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MAXIMAL SUBGROUPS OF FINITE GROUPS

Given a finite group G, determine its maximal subgroups; these
correspond to the primitive permutation representations of G;
moreover, every subgroup of G is contained in a maximal one.

Given a series of finite groups, describe their maximal
subgroups in a uniform way.

Determine the maximal subgroups of the finite simple groups.

A large portion of these are closely related to classical groups.
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THE CLASSIFICATION OF THE FINITE SIMPLE GROUPS

Groups describe symmetry.

The finite simple groups constitute the elements of symmetry.

THEOREM

Every finite simple group is one of

1 26 sporadic simple groups; or

2 an alternating group Am with m ≥ 5; or

3 a finite group of Lie type; or

4 a cyclic group of prime order.

Only the groups in 4 are abelian.
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QUASISIMPLE GROUPS

Along with the simple groups come the quasisimple groups.

DEFINITION

A finite group G is quasisimple, if
1 G is perfect, i.e. G = [G,G], and

2 G/Z (G) is simple (and then nonabelian).

REMARK

Let S be a nonabelian finite simple group.
1 There is a largest quasisimple group Ŝ with Ŝ/Z (Ŝ) ∼= S.

2 Ŝ is uniquely determined by S (up to isomorphism).

3 Ŝ is a universal central extension of S.

4 Ŝ is called the Schur covering group of S.
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THE FINITE CLASSICAL GROUPS, I

Let k be a finite field of characteristic p, V an n-dimensional
k -vector space, and X a finite classical group on V .

To be more specific, V = Fn
q (i.e. k = Fq for some q = pf ), and

1 X = SL(V ) = SLn(q) (n ≥ 2), or

2 X = Sp(V ) = Spn(q) (n ≥ 4 even), or

3 X = Ω(V ) = Ωn(q) (n ≥ 7 odd), or

4 X = Ω(V )± = Ω±n (q) (n ≥ 8 even), or

V = Fn
q2 (i.e. k = Fq2), and

5 X = SU(V ) = SUn(q) (n ≥ 3).

In Cases 2–5, the group X is the stabilizer of a non-degenerate
form (symplectic, quadratic or hermitian) on V .
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THE FINITE CLASSICAL GROUPS, II

Let p, n, V and X be as above;
n is called the degree of X and p its characteristic.

REMARK

X is quasisimple, except for finitely many cases.

If X is quasisimple, S := X/Z (X ), then X = Ŝ, the Schur
covering group of S, except for finitely many cases.

EXAMPLE (THE ORTHOGONAL GROUPS)
Let Q be a non-degenerate quadratic form on V . Set

O(V ,Q) := {g ∈ GL(V ) | Q(gv) = Q(v) for all v ∈ V}

(the elements of GL(V ) that preserve the form Q);

Ω(V ,Q) := [O(V ,Q),O(V ,Q)];  Ω2m+1(q),Ω±2m(q).

Analogous definitions for the symplectic and unitary groups.
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MAXIMAL SUBGROUPS OF CLASSICAL GROUPS

Let X be a finite classical group as above.

Overall objective: Determine the maximal subgroups of X .

If H ≤ X , then the embedding

ϕ : H → X → SL(V )

is a representation of H on V .

If ϕ is reducible, then H ≤X K with

K =

{(
A B
0 C

)
∈ X | A ∈ GLa(k),B ∈ ka×b,C ∈ GLb(k)

}
for some 1 < a,b < n.

Thus H can only be maximal if K is maximal and H =X K .
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A FURTHER EXAMPLE

Let G = SL2(Fr ) be quasisimple (r a prime power).

Let k = Fq such that r − 1 | q − 1 and r 6= q.
(Given r , there are infinitely many primes q satisfying this.)

Let M ≤ SLr+1(k) denote the subgroup of monomial matrices.

FACT

There are irreducible representations ϕ : G→ SLr+1(k), with
ϕ(G) ≤ M.

Put H := ϕ(G) and let X ≤ SLr+1(k) denote the smallest
classical group containing H.

Then H is not maximal in X
(otherwise H = M ∩ X , but M ∩ X is not quasisimple).

Still, NX (H) could be maximal; this depends on . . .
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THE ASCHBACHER CLASSIFICATION

Let X be a finite classical group as above.
Aschbacher defines nine classes of subgroups
C1(X ), . . . , C8(X ) and S(X ) of X .

THEOREM (ASCHBACHER, 1984)
Let H ≤ X be a maximal subgroup of X . Then

H ∈ ∪8
i=1Ci(X ) ∪ S(X ).

But: An element in ∪8
i=1Ci(X ) ∪ S(X ) is not necessarily a

maximal subgroup of X .
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KLEIDMAN-LIEBECK/BRAY-HOLT-RONEY-DOUGAL

[KL] Kleidman-Liebeck (1990): Determine the maximal
subgroups among the members of ∪8

i=1Ci(X ) for n ≥ 13 (amot).

[BHRD] Bray-Holt-Roney-Dougal (2013): Determine the
maximal subgroups for n ≤ 12 (amot).
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SOME ASCHBACHER CLASSES, I

Let X ≤ SL(V ) be a classical group, e.g., X = Spn(q),SUn(q).

Let K ≤ X and ϕ : K → SL(V ) the corresponding
representation of K .

C1(X ): K acts reducibly on V

K ≤X

{(
A B
0 C

)
| A ∈ GLa(k),B ∈ ka×b,C ∈ GLb(k)

}
≤ GL(V )

with 1 < a,b < n

 maximal overgroups of K known [KL,BHRD]
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SOME ASCHBACHER CLASSES, II

C2(X ): K acts irreducibly but imprimitively on V

K ≤X
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| Ai ∈ GLa(k),1 ≤ i ≤ m



 maximal overgroups of K known [KL,BHRD]
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SOME ASCHBACHER CLASSES, III

C4(X ), C7(X ): K preserves a tensor product decomposition of V

ϕ is tensor decomposable, i.e.,

V = V1 ⊗ V2 ⊗ · · · ⊗ Vt , (1)

such that
ϕ is equivalent to ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕt (with ϕi : K → SL(Vi)).

 maximal overgroups of K known [KL,BHRD]
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SOME ASCHBACHER CLASSES, IV

C5(X ): K is realizable over a smaller field

ϕ : K → SL(V ) is realizable over a smaller field, if ϕ factors as

K

ϕ0
""

ϕ // SL(V )

SL(V0)

ν

OO

for some proper subfield k0 � k , a k0-vector space V0 with
V = k ⊗k0 V0, and a representation ϕ0 : K → SL(V0).

 maximal overgroups of K known [KL,BHRD]

C8(X ): K = X , i.e. K is a classical group.

 maximal overgroups of K known [KL,BHRD]
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SOME ASCHBACHER CLASSES: SUMMARY

1 K acts reducibly on V (C1-case)
 maximal overgroups of K known

2 K acts irreducibly but imprimitively on V (C2-case)
 maximal overgroups of K are known

3 . . .
4 action of K respects a tensor decomposition V = U ⊗K W

(C4-case)
 maximal overgroups of K are known

...
8 K ∈ {Sp(V ),Ω(V ),Ω±(V ),SU(V )} (only if X = SL(V ))
 maximal overgroups of K are known

9 crucial case K ∈ S(X ): next slide
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THE CLASS S(X )

Let H ≤ X .

DEFINITION

H ∈ S(X ), if H = NX (G) for some G ≤ X with:

1 G is quasisimple,

2 ϕ : G→ X ↪→ SL(V ) is absolutely irreducible,

3 not realizable over a smaller field,

4 G is not a classical group.
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THE STRUCTURE OF H ∈ S(X )

Let H = NX (G) ∈ S(X ).

Put Z := Z (X ).

Then
CX (G) = Z = CX (H) = Z (H),

as ϕ : G→ X is absolutely irreducible.

Also, H/ZG ≤ Out(G) is solvable by Schreier’s conjecture.

Hence G = H∞, the last term in the derived series of H.

Moreover, H/Z is almost simple, i.e. if S := G/Z (G) (recall S is
nonabelian simple), then there is a short exact sequence

1→ S → H/Z → Aut(S)→ 1
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ON THE MAXIMALITY OF THE ELEMENTS OF S(X )

Let H = NX (G) ∈ S(X ).

QUESTION

Is H a maximal subgroup of X?

If not, there is a maximal subgroup L of X with

H � L � X .

Write ϕ : L→ X ↪→ SL(V ) for the embedding.

By the definition of the classes Ci(X ) and S(X ), we have

L ∈ C2(X ) ∪ C4(X ) ∪ C6(X ) ∪ C7(X ) ∪ S(X ).

If L ∈ Ci(X ) (resp. S(X )), we call this a Ci - (resp. S-)obstruction
to the maximality of H.
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SOME OBSTRUCTIONS

C2-obstruction: ϕ : L→ X ↪→ SL(V ) is imprimitive.

In particular, ResL
G(ϕ) : G→ X ↪→ SL(V ) is imprimitive.

Joint project with Kay Magaard:
Classify (G,V , ϕ), with G quasisimple, ϕ : G→ SL(V )
absolutely irreducible and imprimitive.

S-obstruction: There is a quasisimple group K with G � K � X
(take K = L∞).

In particular, ResK
G(ϕ) is absolutely irreducible.

Project of Donna Testerman and Kay Magaard: Classify
(G,K ,V , ϕ) with G � K both quasisimple, ϕ : K → SL(V )
absolutely irreducible, and ResK

G(ϕ) absolutely irreducible.
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EXAMPLE: MATHIEU GROUP M11 (K. MAGAARD)

Let ϕ : M11 → X be absolutely irreducible, faithful, and not
realizable over a smaller field. (All such (ϕ,X ) are known.)

Put G := ϕ(M11). Then NX (G) = Z (X )×G.

Is Z (X )×G maximal in X?

NO, except for ϕ : M11 → SL5(3).

EXAMPLES

(1) M11 → A11 → Ω+
10(3) (S-obstruction).

(2) M11 → Ω55(q) is imprimitive, q ≥ 5 prime (C2-obstruction).
(3) Also: M11 → M12 → A12 → Ω11(q)→ Ω55(q), q ≥ 5 prime.
(4) M11 → 2.M12 → SL10(3) (S-obstruction).
(5) M11 → SL5(3)→ Ω−24(3) (S-obstruction).
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EXAMPLE: THE MONSTER GROUP M

Let M denote the Monster group.

There is an absolutely irreducible representation
ϕ : M → SL196 882(2).

In fact, ϕ(M) ≤ Ω−196 882(2) (Rob Wilson).

Is G := ϕ(M) maximal in X := Ω−196 882(2)?

No Ci obstruction for i ∈ {2,4,6,7}.

Is there an S-obstruction L?

No: K := L∞ is quasisimple; as every non-trivial representation
of K would have degree at least 196 882, K would not fit into X .

N.B.: |M| ∼ 8 · 1053; |Ω−196 882(2)| ∼ 105 814 378 288.
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THE FINITE QUASISIMPLE GROUPS

RECALL

A finite quasisimple group is of the form Ŝ/Z , where Ŝ is the
Schur covering group of a simple group S and Z ≤ Z (Ŝ).

Moreover, S is one of

1 a sporadic simple group;

2 an alternating group Am, m ≥ 5;

3 a simple group of Lie type.

Consequence: All finite quasisimple groups are known.
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THE INVARIANT R(G)

Let G,H be groups, with G finite.
Write G � H, if G is isomorphic to a subgroup of H.

DEFINITION (KLEIDMAN-LIEBECK)
(a) If p is a prime, set

Rp(G) := min{0 6= n ∈ N | G � PGLn(Fp)}.

(b) We also set

R(G) := min{Rp(G) | p a prime}.

REMARK (KLEIDMAN-LIEBECK)

Rp(G) = min{0 6= n ∈ N | G � PGLn(F ),F a field, char(F ) = p}
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PROJECTIVE REPRESENTATIONS

Let G be a group and F a field.

If G � PGLn(F ) we get a diagram

GLn(F )

κ

��
G

ϕ′
77

ϕ
// PGLn(F )

where κ denotes the canonical epimorphism.

Choose a section for κ to complete to a commutative diagram.

A projective representation of G is a map ϕ′ : G→ GLn(F ), that
fits into such a commutative diagram.
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LINEARIZING PROJECTIVE REPRESENTATIONS

Let G be a nonabelian simple group.

Suppose we have a commutative diagram as above, where ϕ′

is absolutely irreducible.

Ĝ

π

��

ϕ̂ // GLn(F )

κ

��
G

ϕ′
77

ϕ
// PGLn(F )

Let Ĝ be the Schur covering group of G with canonical map
π : Ĝ→ G.

Then there is a representation ϕ̂ : Ĝ→ GLn(F ), completing the
diagram.
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SOME PROPERTIES OF R(G)

Let p be a prime, F a field with char(F ) = p.

LEMMA

Let G and K be quasisimple with G ≤ K .

Then Rp(G/Z (G)) ≤ Rp(K/Z (K )).

In particular, R(G/Z (G)) ≤ R(K/Z (K )).

LEMMA

Let S be nonabelian simple, Ŝ the Schur covering group of S.

(a) Let ϕ an F-representation of Ŝ of degree Rp(S) with
non-trivial image. Then ϕ is absolutely irreducible.

(b) If U � S is a proper subgroup, then R(S) < [S : U].
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SOME EXAMPLES

EXAMPLES

1 Let Am denote the alternating group of degree m.

R(Am) =


2, if m = 5,6
3, if m = 7
4, if m = 8

m − 2, if m ≥ 9

2 Let X be a quasisimple classical group of degree n and
characteristic p as on the 8th slide.

Then R(X ) = n, up to finitely many exceptions.

Also R(X ) = Rp(X ) and Rr (X ) > Rp(X ) for primes r 6= p,
up to finitely many exceptions.
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THE BASIC SETUP

NOTATION

1 S: a finite nonabelian simple group; n := R(S)

2 p a prime such that R(S) = Rp(S)

3 G: quasisimple covering group of S such that G has a
faithful representation ϕ of degree n over Fp

4 q a power of p minimal with: ϕ is realizable over Fq

5 V := Fn
q; identify G with ϕ(G) ≤ SL(V )

6 X ≤ SL(V ): smallest classical group containing G
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THE SMALLEST CLASSICAL GROUPS CONTAINING G

In the above notation, X is isomorphic to one of
1 Ωn(q), n odd, or Ω±n (q), n even
2 Spn(q), n even
3 SUn(q0), q = q2

0
4 SLn(q)

If G stabilizes a non-degenerate quadratic form on V , then X is
as in 1;

else, if G stabilizes a non-degenerate symplectic or hermitian
form on V , then X is as in 2 or 3, respectively;

otherwise, X = SL(V ).

X is uniquely determined by G [BHRD].

X is quasisimple, except for finitely many cases.
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THE MAIN RESULT, PART I

THEOREM

Assume the above notation. Then one of the following holds:

1 G = X.

2 NX (G) is a maximal subgroup in X.

3 G = 2G2(q) with q = 32m+1, m ≥ 1 and n = 7.
In this case, X = Ω7(q) and G � G2(q) � X for all q.

4 G = 2F 4(q)′ with q = 22m+1, m ≥ 0 and n = 26.
In this case, X = Ω+

26(q) and G � F4(q) � X for all q.

The groups G in 3 and 4 are the Ree groups (when m ≥ 1),
2F 4(2)′ is the Tits group.
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THE MAIN RESULT, PART II

THEOREM

Assume the above notation. Apart from 1 – 4, the following
possibilities can occur:

5 G = J2, n = 6 and q = 4.
In this case X = Sp6(4) and G � G2(4) � X.

6 G = M23, n = 11 and q = 2.
In this case, X = SL11(2) and G � M24 � X.

7 G = 3.Fi22, n = 27 and q = 4.
In this case, X = SU27(2), and G � 3.2E6(2) � X.

8 G = Th, n = 248 and q = 3.
In this case, X = Ω+

248(3), and G × 2 � E8(3)× 2 � X.
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THE FIRST CASE OF THE THEOREM

Suppose that G = X � SL(V ) in the above theorem.

Then G is in Aschbacher class C8.

In this case, replace X by the smallest classical group Y
properly containing G.

In matrix notation, Y = Spn(q) if n and q are even and
G = Ω±n (q).

In all other cases Y = SLn(q) = SL(V ).

Then NY (G) is a maximal subgroup of Y [KL, BHRD].
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MAXIMAL OVERGROUPS

Let G � K � X be as in one of the cases 3 – 8 of the main
theorem.

Here K denotes the quasisimple group (given in the theorem)
disproving the maximality of NX (G).

Then NX (K ) is maximal in X .

Moreover, NX (K ) = K , except in cases 7 and 8.

In case 7, we have NX (K ) = 3.2E6(2).3.

In case 8, we have NX (K ) = E8(3)× 2.
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SOME REMARKS ON THE PROOFS, I

Recall that n = R(S). For n ≤ 4, use [BHRD].

Assume that n ≥ 5.

If S is classical, we get G = X (with one exception),
hence Conclusion 1 of the main theorem.

If G � X , we get NX (G) � X (as X is perfect).

Choose maximal subgroup L � X with NX (G) ≤ L
and let ϕ : L→ X ↪→ SL(V ) denote the embedding.

What are the possible Aschbacher classes of L?
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SOME REMARKS ON THE PROOFS, II

ϕ is irreducible, as ResL
G(ϕ) is, i.e. L 6∈ C1(X ).

ϕ is tensor indecomposable, as dim(V ) = Rp(G), i.e.
L 6∈ C4(X ), C7(X ).

ϕ is primitive, i.e. L 6∈ C2(X ).

By definition, G and hence L do not lie in Aschbacher class C5.

One can also rule out Aschbacher classes C3, C6, C8 for L.

Conclusion: L lies in Aschbacher class S(X ).
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SOME REMARKS ON THE PROOFS, III

Put K := L∞. Then K is quasisimple and G ≤ K � X .

If G = K , then NX (G) = NX (K ) = L, hence Conclusion 2.

Assume G � K and put T := K/Z (K ). Recall S = G/Z (G).

Then Rp(T ) = Rp(S) and R(T ) = R(S).

If T is a group of Lie type, its characteristic equals p
(with 2 exceptions).

None of S,T is a classical group, as K � X (with 1 exception).

If S and T are exceptional groups of Lie type, we get (G,K ) as
in Conclusions 3, 4 of the main theorem.
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SOME REMARKS ON THE PROOFS, IV

Suppose T is an exceptional groups of Lie type.

Then R(T ) ≤ 248.

Use results of Lübeck and Malle-H., classifying all quasisimple
groups with representations of degree ≤ 250.

Yields Conclusions 5, 7, 8 of the main theorem.

If T = Am, then m = n + 2, and G→ K yields a 2-transitive
permutation representation of G on n + 2 points.

Then S known, implying R(S) < n, a contradiction.

If T is sporadic, use explicit knowledge of R(T ) [Jansen].

This yields Conclusion 6 of the main theorem.
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Thank you for your attention!
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