The Steinberg representation The Gelfand-Graev representations The Weil representation The Weil-Steinberg representation

DISTINGUISHED REPRESENTATIONS OF FINITE CLASSICAL GROUPS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Topics in Algebra, University of Milano - Bicocca 13. May 2009

CONGRATULATIONS

Happy Birthday to You, Professor Zalesski!

GERHARD HISS DISTINGUISHED REPRESENTATIONS OF FINITE CLASSICAL GROUPS

CONTENTS

- The Steinberg representation
- The Gelfand-Graev representation
- The Weil representation
- The Weil-Steinberg representation

THE FINITE CLASSICAL GROUPS

These are the classical groups defined over finite fields. i.e., linear groups preserving a form of degree 2.

EXAMPLES

- $\operatorname{GL}_n(q)$, $\operatorname{GU}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$... (q a prime power)
- *E.g.*, $\operatorname{Sp}_{2n}(q) = \{A \in GL_{2n}(q) \mid A^{tr} \tilde{J}A = \tilde{J}\}$, where $\tilde{J} = \begin{bmatrix} J \\ -J \end{bmatrix}$ with $J = \begin{bmatrix} 1 \\ C \\ C \end{bmatrix} \in \mathbb{F}_q^{n \times n}$.
- Related groups, e.g., SL_n(q), PSL_n(q), CSp(q) etc. are also classical groups.

DISTINGUISHED REPRESENTATIONS

- Representations in this talk are taken mostly over the field
 C of complex numbers.
- Distinguished representations are families of representations obtained by a uniform construction.
- Some of the distinguished representations also exist for other groups of Lie type, or for infinite classical groups, others exist only for some of the classical groups.

THE STEINBERG REPRESENTATION

Frobenius, 1896: $PSL_2(p)$ has irreducible representation of degree p.

Schur, 1907: $SL_2(q)$ has irreducible representation of degree q.

Steinberg, 1951: $GL_n(q)$ has irreducible representation of degree $q^{n(n-1)/2}$.

Steinberg, 1956: Finite classical groups of characteristic p have an irreducible representation whose degree equals the order of a Sylow p-subgroup.

Steinberg, 1957: Same result as above for groups with split *BN*-pairs of characteristic *p*.

CONSTRUCTION OF THE STEINBERG REPR'N, I

Steinberg, A geometric approach to the representations of the full linear group over a Galois field. TAMS 1951.

Steinberg constructs all *unipotent* representations of $GL_n(q)$.

These are in bijection with the partitions of *n*.

In particular, the representation

$$\Gamma(1^n) = \sum_{\nu} \varepsilon(\nu) \operatorname{Ind}_{P_{\nu}}^G(\mathbb{C}).$$

Here, ν runs through the compositions of n, $\varepsilon(\nu)$ is a sign, and $\operatorname{Ind}_{P_{\nu}}^{G}(\mathbb{C})$ is the permutation module on the flags of shape ν .

Steinberg shows that $\Gamma(1^n)$ has degree $q^{n(n-1)/2}$.

CONSTRUCTION OF THE STEINBERG REPR'N, II

Steinberg, *Prime power representations of finite linear groups, II.* Canad. J. Math. 1957.

Steinberg constructs the Steinberg representation for all finite groups G with a split BN-pair of characteristic p:

Let *W* be the Weyl group, $U \le B$ a Sylow subgroup of *G*.

Put

$$\boldsymbol{e} := \left(\sum_{b \in B} b\right) \left(\sum_{w \in W} (-1)^{\ell(w)} w\right).$$

Then $e\mathbb{C}G$ has basis $\{eu \mid u \in U\}$ and affords the Steinberg representation St_G .

CONSTRUCTION OF THE STEINBERG REPR'N, III

Charles W. Curtis, 1965: *G* a finite group with *BN*-pair with Coxeter system (W, S).

The character $ch(St_G)$ of the Steinberg representations equals

$$ch(St_G) = \sum_{J \subset \mathcal{S}} (-1)^{|J|} Ind_{P_J}^G(\textbf{1}),$$

where P_J is the standard parabolic subgroup corresponding to J, and **1** denotes the trivial character.

St_{*G*} is the unique constituent of $\text{Ind}_{B}^{G}(\mathbb{C})$ which is not a component of $\text{Ind}_{P_{I}}^{G}(\mathbb{C})$ for $J \neq \emptyset$ [$B = P_{\emptyset}$].

CONSTRUCTION OF THE STEINBERG REPR'N, IV

L. Solomon 1969, Curtis, Lehrer, Tits, 1979:

Let *G* be a finite group with *BN*-pair of rank *r* and let Δ be the Tits building of *G*. Then

 $H_{r-1}(\Delta)\otimes_{\mathbb{Z}}\mathbb{C}$

affords the Steinberg representation of G.

THE GELFAND-GRAEV REPRESENTATIONS

Let G be a finite group of Lie type, U its unipotent subgroup.

 $U = \prod_{\alpha \in \Phi^+} U_{\alpha}$, where Φ_+ is the set of positive roots and U_{α} a root subgroup.

 $\lambda : U \to \mathbb{C}^*$ is *in general position*, if $\lambda_{\downarrow U_{\alpha}} \neq \mathbf{1}$ if α is simple, and $\lambda_{\downarrow U_{\alpha}} = \mathbf{1}$, otherwise.

 $\Gamma := \operatorname{Ind}_{U}^{G}(\lambda),$

where λ is a linear representation of *U* in general position, is called a *Gelfand-Graev representation* of *G*.

In particular, the degree of Γ equals $|G|/|U| = |G|/\deg(St_G)$.

For some groups, e.g., $\text{Sp}_{2n}(q)$, q odd, there is more than one Gelfand-Graev representation.

The Steinberg representation **The Gelfand-Graev representations** The Weil representation The Weil-Steinberg representation

Some properties of the Gelfand-Graev repr'n

THEOREM (GELFAND-GRAEV '62, YOKONUMA '67, STEINBERG '68)

A Gelfand-Graev representation Γ is multiplicity free.

Idea of prove: $End_{\mathbb{C}G}(\Gamma)$ is abelian.

The characters of the irreducible constituents of Γ are called *regular characters* of *G*. E.g., $ch(St_G)$ is regular.

Note:

$\operatorname{St}_G \otimes_{\mathbb{C}} \Gamma_G$

equals the regular representation of G.

HISTORY OF THE WEIL REPRESENTATION

1961: Bolt, Room & Wall define Weil representations for finite conformal symplectic groups.

1964: Weil constructs Weil representations associated to symplectic vector spaces over local fields.

1972: Ward defines Weil representations for finite symplectic groups.

Howe (1973), Isaacs (1973), Lehrer (1974), Seitz (1975) & Gérardin (1975) contribute to different aspects of the

- construction of the Weil representations for finite general linear and unitary groups,
- determination of the characters of the Weil representations,
- determination of the irreducible constituents of the Weil representations.

WEIL CHARACTER FOR GENERAL UNITARY GROUPS

$$\varepsilon = \pm 1, G = \operatorname{GL}_n(\varepsilon q) \text{ acting on } V \qquad [\operatorname{GL}_n(-q) := \operatorname{GU}_n(q)]$$

 ω character of Weil representation of G

$$\begin{split} \omega(1) &= q^n \\ \omega(g) &= \varepsilon^n(\varepsilon q)^{N(V,g)}, \ g \in G \qquad [N(V,g) = \dim(\ker(1-g))] \\ \text{For } G &= \operatorname{GL}_n(q), \ \omega \text{ is the permutation character on } V. \end{split}$$

 $\boldsymbol{\omega}$ is multiplicative, i.e.,

if
$$V = V_1 \oplus V_2$$
, then $\omega_{\downarrow G(V_1) \times G(V_2)} = \omega_{G(V_1)} \boxtimes \omega_{G(V_2)}$.

CONSTRUCTION OF WEIL REPRESENTATION, I

Suppose $G = GU_n(q)$ acting on $V = \mathbb{F}_{q^2}^n$, preserving the Hermitian form β .

For $v \in V$, let v^* denote the linear form determined by β and v.

The Heisenberg group of β is the group

$$H = \left\{ \begin{bmatrix} 1 & v^* & z \\ 0 & I_n & v \\ 0 & 0 & 1 \end{bmatrix} \mid v \in V, z \in \mathbb{F}_{q^2}, z + v^*(v) + z^q = 0 \right\}.$$

This is a special *p*-group of order q^{2n+1} .

The centre of H is elementary abelian of order q.

CONSTRUCTION OF WEIL REPRESENTATION, II

Let ζ be an irreducible representation of *H* with *Z*(*H*) not in kernel. (*H* has q - 1 distinct such representations.)

G acts on *H* in a natural way, fixing Z(H) element-wise.

Consider the semidirect product P := HG. Then ζ is invariant in P.

Fact: ζ extends to an irreducible representation $\hat{\zeta}$ of *P*.

 $\Omega_n := \operatorname{Res}_G^P(\hat{\zeta})$ is the Weil representation of $G = \operatorname{GU}_n(q)$.

Each such ζ yields the same Ω_n .

An analogous construction works for the symplectic groups.

THE WEIL-STEINBERG REPRESENTATION

 $G = G_n(q) \in \{\mathsf{GL}_n(q), \mathsf{Sp}_{2n}(q)(q \text{ odd}), \mathsf{GU}_{2n}(q), \mathsf{GU}_{2n+1}(q)\}$

St_n: Steinberg representation of G

 Ω_n : Weil representation of G

 Γ_n : Gelfand-Graev representation of G

 $WSt_n := \Omega_n \otimes St_n$: Weil-Steinberg representation of G [Zalesski, H., 2008]

WEIL-STEINBERG REPRESENTATION, I

 $G = GL_n(q)$, V natural vector space for G

 P_m : stabilizer of *m*-dim. subspace of V ($0 \le m \le n$)

 $L_m = \operatorname{GL}_m(q) \times \operatorname{GL}_{n-m}(q)$ Levi subgroup of P_m

THEOREM (ZALESSKI, H., '08)

$$\Omega_n \otimes \operatorname{St}_n = \sum_{m=0}^n \operatorname{Ind}_{P_m}^G \left(\operatorname{Infl}_{L_m}^{P_m} \left(\operatorname{St}_m \boxtimes \Gamma_{n-m} \right) \right).$$

Brundan, Dipper, Kleshchev (2001), Memoirs, Section 5: Contains related and more general results.

WEIL-STEINBERG REPRESENTATION, II

G as above, $G \neq GL_n(q)$, *V* natural vector space for *G*

 P_m : stabilizer of *m*-dim. isotropic subspace of V ($0 \le m \le n$)

 $L_m = \operatorname{GL}_m(q') \times G_{n-m}(q)$ Levi subgroup of P_m [$q' = q^2$ if *G* is unitary, q' = q, otherwise]

THEOREM (ZALESSKI, H., '08)

$$\Omega_n \otimes \operatorname{St}_n = \sum_{m=0}^n \operatorname{Ind}_{P_m}^G \left(\operatorname{Infl}_{L_m}^{P_m} \left(\operatorname{St}_m \boxtimes \Gamma'_{n-m} \right) \right).$$

 Γ'_{n-m} : *truncated* Gelfand-Graev representation of *G*, defined via Deligne-Lusztig theory

THE TRUNCATED GELFAND-GRAEV REPRESENTATION

Suppose $G = GU_n(q)$.

$$\operatorname{Irr}(G) = \bigcup_{s \in \mathscr{S}} \mathscr{E}(G, s),$$

a disjoint union of *Lusztig series* $\mathcal{E}(G, s)$.

Here, δ is a set of representatives of the conjugacy classes of semisimple elements of *G*.

Every $\mathscr{E}(G, s)$ contains exactly one regular character, χ_s , and

$$\mathsf{ch}(\Gamma_G) = \sum_{s \in \mathscr{S}} \chi_s.$$

Now $ch(\Gamma'_s)$ is the sum of those χ_s such that *s* has no eigenvalue -1 on *V*. [1 if *q* is even.] A similar definition applies for the symplectic groups.

SOME STEPS IN THE PROOF

Suppose $G \neq GL_n(q)$.

Write ω and st for the characters of Ω_n and St_n, respectively.

$$\omega \cdot \mathsf{st} = \sum_{(T,\theta)} \frac{\varepsilon_g \varepsilon_T(\omega \cdot \mathsf{st}, R_{T,\theta})}{|W(T,\theta)|} R_{T,\theta}$$

- $(\omega \cdot \mathsf{st}, R_{T,\theta}) = (\omega, \mathsf{st} \cdot R_{T,\theta}) = (\omega, \mathsf{Ind}_T^G(\theta)) = (\mathsf{Res}_T^G(\omega), \theta)$
- **S** Use multiplicativity of ω to compute $\operatorname{Res}_T^G(\omega)$.
- If (T, θ) corresponds to a semisimple element without eigenvalue -1 on V^* , then $(\text{Res}_T^G(\omega), \theta) = 1$.
- If (Res^G_T(ω), θ) ≠ 0, then T stabilizes an isotropic subspace of V.

CONSEQUENCES, I

Corollary 1: $G \neq GL_n(q)$. Then $\Omega_n \otimes St_n$ is multiplicity free.

This is not the case for $G = GL_n(q)$.

Corollary 2 (Schröer): If $G = GL_n(q)$ then

$$\Omega_n \otimes \operatorname{St}_n = \sum_{m=0}^n \sum_{s' \in \delta'_m} \sum_{k=0}^{\lfloor (n-m)/2 \rfloor} (n-m-2k+1) \chi_{(n-m-k,k)';s'}.$$

Here, δ'_m is a set of representatives of the conjugacy classes of semisimple elements of $GL_m(q)$ without eigenvalue 1, and $\chi_{(n-m-k,k)';s'} \in Irr(G)$ has Jordan decomposition (s, ψ) with $s = 1_{n-m} \times s'$, $C_G(s) = GL_{n-m}(q) \times C_{GL_m(q)}(s')$, $\psi = \chi_{(n-m-k,k)'} \boxtimes St \in Irr_u(C_G(s))$.

CONSEQUENCES, II

 $G = G_n(q) \in \{\mathsf{GL}_n(q), \mathsf{Sp}_{2n}(q)(q \text{ odd}), \mathsf{GU}_{2n}(q), \mathsf{GU}_{2n+1}(q)\}$

V natural vector space for $G, v \in V$

COROLLARY (AN, BRUNAT, ZALESSKI, H., '06 – '08)

Let H be the stabilizer of v in G. Then

 $\operatorname{Res}_{H}^{G}(\operatorname{St}_{G})$ is multiplicity free.

QUESTION

Is this also true for $G = SO_{2n+1}(q)$, $SO_{2n}^{\pm}(q)$?

THE SYMPLECTIC GROUP IN EVEN CHARACTERISTIC, I

 $G = \operatorname{Sp}_{2n}(q), q$ even.

No Weil representation is defined for this group.

Replace Ω_n by generalized spinor representation Σ_n with highest weight (0, ..., 0, q-1), deg $(\Sigma_n) = q^n$.

View St_n as a projective, irreducible $\overline{\mathbb{F}}_q$ -representation of *G*. Then $\Sigma_n \otimes \operatorname{St}_n$ is a projective $\overline{\mathbb{F}}_q$ -representation of *G*.

By general theory, $\Sigma_n \otimes St_n$ lifts to an ordinary representation, which we call the Weil-Steinberg representation WSt_n of *G*.

THE SYMPLECTIC GROUP IN EVEN CHARACTERISTIC, II

The same formula as for odd q holds:

THEOREM (ZALESSKI, H., '08)

$$\mathsf{WSt}_n = \sum_{m=0}^n \mathsf{Ind}_{P_m}^G \left(\mathsf{Infl}_{L_m}^{P_m} \left(\mathsf{St}_m \boxtimes \Gamma'_{n-m} \right) \right).$$

We also find the decomposition of WSt_n into PIMs.

THEOREM (ZALESSKI, H., '08)

$$\mathsf{WSt}_n = \sum_{j=0}^{q-1} \Phi_{\nu_j},$$

where Φ_{v_j} is the (lift of) the projective cover of the simple representation v_j with highest weight (q - 1, ..., q - 1, j).

MODULAR REPRESENTATIONS

Let **G** be a connected reductive group defined over \mathbb{F}_p . Let *q* be a power of *p*. Then $G := \mathbf{G}(q)$ is a finite group of Lie type. Let *M* be a simple $\overline{\mathbb{F}}_q \mathbf{G}$ -module.

Call *M G*-regular, if for every rational maximal torus **T** of **G**, distinct **T**-weight spaces of *M* are non-isomorphic T(q)-mod's.

THEOREM (ZALESSKI, H., '09)

Suppose that *M* is *G*-regular and $d = \dim(M)$. Let φ denote the Brauer character of $\operatorname{Res}_{G}^{\mathbf{G}}(M)$.

Then $\varphi \otimes ch(St_G)$ is a sum of d distinct regular characters of G.

THEOREM (ZALESSKI, H., '09)

Given **G** and *M*, there are only finitely many q such that *M* is not **G**(q)-regular.

Thank you for your attention!

GERHARD HISS DISTINGUISHED REPRESENTATIONS OF FINITE CLASSICAL GROUPS