MORE

 $G = \operatorname{GL}_n(q), s \in G$ semisimple. Then

$$C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) imes \operatorname{GL}_{n_2}(q^{d_2}) imes \cdots imes \operatorname{GL}_{n_m}(q^{d_m})$$

with $\sum_{i=1}^{m} n_i d_i = n$. (This gives finitely many class types.)

Thus it suffices to classify the set of unipotent conjugacy classes \mathcal{U} of G.

By Linear Algebra we have

$$\mathcal{U} \longleftrightarrow \mathcal{P}_n = \{ \text{partitions of } n \}$$

 $C_{1,u}^{G} \longleftrightarrow$ (sizes of Jordan blocks of u)

This classification is generic, i.e., independent of *q*.

In general, i.e. for other groups, it depends slightly on q.

JORDAN DECOMPOSITION OF CHARACTERS

Let \mathbf{G}^* denote the reductive group dual to \mathbf{G} .

(Every reductive group has a dual, also reductive.)

EXAMPLES (1) If $\mathbf{G} = \operatorname{GL}_n(\mathbf{F})$, then $\mathbf{G}^* = \mathbf{G}$. (2) If $\mathbf{G} = \operatorname{SO}_{2m+1}(\mathbf{F})$, then $\mathbf{G}^* = \operatorname{Sp}_{2m}(\mathbf{F})$.

F gives rise to a Frobenius map on G^* , also denoted by F.

MAIN THEOREM (LUSZTIG; JORDAN DEC. OF CHAR'S, 1984)

Suppose that $Z(\mathbf{G})$ is connected. Then there is a bijection

 $Irr(G) \longleftrightarrow \{\chi_{s,\lambda} \mid s \in G^* \text{ semisimple }, \lambda \in Irr^u(\mathcal{C}_{G^*}(s))\}$

(where the $s \in G^*$ are taken modulo conjugacy in G^*). Moreover, $\chi_{s,\lambda}(1) = |G^* : C_{G^*}(s)|_{p'} \lambda(1)$.

The irreducible characters of $GL_n(q)$

Let $G = GL_n(q)$. Then

 $Irr(G) = \{\chi_{s,\lambda} \mid s \in G \text{ semisimple}, \lambda \in Irr^u(C_G(s))\}.$

We have $C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_m}(q^{d_m})$ with $\sum_{i=1}^m n_i d_i = n$.

Thus $\lambda = \lambda_1 \boxtimes \lambda_2 \boxtimes \cdots \boxtimes \lambda_m$ with $\lambda_i \in \operatorname{Irr}^u(\operatorname{GL}_{n_i}(q^{d_i})) \longleftrightarrow \mathcal{P}_{n_i}$.

Moreover,

$$\chi_{s,\lambda}(1) = \frac{(q^n - 1) \cdots (q - 1)}{\prod_{i=1}^m \left[(q^{d_i n_i} - 1) \cdots (q^{d_i} - 1) \right]} \prod_{i=1}^m \lambda_i(1).$$

Degrees of the irreducible characters of $GL_3(q)$

$C_G(s)$	λ	$\chi_{s,\lambda}(1)$	
$GL_1(q^3)$	(1)	$(q-1)^2(q+1)$	
$\operatorname{GL}_1(q^2) imes\operatorname{GL}_1(q)$	(1)⊠(1)	$(q-1)(q^2+q+1)$	
$GL_{1}(q)^{3}$	$(1) \boxtimes (1) \boxtimes (1)$	$(q+1)(q^2+q+1)$	
$\operatorname{GL}_2(q) imes \operatorname{GL}_1(q)$	(2) ⊠ (1) (1,1) ⊠ (1)	$q^2+q+1 \ q(q^2+q+1)$	
$\operatorname{GL}_3(q)$	(3) (2,1) (1,1,1)	$\begin{array}{c}1\\q(q+1)\\q^3\end{array}$	

(This example was already known to Steinberg.)

LUSZTIG SERIES

Lusztig (1988) also obtained a Jordan decomposition for Irr(G) in case $Z(\mathbf{G})$ is not connected, e.g. if $\mathbf{G} = SL_n(\mathbf{F})$ or $\mathbf{G} = Sp_{2m}(\mathbf{F})$ with *p* odd.

For such groups, $C_{\mathbf{G}^*}(s)$ is not always connected, and the problem is to define $\operatorname{Irr}^u(C_{G^*}(s))$, the unipotent characters.

The Jordan decomposition yields a partition

$$\operatorname{Irr}(G) = \bigcup_{[s] \subset G^*} \mathcal{E}(G, s),$$

where [*s*] runs through the semisimple G^* -conjugacy classes of G^* and $s \in [s]$.

By definition, $\mathcal{E}(G, s) = \{\chi_{s,\lambda} \mid \lambda \in Irr^u(C_{G^*}(s))\}.$

For example $\mathcal{E}(G, 1) = \operatorname{Irr}^{u}(G)$.

The sets $\mathcal{E}(G, s)$ are called rational Lusztig series.

JORDAN DECOMPOSITION IN POSITIVE CHARACTERISTIC?

Now assume that $0 < \operatorname{char}(k) = \ell \neq p$. Write $\operatorname{Irr}_{\ell}(G) := \operatorname{Irr}_{k}(G)$. Here, we also have a notion of unipotent characters, $\operatorname{Irr}_{\ell}^{u}(G)$. Investigations are guided by the following main conjecture.

CONJECTURE Suppose that $Z(\mathbf{G})$ is connected. Then there is a labelling

 $\mathsf{Irr}_{\ell}(G) \leftrightarrow \{\varphi_{s,\mu} \mid s \in G^* \text{ semisimple }, \ell \nmid |s|, \mu \in \mathsf{Irr}_{\ell}^{u}(C_{G^*}(s))\},$

such that $\varphi_{s,\mu}(1) = |G^*: C_{G^*}(s)|_{p'} \mu(1)$.

Moreover, $\varphi_{s,\mu}$ can be computed from μ .

Known to be true for $GL_n(q)$ (Dipper-James, 1980s) and if $C_{\mathbf{G}^*}(s)$ is a Levi subgroup of \mathbf{G}^* (Bonnafé-Rouquier, 2003). The truth of this conjecture would reduce the computation of $Irr_{\ell}(G)$ to unipotent characters.

GENERICITY

Recall that $|G| = q^N \prod_{i=1}^m \Phi_i(q)^{a_i}$, where Φ_i is the *i* th cyclotomic polynomial and $a_i \in \mathbb{N}$.

If $\ell \mid |G|$ but $\ell \nmid q$, there is a smallest $e \leq m$ with $a_e > 0$ such that $\ell \mid \Phi_e(q)$.

CONJECTURE (GECK)

If ℓ is not too small, there is a natural bijection $Irr^u(G) \leftrightarrow Irr^u_{\ell}(G)$. In particular, $Irr^u_{\ell}(G)$ can be classified independently of q.

CONJECTURE (GENERICITY CONJECTURE)

If ℓ is not too small, the values of the element of $\operatorname{Irr}_{\ell}^{u}(G)$ only depend on e, not on ℓ .

This would reduce the computation of $Irr_{\ell}^{u}(G)$ to finitely many cases: finitely many $e \leq m$, finitely many small primes ℓ .

End of Lecture III.

Thank you for your listening!