IMPRIMITIVE IRREDUCIBLE REPRESENTATIONS OF FINITE QUASISIMPLE GROUPS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Matrix Group Recognition July 27 – 31, 2009 International Centre for Mathematical Sciences

THE PROJECT

This is a joint project with William Husen and Kay Magaard.

PROJECT

Classify the pairs $(G, G \hookrightarrow SL(V))$ such that

- G is a finite quasisimple group,
- **2** V a finite dimensional vector space over some field K,
- **6** $G \hookrightarrow SL(V)$ is absolutely irreducible and imprimitive.

DEFINITION

Let G be a finite group, K a field and V a KG-module.

V is imprimitive, if there is a decomposition $V = V_1 \oplus \cdots \oplus V_m$, m > 1, such that the V_i are permuted by the action of *G*. We call $H := N_G(V_1)$ a block stabiliser.

(OUTER) TENSOR PRODUCTS

THEOREM (ASCHBACHER, 2000)

Let *K* be an algebraically closed field, let G_i be finite groups, and let V_i be finite-dimensional KG_i -modules for i = 1, 2. Then the $K[G_1 \times G_2]$ -module $V_1 \boxtimes_K V_2$ is primitive, if and only if V_i is a primitive KG_i -module for i = 1, 2.

The proof is trickier than one would expect.

EXAMPLE (I FORGOT, WHO TOLD ME THIS)

Let $G = J_2$ and $K = \mathbb{C}$ (and we replace modules by characters).

 $\chi:=\chi_2=14$ and $\psi:=\chi_{18}=225$ are primitive, but

$$\chi \cdot \psi = \mathrm{Ind}_{H}^{G}(6)$$

is imprimitive, where $H = 2^{2+4}$: $(3 \times S_3)$.

MOTIVATION I: MAXIMAL SUBGROUPS

Let Cl(V) be a finite classical group on the *K*-vector space *V*.

Let *G* be a finite quasisimple subgroup of Cl(V), such that $G \hookrightarrow Cl(V)$ is absolutely irreducible.

When is $N_{Cl(V)}(G)$ a maximal subgroup of Cl(V)?

NO in general, if V is imprimitive, i.e. in Aschbacher class C_2 :

P. KLEIDMAN AND M. LIEBECK, The subgroup structure of the finite classical groups, CUP, 1990.

Similar classification project of quasisimple groups in Aschbacher class C_4 (tensor decomposable representations) is contained in:

K. MAGAARD AND P. H. TIEP, Irreducible tensor products of representations of finite quasi-simple groups of Lie type, 1998.

MOTIVATION II: MATRIX GROUPS COMPUTATION

- Given an absolutely irreducible matrix group G ≤ GL_n(K) for some finite field K, and some quasisimple (or nearly simple) group G, decide if G lies in Aschbacher class C₂.
- If the isomorphism type of *G* is known, a table look-up in our lists might help to answer this question.
- To cover nearly simple groups, we would also have to give information about extensions of imprimitive modules to automorphism groups.

SPORADIC SIMPLE GROUPS

Complete list of examples for sporadic simple groups:

G	dim(V)	$N_G(V_1)$	<i>V</i> ₁	char(K)
<i>M</i> 11	11 55	$A_6.2_3$ $3^2: Q_8.2$	1 ₂ 1 ₃	0, 5, 11
<i>M</i> ₁₂	66 120	A ₆ .2 ² M ₁₁	1 ₃ 10 ₂ , 10 ₃	0, 5, 11 0, 5
<i>M</i> ₂₂	231	$2^4: A_6$	$3_1, 3_2$	3
<i>M</i> ₂₄	1 771	2 ⁶ : 3. <i>S</i> ₆	1 ₂	0, 5, 7, 11, 23
McL	9625	<i>U</i> ₄ (3)	$35_1, 35_2$	0, 5, 7, 11
Co ₂	1 288 000 2 095 875	<i>U</i> ₆ (2): 2 2 ¹⁰ : <i>M</i> ₂₂ : 2	$560_1, 560_2 \\ 45_2, 45_4$	0, 5, 7, 23 0, 3, 5, 23

There are a few more examples for covering groups of these.

The alternating groups, $K = \mathbb{C}$

Again we replace modules by characters.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)

Suppose that $G = A_n$, $n \ge 10$, and let $\chi \in Irr(G)$ be imprimitive. Then one of the following holds.

•
$$n = m^2 + 1$$
 and $\chi = \operatorname{Res}_{A_n}^{S_n}(\zeta^{\lambda})$ with $\lambda = (m + 1, m^{m-1})$.
Also, $\chi = \operatorname{Ind}_{A_{n-1}}^G(\chi_1)$ with χ_1 a constituent of $\operatorname{Res}_{A_{n-1}}^{S_{n-1}}(\zeta^{\mu})$
with $\mu = (m^m)$.
• $n = 2m$ and $\chi = \operatorname{Res}_{A}^{S_n}(\zeta^{\lambda})$ with $\lambda = (m + 1, 1^{m-1})$.

Also,
$$\chi = Ind_{N_{A_n}(S_m \times S_m)}^G(\chi_1)$$
 with $\chi_1(1) = 1$.

The classification for A_n is complete in all characteristics.

The covering groups of the alternating groups, $K = \mathbb{C}$

THEOREM (DANIEL NETT, FELIX NOESKE, 2009)

Suppose that $G = 2.A_n$, $n \ge 10$, is the covering group of A_n , and let $\psi \in Irr(G)$ be imprimitive.

Then
$$n = 1 + m(m+1)/2$$
, and $\psi = \operatorname{Res}_{2.A_n}^{2.S_n}(\sigma^{\lambda})$ with

$$\lambda = (m + 1, m - 1, m - 2, ..., 1)$$

Also,
$$\psi = \operatorname{Ind}_{2,A_{n-1}}^{2,A_n}(\psi_1)$$
 with ψ_1 a constituent of $\operatorname{Res}_{2,A_{n-1}}^{2,S_{n-1}}(\sigma^{\mu})$
with $\mu = (m, m-1, \dots, 1)$.

The classification for $2.A_n$ in positive characteristics is still open.

GROUPS OF LIE TYPE IN DEFINING CHARACTERISTICS

THEOREM (GARY SEITZ, 1988)

Let G be a finite quasisimple group of Lie type of characteristic p, and let K be an algebraically closed field with char(K) = p.

Suppose that V is an irreducible, imprimitive KG-module.

Then G is one of

 $PSL_{2}(5), PSL_{2}(7), SL_{3}(2), PSp_{4}(3),$

and V is the Steinberg module.

Some easy characteristic-free criteria

Let *G* be a finite group, $H \le G$, and *K* a field. Suppose that *H* is the block stabiliser of an absolutely irreducible, imprimitive *KG*-module *V*. Then

• [G: H] divides dim_K(V).

$$|H|^2 \ge |G|.$$

- So For all $t \in G \setminus H$, the group ${}^{t}H \cap H$ is **not** centralised by *t*. In particular ${}^{t}H \cap H \neq \{1\}$ for all $t \in G$.
- Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle {}^ta, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $V = \text{Ind}_{H}^{G}(V_{1}) = KG \otimes_{KH} V_{1}$. **Proof** of 2: $[G : H]^{2} \leq \dim_{K}(V)^{2} \leq |G|$. **Proof** of 3: This is a consequence of Mackey's theorem. **Proof** of 4: For $t \in G$, ${}^{t}H \cap H = C_{G}({}^{t}a, a)$. Hence $t \notin \langle {}^{t}a, a \rangle$ for $t \in G \setminus H$, since such a *t* does not centralise ${}^{t}H \cap H$ by 3.

NON-PARABOLIC BLOCK STABILISERS

Large subgroups of groups of Lie type are **in general** parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let $G = \operatorname{Sp}_{2m}(q)$ with m even and q > 3 odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \operatorname{Sp}_m(q) \times \operatorname{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Put $a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}$, where α is a generator of \mathbb{F}_q^* . Then $H_0 = C_G(a)$. Put $t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix}$ with $N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $t \in C_G(s) \setminus H$ and $t \in \langle {}^ta, a \rangle$, hence t centralises ${}^tH \cap H$. In particular, H is not the block stabiliser of an imprimitive irreducible KG-module.

PARABOLIC BLOCK STABILISERS

Let *G* be a finite quasisimple group of Lie type of characteristic *p*, and let *K* be a field of characteristic $\neq p$.

THEOREM-CONJECTURE

Let $H \leq G$ be the block stabiliser of an absolutely irreducible, imprimitive KG-module. Then H is a parabolic subgroup of G.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U $(= O_p(P))$.

Let V_1 be a KP-module such that $\operatorname{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1 .

In other words, $\operatorname{Ind}_{P}^{G}(V_{1})$ is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification problem, reducing certain aspects to Weyl groups.

ASYMPTOTICS

By Harish-Chandra theory, a large proportion of absolutely irreducible modules of a group of Lie type are imprimitive.

Remark

Let L be a Levi complement of the parabolic subgroup P of G, and let V₁ be an irreducible KL-module which is rigid. This means, roughly, that the stabiliser of V₁ in $N_G(L)$ equals L. Then $Ind_P^G(Infl_L^P(V_1))$ is irreducible.

EXAMPLES

(1) $G = GL_n(q)$, $L = GL_m(q) \times GL_{n-m}(q)$ with $m \neq n - m$. Then every absolutely irreducible KL-module is rigid.

(2) Let $G = SL_n(q)$, $K = \mathbb{C}$. Then $|Irr(G)| = q^{n-1} + O(q^{n-2})$. The number of imprimitive elements in Irr(G) equals $(1 - 1/n)q^{n-1} + O(q^{n-2})$.

EXAMPLE: $SL_2(q)$, q even

	<i>C</i> ₁	<i>C</i> ₂	$C_3(a)$	$C_4(b)$
χ1	1	1	1	1
χ2	q	0	$\frac{1}{\zeta^{am}+\zeta^{-am}}$	-1
χ ₃ (<i>m</i>)	<i>q</i> + 1	1	$\zeta^{am} + \zeta^{-am}$	0
χ ₄ (<i>n</i>)	<i>q</i> – 1	-1	0	$-\xi^{bn}-\xi^{-bn}$
	1			

 $a, m = 1, \dots, (q-2)/2, \qquad b, n = 1, \dots, q/2,$

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

Number of irreducible characters: q + 1.

Number of imprimitive irreducible characters: q/2 - 1.

THE CLASSIFICATION FOR $GL_n(q)$

Let $G = GL_n(q)$, $K = \mathbb{C}$. A unipotent character of *G* is an irreducible constituent of the permutation character on the cosets of a Borel subgroup of *G* (the group of upper triangular matries).

By Lusztig-theory, we have

Irr(*G*) = { $\chi_{s,\lambda}$ | $s \in G$ semisimple, $\lambda \in Irr(C_G(s))$ unipotent}.

Here, *s* has to be taken modulo conjugation in *G*. Notice that

$$C_G(s) \cong \operatorname{GL}_{n_1}(q^{d_1}) \times \operatorname{GL}_{n_2}(q^{d_2}) \times \cdots \times \operatorname{GL}_{n_k}(q^{d_k}).$$

THEOREM

 $\chi_{s,\lambda} \in Irr(G)$ is Harish-Chandra primitive if and only if the minimal polynomial of s is irreducible. In particular, every unipotent character is Harish-Chandra primitive.

DESCENT FROM $GL_n(q)$ to $SL_n(q)$

The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe. Suppose that $K = \mathbb{C}$.

EXAMPLE (CÉDRIC BONNAFÉ)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let **1** denote the trivial character and $\mathbf{1}^-$ the unique linear character of $GL_2(q)$ of order 2.

Then $\chi := \text{Ind}_{P}^{G}(\text{Infl}_{L}^{P}(\mathbf{1} \boxtimes \mathbf{1}^{-}))$ is irreducible, hence imprimitive. However, $\text{Res}_{\text{SL}_{4}(q)}^{G}(\chi) = \psi_{1} + \psi_{2}$, with irreducible, **primitive** characters ψ_{1}, ψ_{2} .

THEOREM

Let $\chi \in Irr(GL_n(q))$ be Harish-Chandra primitive. Then $\operatorname{Res}_{SL_n(q)}^{GL_n(q)}(\chi)$ is irreducible and primitive.

Thank you for listening!