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THE PROJECT

This is a joint project with William Husen and Kay Magaard.

PROJECT

Classify the pairs (G,G ↪→ SL(V )) such that

1 G is a finite quasisimple group,
2 V a finite dimensional vector space over some field K ,
3 G ↪→ SL(V ) is absolutely irreducible and imprimitive.

DEFINITION

Let G be a finite group, K a field and V a KG-module.
V is imprimitive, if there is a decomposition V = V1 ⊕ · · · ⊕ Vm,
m > 1, such that the Vi are permuted by the action of G.
We call H := NG(V1) a block stabiliser.
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(OUTER) TENSOR PRODUCTS

THEOREM (ASCHBACHER, 2000)
Let K be an algebraically closed field, let Gi be finite groups,
and let Vi be finite-dimensional KGi -modules for i = 1,2.
Then the K [G1 × G2]-module V1 �K V2 is primitive, if and only if
Vi is a primitive KGi -module for i = 1,2.

The proof is trickier than one would expect.

EXAMPLE (I FORGOT, WHO TOLD ME THIS)
Let G = J2 and K = C (and we replace modules by characters).
χ := χ2 = 14 and ψ := χ18 = 225 are primitive, but

χ · ψ = IndG
H(6)

is imprimitive, where H = 22+4
: (3 × S3).



THE PROJECT AND EARLIER RESULTS GROUPS OF LIE TYPE IN NON-DEFINING CHARACTERISTIC

MOTIVATION I: MAXIMAL SUBGROUPS

Let Cl(V ) be a finite classical group on the K -vector space V .

Let G be a finite quasisimple subgroup of Cl(V ), such that
G ↪→ Cl(V ) is absolutely irreducible.

When is NCl(V )(G) a maximal subgroup of Cl(V )?

NO in general, if V is imprimitive, i.e. in Aschbacher class C2:

P. KLEIDMAN AND M. LIEBECK, The subgroup structure of
the finite classical groups, CUP, 1990.

Similar classification project of quasisimple groups in
Aschbacher class C4 (tensor decomposable representations) is
contained in:

K. MAGAARD AND P. H. TIEP, Irreducible tensor products of
representations of finite quasi-simple groups of Lie type,
1998.
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MOTIVATION II: MATRIX GROUPS COMPUTATION

Given an absolutely irreducible matrix group G ≤ GLn(K )
for some finite field K , and some quasisimple (or nearly
simple) group G, decide if G lies in Aschbacher class C2.

If the isomorphism type of G is known, a table look-up in
our lists might help to answer this question.

To cover nearly simple groups, we would also have to give
information about extensions of imprimitive modules to
automorphism groups.
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SPORADIC SIMPLE GROUPS

Complete list of examples for sporadic simple groups:

G dim(V ) NG(V1) V1 char(K )

M11
11
55

A6.23

32
: Q8.2

12

13
0,5,11

M12
66

120
A6.22

M11

13

102,103

0,5,11
0,5

M22 231 24
: A6 31,32 3

M24 1 771 26
: 3.S6 12 0,5,7,11,23

McL 9 625 U4(3) 351,352 0,5,7,11

Co2
1 288 000
2 095 875

U6(2) : 2
210

: M22 : 2
5601,5602

452,454

0,5,7,23
0,3,5,23

There are a few more examples for covering groups of these.
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THE ALTERNATING GROUPS, K = C

Again we replace modules by characters.

THEOREM (DRAGOMIR DJOKOVIĆ, JERRY MALZAN, 1976)
Suppose that G = An, n ≥ 10, and let χ ∈ Irr(G) be imprimitive.
Then one of the following holds.

1 n = m2
+ 1 and χ = ResSn

An
(ζ λ) with λ = (m + 1,mm−1) .

Also, χ = IndG
An−1

(χ1) with χ1 a constituent of ResSn−1
An−1

(ζµ)

with µ = (mm) .

2 n = 2m and χ = ResSn
An
(ζ λ) with λ = (m + 1,1m−1) .

Also, χ = IndG
NAn (Sm×Sm)

(χ1) with χ1(1) = 1.

The classification for An is complete in all characteristics.
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THE COVERING GROUPS OF THE ALTERNATING GROUPS,
K = C

THEOREM (DANIEL NETT, FELIX NOESKE, 2009)
Suppose that G = 2.An, n ≥ 10, is the covering group of An,
and let ψ ∈ Irr(G) be imprimitive.
Then n = 1 + m(m + 1)/2, and ψ = Res2.Sn

2.An
(σ λ) with

λ = (m + 1,m − 1,m − 2, . . . ,1) .

Also, ψ = Ind2.An
2.An−1

(ψ1) with ψ1 a constituent of Res2.Sn−1
2.An−1

(σµ)

with µ = (m,m − 1, . . . ,1) .

The classification for 2.An in positive characteristics is still open.
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GROUPS OF LIE TYPE IN DEFINING CHARACTERISTICS

THEOREM (GARY SEITZ, 1988)
Let G be a finite quasisimple group of Lie type of
characteristic p, and let K be an algebraically closed field with
char(K ) = p.

Suppose that V is an irreducible, imprimitive KG-module.

Then G is one of

PSL2(5),PSL2(7),SL3(2),PSp4(3),

and V is the Steinberg module.
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SOME EASY CHARACTERISTIC-FREE CRITERIA

Let G be a finite group, H ≤ G, and K a field.
Suppose that H is the block stabiliser of an absolutely
irreducible, imprimitive KG-module V . Then

1 [G : H] divides dimK (V ).
2 |H|

2
≥ |G|.

3 For all t ∈ G \ H, the group tH ∩ H is not centralised by t .
In particular tH ∩ H 6= {1} for all t ∈ G.

4 Suppose that H = CG(a) for some a ∈ G. Then t 6∈ 〈
ta,a〉

for all t ∈ G \ H.

Proof of 1: Clear, since V = IndG
H(V1) = KG ⊗KH V1.

Proof of 2: [G : H]
2

≤ dimK (V )2 ≤ |G|.
Proof of 3: This is a consequence of Mackey’s theorem.
Proof of 4: For t ∈ G, tH ∩ H = CG(

ta,a). Hence t 6∈ 〈
ta,a〉 for

t ∈ G \ H, since such a t does not centralise tH ∩ H by 3.
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NON-PARABOLIC BLOCK STABILISERS

Large subgroups of groups of Lie type are in general parabolic
subgroups.
There are, however, many exceptions, causing a lot of trouble.

EXAMPLE

Let G = Sp2m(q) with m even and q > 3 odd, and let

H = 〈H0, s〉 with H0 = Spm(q)× Spm(q) and s =

[
0 Im
Im 0

]
.

Put a =

[
αIm 0
0 α−1Im

]
, where α is a generator of F∗

q.

Then H0 = CG(a).

Put t :=

[
Im N
N Im

]
with N :=

[
0 0
1 0

]
.

Then t ∈ CG(s) \ H and t ∈ 〈
ta,a〉, hence t centralises tH ∩ H.

In particular, H is not the block stabiliser of an imprimitive
irreducible KG-module.
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PARABOLIC BLOCK STABILISERS

Let G be a finite quasisimple group of Lie type of
characteristic p, and let K be a field of characteristic 6= p.

THEOREM-CONJECTURE

Let H ≤ G be the block stabiliser of an absolutely irreducible,
imprimitive KG-module. Then H is a parabolic subgroup of G.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U
(= Op(P)).

Let V1 be a KP-module such that IndG
P (V1) is irreducible.

Then U is in the kernel of V1.
In other words, IndG

P (V1) is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification
problem, reducing certain aspects to Weyl groups.
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ASYMPTOTICS

By Harish-Chandra theory, a large proportion of absolutely
irreducible modules of a group of Lie type are imprimitive.

REMARK

Let L be a Levi complement of the parabolic subgroup P of G,
and let V1 be an irreducible KL-module which is rigid. This
means, roughly, that the stabiliser of V1 in NG(L) equals L.
Then IndG

P (InflP
L (V1)) is irreducible.

EXAMPLES

(1) G = GLn(q), L = GLm(q)× GLn−m(q) with m 6= n − m. Then
every absolutely irreducible KL-module is rigid.
(2) Let G = SLn(q), K = C. Then |Irr (G)| = qn−1

+ O(qn−2).
The number of imprimitive elements in Irr(G) equals
(1 − 1/n)qn−1

+ O(qn−2).
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EXAMPLE: SL2(q), q EVEN

C1 C2 C3(a) C4(b)

χ1 1 1 1 1

χ2 q 0 1 −1

χ3(m) q + 1 1 ζ am
+ ζ−am 0

χ4(n) q − 1 −1 0 −ξbn
− ξ−bn

a,m = 1, . . . , (q − 2)/2, b,n = 1, . . . ,q/2,

The characters χ3(m) are imprimitive, the others are primitive.

Number of irreducible characters: q + 1.

Number of imprimitive irreducible characters: q/2 − 1.
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THE CLASSIFICATION FOR GLn(q)

Let G = GLn(q), K = C. A unipotent character of G is an
irreducible constituent of the permutation character on the
cosets of a Borel subgroup of G (the group of upper triangular
matries).
By Lusztig-theory, we have

Irr(G) = {χs,λ | s ∈ G semisimple, λ ∈ Irr(CG(s)) unipotent}.

Here, s has to be taken modulo conjugation in G.
Notice that

CG(s) ∼= GLn1(q
d1)× GLn2(q

d2)× · · · × GLnk (q
dk ).

THEOREM

χs,λ ∈ Irr(G) is Harish-Chandra primitive if and only if the
minimal polynomial of s is irreducible. In particular, every
unipotent character is Harish-Chandra primitive.
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DESCENT FROM GLn(q) TO SLn(q)

The descent from GLn(q) to SLn(q) is not so easy to describe.
Suppose that K = C.

EXAMPLE (CÉDRIC BONNAFÉ)
Suppose that q is odd, let G = GL4(q) and P a parabolic
subgroup with Levi complement L = GL2(q)× GL2(q).
Let 1 denote the trivial character and 1− the unique linear
character of GL2(q) of order 2.
Then χ := IndG

P (InflP
L (1 � 1−)) is irreducible, hence imprimitive.

However, ResG
SL4(q)(χ) = ψ1 + ψ2, with irreducible, primitive

characters ψ1, ψ2.

THEOREM

Let χ ∈ Irr(GLn(q)) be Harish-Chandra primitive.
Then ResGLn(q)

SLn(q)
(χ) is irreducible and primitive.
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Thank you for listening!
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