Computational Representation Theory of Finite Groups

Gerhard Hiss
Gerhard.Hiss@Math.RWTH-Aachen.DE
Lehrstuhl D für Mathematik, RWTH Aachen

Throughout my lecture, G denotes a finite group and K a field.

A K-representation of G of degree d is a

 homomorphism$$
\mathfrak{X}: G \rightarrow \mathrm{GL}(V),
$$

A K-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \mathrm{GL}(V),
$$

where V is a d-dimensional K-vector space.

Representations: Definitions

A K-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \mathrm{GL}(V),
$$

where V is a d-dimensional K-vector space.
\mathfrak{X} is irreducible, if V does not have any proper G-invariant subspaces.

Representations: Definitions

A K-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \mathrm{GL}(V),
$$

where V is a d-dimensional K-vector space.
\mathfrak{X} is irreducible, if V does not have any proper G-invariant subspaces.

Choosing a basis of V, we obtain a matrix representation $G \rightarrow \mathrm{GL}_{d}(K)$ to compute with.

Representations: Classification

- There are only finitely many irreducible K-representations of G up to equivalence.

Representations: Classification

- There are only finitely many irreducible K-representations of G up to equivalence.
- Classify all irreducible representations of G.

Representations: Classification

- There are only finitely many irreducible K-representations of G up to equivalence.
- Classify all irreducible representations of G.
- Describe all irreducible representations of all finite simple groups.

Representations:

- There are only finitely many irreducible K-representations of G up to equivalence.
- Classify all irreducible representations of G.
- Describe all irreducible representations of all finite simple groups.
- Use a computer for sporadic simple groups.

Representations can be constructed

Representations can be constructed

- from permutation representations,

Representations: Constructions

Representations can be constructed

- from permutation representations,
- from two representations through their Kronecker product,

Representations: Constructions

Representations can be constructed

- from permutation representations,
- from two representations through their Kronecker product,
- from representations through invariant subspaces,

Representations: Constructions

Representations can be constructed

- from permutation representations,
- from two representations through their Kronecker product,
- from representations through invariant subspaces,
- in various other ways.

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega}
$$

Permutation Representations

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega},
$$

where S_{Ω} denotes the symmetric group on Ω.

Permutation Representations

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega}
$$

where S_{Ω} denotes the symmetric group on Ω.
Let $K \Omega$ denote a K-vector space with basis Ω.

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega}
$$

where S_{Ω} denotes the symmetric group on Ω.
Let $K \Omega$ denote a K-vector space with basis Ω.
Replacing each $\kappa(g) \in S_{\Omega}$ by the corr. linear map $\mathfrak{X}(g)$ of $K \Omega$ (permuting its basis as $\kappa(g)$),

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega},
$$

where S_{Ω} denotes the symmetric group on Ω.
Let $K \Omega$ denote a K-vector space with basis Ω.
Replacing each $\kappa(g) \in S_{\Omega}$ by the corr. linear map $\mathfrak{X}(g)$ of $K \Omega$ (permuting its basis as $\kappa(g)$), we obtain a K-representation of G.

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G.

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G. For $v \in V$ and $g \in G$, write $v . g:=v \cdot \mathfrak{X}(g)$.

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G.

For $v \in V$ and $g \in G$, write $v . g:=v \cdot \mathfrak{X}(g)$. (V is a right $K G$-module.)

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G.

For $v \in V$ and $g \in G$, write $v . g:=v \cdot \mathfrak{X}(g)$. (V is a right $K G$-module.)

Let W be a G-invariant subspace of V, i.e.:

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G.
For $v \in V$ and $g \in G$, write $v . g:=v \cdot \mathfrak{X}(g)$.
(V is a right $K G$-module.)
Let W be a G-invariant subspace of V, i.e.:

$$
w \cdot g \in W \quad \text { for all } w \in W, g \in G .
$$

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a K-representation of G.
For $v \in V$ and $g \in G$, write $v . g:=v \cdot \mathfrak{X}(g)$.
(V is a right $K G$-module.)
Let W be a G-invariant subspace of V, i.e.:

$$
w . g \in W \quad \text { for all } w \in W, g \in G .
$$

We obtain K-representations
$\mathfrak{X}_{W}: G \rightarrow \mathrm{GL}(W)$ and $\mathfrak{X}_{V / W}: G \rightarrow \mathrm{GL}(V / W)$
in the natural way.

All Irreducible Representations

Iterating the constructions, e.g.,

All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,

All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,

All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,
- various others,

All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,
- various others,
and reductions via invariant subspaces,

All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,
- various others,
and reductions via invariant subspaces,
one obtains all irreducible representations of G.

The Meat-Axe

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K).

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K).

It was invented and developed by Richard Parker and Jon Thackray around 1980.

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K). It was invented and developed by Richard Parker and Jon Thackray around 1980.

Since then it has been improved and enhanced by many people, including Derek Holt, Gábor Ivanyos, Klaus Lux, Jürgen Müller, Sarah Rees, and Michael Ringe.

The Meat-Axe: Basic Problems

How does one find a non-trivial proper G-invariant subspace of V ?

The Meat-Axe: Basic Problems

How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.

How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.
- Indeed, given $0 \neq w \in W$, the orbit $\{w . g \mid g \in G\}$ spans a G-invariant subspace contained in W.

How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.
- Indeed, given $0 \neq w \in W$, the orbit $\{w . g \mid g \in G\}$ spans a G-invariant subspace contained in W.

How does one prove that \mathfrak{X} is irreducible?

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over K.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over K.
Put $\mathfrak{A}:=K\left[A_{1}, \ldots, A_{l}\right]$ (algebra span).

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over K.
Put $\mathfrak{A}:=K\left[A_{1}, \ldots, A_{l}\right]$ (algebra span).
Write A^{t} for the transpose of A, and $\mathfrak{A}^{t}:=K\left[A_{1}^{t}, \ldots, A_{l}^{t}\right]$.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over K.
Put $\mathfrak{A}:=K\left[A_{1}, \ldots, A_{l}\right]$ (algebra span).
Write A^{t} for the transpose of A, and $\mathfrak{A}^{t}:=K\left[A_{1}^{t}, \ldots, A_{l}^{t}\right]$.

Let $B \in \mathfrak{A}$.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over K.
Put $\mathfrak{A}:=K\left[A_{1}, \ldots, A_{l}\right]$ (algebra span).
Write A^{t} for the transpose of A, and $\mathfrak{A}^{t}:=K\left[A_{1}^{t}, \ldots, A_{l}^{t}\right]$.

Let $B \in \mathfrak{A}$.
Then one of the following occurs:

Norton's Irreducibility Criterion

1. B is invertible.

Norton's Irreducibility Criterion

1. B is invertible.

2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper \mathfrak{A}-invariant subspace.

Norton's Irreducibility Criterion

1. B is invertible.
2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper \mathfrak{A}-invariant subspace.
3. Every non-trivial vector in the (left) nullspace of B^{t} lies in a proper \mathfrak{A}^{t}-invariant subspace.

Norton's Irreducibility Criterion

1. B is invertible.
2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper \mathfrak{A}-invariant subspace.
3. Every non-trivial vector in the (left) nullspace of B^{t} lies in a proper \mathfrak{A}^{t}-invariant subspace.
4. \mathfrak{A} acts irreducibly on $K^{1 \times d}$.

The Meat-Axe: Basic Strategy

If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, put $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l$.

The Meat-Axe: Basic Strategy

$$
\text { If } G=\left\langle g_{1}, \ldots, g_{l}\right\rangle \text {, put } A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l .
$$

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

The Meat-Axe: Basic Strategy

If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, put $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l$.
Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w . \mathfrak{A}=K^{1 \times d}$. (Note that $w . \mathfrak{A}$ is G-invariant.)

The Meat-Axe: Basic Strategy

If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, put $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l$.
Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w . \mathfrak{A}=K^{1 \times d}$. (Note that $w . \mathfrak{A}$ is G-invariant.) If YES

The Meat-Axe: Basic Strategy

If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, put $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l$.
Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w . \mathfrak{A}=K^{1 \times d}$. (Note that $w . \mathfrak{A}$ is G-invariant.) If YES

For one $0 \neq w$ in the nullspace of B^{t} test if $w \cdot \mathfrak{A}^{t}=$ $K^{1 \times d}$.

The Meat-Axe: Basic Strategy

If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, put $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq l$.
Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w . \mathfrak{A}=K^{1 \times d}$. (Note that $w . \mathfrak{A}$ is G-invariant.) If YES

For one $0 \neq w$ in the nullspace of B^{t} test if $w \cdot \mathfrak{A}^{t}=$ $K^{1 \times d}$. If YES, \mathfrak{X} is irreducible.

The Meat-Axe: Remarks

The above strategy works very well if K is small.

The Meat-Axe: Remarks

The above strategy works very well if K is small.
As K gets larger, it gets harder to find a suitable B by a random search.

The above strategy works very well if K is small.
As K gets larger, it gets harder to find a suitable B by a random search.

Holt and Rees use characteristic polynomials of elements of \mathfrak{A} to find suitable $B \mathbf{s}$ and also to reduce the number of tests considerably.

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations:

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations:
http://web.mat.bham.ac.uk/atlas/v2.0/

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations:
http://web.mat.bham.ac.uk/atlas/v2.0/
These representations have been computed by Wilson and collaborators, e.g.,

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations:
http://web.mat.bham.ac.uk/atlas/v2.0/
These representations have been computed by Wilson and collaborators, e.g.,
the representation of M of degree 196882 over \mathbb{F}_{2} by Linton, Parker, Walsh, and Wilson.

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5 GB memory

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5 GB memory Order of an element: 2 seconds

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5GB memory
Order of an element: 2 seconds
Wilson: The Monster is a Hurwitz group (2001)

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5GB memory
Order of an element: 2 seconds
Wilson: The Monster is a Hurwitz group (2001) Hurwitz group: $(2,3,7)$-generating system

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5 GB memory
Order of an element: 2 seconds
Wilson: The Monster is a Hurwitz group (2001) Hurwitz group: (2,3,7)-generating system 10 years of CPU time

Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5 GB memory
Order of an element: 2 seconds
Wilson: The Monster is a Hurwitz group (2001)
Hurwitz group: $(2,3,7)$-generating system
10 years of CPU time
Holmes and Wilson:

- maximal subgroups of M,
e.g., PGL(2, 29) (2002), PSL(2,59) (2004)

A matrix of $M \leq \mathrm{GL}(196882,2)$: 5 GB memory
Order of an element: 2 seconds
Wilson: The Monster is a Hurwitz group (2001)
Hurwitz group: ($2,3,7$)-generating system
10 years of CPU time
Holmes and Wilson:

- maximal subgroups of M,
e.g., PGL(2,29) (2002), PSL(2,59) (2004)
- $\operatorname{PSL}(2,23)$, is not maximal (though in M)

Condensation

The Meat-Axe can reduce representations of degree up to 50000 over \mathbb{F}_{2}.

Condensation

The Meat-Axe can reduce representations of degree up to 50000 over \mathbb{F}_{2}.

Over larger fields, only smaller degrees are feasible.

The Meat-Axe can reduce representations of degree up to 50000 over \mathbb{F}_{2}.

Over larger fields, only smaller degrees are feasible.

To overcome this problem, Condensation is used (Thackray, Parker, ca. 1980).

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent,

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Get a functor: $\bmod -A \rightarrow \bmod -e A e, M \mapsto M e$.

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Get a functor: $\bmod -A \rightarrow \bmod -e A e, M \mapsto M e$.
If $S \in \bmod -A$ is simple, then $S e=0$ or simple.

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Get a functor: $\bmod -A \rightarrow \bmod -e A e, M \mapsto M e$.
If $S \in \bmod -A$ is simple, then $S e=0$ or simple.
If $S e \neq 0$ for all simple $S \in \bmod -A$,

Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Get a functor: $\bmod -A \rightarrow \bmod -e A e, M \mapsto M e$.
If $S \in \bmod -A$ is simple, then $S e=0$ or simple.
If $S e \neq 0$ for all simple $S \in \bmod -A$, then this functor is an equivalence of categories.

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e=e^{2}$ (a projection).

Get a functor: $\bmod -A \rightarrow \bmod -e A e, M \mapsto M e$.
If $S \in \bmod -A$ is simple, then $S e=0$ or simple.
If $S e \neq 0$ for all simple $S \in \bmod -A$, then this functor is an equivalence of categories.
(A and $e A e$ have the same representations.)

Condensation: ... and Practice, I

Let $H \leq G$ with $\operatorname{char}(K) \nmid|H|$.

Condensation: ... and Practice, I

Let $H \leq G$ with $\operatorname{char}(K) \nmid|H|$. Put

$$
e:=\frac{1}{|H|} \sum_{h \in H} h \in K G .
$$

Condensation: ... and Practice, I

Let $H \leq G$ with $\operatorname{char}(K) \nmid|H|$. Put

$$
e:=\frac{1}{|H|} \sum_{h \in H} h \in K G .
$$

Let $M:=K \Omega$ be the permutation module w.r.t. an action of G on the finite set Ω.

Condensation: . . . and Practice, I

Let $H \leq G$ with $\operatorname{char}(K) \nmid|H|$. Put

$$
e:=\frac{1}{|H|} \sum_{h \in H} h \in K G .
$$

Let $M:=K \Omega$ be the permutation module w.r.t. an action of G on the finite set Ω.

Then $M e$ is the set of H-fixed points in M.

Condensation:

Let $H \leq G$ with $\operatorname{char}(K) \nmid|H|$. Put

$$
e:=\frac{1}{|H|} \sum_{h \in H} h \in K G .
$$

Let $M:=K \Omega$ be the permutation module w.r.t. an action of G on the finite set Ω.

Then $M e$ is the set of H-fixed points in M.
For $g \in G$, need to describe action of ege on $M e$.

Condensation: ... and Practice, II

Let $\Omega_{1}, \ldots, \Omega_{m}$ be the H-orbits on Ω.

Condensation: . . . and Practice, II

Let $\Omega_{1}, \ldots, \Omega_{m}$ be the H-orbits on Ω.

The orbits sums $\widehat{\Omega_{j}} \in K \Omega$ form a basis of $M e$.

Condensation: ... and Practice, II

Let $\Omega_{1}, \ldots, \Omega_{m}$ be the H-orbits on Ω.

The orbits sums $\widehat{\Omega_{j}} \in K \Omega$ form a basis of $M e$.
W.r.t. this basis, the (i, j)-entry $a_{i j}$ of the matrix of ege on $M e$ equals

Condensation: ... and Practice, II

Let $\Omega_{1}, \ldots, \Omega_{m}$ be the H-orbits on Ω.

The orbits sums $\widehat{\Omega_{j}} \in K \Omega$ form a basis of $M e$.
W.r.t. this basis, the (i, j)-entry $a_{i j}$ of the matrix of ege on $M e$ equals

$$
a_{i j}=\frac{1}{\left|\Omega_{j}\right|}\left|\Omega_{i} g \cap \Omega_{j}\right| .
$$

Condensation: History
$H \leq E$
Heck $\mathrm{H}_{x} \mathrm{HH}_{\text {in }} \mathrm{FG}_{6}$

$$
\text { mull } x \text { as in } F \in \text {. }
$$

Porter double cases $H_{x} H$ Now maltrplicata

$$
\begin{aligned}
& H \times H \cdot H y H=H_{x} H_{y} H . \\
& \sigma_{H}=\text { in ape } \sigma\left(\sum_{\text {hat }} h\right) \\
& \sigma_{H}\left(x_{x} y\right)=\sigma\left(H_{x} H_{y} H\right)
\end{aligned}
$$

ruse Min line tovepinex.

Condensation: History

$$
\begin{aligned}
& H \leq E \\
& \text { Hecke } H_{x H} \text { in } \mathrm{FG}_{\mathrm{G}} \\
& \text { mulf } x \text { as in } F E \\
& \text { Postor dousle coes } \mathrm{H}_{x} \mathrm{H} \\
& \text { AVor multrplicalin } \\
& \mathrm{H} x \mathrm{H} \cdot \mathrm{H}_{y} \mathrm{H}=\mathrm{H}_{x} \mathrm{H}_{y} \mathrm{H} \\
& \sigma_{H}=\text { inaye } \sigma\left(\sum_{\text {hoH }} h\right) \\
& \sigma_{H}\left(x_{x} y\right)=\sigma\left(H_{x} H_{y} H\right) \\
& \text { tuse Mis lin tovelofiex. }
\end{aligned}
$$

Tradition und Bierkultur

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\operatorname{dim}(M)=976841775, \operatorname{dim}(M e)=1403$.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\operatorname{dim}(M)=976841775, \operatorname{dim}(M e)=1403$.
Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer trees of Ly modulo 37 and 67.

Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_{4}.
Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\operatorname{dim}(M)=976841775, \operatorname{dim}(M e)=1403$.
Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer trees of Ly modulo 37 and 67. $\operatorname{dim}(M)=1113229656$.

Association Schemes and Condensation

Suppose G acts transitively on Ω; $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$: orbits of G on $\Omega \times \Omega$ (orbitals)

Association Schemes and Condensation

Suppose G acts transitively on Ω; $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$: orbits of G on $\Omega \times \Omega$ (orbitals)
$\mathfrak{S}:=\left(\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}\right)$ association scheme on Ω

Association

Suppose G acts transitively on Ω; $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$: orbits of G on $\Omega \times \Omega$ (orbitals) $\mathfrak{S}:=\left(\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}\right)$ association scheme on Ω
\mathcal{O}_{j} is a regular graph (on the vertex set Ω); let A_{j} denote its adjacency matrix.

Association Schemes and

Suppose G acts transitively on Ω; $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$: orbits of G on $\Omega \times \Omega$ (orbitals) $\mathfrak{S}:=\left(\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}\right)$ association scheme on Ω
\mathcal{O}_{j} is a regular graph (on the vertex set Ω); let A_{j} denote its adjacency matrix.
$\mathfrak{B}:=\mathbb{C}\left[A_{1}, \ldots, A_{m}\right]$ Bose-Mesner algebra of \mathfrak{S}

Suppose G acts transitively on Ω;
$\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$: orbits of G on $\Omega \times \Omega$ (orbitals)
$\mathfrak{S}:=\left(\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}\right)$ association scheme on Ω
\mathcal{O}_{j} is a regular graph (on the vertex set Ω); let A_{j} denote its adjacency matrix.
$\mathfrak{B}:=\mathbb{C}\left[A_{1}, \ldots, A_{m}\right]$ Bose-Mesner algebra of \mathfrak{S}
$\left|\Omega_{i} g \cap \Omega_{j}\right|$ structure constants of \mathfrak{B}, the intersection numbers of \mathfrak{S}
(Ω_{j} orbits of $H:=\operatorname{Stab}\left(\omega_{1}\right)$ on Ω)

Let $m \geq n>0$ be integers.

Foulkes' Conjecture

Let $m \geq n>0$ be integers.

$S_{m} \backslash S_{n} \leq S_{m n}$ and $S_{n} \imath S_{m} \leq S_{m n}$.

Foulkes' Conjecture

Let $m \geq n>0$ be integers.

$S_{m} 2 S_{n} \leq S_{m n}$ and $S_{n} 2 S_{m} \leq S_{m n}$.
$\Omega_{m, n}$: set of cosets of $S_{m} 2 S_{n}$ in $S_{m n}$.

Foulkes' Conjecture

Let $m \geq n>0$ be integers.
$S_{m} 乙 S_{n} \leq S_{m n}$ and $S_{n} \imath S_{m} \leq S_{m n}$.
$\Omega_{m, n}$: set of cosets of S_{m} 乙 S_{n} in $S_{m n}$.
Conjecture (Foulkes, 1950):

Foulkes' Conjecture

Let $m \geq n>0$ be integers.
$S_{m} \imath S_{n} \leq S_{m n}$ and $S_{n} \imath S_{m} \leq S_{m n}$.
$\Omega_{m, n}$: set of cosets of S_{m} 乙 S_{n} in $S_{m n}$.
Conjecture (Foulkes, 1950):
$\mathbb{Q} \Omega_{m, n} \leq \mathbb{Q} \Omega_{n, m}$, as $\mathbb{Q} S_{m n}$-modules.

Black, List, 1989:

Black, List, 1989:

- define (0,1)-matrix $M^{m, n}$ of size $\left|\Omega_{n, m}\right| \times\left|\Omega_{m, n}\right|$

Foulkes' Conjecture: Black, List

Black, List, 1989:

- define (0,1)-matrix $M^{m, n}$ of size $\left|\Omega_{n, m}\right| \times\left|\Omega_{m, n}\right|$
- if $M^{m, n}$ has maximal rank, than Foulkes' conjecture holds

Black, List, 1989:

- define $(0,1)$-matrix $M^{m, n}$ of size $\left|\Omega_{n, m}\right| \times\left|\Omega_{m, n}\right|$
- if $M^{m, n}$ has maximal rank, than Foulkes' conjecture holds
- if $M^{m, m}$ is invertible, than $M^{m, n}$ has maximal rank for all $n \leq m$

Black, List, 1989:

- define $(0,1)$-matrix $M^{m, n}$ of size $\left|\Omega_{n, m}\right| \times\left|\Omega_{m, n}\right|$
- if $M^{m, n}$ has maximal rank, than Foulkes' conjecture holds
- if $M^{m, m}$ is invertible, than $M^{m, n}$ has maximal rank for all $n \leq m$
- $M^{2,2}$ and $M^{3,3}$ are invertible
$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 乙 S_{m}$.

Foulkes' Conj.: Jacob, Müller, Neunh.

$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 乙 S_{m}$.
Use Condensation to compute intersection numbers.

Foulkes' Conj.: Jacob, Müller, Neunh.

$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 2 S_{m}$.
Use Condensation to compute intersection numbers.
Size of $M^{4,4}: \quad 16!/(4!)^{5}=2627625$.
$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 2 S_{m}$.
Use Condensation to compute intersection numbers.
Size of $M^{4,4}: \quad 16!/(4!)^{5}=2627625$.
Jacob, 2004: $M^{4,4}$ is invertible.
$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 2 S_{m}$.
Use Condensation to compute intersection numbers.
Size of $M^{4,4}: \quad 16!/(4!)^{5}=2627625$.
Jacob, 2004: $M^{4,4}$ is invertible.
Size of $M^{5,5}: \quad 25!/(5!)^{6}=5194672859376$.
$M^{m, m}$ is an adjacency matrix of the action of $S_{m^{2}}$ on the cosets of $S_{m} 2 S_{m}$.
Use Condensation to compute intersection numbers.
Size of $M^{4,4}: \quad 16!/(4!)^{5}=2627625$.
Jacob, 2004: $M^{4,4}$ is invertible.
Size of $M^{5,5}: \quad 25!/(5!)^{6}=5194672859376$.
Müller, Neunhöffer, 2004: $M^{5,5}$ is singular.

Ramanujan Graphs

A k-regular undirected graph Γ with

$$
\lambda(\Gamma) \leq 2 \sqrt{k-1},
$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).

A k-regular undirected graph Γ with

$$
\lambda(\Gamma) \leq 2 \sqrt{k-1},
$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).

Here,

$$
\lambda(\Gamma)=\max \{|a| \mid a \text { eigenvalue of } A(\Gamma),|a|<k\},
$$

A k-regular undirected graph Γ with

$$
\lambda(\Gamma) \leq 2 \sqrt{k-1},
$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).

Here,

$$
\lambda(\Gamma)=\max \{|a| \mid a \text { eigenvalue of } A(\Gamma),|a|<k\},
$$

where $A(\Gamma)$ is the adjacency matrix of Γ.

Orbital Graphs as Ramanujan Graphs

Suppose G acts transitively on Ω with orbitals $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$, adjacency matrices A_{1}, \ldots, A_{m}.

Orbital

Suppose G acts transitively on Ω with orbitals $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$, adjacency matrices A_{1}, \ldots, A_{m}.

The eigenvalues of the A_{j} can be computed from the intersection numbers, hence with Condensation.

Suppose G acts transitively on Ω with orbitals $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$, adjacency matrices A_{1}, \ldots, A_{m}.

The eigenvalues of the A_{j} can be computed from the intersection numbers, hence with Condensation.

If the Bose-Mesner algebra is commutative, these eigenvalues are entries of its character table.

Example: $G=J_{2}$

$\Omega=G / H$ with $H=2^{2+4} .\left(3 \times S_{3}\right)$

Example: $G=J_{2}$

$\Omega=G / H$ with $H=2^{2+4} .\left(3 \times S_{3}\right)$
Character table of Bose-Mesner algebra:

J_{2}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
χ_{1}	1	192	96	192	12	32
χ_{2}	1	-18	6	2	-3	12
χ_{3}	1	-28	16	12	7	-8
χ_{4}	1	0	-12	12	0	-1
χ_{5}	1	10	-2	-18	5	4
χ_{6}	1	6	6	-6	-3	-4

Sporadic Ramanujan Graphs

In the above example, the graph \mathcal{O}_{4} is a

 192-regular Ramanujan graph on 525 vertices
Sporadic Ramanujan Graphs

In the above example, the graph \mathcal{O}_{4} is a

 192-regular Ramanujan graph on 525 vertices(since $18 \leq 2 \sqrt{192-1} \approx 27.64$).

Sporadic Ramanujan

In the above example, the graph \mathcal{O}_{4} is a 192-regular Ramanujan graph on 525 vertices
(since $18 \leq 2 \sqrt{192-1} \approx 27.64$).
Ines Höhler, 2001: computed 221 of the 245 character tables of commutative association schemes occurring in sporadic groups (Breuer-Lux list).

In the above example, the graph \mathcal{O}_{4} is a 192-regular Ramanujan graph on 525 vertices (since $18 \leq 2 \sqrt{192-1} \approx 27.64$).

Ines Höhler, 2001: computed 221 of the 245 character tables of commutative association schemes occurring in sporadic groups (Breuer-Lux list).

She found 358 Ramanujan graphs.

Thank you for your attention!

