HARISH-CHANDRA SERIES IN FINITE UNITARY GROUPS AND CRYSTAL GRAPHS

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Séminaire Chevalley Université Paris Diderot – Paris 7 May 22, 2014

CONTENTS AND ACKNOWLEDGEMENTS

- Harish-Chandra Classification
- A Generalization
- The Conjectures

CONTENTS AND ACKNOWLEDGEMENTS

- Harish-Chandra Classification
- A Generalization
- The Conjectures

This is a project building on ideas of many researchers, among others

Olivier Dudas, Meinolf Geck, Thomas Gerber, Nicolas Jacon, Gunter Malle, Götz Pfeiffer.

CONTENTS AND ACKNOWLEDGEMENTS

- Harish-Chandra Classification
- A Generalization
- The Conjectures

This is a project building on ideas of many researchers, among others

Olivier Dudas, Meinolf Geck, Thomas Gerber, Nicolas Jacon, Gunter Malle, Götz Pfeiffer.

A preprint with Thomas Gerber and Nicolas Jacon is in preparation.

Let *G* be a finite group of Lie type; then *G* is a finite group with a split BN-pair, of characteristic *p*, say.

Let *G* be a finite group of Lie type; then *G* is a finite group with a split BN-pair, of characteristic *p*, say.

There is a distinguished class of subgroups of G, the parabolic subgroups.

Let *G* be a finite group of Lie type; then *G* is a finite group with a split BN-pair, of characteristic *p*, say.

There is a distinguished class of subgroups of G, the parabolic subgroups.

A parabolic subgroup *P* has a Levi decomposition P = LU, where *U* is the unipotent radical, *L* a Levi complement of *P*.

Let *G* be a finite group of Lie type; then *G* is a finite group with a split BN-pair, of characteristic *p*, say.

There is a distinguished class of subgroups of G, the parabolic subgroups.

A parabolic subgroup *P* has a Levi decomposition P = LU, where *U* is the unipotent radical, *L* a Levi complement of *P*.

Levi subgroups of G resemble G; in particular, they are again groups of Lie type.

Let *G* be a finite group of Lie type; then *G* is a finite group with a split BN-pair, of characteristic *p*, say.

There is a distinguished class of subgroups of G, the parabolic subgroups.

A parabolic subgroup *P* has a Levi decomposition P = LU, where *U* is the unipotent radical, *L* a Levi complement of *P*.

Levi subgroups of G resemble G; in particular, they are again groups of Lie type.

Later in this talk I will concentrate on the unitary groups.

Let
$$G = \operatorname{GU}_n(q) = \{A \in \operatorname{GL}_n(q^2) \mid A^{tr}J\overline{A} = J\}$$
, with $J = \begin{bmatrix} & 1 \\ & \ddots & \\ & 1 \end{bmatrix} \in \mathbb{F}_q^{n \times n}$, and $\overline{[a_{ij}]} := [a_{ij}^q]$.

Let
$$G = \operatorname{GU}_n(q) = \{A \in \operatorname{GL}_n(q^2) \mid A^{tr}J\overline{A} = J\}$$
, with $J = \begin{bmatrix} & \cdot & 1 \\ & \cdot & \cdot & \\ & 1 & & \end{bmatrix} \in \mathbb{F}_q^{n \times n}$, and $\overline{[a_{ij}]} := [a_{ij}^q]$.

Let $r, m \in \mathbb{N}$ with r + 2m = n.

Let
$$G = \operatorname{GU}_n(q) = \{A \in \operatorname{GL}_n(q^2) \mid A^{tr}J\overline{A} = J\}$$
, with $J = \begin{bmatrix} & \cdot & 1 \\ & \cdot & \cdot & \\ & 1 & & \end{bmatrix} \in \mathbb{F}_q^{n \times n}$, and $\overline{[a_{ij}]} := [a_{ij}^q]$.

Let $r, m \in \mathbb{N}$ with r + 2m = n. Then

$$\left\{ \left[egin{array}{ccc} A & & \ & B & \ & & A^\dagger \end{array}
ight] \mid A \in \operatorname{GL}_m(q^2), B \in \operatorname{GU}_r(q)
ight\} \ & \cong \operatorname{GU}_r(q) imes GL_m(q^2)$$

is a Levi subgroup of *G* (where $A^{\dagger} = J\overline{A}^{-tr}J$).

Let
$$G = \operatorname{GU}_n(q) = \{A \in \operatorname{GL}_n(q^2) \mid A^{tr}J\overline{A} = J\}$$
, with $J = \begin{bmatrix} & \cdot & 1 \\ & \cdot & \cdot & \\ & 1 & & \end{bmatrix} \in \mathbb{F}_q^{n \times n}$, and $\overline{[a_{ij}]} := [a_{ij}^q]$.

Let $r, m \in \mathbb{N}$ with r + 2m = n. Then

$$egin{cases} \left\{ egin{bmatrix} A & & \ & B & \ & & A^\dagger \end{bmatrix} \mid A \in \operatorname{GL}_m(q^2), B \in \operatorname{GU}_r(q)
ight\} \ & \cong \operatorname{GU}_r(q) imes GL_m(q^2) \end{cases}$$

is a Levi subgroup of *G* (where $A^{\dagger} = J\overline{A}^{-tr}J$).

Choosing all possible r, m with r + 2m = n, and in $GL_m(q^2)$ all Levi subgroups, we obtain all Levi subgroups of G.

Let *k* be an algebraically closed field with char(k) = $\ell \neq p$ (this includes the case $\ell = 0$).

Let *k* be an algebraically closed field with char(k) = $\ell \neq p$ (this includes the case $\ell = 0$).

Let $L \leq G$ be a Levi subgroup, and $P \leq G$ parabolic with Levi complement *L*.

Let *k* be an algebraically closed field with char(k) = $\ell \neq p$ (this includes the case $\ell = 0$).

Let $L \leq G$ be a Levi subgroup, and $P \leq G$ parabolic with Levi complement *L*.

The functor

$$R_L^G: kL\operatorname{-mod} o kG\operatorname{-mod}$$

 $Y \mapsto R_L^G(Y) := \operatorname{Ind}_P^G(\operatorname{Infl}_L^P(Y))$

is called Harish-Chandra induction (or parabolic induction).

Let *k* be an algebraically closed field with char(k) = $\ell \neq p$ (this includes the case $\ell = 0$).

Let $L \leq G$ be a Levi subgroup, and $P \leq G$ parabolic with Levi complement *L*.

The functor

$$egin{aligned} & R^G_L: kL\operatorname{-mod} o kG\operatorname{-mod} \ & Y\mapsto R^G_L(Y):=\operatorname{Ind}^G_P(\operatorname{Infl}^P_L(Y)) \end{aligned}$$

is called Harish-Chandra induction (or parabolic induction).

It is independent of the choice of *P* with Levi complement *L* (Dipper-Du ('93), Howlett-Lehrer ('94)).

Let *k* be an algebraically closed field with char(k) = $\ell \neq p$ (this includes the case $\ell = 0$).

Let $L \leq G$ be a Levi subgroup, and $P \leq G$ parabolic with Levi complement *L*.

The functor

$$R_L^G: kL\operatorname{-mod} o kG\operatorname{-mod}$$

 $Y \mapsto R_L^G(Y) := \operatorname{Ind}_P^G(\operatorname{Infl}_L^P(Y))$

is called Harish-Chandra induction (or parabolic induction).

It is independent of the choice of *P* with Levi complement *L* (Dipper-Du ('93), Howlett-Lehrer ('94)).

For $Y \in kL$ -mod, we put $H(L, Y) := \operatorname{End}_{kG}(R_L^G(Y))$ for the Hecke algebra of the pair (L, Y).

A simple $X \in kG$ -mod is called cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

A simple $X \in kG$ -mod is called cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

A cuspidal pair (*L*, *Y*) consists of a Levi subgroup $L \le G$ and a cuspidal $Y \in kL$ -mod.

A simple $X \in kG$ -mod is called cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

A cuspidal pair (*L*, *Y*) consists of a Levi subgroup $L \le G$ and a cuspidal $Y \in kL$ -mod.

Harish-Chandra theory yields the following classification.

A simple $X \in kG$ -mod is called cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

A cuspidal pair (*L*, *Y*) consists of a Levi subgroup $L \le G$ and a cuspidal $Y \in kL$ -mod.

Harish-Chandra theory yields the following classification.

THEOREM (HARISH-CHANDRA ('70), GECK-H.-MALLE ('96))There is a bijection $\{X \mid X \in kG \text{-mod simple} \} / iso.<math>\downarrow$ $\{(L, Y, \theta) \mid \begin{array}{c} (L, Y) \text{ a cuspidal pair} \\ \theta \in H(L, Y) \text{-mod simple} \end{array}\} / conj.$

HARISH-CHANDRA CLASSIFICATION, II

Let (L, Y) be a cuspidal pair.

Let (L, Y) be a cuspidal pair.

PROPOSITION (HOWLETT-LEHRER ('83); GECK-H. ('97))

H(L, Y) is a symmetric k-algebra.

Let (L, Y) be a cuspidal pair.

PROPOSITION (HOWLETT-LEHRER ('83); GECK-H. ('97))

H(L, Y) is a symmetric k-algebra.

COROLLARY (SAWADA ('77), GREEN ('78), CABANES ('90)) Let $DG(X) = Z \oplus Z$ with Z indecomposed by

Let $R_L^G(Y) = Z_1 \oplus \cdots \oplus Z_m$ with Z_i indecomposable.

Let (L, Y) be a cuspidal pair.

PROPOSITION (HOWLETT-LEHRER ('83); GECK-H. ('97))

H(L, Y) is a symmetric k-algebra.

COROLLARY (SAWADA ('77), GREEN ('78), CABANES ('90))

Let $R_i^G(Y) = Z_1 \oplus \cdots \oplus Z_m$ with Z_i indecomposable.

Then Z_i has a simple head, X_i , and a simple socle, $\cong X_i$.

Let (L, Y) be a cuspidal pair.

PROPOSITION (HOWLETT-LEHRER ('83); GECK-H. ('97))

H(L, Y) is a symmetric k-algebra.

COROLLARY (SAWADA ('77), GREEN ('78), CABANES ('90)) Let $R_L^G(Y) = Z_1 \oplus \cdots \oplus Z_m$ with Z_i indecomposable. Then Z_i has a simple head, X_i , and a simple socle, $\cong X_i$. Also $Z_i \cong Z_j$ if and only if $X_i \cong X_j$.

Let (L, Y) be a cuspidal pair.

PROPOSITION (HOWLETT-LEHRER ('83); GECK-H. ('97))

H(L, Y) is a symmetric k-algebra.

COROLLARY (SAWADA ('77), GREEN ('78), CABANES ('90)) Let $R_L^G(Y) = Z_1 \oplus \cdots \oplus Z_m$ with Z_i indecomposable. Then Z_i has a simple head, X_i , and a simple socle, $\cong X_i$. Also $Z_i \cong Z_j$ if and only if $X_i \cong X_j$.

$$\{ \mathsf{PIMs of } H(L, Y) - \mathsf{mods} \} / \mathsf{iso.} \longleftrightarrow \{ \mathsf{PIMs of } H(L, Y) \} / \mathsf{iso.}$$

$$\{ X_1, \dots, X_m \} / \mathsf{iso.} \longleftrightarrow \{ Z_1, \dots, Z_m \} / \mathsf{iso.}$$

HARISH-CHANDRA SERIES

Let (L, Y), (L', Y') be cuspidal pairs.

Let (L, Y), (L', Y') be cuspidal pairs.

DEFINITION

The Harish-Chandra series $\mathcal{E}(G; L, Y)$ defined by (L, Y) equals

 $\{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$

Let
$$(L, Y)$$
, (L', Y') be cuspidal pairs.

DEFINITION

The Harish-Chandra series $\mathcal{E}(G; L, Y)$ defined by (L, Y) equals

 $\{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$

Thus,

$$\mathcal{E}(G; L, Y) = \{X \mid X \text{ is a simple submodule of } R_L^G(Y)\}/\text{iso.} \\ = \{X \mid X \text{ is a simple quotient of } R_L^G(Y)\}/\text{iso.}$$

Let
$$(L, Y)$$
, (L', Y') be cuspidal pairs.

DEFINITION

The Harish-Chandra series $\mathcal{E}(G; L, Y)$ defined by (L, Y) equals

 $\{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$

Thus,

 $\mathcal{E}(G; L, Y) = \{X \mid X \text{ is a simple submodule of } R_L^G(Y)\}/\text{iso.} \\ = \{X \mid X \text{ is a simple quotient of } R_L^G(Y)\}/\text{iso.}$

 $\mathcal{E}(G;L,Y)=\mathcal{E}(G;L',Y')\Leftrightarrow {}^g\!(L,Y)=(L',Y') ext{ for some } g\in G$

Let
$$(L, Y)$$
, (L', Y') be cuspidal pairs.

DEFINITION

The Harish-Chandra series $\mathcal{E}(G; L, Y)$ defined by (L, Y) equals

 $\{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$

Thus,

 $\mathcal{E}(G; L, Y) = \{X \mid X \text{ is a simple submodule of } R_L^G(Y)\}/\text{iso.} \\ = \{X \mid X \text{ is a simple quotient of } R_L^G(Y)\}/\text{iso.}$

 $\mathcal{E}(G;L,Y)=\mathcal{E}(G;L',Y')\Leftrightarrow {}^g\!(L,Y)=(L',Y') ext{ for some } g\in G$

The set of simple kG-modules (upt to isom.) is partitioned into Harish-Chandra series.

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

char(k) = 0

• labelled by partitions of *n* (Lusztig-Srinivasan, '77)

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

• char(k) = 0

- labelled by partitions of *n* (Lusztig-Srinivasan, '77)
- write Y_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$
UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

• char(k) = 0

- labelled by partitions of *n* (Lusztig-Srinivasan, '77)
- write Y_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$

2 char(
$$k$$
) = $\ell > 0$

• ℓ -dec. matrix of the Y_{λ} s lower unitriangular (Geck, '91)

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

• char(k) = 0

- labelled by partitions of *n* (Lusztig-Srinivasan, '77)
- write Y_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$
- ② char(k) = ℓ > 0
 - ℓ -dec. matrix of the Y_{λ} s lower unitriangular (Geck, '91)
 - \rightsquigarrow labelling of unipotent kG-modules by partitions of n

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

• char(k) = 0

- labelled by partitions of *n* (Lusztig-Srinivasan, '77)
- write Y_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$
- ② char(k) = ℓ > 0
 - ℓ -dec. matrix of the Y_{λ} s lower unitriangular (Geck, '91)
 - ~ labelling of unipotent kG-modules by partitions of n
 - write X_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$

UNIPOTENT MODULES

From now on assume that $G = GU_n(q)$.

Restrict to unipotent *kG*-modules.

Distinguished set of simple *kG*-modules.

• char(k) = 0

- labelled by partitions of *n* (Lusztig-Srinivasan, '77)
- write Y_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$
- ② char(k) = ℓ > 0
 - ℓ -dec. matrix of the Y_{λ} s lower unitriangular (Geck, '91)
 - \rightsquigarrow labelling of unipotent kG-modules by partitions of n
 - write X_{λ} for the unipotent *kG*-module labelled by $\lambda \vdash n$
 - $\{Y_{\lambda} \mid \lambda \vdash n\}, \{X_{\lambda} \mid \lambda \vdash n\}$ unions of Harish-Chandra series

Task: Given $\lambda \vdash n$, determine Harish-Chandra series of Y_{λ} .

Task: Given $\lambda \vdash n$, determine Harish-Chandra series of Y_{λ} .

THEOREM (LUSZTIG ('77), FONG-SRINIVASAN, ('90))

• Y_{κ} is cuspidal if and only if $\kappa = \Delta_t := (t, t - 1, ..., 1)$ for some $0 \le t \le n$ with $|\Delta_t| \equiv n \pmod{2}$.

Task: Given $\lambda \vdash n$, determine Harish-Chandra series of Y_{λ} .

- Y_{κ} is cuspidal if and only if $\kappa = \Delta_t := (t, t 1, ..., 1)$ for some $0 \le t \le n$ with $|\Delta_t| \equiv n \pmod{2}$.
- **2** Harish-Chandra series of Y_{λ} determined by $\lambda_{(2)}$ (2-core)

Task: Given $\lambda \vdash n$, determine Harish-Chandra series of Y_{λ} .

- Y_{κ} is cuspidal if and only if $\kappa = \Delta_t := (t, t 1, ..., 1)$ for some $0 \le t \le n$ with $|\Delta_t| \equiv n \pmod{2}$.
- Harish-Chandra series of Y_λ determined by λ₍₂₎ (2-core),
 i.e. for λ, μ ⊢ n, we have:
 - Y_λ and Y_μ are in the same Harish-Chandra series, if and only if λ₍₂₎ = μ₍₂₎.

Task: Given $\lambda \vdash n$, determine Harish-Chandra series of Y_{λ} .

- Y_{κ} is cuspidal if and only if $\kappa = \Delta_t := (t, t 1, ..., 1)$ for some $0 \le t \le n$ with $|\Delta_t| \equiv n \pmod{2}$.
- Harish-Chandra series of Y_λ determined by λ₍₂₎ (2-core), i.e. for λ, μ ⊢ n, we have:
 - Y_λ and Y_μ are in the same Harish-Chandra series, if and only if λ₍₂₎ = μ₍₂₎.
 - Let λ₍₂₎ = Δ_t, r := |Δ_t|. Then Y_λ lies in ε(G; L, Y_{Δ_t}), where L = GU_r(q) × GL₁(q²)^m with n = r + 2m (and Y_{Δt} viewed as a kL-module).

Solution Given t with
$$|\Delta_t| \equiv n \pmod{2}$$
, let $r := |\Delta_t|$, $m = (n - r)/2$, put $(L, Y) = (GU_r(q) \times GL_1(q^2)^m, Y_{\Delta_t})$.

THEOREM (LUSZTIG ('77), FONG-SRINIVASAN, ('90))

■ Given t with $|\Delta_t| \equiv n \pmod{2}$, let $r := |\Delta_t|$, m = (n - r)/2, put $(L, Y) = (\text{GU}_r(q) \times \text{GL}_1(q^2)^m, Y_{\Delta_t})$.

Then (L, Y) is a cuspidal pair.

THEOREM (LUSZTIG ('77), FONG-SRINIVASAN, ('90))

■ Given t with $|\Delta_t| \equiv n \pmod{2}$, let $r := |\Delta_t|$, m = (n - r)/2, put $(L, Y) = (GU_r(q) × GL_1(q^2)^m, Y_{\Delta_t})$.

Then (L, Y) is a cuspidal pair.

 $H(L, Y) \cong \mathcal{H}_{k,q^{2t+1},q^2}(B_m)$ (an Iwahori-Hecke algebra).

THEOREM (LUSZTIG ('77), FONG-SRINIVASAN, ('90))

■ Given t with $|\Delta_t| \equiv n \pmod{2}$, let $r := |\Delta_t|$, m = (n - r)/2, put $(L, Y) = (GU_r(q) × GL_1(q^2)^m, Y_{\Delta_t})$.

Then (L, Y) is a cuspidal pair.

 $H(L, Y) \cong \mathcal{H}_{k,q^{2t+1},q^2}(B_m)$ (an Iwahori-Hecke algebra).

Simple H(L, Y)-modules labelled by bipartitions of m.

THEOREM (LUSZTIG ('77), FONG-SRINIVASAN, ('90))

■ Given t with $|\Delta_t| \equiv n \pmod{2}$, let $r := |\Delta_t|$, m = (n - r)/2, put $(L, Y) = (GU_r(q) × GL_1(q^2)^m, Y_{\Delta_t})$.

Then (L, Y) is a cuspidal pair.

 $H(L, Y) \cong \mathcal{H}_{k,q^{2t+1},q^2}(B_m)$ (an Iwahori-Hecke algebra).

Simple H(L, Y)-modules labelled by bipartitions of m. The bijection

 $\mathcal{E}(G; L, Y) \leftrightarrow \{\theta \in H(L, Y) \text{-mod simple }\}/\text{iso.}$

is given by the 2-quotient of a partition.

Assume now that $\ell > 0$ and put

$$e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.$$

Assume now that $\ell > 0$ and put

$$e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.$$

If *e* is **even**, division of $\{X_{\lambda} \mid \lambda \vdash n\}$ into Harish-Chandra series is known (Dipper-James ('86), Fong-Srinivasan ('89), Geck-H.-Malle ('94), Gruber-H. ('97)).

Assume now that $\ell > 0$ and put

```
e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.
```

If *e* is **even**, division of $\{X_{\lambda} \mid \lambda \vdash n\}$ into Harish-Chandra series is known (Dipper-James ('86), Fong-Srinivasan ('89), Geck-H.-Malle ('94), Gruber-H. ('97)).

THEOREM (GECK-H.-MALLE, '96)

Suppose that e = 1, $\ell > n$ and let $\lambda, \mu \vdash n$. Then

Assume now that $\ell > 0$ and put

```
e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.
```

If *e* is **even**, division of $\{X_{\lambda} \mid \lambda \vdash n\}$ into Harish-Chandra series is known (Dipper-James ('86), Fong-Srinivasan ('89), Geck-H.-Malle ('94), Gruber-H. ('97)).

THEOREM (GECK-H.-MALLE, '96)

Suppose that e = 1, $\ell > n$ and let $\lambda, \mu \vdash n$. Then

- X_{λ} is cuspidal if and only if λ' is 2-regular.
- **2** Write $\lambda = \lambda_1 + 2\lambda_2$ such that λ'_1 is 2-regular, similarly for μ .

Assume now that $\ell > 0$ and put

```
e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.
```

If *e* is **even**, division of $\{X_{\lambda} \mid \lambda \vdash n\}$ into Harish-Chandra series is known (Dipper-James ('86), Fong-Srinivasan ('89), Geck-H.-Malle ('94), Gruber-H. ('97)).

THEOREM (GECK-H.-MALLE, '96)

Suppose that e = 1, $\ell > n$ and let $\lambda, \mu \vdash n$. Then

• X_{λ} is cuspidal if and only if λ' is 2-regular.

 Write λ = λ₁ + 2λ₂ such that λ'₁ is 2-regular, similarly for μ. Then X_λ and X_μ are in the same Harish-Chandra series, if and only if λ₁ = μ₁.

Assume now that $\ell > 0$ and put

```
e := \min\{0 \neq i \in \mathbb{N} \mid \ell \text{ divides } (-q)^i - 1\}.
```

If *e* is **even**, division of $\{X_{\lambda} \mid \lambda \vdash n\}$ into Harish-Chandra series is known (Dipper-James ('86), Fong-Srinivasan ('89), Geck-H.-Malle ('94), Gruber-H. ('97)).

THEOREM (GECK-H.-MALLE, '96)

Suppose that e = 1, $\ell > n$ and let $\lambda, \mu \vdash n$. Then

• X_{λ} is cuspidal if and only if λ' is 2-regular.

 Write λ = λ₁ + 2λ₂ such that λ'₁ is 2-regular, similarly for μ. Then X_λ and X_μ are in the same Harish-Chandra series, if and only if λ₁ = μ₁.

Want: Similar combinatorial description of Harish-Chandra series for **odd** e > 1.

EXAMPLE: $GU_7(q)$, e = 3, $\ell > 7$ (DUDAS-MALLE, '13)

The Dynkin diagram of *G* equals

The Dynkin diagram of G equals

DEFINITION

A Levi subgroup of G is called pure, if it corresponds to a left connected subset of the Dynkin diagram of G.

DEFINITION

A Levi subgroup of G is called pure, if it corresponds to a left connected subset of the Dynkin diagram of G.

0_____0 _____0

A pure Levi subgroup *L* satisfies $L \cong GU_r(q) \times GL_1(q^2)^m$ for some $r, m \le n$ with r + 2m = n:

DEFINITION

A Levi subgroup of G is called pure, if it corresponds to a left connected subset of the Dynkin diagram of G.

A pure Levi subgroup *L* satisfies $L \cong GU_r(q) \times GL_1(q^2)^m$ for some $r, m \le n$ with r + 2m = n:

$$L = \left\{ \left[egin{array}{ccc} A & & \ & B & \ & & A^{\dagger} \end{array}
ight] \mid A ext{ a diagonal matrix}, B \in \mathrm{GU}_r(q)
ight\}$$

A simple $X \in kG$ -mod is called weakly cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper pure** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

A simple $X \in kG$ -mod is called weakly cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper pure** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

If X is cuspidal, then X is weakly cuspidal.

A simple $X \in kG$ -mod is called weakly cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper pure** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

If X is cuspidal, then X is weakly cuspidal.

A weak cuspidal pair (L, Y) consists of a pure Levi subgroup $L \leq G$ and a weakly cuspidal $Y \in kL$ -mod.

A simple $X \in kG$ -mod is called weakly cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper pure** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

If X is cuspidal, then X is weakly cuspidal.

A weak cuspidal pair (L, Y) consists of a pure Levi subgroup $L \leq G$ and a weakly cuspidal $Y \in kL$ -mod.

Harish-Chandra theory yields the following classification.

A simple $X \in kG$ -mod is called weakly cuspidal, if $X \not\leq R_L^G(Y)$ for all **proper pure** Levi subgroups $L \leq G$ and all $Y \in kL$ -mod.

If X is cuspidal, then X is weakly cuspidal.

A weak cuspidal pair (L, Y) consists of a pure Levi subgroup $L \leq G$ and a weakly cuspidal $Y \in kL$ -mod.

Harish-Chandra theory yields the following classification.

THEOREM (VARIOUS AUTHORS)

$$\begin{array}{c} \{X \mid X \in kG \text{-mod } simple\} / iso. \\ \uparrow \\ (L, Y, \theta) \mid \begin{array}{c} (L, Y) \text{ a weak cuspidal pair} \\ \theta \in H(L, Y) \text{-mod } simple \end{array} \right\} / conj$$

WHY IT WORKS

Why does it work?

WHY IT WORKS

Why does it work?

REMARK

Let L, $M \leq G$ be pure Levi subgroups and let $x \in N$. (The N form the BN-pair.) Then

$L^x \cap M$

is a pure Levi subgroup.

Let (L, Y) be a weak cuspidal pair.

WHY IT WORKS

Why does it work?

REMARK

Let L, $M \leq G$ be pure Levi subgroups and let $x \in N$. (The N form the BN-pair.) Then

$L^x \cap M$

is a pure Levi subgroup.

Let (L, Y) be a weak cuspidal pair.

PROPOSITION

H(L, Y) is a symmetric algebra.

WEAK HARISH-CHANDRA SERIES

Let (L, Y) be a weak cuspidal pair.

WEAK HARISH-CHANDRA SERIES

Let (L, Y) be a weak cuspidal pair.

DEFINITION $\mathcal{E}(G; L, Y) := \{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$ is the weak Harish-Chandra series corresponding to (L, Y).

WEAK HARISH-CHANDRA SERIES

Let (L, Y) be a weak cuspidal pair.

DEFINITION $\mathcal{E}(G; L, Y) := \{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$ is the weak Harish-Chandra series corresponding to (L, Y).

char(k) = 0:

Weak Harish-Chandra series = Harish-Chandra series (only for unipotent modules)
WEAK HARISH-CHANDRA SERIES

Let (L, Y) be a weak cuspidal pair.

DEFINITION $\mathcal{E}(G; L, Y) := \{X \leftrightarrow (L, Y, \theta) \mid \theta \in H(L, Y) \text{-mod simple}\}/\text{iso.}$ is the weak Harish-Chandra series corresponding to (L, Y).

char(k) = 0:

Weak Harish-Chandra series = Harish-Chandra series (only for unipotent modules)

char(k) \neq 0:

Harish-Chandra series = union of weak Harish-Chandra series (since a cuspidal is weakly cuspidal)

EXAMPLE: $GU_7(q)$, e = 3, $\ell > 7$ (DUDAS-MALLE, '13)

Let $\iota \in \{0, 1\}$.

Let $\iota \in \{0, 1\}$. The Harish-Chandra branching graph $\mathcal{B}_{\iota} := \mathcal{B}_{\iota,\ell}$ has vertices

 $\{\lambda \vdash n \mid n \equiv \iota \; (\text{mod } 2)\}.$

Let $\iota \in \{0, 1\}$. The Harish-Chandra branching graph $\mathcal{B}_{\iota} := \mathcal{B}_{\iota,\ell}$ has vertices

$$\{\lambda \vdash n \mid n \equiv \iota \; (\text{mod } 2)\}.$$

There is a directed edge $\lambda \rightarrow \mu$ if and only if $\lambda \vdash n$ and $\mu \vdash n + 2$ for some $n \in \mathbb{N}$, and

$$X_{\mu} \leq R_{\operatorname{\mathsf{GU}}_n(q)}^{\operatorname{\mathsf{GU}}_{n+2}(q)}(X_{\lambda}).$$

Let $\iota \in \{0, 1\}$. The Harish-Chandra branching graph $\mathcal{B}_{\iota} := \mathcal{B}_{\iota,\ell}$ has vertices

$$\{\lambda \vdash n \mid n \equiv \iota \; (\text{mod } 2)\}.$$

There is a directed edge $\lambda \rightarrow \mu$ if and only if $\lambda \vdash n$ and $\mu \vdash n + 2$ for some $n \in \mathbb{N}$, and

$$X_{\mu} \leq R^{\operatorname{GU}_{n+2}(q)}_{\operatorname{GU}_n(q)}(X_{\lambda}).$$

PROPOSITION

The root vertices of B_i correspond to the weak cuspidal pairs.

Let $\iota \in \{0, 1\}$. The Harish-Chandra branching graph $\mathcal{B}_{\iota} := \mathcal{B}_{\iota,\ell}$ has vertices

$$\{\lambda \vdash n \mid n \equiv \iota \text{ (mod 2)}\}.$$

There is a directed edge $\lambda \rightarrow \mu$ if and only if $\lambda \vdash n$ and $\mu \vdash n + 2$ for some $n \in \mathbb{N}$, and

$$X_{\mu} \leq R^{\operatorname{GU}_{n+2}(q)}_{\operatorname{GU}_n(q)}(X_{\lambda}).$$

PROPOSITION

- The root vertices of B_i correspond to the weak cuspidal pairs.
- **2** Let κ be a root vertex in \mathcal{B}_{ι} and let λ be any vertex in \mathcal{B}_{ι} .

Let $\iota \in \{0, 1\}$. The Harish-Chandra branching graph $\mathcal{B}_{\iota} := \mathcal{B}_{\iota,\ell}$ has vertices

$$\{\lambda \vdash n \mid n \equiv \iota \; (\text{mod } 2)\}.$$

There is a directed edge $\lambda \rightarrow \mu$ if and only if $\lambda \vdash n$ and $\mu \vdash n + 2$ for some $n \in \mathbb{N}$, and

$$X_{\mu} \leq R^{\operatorname{GU}_{n+2}(q)}_{\operatorname{GU}_n(q)}(X_{\lambda}).$$

PROPOSITION

- The root vertices of B_i correspond to the weak cuspidal pairs.
- Let κ be a root vertex in B_ι and let λ be any vertex in B_ι. Then X_λ lies in the weak Harish-Chandra series of κ, if and only if there is a path from κ to λ in B_ι.

A TRUNCATED HARISH-CHANDRA BRANCHING GRAPH

Let
$$\iota = 1$$
, $\ell \mid q^2 - q + 1$ ($e = 3$), $n \le 7$.

Two further root vertices: 17, 3212

 $2^{3}1$

A TRUNCATED HARISH-CHANDRA BRANCHING GRAPH, CONTINUED

THE CONJECTURES

THE FOCK SPACE (OF LEVEL 2)

Fix $\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2$ and $2 \leq e \in \mathbb{Z}$.

Fix $\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2$ and $2 \leq e \in \mathbb{Z}$.

The Fock space (of level 2) and charge **c** is the $\mathbb{Q}(v)$ -vector space

$$\mathcal{F}_{\mathbf{c}, \boldsymbol{e}} := \bigoplus_{m \in \mathbb{N}} \bigoplus_{\mu \vdash_2 m} \mathbb{Q}(\boldsymbol{v}) | \mu, \mathbf{c} \rangle.$$

Fix
$$\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2$$
 and $2 \leq e \in \mathbb{Z}$.

The Fock space (of level 2) and charge \mathbf{c} is the $\mathbb{Q}(v)$ -vector space

$$\mathcal{F}_{\mathbf{c},e} := \bigoplus_{m \in \mathbb{N}} \bigoplus_{\mu \vdash_2 m} \mathbb{Q}(\mathbf{v}) | \mu, \mathbf{c} \rangle.$$

There is an action of the quantum group $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ on $\mathcal{F}_{\mathbf{c},e}$, with: • $\mathcal{F}_{\mathbf{c},e}$ is an integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module;

Fix
$$\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2$$
 and $2 \leq e \in \mathbb{Z}$.

The Fock space (of level 2) and charge \mathbf{c} is the $\mathbb{Q}(v)$ -vector space

$$\mathcal{F}_{\mathbf{c}, \mathbf{e}} := \bigoplus_{m \in \mathbb{N}} \bigoplus_{\mu \vdash_2 m} \mathbb{Q}(\mathbf{v}) | \mu, \mathbf{c} \rangle.$$

There is an action of the quantum group $\mathcal{U}_{\nu}(\widehat{\mathfrak{sl}_{e}})$ on $\mathcal{F}_{\mathbf{c},e}$, with:

- $\mathcal{F}_{\mathbf{c},e}$ is an integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module;
- **2** $|\mu, \mathbf{c}\rangle$ is a weight vector for every $m \in \mathbb{N}$ and $\mu \vdash_2 m$;

Fix
$$\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2$$
 and $2 \leq e \in \mathbb{Z}$.

The Fock space (of level 2) and charge \mathbf{c} is the $\mathbb{Q}(v)$ -vector space

$$\mathcal{F}_{\mathbf{c},e} := \bigoplus_{m \in \mathbb{N}} \bigoplus_{\mu \vdash_2 m} \mathbb{Q}(\mathbf{v}) | \mu, \mathbf{c} \rangle.$$

There is an action of the quantum group $\mathcal{U}_{\nu}(\widehat{\mathfrak{sl}_{e}})$ on $\mathcal{F}_{\mathbf{c},e}$, with:

- $\mathcal{F}_{\mathbf{c},e}$ is an integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module;
- **2** $|\mu, \mathbf{c}\rangle$ is a weight vector for every $m \in \mathbb{N}$ and $\mu \vdash_2 m$;

$$\mathcal{U}_{V}(\widehat{\mathfrak{sl}_{e}}).|(\emptyset,\emptyset),\mathbf{C}
angle\cong V(\Lambda(\mathbf{C})),$$

the simple highest weight module with weight $\Lambda(\mathbf{c})$ (computable from \mathbf{c}).

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a directed edge $|\mu, \mathbf{c}\rangle \rightarrow |\nu, \mathbf{c}|$ if and only if ν is obtained from μ by adding a good node.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a directed edge $|\mu, \mathbf{c}\rangle \rightarrow |\nu, \mathbf{c}$ if and only if ν is obtained from μ by adding a good node.

The notion of good addable node depends on *e* and **c**.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a directed edge $|\mu, \mathbf{c}\rangle \rightarrow |\nu, \mathbf{c}|$ if and only if ν is obtained from μ by adding a good node.

The notion of good addable node depends on *e* and **c**.

The good nodes of $|\mu, \mathbf{c}\rangle$ can be computed algorithmically.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a directed edge $|\mu, \mathbf{c}\rangle \rightarrow |\nu, \mathbf{c}|$ if and only if ν is obtained from μ by adding a good node.

The notion of good addable node depends on *e* and **c**.

The good nodes of $|\mu, \mathbf{c}\rangle$ can be computed algorithmically.

Each connected component of $\mathcal{G}_{\mathbf{c},e}$ spans a simple highest weight module of $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$, whose highest weight vector is the unique root vertex of the component.

There is a crystal graph $\mathcal{G}_{c,e}$, describing the canonical basis of the integrable $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$ -module $\mathcal{F}_{c,e}$.

The vertices of $\mathcal{G}_{\mathbf{c},e}$ are the basis vectors $|\mu, \mathbf{c}\rangle$, $m \in \mathbb{N}$, $\mu \vdash_2 m$.

There is a directed edge $|\mu, \mathbf{c}\rangle \rightarrow |\nu, \mathbf{c}|$ if and only if ν is obtained from μ by adding a good node.

The notion of good addable node depends on *e* and **c**.

The good nodes of $|\mu, \mathbf{c}\rangle$ can be computed algorithmically.

Each connected component of $\mathcal{G}_{\mathbf{c},e}$ spans a simple highest weight module of $\mathcal{U}_{v}(\widehat{\mathfrak{sl}_{e}})$, whose highest weight vector is the unique root vertex of the component.

(Jimbo, Misra, Miwa, Okada ('91); Uglov ('99))

THE CONJECTURES

A TRUNCATED CRYSTAL GRAPH

Let e = 3, c = (0, 0).

THE CONJECTURES

A TRUNCATED CRYSTAL GRAPH

Let
$$e = 3$$
, $c = (0, 0)$.

Two further root vertices: $\emptyset.1^3$, $1^3.\emptyset$

A TRUNCATED HARISH-CHANDRA BRANCHING GRAPH

Two further root vertices: 1⁷, 321²

THE CONJECTURES

CONJECTURE I

Suppose that *e* is odd.

Suppose that *e* is odd.

CONJECTURE I

Let $\lambda, \mu \vdash n$. If X_{λ} , X_{μ} lie in the same weak Harish-Chandra series, then λ and μ have the same 2-core.

Suppose that *e* is odd.

CONJECTURE I

Let $\lambda, \mu \vdash n$. If X_{λ} , X_{μ} lie in the same weak Harish-Chandra series, then λ and μ have the same 2-core.

In other words, Y_{λ} and Y_{μ} lie in the same (ordinary) Harish-Chandra series.

Suppose that e is odd.

CONJECTURE I

Let $\lambda, \mu \vdash n$. If X_{λ} , X_{μ} lie in the same weak Harish-Chandra series, then λ and μ have the same 2-core.

In other words, Y_{λ} and Y_{μ} lie in the same (ordinary) Harish-Chandra series.

If Conjecture I is true, the weak Harish-Chandra series form a refinement of the ordinary Harish-Chandra series.

Suppose that e is odd.

CONJECTURE I

Let $\lambda, \mu \vdash n$. If X_{λ} , X_{μ} lie in the same weak Harish-Chandra series, then λ and μ have the same 2-core.

In other words, Y_{λ} and Y_{μ} lie in the same (ordinary) Harish-Chandra series.

If Conjecture I is true, the weak Harish-Chandra series form a refinement of the ordinary Harish-Chandra series.

For $t \in \mathbb{N}$, put $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$ and let $\mathcal{B}_{\iota,t}$ denote the induced subgraph of \mathcal{B}_{ι} with vertices λ such that $\lambda_{(2)} = \Delta_t$.

Suppose that e is odd.

CONJECTURE I

Let $\lambda, \mu \vdash n$. If X_{λ} , X_{μ} lie in the same weak Harish-Chandra series, then λ and μ have the same 2-core.

In other words, Y_{λ} and Y_{μ} lie in the same (ordinary) Harish-Chandra series.

If Conjecture I is true, the weak Harish-Chandra series form a refinement of the ordinary Harish-Chandra series.

For $t \in \mathbb{N}$, put $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$ and let $\mathcal{B}_{\iota,t}$ denote the induced subgraph of \mathcal{B}_{ι} with vertices λ such that $\lambda_{(2)} = \Delta_t$.

If Conjecture I is true, $\mathcal{B}_{\iota,t}$ is a union of connected components of \mathcal{B}_{ι} .

A TRUNCATED HARISH-CHANDRA BRANCHING GRAPH

 $\mathcal{B}_{1,1}$: all partitions with 2-core (1) $(\ell \mid q^2 - q + 1, n \leq 7)$

Two further root vertices: 17, 3212

A TRUNCATED HARISH-CHANDRA BRANCHING GRAPH, CONTINUED

 $\mathcal{B}_{1,2}$: all partitions with 2-core (21) $(\ell \mid q^2 - q + 1, n \leq 7)$

THE CONJECTURES

CONJECTURE II

Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $\mathcal{B}'_{\iota,t}$ be obtained from $\mathcal{B}_{\iota,t}$ by replacing the lables λ by their 2-quotients.

Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $\mathcal{B}'_{\iota,t}$ be obtained from $\mathcal{B}_{\iota,t}$ by replacing the lables λ by their 2-quotients.

CONJECTURE II

With the above notation, $\mathcal{B}'_{\iota,t}$ agrees with the crystal graph $\mathcal{G}_{\mathbf{c},e}$ with $\mathbf{c} = (t + (1 - e)/2, 0)$ below rank ℓ
Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $\mathcal{B}'_{\iota,t}$ be obtained from $\mathcal{B}_{\iota,t}$ by replacing the lables λ by their 2-quotients.

CONJECTURE II

With the above notation, $\mathcal{B}'_{\iota,t}$ agrees with the crystal graph $\mathcal{G}_{\mathbf{c},\mathbf{e}}$ with $\mathbf{c} = (t + (1 - \mathbf{e})/2, 0)$ below rank ℓ , i.e. for vertices that correspond to partitions of $n < \ell$.

Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $\mathcal{B}'_{\iota,t}$ be obtained from $\mathcal{B}_{\iota,t}$ by replacing the lables λ by their 2-quotients.

CONJECTURE II

With the above notation, $\mathcal{B}'_{\iota,t}$ agrees with the crystal graph $\mathcal{G}_{\mathbf{c},\mathbf{e}}$ with $\mathbf{c} = (t + (1 - \mathbf{e})/2, 0)$ below rank ℓ , i.e. for vertices that correspond to partitions of $n < \ell$.

In particular, the root vertices of $\mathcal{G}_{c,e}$ correspond to the weakly cuspidal kGU_n(q)-modules, if $n < \ell$,

Let $t \in \mathbb{N}$ and let $\iota = |\Delta_t| \mod 2 \in \{0, 1\}$.

Let $\mathcal{B}'_{\iota,t}$ be obtained from $\mathcal{B}_{\iota,t}$ by replacing the lables λ by their 2-quotients.

CONJECTURE II

With the above notation, $\mathcal{B}'_{\iota,t}$ agrees with the crystal graph $\mathcal{G}_{\mathbf{c},e}$ with $\mathbf{c} = (t + (1 - e)/2, 0)$ below rank ℓ , i.e. for vertices that correspond to partitions of $n < \ell$.

In particular, the root vertices of $\mathcal{G}_{c,e}$ correspond to the weakly cuspidal kGU_n(q)-modules, if $n < \ell$,

and the vertices at distance *m* from a root vertex of $\mathcal{G}_{c,e}$ label the modules in the weak Harish-Chandra series in $GU_n(q)$ corresponding to this root vertex for $n = |\Delta_t| + 2m < \ell$.

• The conjectures are true for $n \le 10$ and e = 3, 5.

- The conjectures are true for $n \le 10$ and e = 3, 5.
- Conjecture I and the "In particular" part of Conjecture II are true for n = 12, e = 3.

- The conjectures are true for $n \le 10$ and e = 3, 5.
- Conjecture I and the "In particular" part of Conjecture II are true for n = 12, e = 3.
- Some of the formatting of the connected component of B'_{ℓ,t} containing (Ø, Ø), provided ℓ >> 0 (Geck, Geck-Jacon, '06),

- The conjectures are true for $n \le 10$ and e = 3, 5.
- Conjecture I and the "In particular" part of Conjecture II are true for n = 12, e = 3.
- Some of the formatting of the connected component of B'_{ℓ,t} containing (Ø, Ø), provided ℓ >> 0 (Geck, Geck-Jacon, '06),

i.e. the vertices at distance *m* from (\emptyset, \emptyset) and $|(\emptyset, \emptyset), \mathbf{c}\rangle$ are the same in $\mathcal{B}'_{\iota,t}$ respectively $\mathcal{G}_{\mathbf{c},e}$.

- The conjectures are true for $n \le 10$ and e = 3, 5.
- Conjecture I and the "In particular" part of Conjecture II are true for n = 12, e = 3.
- Some of the formatting of the connected component of B'_{ℓ,t} containing (Ø, Ø), provided ℓ >> 0 (Geck, Geck-Jacon, '06),

i.e. the vertices at distance *m* from (\emptyset, \emptyset) and $|(\emptyset, \emptyset), \mathbf{c}\rangle$ are the same in $\mathcal{B}'_{\iota,t}$ respectively $\mathcal{G}_{\mathbf{c},e}$.

Either of these sets of vertices labels the simple modules of $\mathcal{H}_{k,q^{2t+1},q^2}(B_m)$.

PROPOSITION (GECK-H.-MALLE ('94))

 X_{1^n} is cuspidal, if and only if $e \mid n$ or $e \mid n - 1$.

PROPOSITION (GECK-H.-MALLE ('94))

 X_{1^n} is cuspidal, if and only if $e \mid n$ or $e \mid n - 1$.

The partition (1^n) has 2-quotient $(\emptyset, 1^m)$ with $m = \lfloor n/2 \rfloor$, and 2-core (t) with $t \in \{0, 1\}$ such that n = 2m + t.

PROPOSITION (GECK-H.-MALLE ('94))

 X_{1^n} is cuspidal, if and only if $e \mid n$ or $e \mid n - 1$.

The partition (1^n) has 2-quotient $(\emptyset, 1^m)$ with $m = \lfloor n/2 \rfloor$, and 2-core (t) with $t \in \{0, 1\}$ such that n = 2m + t.

PROPOSITION

Let $\mathbf{c} = (t + (1 - e)/2, 0)$. Then $|(\emptyset, 1^m), \mathbf{c}\rangle$ is a highest weight vertex in $\mathcal{G}_{\mathbf{c}, e}$, if and only if $e \mid 2m + t$ or $e \mid 2m + t - 1$.

PROPOSITION (GECK-H.-MALLE ('94))

 X_{1^n} is cuspidal, if and only if $e \mid n$ or $e \mid n - 1$.

The partition (1^n) has 2-quotient $(\emptyset, 1^m)$ with $m = \lfloor n/2 \rfloor$, and 2-core (t) with $t \in \{0, 1\}$ such that n = 2m + t.

PROPOSITION

Let $\mathbf{c} = (t + (1 - e)/2, 0)$. Then $|(\emptyset, 1^m), \mathbf{c}\rangle$ is a highest weight vertex in $\mathcal{G}_{\mathbf{c}, e}$, if and only if $e \mid 2m + t$ or $e \mid 2m + t - 1$.

PROPOSITION

Suppose that Conjecture II is true. Let $\lambda \to \mu$ and $\lambda \to \nu$ be two edges in \mathcal{B}_{ι} .

PROPOSITION (GECK-H.-MALLE ('94))

 X_{1^n} is cuspidal, if and only if $e \mid n$ or $e \mid n - 1$.

The partition (1^n) has 2-quotient $(\emptyset, 1^m)$ with $m = \lfloor n/2 \rfloor$, and 2-core (t) with $t \in \{0, 1\}$ such that n = 2m + t.

PROPOSITION

Let $\mathbf{c} = (t + (1 - e)/2, 0)$. Then $|(\emptyset, 1^m), \mathbf{c}\rangle$ is a highest weight vertex in $\mathcal{G}_{\mathbf{c}, e}$, if and only if $e \mid 2m + t$ or $e \mid 2m + t - 1$.

PROPOSITION

Suppose that Conjecture II is true. Let $\lambda \to \mu$ and $\lambda \to \nu$ be two edges in \mathcal{B}_{ι} .

Then X_{μ} and X_{ν} lie in distinct ℓ -blocks.

CONJECTURE III

Let $\lambda \vdash n$ such that X_{λ} is weakly cuspidal.

Then the e-core of λ is a 2-core.

CONJECTURE III

Let $\lambda \vdash n$ such that X_{λ} is weakly cuspidal.

Then the e-core of λ is a 2-core.

Again, Conjecture III is true for $n \leq 10$.

CONJECTURE III

Let $\lambda \vdash n$ such that X_{λ} is weakly cuspidal.

Then the e-core of λ is a 2-core.

Again, Conjecture III is true for $n \leq 10$.

It is also true for $\lambda \vdash n$ of *e*-weight 1.

CONJECTURE III

Let $\lambda \vdash n$ such that X_{λ} is weakly cuspidal.

Then the e-core of λ is a 2-core.

Again, Conjecture III is true for $n \leq 10$.

It is also true for $\lambda \vdash n$ of *e*-weight 1.

PROPOSITION

Let $\lambda \vdash n$ with 2-core Δ_t and 2-quotient μ . If $|\mu, \mathbf{c}\rangle$ with $\mathbf{c} = (t + (1 - e)/2, 0)$ is a highest weight vertex in $\mathcal{G}_{\mathbf{c},e}$, then the e-core of λ is a 2-core.

CONJECTURE III

Let $\lambda \vdash n$ such that X_{λ} is weakly cuspidal.

Then the e-core of λ is a 2-core.

Again, Conjecture III is true for $n \leq 10$.

It is also true for $\lambda \vdash n$ of *e*-weight 1.

PROPOSITION

Let $\lambda \vdash n$ with 2-core Δ_t and 2-quotient μ . If $|\mu, \mathbf{c}\rangle$ with $\mathbf{c} = (t + (1 - e)/2, 0)$ is a highest weight vertex in $\mathcal{G}_{\mathbf{c},e}$, then the e-core of λ is a 2-core.

This follows from a combinatorial description of the highest weight vertices of $\mathcal{G}_{c,e}$ by Jacon and Lecouvey ('13).

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

PROPOSITION

Let
$$n = r + 2m$$
, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal $kGU_r(q)$ -module.

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal $kGU_r(q)$ -module.

Suppose that the e-core of λ is the 2-core Δ_s .

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal kGU_r(q)-module.

Suppose that the e-core of λ is the 2-core Δ_s .

Then $H(L, X_{\lambda}) \cong \mathcal{H}_{k,q^{2s+1},q^2}(B_m)$.

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal kGU_r(q)-module. Suppose that the e-core of λ is the 2-core Δ_s . Then H(L, X_{λ}) $\cong \mathcal{H}_{k,q^{2s+1},q^2}(B_m)$.

EXAMPLE

Let e = 3. Then $X_{(1^4)}$ is cuspidal.

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal $kGU_r(q)$ -module. Suppose that the e-core of λ is the 2-core Δ_s . Then $H(L, X_{\lambda}) \cong \mathcal{H}_{k,q^{2s+1},q^2}(B_m)$.

EXAMPLE

Let e = 3. Then $X_{(1^4)}$ is cuspidal. By the above, $H(L, X) = \mathcal{H}_{q^3, q^2.k}$.

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal $kGU_r(q)$ -module. Suppose that the e-core of λ is the 2-core Δ_s . Then $H(L, X_{\lambda}) \cong \mathcal{H}_{k,q^{2s+1},q^2}(B_m)$.

EXAMPLE

Let e = 3. Then $X_{(1^4)}$ is cuspidal. By the above, $H(L, X) = \mathcal{H}_{q^3, q^2, k}$. Thus the $(L, X_{(1^4)})$ -series is labelled by connected component of $\mathcal{G}_{\mathbf{s}, 3}$ containing $|(\emptyset, \emptyset), \mathbf{s}\rangle$ where $\mathbf{s} = (0, 0)$.

PROPOSITION

Let n = r + 2m, $G = \operatorname{GU}_n(q)$ and $L = \operatorname{GU}_r(q) \times \operatorname{GL}_1(q^2)^m$.

Let X_{λ} be a weakly cuspidal $kGU_r(q)$ -module. Suppose that the e-core of λ is the 2-core Δ_s . Then $H(L, X_{\lambda}) \cong \mathcal{H}_{k,q^{2s+1},q^2}(B_m)$.

EXAMPLE

Let e = 3. Then $X_{(1^4)}$ is cuspidal.

By the above, $H(L, X) = \mathcal{H}_{q^3, q^2, k}$. Thus the $(L, X_{(1^4)})$ -series is labelled by connected component of $\mathcal{G}_{\mathbf{s}, 3}$ containing $|(\emptyset, \emptyset), \mathbf{s}\rangle$ where $\mathbf{s} = (0, 0)$.

According to Conjecture II, the $(L, X_{(1^4)})$ -series is also labelled by the connected component of $\mathcal{G}_{c,3}$ containing $|(\emptyset, 1^2), c\rangle$ where c = (-1, 0).

Get parametrization of (L, X_{λ}) -Harish-Chandra series by the simple modules of $\mathcal{H}_{k,q^{2s+1},q^2}(B_m)$,

Get parametrization of (L, X_{λ}) -Harish-Chandra series by the simple modules of $\mathcal{H}_{k,q^{2s+1},q^2}(B_m)$, i.e. by the connected component of $\mathcal{G}_{\mathbf{s},e}$ containing $|(\emptyset, \emptyset), \mathbf{s}\rangle$ with $\mathbf{s} = (\mathbf{s} + (1 - \mathbf{e})/2, 0)$.

Get parametrization of (L, X_{λ}) -Harish-Chandra series by the simple modules of $\mathcal{H}_{k,q^{2s+1},q^2}(B_m)$, i.e. by the connected component of $\mathcal{G}_{\mathbf{s},e}$ containing $|(\emptyset, \emptyset), \mathbf{s}\rangle$ with $\mathbf{s} = (\mathbf{s} + (1 - \mathbf{e})/2, 0)$. If $\lambda_{(2)} = \Delta_t$ and $\lambda^{(2)} = \mu$, then the (L, X_{λ}) -Harish-Chandra

If $\lambda_{(2)} = \Delta_t$ and $\lambda^{(2)} = \mu$, then the (L, X_{λ}) -Harish-Chandra series is also labelled by the connected component of $\mathcal{G}_{\mathbf{c}, e}$ containing $|\mu, \mathbf{c}\rangle$ with $\mathbf{c} = (t + (1 - e)/2, 0)$.

Relate the two parametrizations.

Get parametrization of (L, X_{λ}) -Harish-Chandra series by the simple modules of $\mathcal{H}_{k,q^{2s+1},q^2}(B_m)$, i.e. by the connected component of $\mathcal{G}_{\mathbf{s},e}$ containing $|(\emptyset, \emptyset), \mathbf{s}\rangle$ with $\mathbf{s} = (\mathbf{s} + (1 - \mathbf{e})/2, 0)$. If $\lambda_{(2)} = \Delta_t$ and $\lambda^{(2)} = \mu$, then the (L, X_{λ}) -Harish-Chandra

series is also labelled by the connected component of $\mathcal{G}_{\mathbf{c},e}$ containing $|\mu, \mathbf{c}\rangle$ with $\mathbf{c} = (t + (1 - e)/2, 0)$.

Relate the two parametrizations.

PROPOSITION

With the notation introduced above, the connected component of $\mathcal{G}_{\mathbf{c},\mathbf{e}}$ with highest weight vertex $|\mu, \mathbf{c}\rangle$ is isomorphic (as a directed, non-coloured graph) to the connected component of $\mathcal{G}_{\mathbf{s},\mathbf{e}}$ with highest weight vertex $|(\emptyset, \emptyset), \mathbf{s}\rangle$.

THE CONJECTURES

Thank you for your attention!